27 research outputs found

    Characterisation and optimisation of the semiconductor optical amplifier for ultra-high speed performance

    Get PDF
    This research is in the area of high speed telecommunication systems where all- optical technologies are being introduced to meet the ever increasing demand for bandwidth by replacing the costly electro-optical conversion modules. In such systems, all-optical routers are the key technologies capable of supporting networks with high capacity/bandwidth as well as offering lower power consumption. One of the fundamental building blocks in all-optical routers/networks is the semiconductor optical amplifier (SOA), which is used in for clock extraction, wavelength conversion, all-optical gates and optical processing. The SOAs are perfect for optical amplification and optical switching at a very high speed. This is due to their small size, a low switching energy, non-linear characteristics and the seamless integration with other optical devices. Therefore, characterisation of the SOA operational functionalities and optimisation of its performance for amplification and switching are essential and challenging. Existing models on SOA gain dynamics do not address the impact of optical propagating wavelength, the combined input parameters and their adaptation for optimised amplification and switching operations. The SOA operation is limited at high data rates > 2.5 Gb/s to a greater extent by the gain recovery time. A number of schemes have been proposed to overcome this limitation; however no work has been reported on the SOA for improving the gain uniformity. This research aims to characterise the boundaries conditions and optimise the SOA performance for amplification and switching. The research also proposes alternative techniques to maximise the SOA gain uniformity at ultra-high speed data rates theoretically and practically. An SOA model is been developed and used throughout the research for theoretical simulations. Results show that the optimum conditions required to achieve the maximum output gain for best amplification performance depends on the SOA peak gain wavelength. It is also shown that the optimum phase shift of 180º for switching can be induced at lower input power level when the SOA biasing current is at its maximum limit. A gain standard deviation equation is introduced to measure the SOA gain uniformity. New wavelength diversity technique is proposed to achieve an average improvement of 7.82 dB in the SOA gain standard deviation at rates from 10 to 160 Gb/s. Other novel techniques that improved the gain uniformity employing triangular and sawtooth bias currents, as replacements for the uniform biasing, have been proposed. However, these current patterns were not able to improve the SOA gain uniformity at data rates beyond 40 Gb/s. For that reason, an optimised biasing for SOA (OBS) pattern is introduced to maximise the gain uniformity at any input data rates. This OBS pattern was practically generated and compared to the uniform biased SOA at different data rates and with different input bit sequences. All executed experiments showed better output uniformities employing the proposed OBS pattern with an average improvement of 19%

    Characterisation and optimisation of the semiconductor optical amplifier for ultra-high speed performance

    Get PDF
    This research is in the area of high speed telecommunication systems where all- optical technologies are being introduced to meet the ever increasing demand for bandwidth by replacing the costly electro-optical conversion modules. In such systems, all-optical routers are the key technologies capable of supporting networks with high capacity/bandwidth as well as offering lower power consumption. One of the fundamental building blocks in all-optical routers/networks is the semiconductor optical amplifier (SOA), which is used in for clock extraction, wavelength conversion, all-optical gates and optical processing. The SOAs are perfect for optical amplification and optical switching at a very high speed. This is due to their small size, a low switching energy, non-linear characteristics and the seamless integration with other optical devices. Therefore, characterisation of the SOA operational functionalities and optimisation of its performance for amplification and switching are essential and challenging. Existing models on SOA gain dynamics do not address the impact of optical propagating wavelength, the combined input parameters and their adaptation for optimised amplification and switching operations. The SOA operation is limited at high data rates > 2.5 Gb/s to a greater extent by the gain recovery time. A number of schemes have been proposed to overcome this limitation; however no work has been reported on the SOA for improving the gain uniformity. This research aims to characterise the boundaries conditions and optimise the SOA performance for amplification and switching. The research also proposes alternative techniques to maximise the SOA gain uniformity at ultra-high speed data rates theoretically and practically. An SOA model is been developed and used throughout the research for theoretical simulations. Results show that the optimum conditions required to achieve the maximum output gain for best amplification performance depends on the SOA peak gain wavelength. It is also shown that the optimum phase shift of 180º for switching can be induced at lower input power level when the SOA biasing current is at its maximum limit. A gain standard deviation equation is introduced to measure the SOA gain uniformity. New wavelength diversity technique is proposed to achieve an average improvement of 7.82 dB in the SOA gain standard deviation at rates from 10 to 160 Gb/s. Other novel techniques that improved the gain uniformity employing triangular and sawtooth bias currents, as replacements for the uniform biasing, have been proposed. However, these current patterns were not able to improve the SOA gain uniformity at data rates beyond 40 Gb/s. For that reason, an optimised biasing for SOA (OBS) pattern is introduced to maximise the gain uniformity at any input data rates. This OBS pattern was practically generated and compared to the uniform biased SOA at different data rates and with different input bit sequences. All executed experiments showed better output uniformities employing the proposed OBS pattern with an average improvement of 19%.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    High capacity photonic integrated switching circuits

