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ABSTRACT 

 The proliferation of mobile devices led to an exponential demand for wireless radio 

spectrum resources. The current fixed spectrum assignment has caused some portions of 

the radio spectrum to be heavily used whereas others to be scarcely used. This has resulted 

in underutilization of spectrum resources, and, hence has demanded the need for solutions 

to address the spectrum scarcity problem. Cognitive radio was proposed as one of the 

solutions. One of the techniques involved in cognitive radio is the dynamic spectrum access 

technique. This technique requires the identification of free channels in order to allow 

secondary users to exploit the spectrum resources. The process of identification of free 

channels is known as radio spectrum scanning, which is performed by sensing a particular 

channel in the radio spectrum to determine the presence or absence of a signal. In most of 

existing studies, the frequentist technique using energy detection with fixed threshold was 

used to scan the radio spectrum.   However, this method comes with a major drawbacks. 

First, energy detection is unable to distinguish between signals and noise and suffer for 

high false detection rates. Second, energy detection has high false alarm probability. 

Finally, frequentist techniques are subject to uncertainty and do not provide real time 

monitoring/sensing. Therefore, the goal of this thesis is to develop a more efficient 

scanning technique that deals with uncertainty and scans the radio spectrum in real time 

and determines its occupancy levels. 

 



xv 

 An enhanced spectrum scanning approach is developed using an efficient spectrum 

sensing technique: an uncertainty handling Bayesian model along with a Bayesian 

inferential approach. Two Bayesian models are developed: 1) a simplified model, and 2) 

an improved model to incorporate the Bayesian inferential approach to estimate the 

spectrum occupancy level.  

 The performance evaluation of the proposed technique has been done using 

simulations as well as real experiments. For this purpose, two metrics were used: 

probability of detection and probability of false alarm. Furthermore, the efficiency of the 

proposed technique was compared to the efficiency of the frequentist technique, which uses 

only a spectrum sensing technique to identify the occupancy of the spectrum channels. As 

expected significant improvements in the spectrum occupancy measurements have been 

observed with the proposed Bayesian inference method. 
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Chapter 1 

INTRODUCTION 

1.1. Spectrum Scarcity Problem 

  With the exponential increase of portable device utilization and ever-growing 

demand for greater wireless data transmission rates, an increasing demand for spectrum 

channels has been observed over the last decade. Conventionally, licensed spectrum 

channels are assigned for comparatively long time spans to license holders who may not 

continuously use them, creating an under-utilized spectrum. This  inefficient use of 

spectrum resources has motivated researchers to look for advanced, innovative technologies 

that enable more efficient spectrum resource use [1.1]. Figure 1 depicts the under-utilization 

of the spectrum wherein certain parts of the spectrum are sparsely used and certain portions 

are heavily used. The figure also indicates a spectrum utilization of less than 6%. 

 

Figure 1. Spectrum utilization [1.2]
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 This inefficient usage necessitated the development of dynamic spectrum access 

techniques. Dynamic spectrum access techniques allow secondary users or unlicensed 

users of the radio spectrum to access the licensed portion of the spectrum on a temporary 

basis. This approach is can increase the efficiency of the utilization of the radio resources 

as well as solve the problem of spectrum scarcity by re-utilizing the licensed portions of 

the spectrum. Dynamic spectrum access techniques enable cognitive radios to operate in 

the best available channel which ensures an interference free operation between the 

primary and the secondary users. The process of identifying the holes or white space in the 

radio spectrum to decide on the best available channel is achieved by scanning the radio 

spectrum. Figure 2 illustrates the usage of a licensed spectrum. In this figure different 

channels are occupied for varying durations thereby creating white spaces or holes during 

the channel’s inactivity period. These white spaces open up opportunities for the secondary 

user to use the licensed part of the spectrum. 

 

Figure 2. Illustration of licensed spectrum [1.2]  

1.2. Cognitive Radio 

 The concept of cognitive radio was introduced as a solution to address the scarcity 
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problem of the radio spectrum. It was conceived originally by Mitola in [1.3], is that the 

cognitive radio executes a set of processes in a sequential order such as observing the radio 

spectrum, deciding the presence of the signal, and taking an action to adjust the operating 

parameters of the cognitive radio. This sequence of processes is known as the “Cognitive 

Cycle”. An illustration of the cognitive cycle as described in [1.4] is shown in Figure 3, 

wherein each ellipse represents a process in the cognitive cycle. In the “Observing” phase, 

the cognitive radio performs spectrum sensing to check for the presence of a signal. Based 

on this result, decisions are made in the “Deciding” process and then the “Taking Action” 

process takes an action dependent on the decision made previously. 

 

Figure 3. Cognitive Cycle (modified from [1.4]) 

 Cognitive radio is the component that detects the transmissions of the primary users 

who own the license to use specific portions of the radio spectrum. It is designed to be 

context aware of the environment it operates. This awareness functionality is supported by 

spectrum sensing and channel estimation. Spectrum sensing is the process of obtaining 

awareness about the spectrum usage and existence of primary users in a determined area 

[1.5] and is one of the key processes in radio spectrum scanning. 

1.3. Uncertainty in Cognitive Radios 
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In cognitive radio networks, the observation phase is a critical part of the cognitive 

cycle. In this phase the spectrum sensing is performed to obtain measurements which are 

used in the decision making phase to make decisions based on the observations made. 

Multipath fading, shadowing, and other varying channel conditions [1.6] are random thus 

they affect the complete cognitive cycle process. Since the observations made are uncertain 

this would impact the system by taking wrong or incorrect decisions based on these 

uncertain observations. This wrong decision would in turn influence in a wrong action being 

taken by the cognitive radio. Therefore an uncertainty propagation is noticed from the 

observation phase to the action taken thereby affecting the performance of the cognitive 

radio. Mitigating this uncertainty would enhance the performance of the cognitive radio by 

observing the spectrum correctly, making the right decisions and taking the needed actions 

correctly. Spectrum sensing decisions are influenced by various parameters such as noise, 

fading by multipath effect, shadowing from obstacles in the channel and other sources of 

interferences. 

In order to handle the uncertainty in cognition cycles, a model that considers 

uncertainty in all stages of the cognition cycle should be developed in which the handling 

uncertainty solution is used in the cognition cycle to provide reliable decisions, leading to 

intelligent actions by the cognitive radio system. Current spectrum sensing models do not 

have the right decision-making protocols when elements of uncertainty are present or 

parameters are missing due to channel condition changes [1.7].  Mathematical models have 

been proposed to address uncertainties such as the one proposed by R.Tandra et al in [1.8] 

addressing the noise uncertainty and fading by the proposition of a signal-to-noise ratio wall 

that quantified the sensing decision. 
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 Therefore an efficient spectrum sensing technique and an uncertainty handling 

technique or model can aid in achieving more accurate and precise occupancy results. 

1.4. Goal and Objectives of this Thesis 

 The goal of this thesis is to develop a model for sensing and scanning the radio 

spectrum and dealing with uncertainty in cognitive radio systems. To achieve this goal, the 

following objectives are pursued: 

1) Develop an efficient spectrum sensing technique 

2) Build a simplified Bayesian model to perform Bayesian inference and compare it 

with the Frequentist inference 

3) Improve the simplified Bayesian model to perform uncertainty handling 

 This thesis will be organized as followed. In the second chapter, a study of the 

different types of uncertainties will be performed followed with the development of a 

simplified and an improved Bayesian model. The third chapter will consist of a literature 

study of the various noise estimation techniques followed by the implementation of one of 

the studied techniques. The fourth chapter shall provide an overview into the current 

spectrum sensing techniques and also describe the development of an efficient spectrum 

sensing technique. The fifth chapter shall discuss about the Bayesian and the Frequentist 

inferential techniques and the results of the radio spectrum scanning experiments performed.
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Chapter 2 

BAYESIAN MODELLING 

2.1. Uncertainty and its Handling Techniques 

 Uncertainty is classified as aleatoric or epistemic as illustrated in Figure 4 [2.1]. 

