513 research outputs found

    SNR gap approximation for M-PSK-Based bit loading

    Get PDF
    Adaptive OFDM has the potential of providing bandwidth-efficient communications in hostile propagation environments. Currently, bit loading algorithms use M-ary quadrature amplitude modulation of the OFDM sub-carriers, where the number of bits per symbol modulating each of them is obtained in order to maximize the performance. SNR gap approximation for M-QAM signaling makes the algorithms simpler to implement. However, in some circumstances it may be preferable to use. Mary phase shift keying. In this letter an approximation is derived for M-PSK similar to the SNR gap of M-QAM so that bit loading algorithms can be extended to this type of modulation. In addition, the performance obtained when using M-PSK is compared to that of M-QAM in a practical situationThis work has been partly funded by Spanish Government with research project TIC2002-03498Publicad

    On Bit-loading for Discrete Multi-tone Transmission over Short Range POF Systems

    Get PDF
    International audienceA novel bit-loading approach is proposed for the discrete multi-tone (DMT) transmission over short range polymer optical fiber (POF) systems. First of all, from the extract signal-to-noise ratio (SNR) table of quadrature amplitude modulation (QAM) for different desired bit error rates (BER), a new linear approximation (LA) expression is introduced to implement bit-loading for DMT systems. Then, based on water-filling concept, the performance bounds and optimal power allocations for the classical and the proposed bit-loading algorithms in Gaussian low-pass channel models are derived. Consequently, introducing the measured channel parameters of step-index (SI)-POF channels with different transmission distances, the theoretical performance bounds are computed and the practical transmission rates are simulated. Simulation results show that the proposed LA expression based bit-loading achieves higher transmission rate than classical modulation gap based bit-loading. Both algorithms use sub-optimal Chow algorithm with constant power allocation and iterative process. Finally, real DMT transmissions over SI-POFs are implemented in order to verify the proposed method. The LA expression based bit-loading outperforms the modulation gap based bit-loading in DMT transmission systems over different transmission distances. Moreover, experimental results show that the longer fiber length, the higher performance gain with LA expression based bit-loading. In the comparisons, for a 50 m SI-POF transmission, the transmission rate in DMT system with LA expression based bit-loading is improved by 5 % with the same experimental setups for a given BER at 1e-3 and by 10% for a 100 m length

    An energy-efficient adaptive modulation suitable for wireless sensor networks with SER and throughput constraints

    Get PDF
    We consider the problem of minimizing transmission energy in wireless sensor networks by taking into account that every sensor may require a different bit rate and reliability according to its particular application. We propose a cross-layer approach to tackle such a minimization in centralized networks for the total transmission energy consumption of the network: in the physical layer, for each sensor the sink estimates the channel gain and adaptively selects a modulation scheme; in the MAC layer, each sensor is correspondingly assigned a number of time slots. The modulation level and the number of allocated time slots for every sensor are constrained to attain their applications bit rates in a global energy-efficient manner. The signal-to-noise ratio gap approximation is used in our exposition in order to jointly handle required bit rates, transmission energies, and symbol error rates.This work has been partially funded by CRUISE NoE (IST-4-027738), MAMBO2 (CCG06-UC3M/TIC-0698) and MACAWI (TEC- 2005-07477-C02-02) projects.Publicad

    Bit Loading and Peak Average Power Reduction Techniques for Adaptive Orthogonal Frequency Division Multiplexing Systems

    Get PDF
    In a frequency-selective channel a large number of resolvable multipaths are present which lead to the fading of the signal. Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme, in which the bandwidth of the channel is divided into subcarriers and data symbols are modulated and transmitted on each subcarrier simultaneously. By inserting guard time that is longer than the delay spread of the channel, an OFDM system is able to mitigate intersymbol interference (ISI). Significant improvement in performance is achieved by adaptively loading the bits on the subcarriers based on the channel state information from the receiver. Imperfect channel state information (CSI) arises from noise at the receiver and also due to the time delay in providing the information to the transmitter for the next data transmission. This thesis presents an investigation into the different adaptive techniques for loading the data bits on the subcarriers. The choice of the loading technique is application specific. The spectral efficiency and the bit error rate (BER) performance of adaptive OFDM as well as the implementation complexity of the different loading algorithms is studied by varying any one of the parameters, data rate or BER or total transmit power subject to the constraints on the other two. A novel bit loading algorithm based on comparing the SNR with the threshold in order to minimize the BER is proposed and its performance for different data rates is plotted. Finally, this thesis presents a method for reducing the large peak to average power ratio (PAPR) problem with OFDM which arises when the sinusoidal signals of the subcarriers add constructively. The clipping and the probabilistic approaches were studied. The probabilistic technique shows comparatively better BER performance as well as reduced PAPR ratio but is more complex to implement

    Optimization of Multi-Band DFT-Spread DMT System for Polymer Optical Fiber Communications

    Get PDF
    Abstract--Recently, polymer optical fiber (POF) became a popular solution for the indoor communications. In this paper, a multi-band discrete-Fourier-transform spread (MB-DFT-S) discrete multi-tone (DMT) system is proposed to study and optimize in terms of POF communications. A joint optimization of used subcarrier number, used bandwidth and multi-band number is investigated. The transmission of MB-DFT-S DMT over 50 m POF link is implemented. Both theoretical and experimental results demonstrate that optimized MB-DFT-S DMT system outperforms the original DMT and DFT-S DMT systems, which means that it is a promising technique for future POF transmission systems

    Power allocation, bit loading and sub-carrier bandwidth sizing for OFDM-based cognitive radio

    Get PDF
    The function of the Radio Resource Management module of a Cognitive Radio (CR) system is to evaluate the available resources and assign them to meet the Quality of Service (QoS) objectives of the Secondary User (SU), within some constraints on factors which limit the performance of the Primary User (PU). While interference mitigation to the PU spectral band from the SU's transmission has received a lot of attention in recent literature; the novelty of our work is in considering a more realistic and effective approach of dividing the PU into sub-bands, and ensuring that the interference to each of them is below a specified threshold. With this objective, and within a power budget, we execute the tasks of power allocation, bit loading and sizing the sub-carrier bandwidth for an orthogonal frequency division multiplexing (OFDM)-based SU. After extensively analyzing the solution form of the optimization problems posed for the resource allocation, we suggest iterative algorithms to meet the aforementioned objectives. The algorithm for sub-carrier bandwidth sizing is novel, and not previously presented in literature. A multiple SU scenario is also considered, which entails assigning sub-carriers to the users, besides the resource allocation. Simulation results are provided, for both single and multi-user cases, which indicate the effectiveness of the proposed algorithms in a CR environment
    corecore