    Get PDF
    As the demand for high-capacity data transfer keeps increasing in high performance computing and in a broader range of system area networking environments; reconfiguring the strained networks at ever faster speeds with larger volumes of traffic has become a huge challenge. Formidable bottlenecks appear at the physical layer of these switched interconnects due to its energy consumption and footprint. The energy consumption of the highly sophisticated but increasingly unwieldy electronic switching systems is growing rapidly with line rate, and their designs are already being constrained by heat and power management issues. The routing of multi-Terabit/second data using optical techniques has been targeted by leading international industrial and academic research labs. So far the work has relied largely on discrete components which are bulky and incurconsiderable networking complexity. The integration of the most promising architectures is required in a way which fully leverages the advantages of photonic technologies. Photonic integration technologies offer the promise of low power consumption and reduced footprint. In particular, photonic integrated semiconductor optical amplifier (SOA) gate-based circuits have received much attention as a potential solution. SOA gates exhibit multi-terahertz bandwidths and can be switched from a high-gain state to a high-loss state within a nanosecond using low-voltage electronics. In addition, in contrast to the electronic switching systems, their energy consumption does not rise with line rate. This dissertation will discuss, through the use of different kind of materials and integration technologies, that photonic integrated SOA-based optoelectronic switches can be scalable in either connectivity or data capacity and are poised to become a key technology for very high-speed applications. In Chapter 2, the optical switching background with the drawbacks of optical switches using electronic cores is discussed. The current optical technologies for switching are reviewed with special attention given to the SOA-based switches. Chapter 3 discusses the first demonstrations using quantum dot (QD) material to develop scalable and compact switching matrices operating in the 1.55µm telecommunication window. In Chapter 4, the capacity limitations of scalable quantum well (QW) SOA-based multistage switches is assessed through experimental studies for the first time. In Chapter 5 theoretical analysis on the dependence of data integrity as ultrahigh line-rate and number of monolithically integrated SOA-stages increases is discussed. Chapter 6 presents some designs for the next generation of large scale photonic integrated interconnects. A 16x16 switch architecture is described from its blocking properties to the new miniaturized elements proposed. Finally, Chapter 7 presents several recommendations for future work, along with some concluding remark

    Investigation of performance issues affecting optical circuit and packet switched WDM networks

    Get PDF
    Optical switching represents the next step in the evolution of optical networks. This thesis describes work that was carried out to examine performance issues which can occur in two distinct varieties of optical switching networks. Slow optical switching in which lightpaths are requested, provisioned and torn down when no longer required is known as optical circuit switching (OCS). Services enabled by OCS include wavelength routing, dynamic bandwidth allocation and protection switching. With network elements such as reconfigurable optical add/drop multiplexers (ROADMs) and optical cross connects (OXCs) now being deployed along with the generalized multiprotocol label switching (GMPLS) control plane this represents the current state of the art in commercial networks. These networks often employ erbium doped fiber amplifiers (EDFAs) to boost the optical signal to noise ratio of the WDM channels and as channel configurations change, wavelength dependent gain variations in the EDFAs can lead to channel power divergence that can result in significant performance degradation. This issue is examined in detail using a reconfigurable wavelength division multiplexed (WDM) network testbed and results show the severe impact that channel reconfiguration can have on transmission performance. Following the slow switching work the focus shifts to one of the key enabling technologies for fast optical switching, namely the tunable laser. Tunable lasers which can switch on the nanosecond timescale will be required in the transmitters and wavelength converters of optical packet switching networks. The switching times and frequency drifts, both of commercially available lasers, and of novel devices are investigated and performance issues which can arise due to this frequency drift are examined. An optical packet switching transmitter based on a novel label switching technique and employing one of the fast tunable lasers is designed and employed in a dual channel WDM packet switching system. In depth performance evaluations of this labelling scheme and packet switching system show the detrimental impact that wavelength drift can have on such systems

    Investigation of wavelength tunable laser modules for use in future optically switched dense wavelength division multiplexed networks