The reason for the occurrence of aleatoric uncertainties is purely because of the natural and 

unpredictable variation in the performance of the system. This type of uncertainty is 

referred to as irreducible uncertainty as no knowledge can aid in the reduction of the 

aleatoric uncertainty. In simple terms it refers to the notion of randomness as it is directly 

influenced by the inherent random effects of the system. A classical example of this 

uncertainty is the coin-flip experiment where the outcome of this experiment has a 

stochastic component that cannot be reduced or eliminated with the addition of any further 

information. Therefore with the best efforts, a model can only provide probabilities of 

occurrence for the two outcomes but not a definite answer [2.2]. 

 On the other hand, epistemic uncertainty arises primarily due to lack of knowledge 

of the behavior of the system, which on availability of further knowledge overcomes in 

conceptually resolving the uncertainty. Unlike the aleatoric uncertainty, the epistemic 

uncertainty can be reduced with the availability of further knowledge and therefore refers 

to the reducible part of the total uncertainty. An example of this type of uncertainty is a 

medical doctor’s true diagnosis of a patient.



7 

 

A situation of uncertainty prevails until medical tests are performed to diagnose the patient. 

Gathering more information such as knowledge from the medical test reports aids in the 

detection of the disease and thereby reducing the uncertainty involved. 

 

Figure 4. Classification of Uncertainty 

 Epistemic uncertainty is also known by a few other names such as reducible 

uncertainty, subjective uncertainty, model form uncertainty, state of knowledge, type B 

uncertainty and de dicto [2.3]. As shown in Figure 5, this uncertainty is further classified 

in two types: 

 Model Uncertainty 

 Phenomenological Uncertainty 

 Behavioral Uncertainty 

 Model Uncertainty is attributed to the accuracy of the mathematical model that 

describes the actual physical system under consideration. Since the model design depends 

on the designer, this type of uncertainty is also due to lack of knowledge. Every model is a 

representation of reality and therefore a perfect model is not true although a model can be 

better than another. Uncertainties in a model arises from approximation, numerical, and 

programming errors. For a system that is well defined, a nearly accurate model can be 

designed. In such scenarios, deficiencies could arise due to errors rather than uncertainties. 

Uncertainty

Aleatoric Epistemic
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Numerical errors arise due to finite precision arithmetic which can be reduced by higher 

precision computers and software, whereas, programming errors arise due to bugs, defects 

and design errors caused by the programmer. 

 Phenomenological Uncertainty arises during the design or development of the 

model, wherein certain phenomenon, principle of working or any other execution 

conditions are unknown. 

 Behavioral Uncertainty arises from the actions of an individual or an organization. 

Selection over a choice of components by an engineer (design uncertainty), deciding upon 

the variables in a model independent of the engineer, of which the engineer does not have 

knowledge (requirement uncertainty), future actions and decisions of individuals or other 

organizations (volitional uncertainty) and any other human errors that occur during the 

development of a system or project. 

 

Figure 5. Classification of Epistemic Uncertainty 

 

Epistemic Uncertainty

Model Uncertainty

Approximation Errors

Numerical and Programming 
Errors

Phenomenological 
Uncertainty

Behavioral Uncertainty
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 Uncertainty handling reduces the number of errors in the system and makes the 

system more reliable and stable. Since the epistemic uncertainty is the reducible 

uncertainty, few uncertainty handling methods have been proposed. They are classified 

into four categories 1) Probabilistic Theory, 2) Fuzzy Set Theory, 3) Evidence Theory, and 

4) Possibility Theory, as shown in Figure 6.  Probabilistic theory is a popular mathematical 

approach applied in the estimation of various measure of uncertainty and aims at analyzing 

random phenomena based on stochastic process and random variables [2.4]. Fuzzy set 

theory and possibility theory deal with mitigation of uncertainty and incomplete 

information, whereas the evidence theory based-methods serve as alternate approaches to 

the probabilistic theory. 

 

 Figure 7 shows the classification of probabilistic methods. These methods deal with 

both aleatory and epistemic uncertainty through experiments and provides a degree of 

belief which replaces the knowledge about the system state. The degree of belief is usually 

attached to all the events associated with a system and is expressed in the form of 

probabilities. Probabilities relating statements to a state of knowledge are expressed as 

𝑃(𝐴|𝐵) which changes with the aviablabitly of new evidence and is expressed as 

𝑃(𝐴|𝐵, 𝐶) [2.5]. Certain refining techniques have been proposed such as graphical models, 

Bayesian networks [2.6], Markov networks [2.7], and factor graphs [2.8]. 

Epistemic Uncertainty 
Handling Techniques

Probabilistic 
Theory

Fuzzy Set 
Theory

Evidence 
Theory

Possibility 
Theory

Figure 6. Epistemic Uncertainty Handling Techniques 
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Figure 7. Classification of probabilistic methods 

2.2. Bayes’ Rule and Bayesian Networks 

 Bayes’ Rule was initially discovered by Thomas Bayes. The Bayes’ Rule describes 

the conditional probability of an event i.e. the probability of an event which is based on 

certain conditions that are related to the event. For two given events 𝑥 and 𝑦, if the 

occurrence of event 𝑥 is conditioned on the occurrence of event 𝑦 then the proabability of 

event 𝑥 given 𝑦 for 𝑃(𝑦) ≠ 0 is defined as, 

 
𝑃(𝑥|𝑦) ≡

𝑃(𝑥, 𝑦)

𝑃(𝑦)
 

(1) 

where 𝑃(𝑥, 𝑦) is known as the joint distribution of 𝑥 and 𝑦 [2.9]. In the case of conditional 

independence where event 𝑥 and event 𝑦 are independent of each other, 𝑃(𝑥) ≠ 0 

and 𝑃(𝑦) ≠ 0, then mathematically it is expressed as, 

 𝑃(𝑥, 𝑦) = 𝑃(𝑥)𝑃(𝑦) (2) 

 Bayesian Networks, also known as belief networks or Bayes networks, is a 

graphical model that encodes probabilistic relationships among intervening variables of a 

model that influence one another via a directed acyclic graph (DAG). Since the model 

encodes dependencies among all variables, it is capable of handling different scenarios 

where certain data might be unavailable. A graph consists of vertices and edges wherein a 

Probabilistic Methods

Bayesian Models Markov Models Factor Graphs
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vertex is a node and an edge is a link between the vertices. When all the edges are directed 

(have an arrow in a single direction), then the graph is called a directed graph. A DAG is a 

special form of a directed graph such that traversing a path of vertices from one node to 

another along the direction of each edge, no path will revisit a vertex [2.9]. The nodes or 

the variables can be binary or discrete propositions or continuous quantities which can be 

observable or hidden. Causal relations can also take upon various functional forms such as 

linear or non-linear, deterministic or probabilistic, generative or inhibitory [2.10]. Two 

variables can possess a correlation irrespective of their connection being direct or indirect. 

If the two variables are connected indirectly then their correlation is mediated by one or 

more different variables. 

