79 research outputs found

    Employee attitudes as a mediator between HRM and organizational performance

    Get PDF
    Attitude is a power that controls human behaviour. When employee Attitude is positive, it can give impact positive to organization performance. A proper human resource management (HRM) managed by organization, the employee attitude will be affected. HRM practices influence employee attitude positively and there is a mediating role of employee attitude between training and development dimension of HRM practices and organizational performance. Therefore, the purpose of this study is to explore employee atttiude as a mediator between HRM and organizational performance. A sample of this study was 219 respondents from employee construction in Libya. The data was analyzed using structural equation modelling (SEM) approach. This study showed that employee attitudes is a full mediator between relationship HRM and organizational performance. Therefore, HRM practices influence employee attitude and its give impact to organizational performance for more effective and efficient in achieving organization goal

    Top-Down Behavioral Modeling Methodology of a Piezoelectric Microgenerator For Integrated Power Harvesting Systems

    Get PDF
    In this study, we developed a top/down methodology for behavioral and structural modeling of multi-domain microsystems. Then, we validated this methodology through a study case : a piezoelectric microgenerator. We also proved the effectiveness of VHDL-AMS language not only for modeling in behavioral and structural levels but also in writing physical models that can predict the experimental results. Finally, we validated these models by presenting and discussing simulations results.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    A Study on Piezoelectric Elements and Its Utility in Designing of Electronic Scale

    Get PDF
    All the electrical or electronic equipment need electrical power supply to operate. Most of these equipments are powered by conventional electricity resources. Conventional energy resource in form of electricity is most economic and cost effective. However this may not be suitable for some applications like portable instruments or the equipments used at remote areas.  Therefore there is always search for alternate energy sources and solar energy, biogas, windmill etc. are the results of such searches. They may not be cost effective and there are several disadvantages in these sources. Piezoelectric generator (PEG) is one type of non-conventional energy source that can convert mechanical energy to electrical energy. Though their energy conversion is very low, but they may be used in some typical applications of portable and low power consuming devices. In this paper some investigation has been made how energy can be extracted from piezoelectric generators and efficiency can be improved which is applied as the power source to operate an Electronic Scale. Keywords: Piezoelectricity, Piezoelectric generators, Transversal, Shear, Display driver

    Highway Power Harvester

    Get PDF
    This final report serves as to put forward a new idea to generate power from the passage of motor vehicles

    Piezoelectric model of rainfall energy harvester

    Get PDF
    In this paper a model to predict the harvest of the energy contained in rainfall by means of piezoelectric transducers is presented. Different studies agree on the level of suitable generated voltage on the electrodes of a piezoelectric transducer subjected to rainfall, but a complete characterization on the supplied power is still missing. This work, in order to limit optimistic forecasts, compares the behavior of the transducers subjected to real and artificial rainfall, a condition that has shown promising behavior in laboratory

    A Smart Knee Implant Using Triboelectric Energy Harvesters

    Get PDF
    Although the number of total knee replacement (TKR) surgeries is growing rapidly, functionality and pain-reduction outcomes remain unsatisfactory for many patients. Continual monitoring of knee loads after surgery offers the potential to improve surgical procedures and implant designs. The goal of this study is to characterize a triboelectric energy harvester under body loads and to design compatible frontend electronics to digitize the load data. The harvester prototype would be placed between the tibial component and polyethylene bearing of a TKR implant. The harvester generates power from the compressive load. To examine the harvester output and the feasibility of powering a digitization circuitry, a triboelectric energy harvester prototype is fabricated and tested. An axial tibiofemoral load profile from normal walking (gait) is approximated as a 1 Hz sine wave signal and is applied to the harvester. Because the root mean square of voltages generated via this phenomenon is proportional to the applied load, the device can be simultaneously employed for energy harvesting and load sensing. With an approximated knee cyclic load of 2.3 kN at 1 Hz, the harvester generated output voltage of 18 V RMS, and an average power of 6 µW at the optimal resistance of 58MΩ. The harvested signal is rectified through a negative voltage converter rectifier and regulated through a linear-dropout regulator with a combined efficiency of 71%. The output of the regulator is used to charge a supercapacitor. The energy stored in the supercapacitor is used for low resolution sensing of the load through a peak detector and analog-to-digital converter. According to our analysis, sensing the load several times a day is feasible by relying only on harvested power. The results found from this work demonstrate that triboelectric energy harvesting is a promising technique for self-powering load sensors inside knee implants