    Get PDF
    This thesis investigates the use of fast wavelength tunable laser modules in future optically switched dense wavelength division multiplexed networks (DWDM). The worldwide demand for increasingly greater broadband access has thus far been satisfied by the use of DWDM networks, enabled by the development of the erbium doped amplifier. However as this demand continues to grow electronic switching at network nodes will become a limiting factor, creating a potential bandwidth mismatch between the fibre capacities and switching capacity. Optical switching has been proposed to overcome this electronic bottleneck and fully utilize the enormous bandwidth offered by fibre. Fast tunable lasers (TLs) are a key technology in this area, enabling fast wavelength switching. Experimental work involving the fast wavelength switching of sampled grating distributed Bragg reflector TL modules is presented. Spurious mode generation during wavelength tuning is shown to cause severe cross-channel interference on other data channels in a DWDM test bed. Bit error rate (BER) results demonstrate that a integrated semiconductor optical amplifier can greatly reduce system degradation caused by asynchronous switching of multiple TLs. This is achieved by optically blanking the laser output during channel transition for a period of 60 ns. Immediately after the blanking period a wavelength drift due to the TL module wavelength locking is found to cause cross channel interference and introduce an error floor >1 e-4 on the BER performance characteristic of an adjacent channel in a 12.5 GHz spaced DWDM network. This drift is characterised, using a selfheterodyne and a filter based approach – Error free performance is subsequently demonstrated by using an extended blanking period of 260 ns or by using subcarrier multiplexing transmission and phase selective demodulation before detection. A DWDM optical label switching system, utilizing 40 Gbit/s payload data with low data rate labels placed on a 40 GHz sub-carrier and using TL transmitters is presented. Channel performance is monitored on a static channel as a second data channel is tuned into an adjacent channel on a 100 GHz spaced grid. Error free performance is demonstrated only for the channel payload – Time resolved BER results in agreement with the TL wavelength drift are measured and demonstrate a detrimental influence of the drift on the sub-carrier label performance

    Fiber amplifiers, directly modulated transmitters and a ring network structure for optical communications

    Get PDF
    The three technologies that are considered the key elements in building a metropolitan area optical network are studied in this thesis. They are optical amplification, high-speed low cost transmitters and ring network structures. These studies concentrate on cost reduction of these three technologies thus enabling the use of optical networks in small customer base metropolitan areas. The research on optical amplification concentrated first on the solution doping process, at present the most used method for producing erbium doped fiber. It was found that separationing the soot growth and the sintering improved the uniformity of the porous layer. This made the homogeneity of the doping concentration in the fiber core better. The effects of index profile variations that arise from the non-ideal solution doping process were also simulated. In the search for a better doping method a new nanoparticle glass-forming process, the direct nanoparticle deposition, was developed. In this process the doping is done simultaneously with glass formation. Utilizing this new process it was possible to improve the uniformity of the doping resulting in higher usable doping levels and shorter erbium doped fiber lengths in the amplifiers. There were fewer limitations in the amplifier caused by optical non-linearities and polarization mode dispersion since shorter fiber lengths were needed. The double cladding fiber, which avoids the costly coupling of the pump laser into a single mode waveguide, was also studied. This pumping scheme was found to improve the inversion uniformity in the erbium doped fiber core thereby enhancing the power conversion efficiency for the long wavelength band amplifier. In characterizing the erbium doped fiber amplifier the gain and noise figure was measured with a temporal filter setup. It was made of simple, low cost components but yielded accurate measurements since the noise originating from the amplified spontaneous emission was measured at the signal wavelength. In the study of fiber amplifier controlling schemes the input power of the fiber amplifier was successfully used to regulate the pump laser. This feed-forward control scheme provides a simple, low cost control and managment system for the erbium doped fiber amplifier in metropolitan area network applications that require flexible adding and dropping of wavelength channels. The transmitter research focused on the DFB laser due to its simplicity and low cost structure. A solid state Fabry-Perot etalon made from double polished silicon chip was used as a frequency discriminator in the chirp analyser developed for the DFB lasers. This wavelength discriminator did not require repeated calibration or active stabilisation and was controled electrically enabling automatic measurements. The silicon Fabry-Perot etalon was also used for simultaneous spectral filtering and wavelength control of the laser. The usable dispersion limited transmission length was increased when the filter was used in conjunction with the directly modulated distributed feedback laser transmitter. The combination of spatial multiplexing and dense wavelength division multiplexing in ring topology was investigated in the course of the research on the ring network as the feeder part of the metropolitan network. A new way to organize different wavelengths and fibers was developed. This ring network structure was simulated and an experimental ring network built. The results of the studies demonstrated that the same limitations effecting uni-directional ring structures also are the main limitations on the scalability of the spatial and wavelength division multiplexed ring networks based on bi-directional transmission when the node spacing is short. The developed ring network structure demonstrated major cost reductions when compared with the heavy use of wavelength division multiplexing. The node structure was also greatly simplified resulting in less need for different wavelength transmitters in each node. Furthermore the node generated only minor losses for the passing signals thus reducing the need for optical amplification.reviewe
    corecore