 Figure 8, illustrates the relationships in a DAG, consisting of seven nodes each 

representing a random variable, of which some of them are dependent on other variables 

and some are independent. From this, our understanding of a DAG becomes clear 

signifying that each vertex has an edge directed towards another vertex and the traversal 

over this path of edges does not revisit any vertex. The relationship between vertices is of 

a parent-child where the vertex from which the edge originates is the parent and the vertex 

where the edge is directed towards is the child. This is a causal relationship indicating the 

dependency of the child on the parent. Absence of a link, indicates conditional 

independence between the nodes [2.11]. Extracting the details of the parent-child 

relationship from Figure 8, we have four parent vertices and four child vertices and one 

vertex being a parent and a child. The relationship for each vertex is as follows: 

 𝑉𝑒𝑟𝑡𝑒𝑥 𝑥1: 𝑃𝑎𝑟𝑒𝑛𝑡{𝑥4, 𝑥5}   
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 𝑉𝑒𝑟𝑡𝑒𝑥 𝑥2: 𝑃𝑎𝑟𝑒𝑛𝑡{𝑥1}   

 𝑉𝑒𝑟𝑡𝑒𝑥 𝑥3: 𝑃𝑎𝑟𝑒𝑛𝑡{𝑥5}   

 𝑉𝑒𝑟𝑡𝑒𝑥 𝑥4: 𝐶ℎ𝑖𝑙𝑑{𝑥1}   

 𝑉𝑒𝑟𝑡𝑒𝑥 𝑥5: 𝐶ℎ𝑖𝑙𝑑{𝑥1, 𝑥2, 𝑥3} 𝑃𝑎𝑟𝑒𝑛𝑡{𝑥6, 𝑥7}  

 𝑉𝑒𝑟𝑡𝑒𝑥 𝑥6: 𝐶ℎ𝑖𝑙𝑑{𝑥5}   

 𝑉𝑒𝑟𝑡𝑒𝑥 𝑥7: 𝐶ℎ𝑖𝑙𝑑{𝑥3, 𝑥5}   

With the definition of the model, the qualitative component of the Bayesian network is 

accomplished. The quantitative component is accomplished by characterizing the variables 

with probability distributions. Bayesian networks deal with joint probability distributions 

and conditional probability distributions, thereby allowing it to be used as a factorization 

tool. Applying the Bayes’ Rule repeatedly on the model illustrated in Figure 8, we get, 

 𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)

= 𝑃(𝑥7|𝑥6, 𝑥5, 𝑥4, 𝑥3, 𝑥2, 𝑥1)𝑃(𝑥6, 𝑥5, 𝑥4, 𝑥3, 𝑥2, 𝑥1) 

= 𝑃(𝑥7|𝑥5, 𝑥3)𝑃(𝑥6|𝑥5, 𝑥4, 𝑥3, 𝑥2, 𝑥1)𝑃(𝑥5, 𝑥4, 𝑥3, 𝑥2, 𝑥1) 

= 𝑃(𝑥7|𝑥5, 𝑥3)𝑃(𝑥6|𝑥5)𝑃(𝑥5|𝑥4, 𝑥3, 𝑥2, 𝑥1)𝑃(𝑥4, 𝑥3, 𝑥2, 𝑥1) 

= 𝑃(𝑥7|𝑥5, 𝑥3)𝑃(𝑥6|𝑥5)𝑃(𝑥5|𝑥3, 𝑥2, 𝑥1)𝑃(𝑥4|𝑥3, 𝑥2, 𝑥1)𝑃(𝑥3, 𝑥2, 𝑥1) 

= 𝑃(𝑥7|𝑥5, 𝑥3)𝑃(𝑥6|𝑥5)𝑃(𝑥5|𝑥3, 𝑥2, 𝑥1)𝑃(𝑥4|𝑥1)𝑃(𝑥3)𝑃(𝑥2)𝑃(𝑥1) 

 

In a generalized form we can write, 

 𝑃(𝑥1, … , 𝑥𝑛) = 𝑃(𝑥1|𝑥2, … , 𝑥𝑛)𝑃(𝑥2, … , 𝑥𝑛) 

𝑃(𝑥1, … , 𝑥𝑛) = 𝑃(𝑥1|𝑥2, … , 𝑥𝑛)𝑃(𝑥2|𝑥3, … , 𝑥𝑛)𝑃(𝑥3, … , 𝑥𝑛) 
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𝑃(𝑥1, … , 𝑥𝑛) = 𝑃(𝑥𝑛)∏𝑃(

𝑛−1

𝑖=1

𝑥𝑖|𝑥𝑖+1, … , 𝑥𝑛) 
(3) 

Therefore, Bayes’ Rule allows for the representation of causal dependencies between various 

contextual events [2.12] [2.13] and also aids in the computation of probabilities in the case of no 

direct information available about the event under analysis.  

x1 x2 x3

x5x4

x7x6
 

Figure 8. Relationships in a DAG and a Bayesian Network example 

2.3. Bayesian Model for Scanning the Radio Spectrum 

 A Bayesian model, as described previously, is a graphical model encoding the 

probabilistic relationship among its intervening variables that influence each other via a 

directed acyclic graph. With the design of a Bayesian model, one can infer the probabilities 

of the intervening variables using the Bayes’ rule and this process of inference is known as 

Bayesian Inference.  

2.3.1. Simplified Bayesian Model 

 We first developed a preliminary Bayesian model that includes purely deterministic 

and measured variables, as shown in Figure 9. The black ellipses are deterministic variables 

of which the cognitive radio has knowledge about. The cognitive radio is aware about the 

time, frequency and location details at any given instant. The light blue shaded ellipses are 
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measured variables which are influenced by deterministic variables or measured variables. 

The usage level is a measured variable that is influenced by the time, frequency, and 

location. It is basically the past/previous usage level of the channel under consideration. 

The spectrum sensing decision is considered as a deterministic variable whose value is 

known as the binary result of the spectrum sensing process. The spectrum occupancy level 

is a measured variable which represents the final calculated spectrum occupancy level 

inferred using the past value (usage level) and the currently observed value (spectrum 

sensing decision). With the application of Bayesian inference, one can infer the probability 

of the variable spectrum occupancy level. 

Frequency

Time
Location

Usage Level

Spectrum 

Sensing 

Decision

Spectrum 

Occupancy 

Level

 

Figure 9. Simplified Bayesian Model to perform Bayesian Inference 

2.3.2. Improved Bayesian Model 

 The model of Figure 9 does not take into consideration the uncertainty of sensing 

techniques. These techniques are characterized by probabilities of detection and false 

alarm. In this section we describe an improved model to take into consideration these 



15 

 

probabilities, and, hence deal with uncertainty. Figure 10 shows this improved Bayesian 

model. The new model, besides consisting of deterministic and measured variables also 

includes random variables. The variables in the black ellipses are deterministic variables 

of which the cognitive radio has knowledge about as they are parameters whose values are 

certain. On the other hand, the variables in the white ellipses, are random variables whose 

values are uncertain and subject to changes at any given instant of time. The variables in 

the light blue shade ellipses are those that can be measured. Time, frequency, and location 

are all deterministic variables whose values are known by the cognitive radio. As 

mentioned previously, the usage level represents the past/previous usage level of a given 

channel. The received power is a random variable, whose value is changing randomly. This 

power is affected by several factors, including the noise in the system, interference, and 

propagation losses. The SNR is a measured variable that is influenced by the received 

power which in turn influences the probability of detection and false alarm of the sensing 

technique used. These probabilities are deterministic as their values are known for a given 

value of SNR. The spectrum occupancy level is another measured variable which is of 

interest as it provides the current occupancy level of the channel under consideration. 
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Frequency
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SNR
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Spectrum 
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Level

 

Figure 10. Improved Bayesian Model to perform Bayesian Inference 

 With the improved Bayesian model and the application of Bayesian inference, one 

can infer the probability of the measured variable, spectrum occupancy level. The detection 

and false alarm probabilities for each of the spectrum sensing technique was 

experimentally determined for a given value of SNR and are used in the Bayesian 

inferential process to infer the spectrum occupancy level.
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Chapter 3 

NOISE ESTIMATION 

3.1 Background 

In the field of cognitive radio, signal-to-noise ratio is a very important variable that 

affects the probabilities of detection and false alarm. Being able to estimate this variable 

can help in the process of spectrum sensing to identify the available channel and in 

decision-making phase to estimate the usage level of different channels of the radio 

spectrum. The received samples are a combination of the signal and noise. However, there 

is no method or tool to measure the power of the signal or the power of the noise; it can be 

only estimated. Several signal-to-noise ratio estimation techniques have been proposed to 

estimate the signal-to-noise. The following section describes the state-of-the art of these 

techniques in an additive white Gaussian noise channel.  

