6 research outputs found

    Power delay profile and noise variance estimation for OFDM

    Get PDF
    In this letter, we present cyclic-prefix (CP) based noise-variance and power-delay-profile estimators for Orthogonal Frequency Division Multiplexing (OFDM) systems. Signal correlation due to the use of the CP is exploited without requiring additional pilot symbols. A heuristic estimator and a class of approximate maximum likelihood (ML) estimators are proposed. The proposed algorithms can be applied to both unitary and non-unitary constellations. These algorithms can be readily used for applications such as minimum mean-square error (MMSE) channel estimation

    Tracking A Dynamic Sparse Channel Via Differential Orthogonal Matching Pursuit

    Full text link
    This paper considers the problem of tracking a dynamic sparse channel in a broadband wireless communication system. A probabilistic signal model is firstly proposed to describe the special features of temporal correlations of dynamic sparse channels: path delays change slowly over time, while path gains evolve faster. Based on such temporal correlations, we then propose the differential orthogonal matching pursuit (D-OMP) algorithm to track a dynamic sparse channel in a sequential way by updating the small channel variation over time. Compared with other channel tracking algorithms, simulation results demonstrate that the proposed D-OMP algorithm can track dynamic sparse channels faster with improved accuracy.Comment: Conference: Milcom 2015 Track 1 - Waveforms and Signal Processing - IEEE Military Communications Conference 201

    Power delay profile and noise variance estimation for OFDM

    Full text link

    A Real Time Radio Spectrum Scanning Technique Based On The Bayesian Model And Its Comparison With The Frequentist Technique

    Get PDF
    The proliferation of mobile devices led to an exponential demand for wireless radio spectrum resources. The current fixed spectrum assignment has caused some portions of the radio spectrum to be heavily used whereas others to be scarcely used. This has resulted in underutilization of spectrum resources, and, hence has demanded the need for solutions to address the spectrum scarcity problem. Cognitive radio was proposed as one of the solutions. One of the techniques involved in cognitive radio is the dynamic spectrum access technique. This technique requires the identification of free channels in order to allow secondary users to exploit the spectrum resources. The process of identification of free channels is known as radio spectrum scanning, which is performed by sensing a particular channel in the radio spectrum to determine the presence or absence of a signal. In most of existing studies, the frequentist technique using energy detection with fixed threshold was used to scan the radio spectrum. However, this method comes with a major drawbacks. First, energy detection is unable to distinguish between signals and noise and suffer for high false detection rates. Second, energy detection has high false alarm probability. Finally, frequentist techniques are subject to uncertainty and do not provide real time monitoring/sensing. Therefore, the goal of this thesis is to develop a more efficient scanning technique that deals with uncertainty and scans the radio spectrum in real time and determines its occupancy levels. An enhanced spectrum scanning approach is developed using an efficient spectrum sensing technique: an uncertainty handling Bayesian model along with a Bayesian inferential approach. Two Bayesian models are developed: 1) a simplified model, and 2) an improved model to incorporate the Bayesian inferential approach to estimate the spectrum occupancy level. The performance evaluation of the proposed technique has been done using simulations as well as real experiments. For this purpose, two metrics were used: probability of detection and probability of false alarm. Furthermore, the efficiency of the proposed technique was compared to the efficiency of the frequentist technique, which uses only a spectrum sensing technique to identify the occupancy of the spectrum channels. As expected significant improvements in the spectrum occupancy measurements have been observed with the proposed Bayesian inference method
    corecore