    Piezoelectric Rainfall Energy Harvester Performance by Advanced Arduino based Measuring System

    Get PDF
    This paper presents the performances of rainfall energy harvesting through the use of a piezoelectric transducer and an Arduino-based measuring system. Different studies agree on the possibility of generating electricity from rainfall, but to date, a study on measuring the quantity of energy produced during rainfall is still missing. The present study begins with results obtained from laboratory researchers using piezoelectric transducers and oscilloscopes, finalized to measure the energy produced from a single raindrop, and concludes with an ad hoc Arduino-based measuring system, aimed to measure the actual amount of electrical energy produced by a piezoelectric transducer that is exposed to rainfall of variable durations

    POWER DISTRIBUTION ANALYSIS IN COMPLEX SYSTEMS

    Get PDF
    Electronic systems are continuously growing nowadays in every ambit and application; concepts like mobile systems, domotic, wireless monitoring are becoming very common, and the reason is the continuous reduction of the energy and time needed to collect, process and send information and data to the end user. The energy management complexity of these systems is increasing in parallel both in terms of efficiency and reliability, in order to increase the lifetime of the application and try to make it energy-autonomous, thus also the power management should not be seen only as an efficient energy conversion stage, but as a complex system which can now manage different energy sources, and ensure an uninterrupted power supply to the application. The problems that must be overcome increase as the number of scenarios where the end applications have to be used: this thesis aims to present some complex power distribution systems and provide a detailed analysis of the strategies necessary to make the solution reliable and efficient

    DEVELOPMENT OF A SIMPLIFIED, MASS PRODUCIBLE HYBRIDIZED AMBIENT, LOW FREQUENCY, LOW INTENSITY VIBRATION ENERGY SCAVENGER (HALF-LIVES)

    Get PDF
    Scavenging energy from environmental sources is an active area of research to enable remote sensing and microsystems applications. Furthermore, as energy demands soar, there is a significant need to explore new sources and curb waste. Vibration energy scavenging is one environmental source for remote applications and a candidate for recouping energy wasted by mechanical sources that can be harnessed to monitor and optimize operation of critical infrastructure (e.g. Smart Grid). Current vibration scavengers are limited by volume and ancillary requirements for operation such as control circuitry overhead and battery sources. This dissertation, for the first time, reports a mass producible hybrid energy scavenger system that employs both piezoelectric and electrostatic transduction on a common MEMS device. The piezoelectric component provides an inherent feedback signal and pre-charge source that enables electrostatic scavenging operation while the electrostatic device provides the proof mass that enables low frequency operation. The piezoelectric beam forms the spring of the resonant mass-spring transducer for converting vibration excitation into an AC electrical output. A serially poled, composite shim, piezoelectric bimorph produces the highest output rectified voltage of over 3.3V and power output of 145uW using ¼ g vibration acceleration at 120Hz. Considering solely the volume of the piezoelectric beam and tungsten proof mass, the volume is 0.054cm3, resulting in a power density of 2.68mW/cm3. Incorporation of a simple parallel plate structure that provides the proof mass for low frequency resonant operation in addition to cogeneration via electrostatic energy scavenging provides a 19.82 to 35.29 percent increase in voltage beyond the piezoelectric generated DC rails. This corresponds to approximately 2.1nW additional power from the electrostatic scavenger component and demonstrates the first instance of hybrid energy scavenging using both piezoelectric and synchronous electrostatic transduction. Furthermore, it provides a complete system architecture and development platform for additional enhancements that will enable in excess of 100uW additional power from the electrostatic scavenger

    Running Shoe Pedometer

    Get PDF
    Running shoe pedometer aims to solve the issue of worn out running shoes. It can be difficult to know just how many miles you have run in your shoes and when a new pair is needed. Running in old shoes and worn out shoes is heavily linked to injury. My proposed project is a device that is powered by the compressive forces on the shoes soles that counts the number of steps the wearer takes using a microcontroller. Then, when the shoe reaches milestone that indicate it has been used 75% 90% and 100% of its expected life, it will output the information to the user. In order to output the wear life of the shoes to the user, a series of color changing chemical reactions will be used. These reactions will most likely be acid/base with some type of indicator or an electrochromic material. These color changes will allow the user to see that their shoes are worn out. The device should be extremely low cost so that it can be built into a running shoe and disposed of when the shoe is worn out
    corecore