3.2 State-of-the-Art: Classification of Signal-to-Noise Ratio (SNR) Estimators 

Figure 11 describes the classification of the SNR estimation techniques. They are 

broadly classified into two main categories: 1) data aided and 2) non-data aided. Data aided 

estimation techniques require the knowledge of the characteristics of the transmitted data 

sequences. On the other hand non-data aided estimation techniques do not need any 

knowledge of the transmitted data sequences characteristics. Techniques of this category 

use approaches, such as extracting and analyzing the inherent properties of the received 
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signal to estimate the noise and signal powers. Data aided estimation techniques category 

is further divided into two types: transmitted and received data aided estimators. The 

transmitted data aided estimators, denoted as TxDA, requires the knowledge of the 

transmitted data sequence whereas the receiver data aided estimators, denoted as RxDA, 

use an estimate of the transmitted data sequence from the receiver decisions. Examples of 

techniques are those described by Pauluzzi et al. [3.1]. These techniques are studied by 

performing simulations using modulated signals such as BPSK signals in the case of real 

AWGN and 8-PSK signals in the case of complex AWGN. The authors used only 

simulations to investigate the performance of the estimators surveyed. 

SNR Estimation 

Techniques

Non-Data Aided 

Estimators

Data Aided 

Estimators

Received Data 

Aided

Transmitted 

Data Aided

Split Symbol Moment 

Estimator

Maximum Likelihood 

Estimator

Squared Signal-to-Noise 

Variance Estimator

Second-and-Fourth 

Order Moment 

Estimator

Signal-to-Variation Ratio 

Estimator

Maximum Likelihood 

Estimator

Squared Signal-to-

Noise Variance 

Estimator

Low Bias Algorithm 

Negative SNR 

Estimator

Wavelets Based SNR 

Estimator

Sample Covariance 

Matrix Eigenvalues 

Based SNR Estimator

Sixth Order Statistics 

Based SNR Estimator

Eigenvalue Based SNR 

Estimator

 

Figure 11. Classification of SNR Estimators 

3.2.1 Data Aided Estimators 
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Examples of data aided estimation techniques include: 

 Split-Symbol Moments estimator 

 Maximum-Likelihood estimator 

 Squared Signal-to-Noise Variance (SNV) Estimator 

 Second-Order and Fourth-Order Moments Estimator 

 Signal-to-Variation Ratio (SVR) Estimator 

 Low Bias Algorithm Negative Signal-to-Ratio Estimator  

a) Split-Symbol Moments Estimator 

Split-symbol moments estimator was initially developed for a Binary Phase Shift 

Keying modulated signal in a real wide-band AWGN channel [3.2]. This estimator, 

denoted as SSME0, was further improvised for implementation in band-limited channels 

(SSME1) by Shah and Hinedi in [3.3] and narrow-band channels (SSME2) by Shah and 

Holmes in [3.4]. The signal-to-noise ratio in this method is estimated by determining the 

solutions S and N to the system of linear equations [3.1]: 

 𝑚𝑝 = 𝑐11𝑆 + 𝑐12𝑁 (1) 

 𝑚𝑠𝑠 = 𝑐21𝑆 + 𝑐22𝑁 (2) 

Where 𝑚𝑝 and 𝑚𝑠𝑠 are computed as functions of the samples obtained at the receiver. The 

coefficients 𝑐𝑖𝑗 are functions of the transmitter and receiver filter coefficients and are 

determined by computing the expected values of 𝑚𝑝 and 𝑚𝑠𝑠 . In a further approach, the 

authors of [3.1] examined a variant of the SSME1 by replacing 𝑚𝑝 and 𝑚𝑠𝑠 with 𝑚𝑞 

and 𝑚𝑠𝑞 . This approach was denoted as SSME2 and was applied for narrow-band channels. 

Similar to SSME0 the signal-to-noise ratio was estimated by determining the solution of S 

and N to the system of quadratic equations given by: 
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 𝑚𝑞 = 𝑑11𝑆
2 + 𝑑12𝑆𝑁 + 𝑑13𝑁

2 (3) 

 𝑚𝑠𝑞 = 𝑑21𝑆
2 + 𝑑22𝑆𝑁 + 𝑑23𝑁

2 (4) 

Where 𝑚𝑞 and 𝑚𝑠𝑞 are functions of the samples obtained at the receiver and 𝑑𝑖𝑗 are 

functions of the transmitter and receiver coefficients. Similar to 𝑐𝑖𝑗, 𝑑𝑖𝑗 can also be 

computed by using the expected values of 𝑚𝑞 and 𝑚𝑠𝑞. This estimator was only applied to 

BPSK-modulated signal in a real AWGN channel. Due to the complexity to extend it to 

higher degrees of modulation, this estimator was not studied for complex forms. 

b) Maximum-Likelihood (ML) Estimator 

The ML estimation theory [3.5] was introduced by Kerr [3.6] and Gagliardi et 

al.[3.7]. This estimator was derived by Gagliardi and Thomas for a BPSK-modulated signal 

in a real AWGN channel, but was further applied to M-ary PSK signals in complex AWGN 

by the authors of [3.1]. The samples of the complex received signal expressed in terms of 

real and imaginary parts is given by, 

 𝑟𝑘 = 𝑟𝐼𝑘 +  𝑗𝑟𝑄𝑘 = √𝑆( 𝑚𝐼𝑘 + 𝑗𝑚𝑄𝑘) +  √𝑁(𝑧𝐼𝑘 +  𝑗𝑧𝑄𝑘) (5) 

Where, 𝑟𝑘 is the transmitted signal, 𝑟𝐼𝑘 is the in-phase component of the transmitted signal, 

𝑗𝑟𝑄𝑘 is the complex quadrature component, 𝑚𝐼𝑘 and 𝑚𝑄𝑘 are the in-phase and quadrature 

components of the information bearing signal, 𝑧𝐼𝑘 and 𝑧𝑄𝑘 are the in-phase and quadrature 

components of the complex, sampled, zero-mean AWGN of unit variance, 𝑆 is a signal 

power scale factor, and 𝑁 is a noise power scale factor. The in-phase and quadrature 

components of the noise having a zero mean and variance 𝑁 2⁄  are assumed to be 

independent of each other. Furthermore the signal and noise components are assumed to 



21 

 

be independent of each other and hence their joint probability density functions for 𝐾 =

 𝑁𝑠𝑦𝑚𝑁𝑠𝑠 received samples is given by, 

 𝑓(𝑟𝐼 , 𝑟𝑄|𝑆, 𝑁, 𝑖) =  ∏𝑓(𝑟𝐼𝑘 , 𝑟𝑄𝑘|𝑆, 𝑁, 𝑖)

𝐾−1

𝑘=0

  

 

= (𝜋𝑁)−𝐾 exp [
−1

𝑁
(∑(𝑟𝐼𝑘 − √𝑆𝑚𝐼𝑘

𝑖 )
2
+ 

𝐾−1

𝑘=0

∑(𝑟𝑄𝑘 − √𝑆𝑚𝑄𝑘
𝑖 )

2
𝐾−1

𝑘=0

)] (6) 

Where 𝑚𝐼𝑘
(𝑖) and 𝑚𝑄𝑘

(𝑖) are the in-phase and quadrature components of the sampled and 

pulse-shaped information signal, 𝑖 denotes the 𝑖𝑡ℎ sequence of the 𝑀𝑁𝑠𝑦𝑚 possibly 

transmitted message sequences, 𝐾 is the total number of received samples, 𝑟𝐼𝑘 is the in-

phase component of the transmitted signal, 𝑟𝑄𝑘 is the quadrature component, 𝑆 is a signal 

power scale factor and 𝑁 is a noise power scale factor. The likelihood function is given by, 

 Γ(𝑆, 𝑁, 𝑖) = ln 𝑓(𝑟𝐼 , 𝑟𝑄|𝑆, 𝑁, 𝑖)   

 

= −𝐾 ln(𝜋𝑁) − 
1

𝑁
[(∑(𝑟𝐼𝑘 − √𝑆𝑚𝐼𝑘

𝑖 )
2
+ 

𝐾−1

𝑘=0

∑(𝑟𝑄𝑘 − √𝑆𝑚𝑄𝑘
𝑖 )

2
𝐾−1

𝑘=0

)] (7) 

Where Γ(𝑆, 𝑁, 𝑖) denotes the likelihood function, 𝑚𝐼𝑘
(𝑖) and 𝑚𝑄𝑘

(𝑖) are the in-phase and 

quadrature components of the sampled and pulse-shaped information signal, 𝑖 denotes the 

𝑖𝑡ℎ sequence of the 𝑀𝑁𝑠𝑦𝑚 possibly transmitted message sequences, 𝐾 is the total number 

of received samples, 𝑟𝐼𝑘 is the in-phase component of the transmitted signal, 𝑟𝑄𝑘 is the 

quadrature component, 𝑆 is a signal power scale factor and 𝑁 is a noise power scale factor. 

The maximum likelihood estimate of the SNR, 𝜌̂𝑀𝐿 is calculated based on the property that 

the maximum likelihood estimate of the ratio of two parameters is the ratio of their 

individual maximum likelihood estimates [3.7]. Therefore the maximum likelihood 

estimate of the SNR is given by, 
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 𝜌̂𝑀𝐿 = 
𝑆̂𝑀𝐿

𝑁̂𝑀𝐿
 (8) 

Where 𝜌̂𝑀𝐿 is the SNR estimate, 𝑆̂𝑀𝐿 , the signal power and 𝑁̂𝑀𝐿, the noise power are 

calculated as the solution of the system of equations, 

 
𝜕(Γ(𝑆, 𝑁, 𝑖)

𝜕𝑆
=  0 (9) 

 𝜕(Γ(𝑆, 𝑁, 𝑖)

𝜕𝑁
=  0 (10) 

The respective solutions for 𝑆̂𝑀𝐿 and 𝑁̂𝑀𝐿 are given by, 

 𝑆̂𝑀𝐿 = [(
1

𝐾
)∑(𝑟𝐼𝑘𝑚𝐼𝑘

𝑖 + 𝑟𝑄𝑘𝑚𝑄𝑘
𝑖 )

𝐾−1

𝑘=0

(
1

𝐾
)∑(𝑚𝐼𝑘

𝑖 2 +𝑚𝑄𝑘
𝑖 2
) 

𝐾−1

𝑘=0

⁄ ]

2

 (11) 

 

𝑁̂𝑀𝐿 = (
1

𝐾
)∑(𝑟𝐼𝑘

2  +  𝑟𝑄𝑘
2)

𝐾−1

𝑘=0

− 𝑆̂
1

𝐾
 ∑(𝑚𝐼𝑘

𝑖 2  +  𝑚𝑄𝑘
𝑖 2
) 

𝐾−1

𝑘=0

 (12) 

Where 𝑚𝐼𝑘
(𝑖) and 𝑚𝑄𝑘

(𝑖) are the in-phase and quadrature components of the sampled and 

pulse-shaped information signal, 𝑖 denotes the 𝑖𝑡ℎ sequence of the 𝑀𝑁𝑠𝑦𝑚 possibly 

transmitted message sequences, 𝐾 is the total number of received samples, 𝑟𝐼𝑘 is the in-

phase component of the transmitted signal, 𝑟𝑄𝑘 is the quadrature component. The authors 

of [3.1] extended the above works, further to the case of complex signals and the SNR is 

given by, 

 

𝜌̂𝑀𝐿 𝑅𝑥𝐷𝐴,𝑐𝑜𝑚𝑝𝑙𝑒𝑥

= 𝑁𝑠𝑠
2 [
1

𝐾
∑𝑅𝑒{𝑟𝑘

∗𝑚𝑘
𝑖 }

𝐾−1

𝑘=0

]

2

((
1

𝐾
)∑|𝑟𝑘|

2

𝐾−1

𝑘=0

− 𝑁𝑠𝑠 [
1

𝐾
∑𝑅𝑒{𝑟𝑘

∗𝑚𝑘
𝑖 }

𝐾−1

𝑘=0

]

2

)⁄  

(13) 

Where Re{.} denotes the real part of a complex quantity, 𝐾 is the total number of symbols, 

𝑁𝑠𝑠 is the number of samples per symbol, 𝑚𝐼𝑘
(𝑖) is the in-phase component of the sampled 
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and pulse-shaped information signal, 𝑖 denotes the 𝑖𝑡ℎ sequence of the 𝑀𝑁𝑠𝑦𝑚 possibly 

transmitted message sequences, 𝐾 is the total number of received samples and 𝑟𝑘 is the 

transmitted signal. In order to obtain the above for a real channel the complex quantities 

are replaced by their corresponding real quantities. Thomas in [3.8] proved that the 

estimator has a bias that can be reduced by multiplying the denominator by 𝐾 (𝐾 − 3)⁄ . 

 

𝜌̂′𝑀𝐿 𝑅𝑥𝐷𝐴,   𝑟𝑒𝑎𝑙

= 𝑁𝑠𝑠
2 [
1

𝐾
∑ 𝑟𝑘𝑚𝑘

𝑖

𝐾−1

𝑘=0

]

2

((
1

𝐾 − 3
)∑ 𝑟𝑘

2

𝐾−1

𝑘=0

−
𝑁𝑠𝑠

𝐾(𝐾 − 3)
[∑ 𝑟𝑘𝑚𝑘

(𝑖)

𝐾−1

𝑘=0

]

2

)⁄  

(14) 

Where 𝐾 is the total number of symbols, 𝑁𝑠𝑠 is the number of samples per symbol, 𝑚𝐼𝑘
(𝑖) 

is the in-phase component of the sampled and pulse-shaped information signal, 𝑖 denotes 

the 𝑖𝑡ℎ sequence of the 𝑀𝑁𝑠𝑦𝑚 possibly transmitted message sequences, 𝐾 is the total 

number of received samples and 𝑟𝑘 is the transmitted signal. The authors of [1] also 

obtained a complex channel reduced bias estimator as given below, 

 

𝜌̂′𝑀𝐿 𝑅𝑥𝐷𝐴,   𝑐𝑜𝑚𝑝𝑙𝑒𝑥

= 𝑁𝑠𝑠
2 [
1

𝐾
∑𝑅𝑒{𝑟𝑘

∗𝑚𝑘
𝑖 }

𝐾−1

𝑘=0

]

2

((
1

𝐾 −
3
2

){∑|𝑟𝑘|
2

𝐾−1

𝑘=0

−
𝑁𝑠𝑠
𝐾
[∑𝑅𝑒{𝑟𝑘

∗𝑚𝑘
𝑖 }

𝐾−1

𝑘=0

]

2

})⁄  

(15

) 

Where 𝐾 is the total number of symbols, 𝑁𝑠𝑠 is the number of samples per symbol, 𝑚𝐼𝑘
(𝑖) 

is the in-phase component of the sampled and pulse-shaped information signal, 𝑖 denotes 

the 𝑖𝑡ℎ sequence of the 𝑀𝑁𝑠𝑦𝑚 possibly transmitted message sequences, 𝐾 is the total 

number of received samples and 𝑟𝑘 is the transmitted signal.  

c) Squared Signal-to-Noise Variance (SNV) Estimator 
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The squared signal-to-noise variance estimator is based upon the first absolute 

moment and the second moment of the sampled output of the matched filter. This technique 

was initially formulated by Gilchriest et al. [3.9] for BPSK signals in real AWGN channel. 

The SNV RxDA estimator as given in [3.9] is expressed in terms of the sampled output of 

the matched filter as 

𝜌̂𝑆𝑁𝑉 𝑅𝑥𝐷𝐴,   𝑟𝑒𝑎𝑙

= [
1

𝑁𝑠𝑦𝑚
∑ |𝑦𝑛|

𝑁𝑠𝑦𝑚−1

𝑛=0

]

2

(

 
 
(

1

𝑁𝑠𝑦𝑚 − 1
) ∑ 𝑦𝑛

2

𝑁𝑠𝑦𝑚−1

𝑛=0

−
1

𝑁𝑠𝑦𝑚(𝑁𝑠𝑦𝑚 − 1)
[ ∑ |𝑦𝑛|

𝑁𝑠𝑦𝑚−1

𝑛=0

]

2

)

 
 

⁄  

(16) 

Where 𝑁𝑠𝑦𝑚 is the number of M-ary source symbols and 𝑦𝑛 is the received signal sample. 

The SNV SNR estimator is considered as a special case of the ML estimator, as the ML 

estimator operates on NSS samples per symbol at the input to the matched filter and the 

SNV SNR estimator operates on the optimally sampled output of the matched filter 

with 𝑁𝑠𝑠 = 1. Furthermore, it can be seen that the factor 1/(𝑁𝑠𝑦𝑚 − 1) in the denominator 

can be replaced by 1/(𝑁𝑠𝑦𝑚 − 3) to attain a reduced bias form of the estimator for real 

channels. The TxDA form of this estimator is obtained by replacing the estimated 

symbols 𝑎𝑛
𝑖 , with the transmitted symbols 𝑎𝑛. 

 𝜌̂′𝑆𝑁𝑉 𝑇𝑥𝐷𝐴,   𝑟𝑒𝑎𝑙

= [
1

𝑁𝑠𝑦𝑚
∑ 𝑦𝑛𝑎𝑛

𝑁𝑠𝑦𝑚−1

𝑛=0

]

2

(

 
 
(

1

𝑁𝑠𝑦𝑚 − 3
) ∑ 𝑦𝑛

2

𝑁𝑠𝑦𝑚−1

𝑛=0

−
1

𝑁𝑠𝑦𝑚(𝑁𝑠𝑦𝑚 − 3)
[ ∑ 𝑦𝑛𝑎𝑛

𝑁𝑠𝑦𝑚−1

𝑛=0

]

2

)

 
 

⁄  

(17) 

Where 𝑁𝑠𝑦𝑚 is the number of M-ary source symbols, 𝑦𝑛 is the received signal sample and 

𝑎𝑛 is the transmitted symbol. The complex channel, reduced bias estimator may be 

expressed as an adaptation of equation 15 as shown below, 
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 𝜌̂′𝑆𝑁𝑉 𝑅𝑥𝐷𝐴,   𝑐𝑜𝑚𝑝𝑙𝑒𝑥

= [
1

𝑁𝑠𝑦𝑚
∑ 𝑅𝑒{𝑦𝑛

∗𝑎𝑛
𝑖 }

𝑁𝑠𝑦𝑚−1

𝑛=0

]

2

(
1

𝑁𝑠𝑦𝑚 −
3
2

)( ∑ |𝑦𝑛
2|

𝑁𝑠𝑦𝑚−1

𝑛=0

− (
1

𝑁𝑠𝑦𝑚
) [ ∑ 𝑅𝑒{𝑦𝑛

∗𝑎𝑛
𝑖 }

𝑁𝑠𝑦𝑚−1

𝑛=0

]

2

)⁄  

(18) 

 

Where Re{.} denotes the real component, 𝑁𝑠𝑦𝑚 is the number of M-ary source symbols, 

𝑦𝑛 is the received signal sample and 𝑎𝑛
𝑖  is the 𝑖𝑡ℎ transmitted symbol. The TxDA version 

of the above can be obtained by replacing the receiver estimates 𝑎𝑛
𝑖  with the transmitted 

symbols 𝑎𝑛. 

d) Second-Order and Fourth-Order Moments Estimator 

Benedict et al. [3.10] applied the second and fourth order moments to estimate the 

carrier strength and noise strength in real AWGN channels separately. Matzner [3.11] 

provided a detailed derivation of an SNR estimator that yielded expressions similar to 

[3.10]. The authors of [3.1] derive the expressions provided in [3.11] for complex channels 

and then provide the modified form for application to real channels. 

The second moment of 𝑦𝑛 is given by 

 

𝑀2 = 𝐸{𝑦𝑛𝑦𝑛
∗} = 𝑆𝐸{|𝑎𝑛|

2} + √𝑆𝑁𝐸{𝑎𝑛𝑤𝑛
∗} +  𝑁𝐸{|𝑤𝑛|

2}

+ √𝑆𝑁𝐸{𝑤𝑛𝑎𝑛
∗ } 

(19) 

Where 𝐸{. } denotes the expectation operator, 𝑀2 is the second moment, 𝑆 is the signal 

power scale factor, 𝑎𝑛 is the transmitted symbol, 𝑁 is the noise power scale factor and 𝑤𝑛 

is the AWGN. The fourth moment of 𝑦𝑛 is given by 
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𝑀4 =   𝐸{(𝑦𝑛𝑦𝑛
∗)2}

=  𝑆2𝐸{|𝑎𝑛|
4}

+ 2𝑆√𝑆𝑁. (𝐸{|𝑎𝑛|
2𝑎𝑛𝑤𝑛

∗} +  𝐸{|𝑎𝑛|
2𝑎𝑛
∗𝑤𝑛})

+ 𝑆𝑁. (𝐸{(𝑎𝑛𝑤𝑛
∗)2} + 4𝐸{|𝑎𝑛|

2|𝑤𝑛|
2} +  𝐸{(𝑎𝑛

∗𝑤𝑛)
2})

+ 2𝑁√𝑆𝑁(𝐸{|𝑤𝑛
2|𝑎𝑛𝑤𝑛

∗}  +  𝐸{|𝑤𝑛
2|𝑎𝑛

∗𝑤𝑛}) + 𝑁
2𝐸{|𝑤𝑛|

4} 

(20) 

Where 𝐸{. } denotes the expectation operator, 𝑀4 is the fourth moment, 𝑆 is the signal 

power scale factor, 𝑎𝑛 is the transmitted symbol, 𝑁 is the noise power scale factor and 𝑤𝑛 

is the AWGN. Assuming the noise and signal are zero mean and independent and also the 

in-phase and quadrature components of the noise are independent the above two equations 

reduce to: 

 𝑀2 = 𝑆 + 𝑁 (21) 

 𝑀4 = 𝑘𝑎𝑆
2 + 4𝑆𝑁 + 𝑘𝑤𝑁

2 (22) 

Where 𝑀2 is the second moment, 𝑀4 is the fourth moment, 𝑆 is the signal power scale 

factor, 𝑎𝑛 is the transmitted symbol, 𝑁 is the noise power scale factor, 𝑘𝑎 =

𝐸{|𝑎𝑛|
4}/𝐸{|𝑎𝑛|

2}2 is the kurtosis of signal and 𝑘𝑤 = 𝐸{|𝑤𝑛|
4}/𝐸{|𝑤𝑛|

2}2 is the kurtosis 

of noise. 𝑆̂ and 𝑁̂ being the solutions of S and N respectively are given by, 

 𝑆̂ =  
𝑀2(𝑘𝑤 − 2) ± √(4 − 𝑘𝑎𝑘𝑤)𝑀2

2 +𝑀4(𝑘𝑎 + 𝑘𝑤 − 4)

𝑘𝑎 + 𝑘𝑤 − 4
 (23) 

 𝑁̂ = 𝑀2 − 𝑆̂ (24) 

Where 𝑀2 is the second moment, 𝑀4 is the fourth moment, 𝑆 is the signal power scale 

factor, 𝑎𝑛 is the transmitted symbol, 𝑁 is the noise power scale factor, 𝑘𝑎 is the kurtosis of 

signal, 𝑘𝑤 is the kurtosis of noise and 𝑆̂ and 𝑁̂ are the solutions of S and N respectively. 

Calculating the ratio of 𝑆̂ to 𝑁̂, we obtain the 𝑀2𝑀4 estimator for a complex channel with 
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𝑘𝑎 = 1 and 𝑘𝑤 = 2 for M-ary PSK signal and complex noise respectively. The expression 

is given by, 

 𝜌̂𝑀2𝑀4,𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 
√2𝑀2

2 −𝑀4

𝑀2 −√2𝑀2
2 −𝑀4

 (25) 

Where 𝑀2 and 𝑀4 are the second and fourth moments. Assuming 𝑦𝑛 is real, 𝑀2 is same as 

above but 𝑀4 = 𝐸{𝑦𝑛
4} is given by 

 𝑀4 = 𝑘𝑎𝑆
2 + 6𝑆𝑁 + 𝑘𝑤𝑁

2 (26) 

Where 𝑀4 is the fourth moment, 𝑆 is the signal power scale factor, 𝑁 is the noise power 

scale factor, 𝑘𝑎 is the kurtosis of signal and 𝑘𝑤 is the kurtosis of noise. Solving for 𝑆̂ using 

𝑀2 and 𝑀4 we get, 

 𝑆̂ =  
𝑀2(𝑘𝑤 − 3) ± √(9 − 𝑘𝑎𝑘𝑤)𝑀2

2 +𝑀4(𝑘𝑎 + 𝑘𝑤 − 6)

𝑘𝑎 + 𝑘𝑤 − 6
 (27) 

Where 𝑀2 is the second moment, 𝑘𝑎 is the kurtosis of signal and 𝑘𝑤 is the kurtosis of noise. 

The final estimator expression for real channels assuming a BPSK signal with real noise 

where 𝑘𝑎 = 1 and 𝑘𝑤 = 3, is given by, 

 𝜌̂𝑀2𝑀4,𝑟𝑒𝑎𝑙 = 
(
1
2
)√6𝑀2

2 − 2𝑀4

𝑀2 − (
1
2
)√6𝑀2

2 − 2𝑀4

 (28) 

Where 𝑀2 and 𝑀4 are the second and fourth moments. In both the cases, the negative root 

of 𝑆̂ is chosen so that the final SNR is positive. This estimator is not a data-aided estimator 

as it relies completely on the second and fourth order moments of the received signal and 

also does not take into consideration the receiver decisions. 

e) Signal-to-Variation Ratio (SVR) Estimator 
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A moment based estimator, initially developed for monitoring the channel quality 

in multipath fading channels, can also be applied to measure the quality of an AWGN 

channel. Described by Brandão et al. in [3.12], this estimator was designed to operate only 

on M-ary PSK modulated signal. The authors of [3.1] have sketched the derivation for 

complex channels and further modified it for real channels. The SVR estimator is expressed 

as a function of the parameter,  

 𝛽 =  
𝐸{𝑦𝑛𝑦𝑛

∗𝑦𝑛−1𝑦𝑛−1
∗ }

𝐸{(𝑦𝑛𝑦𝑛
∗)2} −  𝐸{𝑦𝑛𝑦𝑛

∗𝑦𝑛−1𝑦𝑛−1
∗ }

 (29) 

Where 𝑦𝑛 is the received sampled signal. Substituting 𝐸{(𝑦𝑛𝑦𝑛
∗)2} = 𝑀4 from the previous 

section of second and fourth order moments based estimator and simplification of the 

term 𝐸{𝑦𝑛𝑦𝑛
∗𝑦𝑛−1𝑦𝑛−1

∗ } = 𝑆2 + 2𝑆𝑁 + 𝑁2, yields, 

 𝛽 =  
𝜌2 + 2𝜌 + 1

(𝑘𝑎 − 1)𝜌
2 + 2𝜌 + (𝑘𝑤 − 1)

 (30) 

Where 𝜌 is the SNR, 𝑘𝑎 is the kurtosis of signal and 𝑘𝑤 is the kurtosis of noise. Solving 

for 𝜌, and substituting 𝑘𝑎 = 1 and 𝑘𝑤 = 2 for M-ary PSK signal in a complex AWGN 

channel we get, 

 

𝜌̂𝑆𝑉𝑅,𝑐𝑜𝑚𝑝𝑙𝑒𝑥

= 
(𝛽 − 1) ± (√(𝛽 − 1)2 − [1 − 𝛽(𝑘𝑎 − 1)][1 − 𝛽(𝑘𝑤 − 1)]

1 − 𝛽(𝑘𝑎 − 1)
 

 

 = 𝛽 − 1 + √𝛽(𝛽 − 1) (31) 

Where 𝛽 is the SVR function parameter. For real signals, 

 𝛽 =  
𝐸{𝑦𝑛

2𝑦𝑛−1
2 }

𝐸{𝑦𝑛
4} − 𝐸{𝑦𝑛

2𝑦𝑛−1
2 }

 (32) 
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Where 𝑦𝑛 is the received signal sample. Substituting {𝑦𝑛
4} =  𝑘𝑎𝑆

2 + 6𝑆𝑁 + 𝑘𝑤𝑁
2 , 

simplifying 𝐸{𝑦𝑛
2𝑦𝑛−1
2 } to 𝑆2 + 2𝑆𝑁 + 𝑁2 and substituting 𝑘𝑎 = 1 and 𝑘𝑤 = 3 for a 

BPSK modulated signal in real AWGN channel yields the expression, 

 𝜌̂𝑆𝑉𝑅,𝑟𝑒𝑎𝑙 = 
(2𝛽 − 1) ± √(2𝛽 − 1)2 − [1 − 𝛽(𝑘𝑎 − 1)][1 − 𝛽(𝑘𝑤 − 1)]

1 − 𝛽(𝑘𝑎 − 1)
  

 = (2𝛽 − 1) + √2𝛽(2𝛽 − 1) (33) 

Where 𝛽 is the SVR function parameter, 𝑘𝑎 is the kurtosis of signal and 𝑘𝑤 is the kurtosis 

of noise. 

f) Low Bias Algorithm Negative Signal-to-Ratio Estimator 

Most of the previously described estimation techniques perform poorly in the 

estimation of negative SNR values. In [3.13], the authors developed an algorithm that is 

based upon the maximum-likelihood principle and has lower estimation bias at lower and 

negative ranges of SNR. This technique was developed for a BPSK signal assuming a 

timing and career phase synchronization. The transmitted signals take values between {+A, 

-A} with equal probabilities and are corrupted by real AWGN samples with variance 𝜎2. 

The authors of [3.13] developed an iterative search algorithm that estimated the amplitude 

satisfying the below equation from the vector of received samples, 𝑟𝑘. 

 

𝐴 =
1

𝑁
∑𝑟𝑘𝑡ℎ (

𝐴𝑟𝑘
𝜎2
)

𝑁

𝑘=1

 (34) 

 
where     𝑡ℎ(𝑥) =

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
     and      𝑡ℎ(

𝐴𝑟𝑘

𝜎2
) = {

+1, 𝑟𝑘 > 0
−1, 𝑟𝑘 < 0

 
 

Where 𝐴 is the amplitude of the transmitted signal, 𝑟𝑘 is the vector of received samples and 

𝜎𝑧
2 is the variance of noise. The solution to equation 34 is the maximum-likelihood estimate 

of A which can be expressed as,  
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𝐴̂ =
1

𝑁
∑|𝑟𝑘|

𝑁

𝑘=1

 (35) 

Where 𝐴̂ is the maximum likelihood estimate of 𝐴, 𝑁 is the number of received samples 

vector and 𝑟𝑘 is the received samples vector. The iterative search algorithm performed a 

set of computations in each and every iteration, resulting in an amplitude which after 

several iterations resulted in the best estimate of the amplitude. Using this estimated 

amplitude, the signal-to-noise ratio was computed and given by 

 
𝜌 =

𝐴𝑚
2

1 − 𝐴𝑚
2

 (36) 

where 𝐴𝑚 is the estimated amplitude and 𝜌 is the estimated signal-to-noise ratio. 

3.2.2 Non-Data Aided Estimators 

Examples of this category of estimators include:  

 Wavelets based SNR estimation 

 Sample Covariance Matrix Eigenvalues Based SNR Estimation Technique 

 Sixth-order Statistics based Non-Data aided SNR Estimator 

 Eigenvalue-based SNR Estimation 

a) Wavelets Based SNR Estimation 

 Paula Quintana-Quiros et al. [3.14] developed an estimation technique based on 

wavelets concept to perform jamming detection. Matched filters are used in coherent digital 

receivers to deal with the decoding of digital signals associated with specific timing and 

waveform characteristics. The waveform of these digital signals is characterized by abrupt 

transitions and discrete amplitude levels which is exploited by the wavelet theory to 

measure the SNR. Wavelets have the ability to perform local analysis i.e. to analyze a 
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portion of a larger signal in time. This technique does not intend to adapt to the modulation 

scheme of the received signal at this moment although this could be a future work. 

 Wavelet analysis is the decomposition of a signal into shifted and scaled versions 

of a mother wavelet, 𝜓, providing a time-view scale of the signal [3.14] .Wavelet transform 

is defined as the summation over time of the signal multiplied by the scaled and shifted 

versions of 𝜓, producing coefficients that are a function of the wavelet scale and position 

and also indicate the degree of correlation of the wavelet to the portion of signal under 

analysis. 

 Discrete Wavelet Transform (DWT) is implemented using filter banks, comprised 

by low-pass and high-pass filters, which decompose the analyzed signal into 

approximations and details. Approximations are high-scale, low frequency components 

whereas details are low-scale, high frequency components. 

Wavelet-based Estimators are of two types: 

1. Trend Detector (Figure 12) 

2. Self-Similarity Detector (Figure 13) 

Trend Detector based estimator seeks to extract the amplitude trend and is based on the 

principle that noise changes at a higher rate [3.14]. It implements the wavelet analysis to 

detect the overall trend of the received signal’s amplitude, which is corrupted by CWGN. 

The trend is the slowest part of the signal corresponding to the greatest scale value in 

wavelet analysis. 
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Figure 12. Wavelet-based Estimator 1: Trend Detector 

Self-Similarity Detector based estimator performs signal extraction based on the similarity 

between the signal under consideration and the mother wavelet. The wavelet coefficients 

are correlation indexes of the signal under analysis and the wavelet. Larger the value of the 

coefficient of correlation, stronger is the resemblance between the signal and the wavelet.
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Figure 13. Wavelet-based estimator 2: Self-Similarity Detector 

 

b) Sample Covariance Matrix Eigenvalues Based SNR Estimation Technique 

 Another recently developed SNR estimation technique is based on the eigenvalues 

of the sample covariance matrix of the received signal [3.15]. It initially detects the 

eigenvalues as in [3.16-3.19]. Then the Minimum Descriptive Length criterion is used to 
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split the signal and noise corresponding eigenvalues. This technique is referred to as a blind 

estimation technique because the signal and the noise power are unknown and are estimated 

from the received samples. 

 The received signal, 𝑿, is assumed to be either a noise only component, 𝒁, or a 

mixture of both noise component, 𝒁, and transmitted signal components, 𝑺. Under the 

binary hypothesis it is expressed as, 

 
𝑿 = {

𝒁                        𝐻0
𝑺 + 𝒁                𝐻1

 (37) 

Where 𝐻0, is the null hypothesis when only noise is received and 𝐻1, is the positive 

hypothesis when a mixture of signal and noise is received. The received signal is expressed 

as an 𝑁 x 𝐿 matrix as shown below, 

𝑿 = (

𝑥1,1 ⋯ 𝑥1,𝑁
⋮ ⋱ ⋮
𝑥𝐿,1 ⋯ 𝑥𝐿,𝑁

) 

Where 𝑥𝑖,𝑗 is the vector of received signal samples. The noise and signal are assumed to be 

independent and the noise is assumed to be white Gaussian noise components with mean 

0 and variance 𝜎𝑧
2, therefore rewriting equation 37 as, 

 
𝒙𝒊 = {

𝒛𝒊                        𝐻0
𝒔𝒊 + 𝒛𝒊                𝐻1

 (38) 

Where 𝑥𝑖 = [𝑥𝑖,1…𝑥𝑖,𝑁]
𝑇
 is the received signal component, 𝑠𝑖 = [𝑠𝑖,1…𝑠𝑖,𝑁]

𝑇
 is the 

transmitted signal component and 𝑧𝑖 = [𝑧𝑖,1…𝑧𝑖,𝑁]
𝑇
 is the noise component ∀𝑖 = 1,2…𝐿. 

Given an observation bandwidth, 𝐵 and a transmitted signal with occupied bandwidth, 𝑏; 

in the sample covariance matrix eigenvalues domain, 𝑀 ≤ 𝐿, implies that {
𝑀

𝐿
} fraction of 

the whole observation bandwidth is occupied by the transmitted signal and the rest 
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{𝐿 − (
𝑀

𝐿
)} fraction represents the noise only component. When 𝑁, 𝐿 → ∞, the statistical 

covariance matrices of the noise, signal and received samples is defined as, 

 𝐑𝑧 = 𝐸{𝒛(𝑛)𝒛
𝐻(𝑛)} = 𝜎𝑧

2𝑰𝐿  ;   −∞ < 𝑛 < ∞ (39) 

 𝐑𝑠 = 𝐸{𝒔(𝑛)𝒔
𝐻(𝑛)} (40) 

 𝐑𝑥 = 𝐸{𝒙(𝑛)𝒙
𝐻(𝑛)} (41) 

Where 𝐑𝑧 is the noise statistical covariance matrix, 𝐑𝒔 is the signal statistical covariance 

matrix, 𝐑𝒙 is the noise statistical covariance matrix, (. )𝐻 denotes complex conjugate 

transpose, 𝜎𝑧
2 is the noise variance and 𝑰𝐿 is the L-order identity matrix. Since the signal 

and noise are independent, 

 𝑹𝑥 = 𝑹𝑠 + 𝑹𝑧 = 𝑹𝑠 + 𝜎𝑧
2𝑰 (42) 

Obtaining the eigenvalues, 𝜆𝑥 of 𝑹𝑥 and 𝜆𝑠 of 𝑹𝑠 in a descending order, we see that, 

𝜆𝑥𝑖 = 𝜆𝑠𝑖 + 𝜎𝑧
2      ∀𝑖 = 1, 2…𝑀 

𝜆𝑥𝑖 = 𝜎𝑧
2      ∀𝑖 = 𝑀 + 1,𝑀 + 2…𝐿 

Where 𝜆 denotes the group of eigenvalues and the statistical covariance matrix eigenvalues 

are equal to signal components power. 

 As in [3.16] sample covariance matrices, 𝑹̂𝑥 of the received signal samples can be 

computed instead of statistical covariance matrix as there exists a finite number of samples. 

The sample covariance matrix of the received signal is computed as,  

 
𝑹̂𝑥 =

1

𝑁
𝑿𝑿𝐻 (43) 

The eigenvalues of the samples covariance matrix deviate from the signal power 

components and follow Marcenko Pastuer density [3.20] which depends on the value 
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of 𝐿/𝑁. The value of M is estimated using the Minimum Descriptive Length criterion. The 

estimated value of M is denoted as 𝑀̂ and is given by, 

 
𝑀̂ =

𝑎𝑟𝑔𝑚𝑖𝑛

𝑀
(−(𝐿 −𝑀)𝑁 log (

𝜃(𝑀)

𝜙(𝑀)
) +

1

2
𝑀(2𝐿 −𝑀) 𝑙𝑜𝑔𝑁) ; 

0 ≤ 𝑀 ≤ 𝐿 − 1 

(44) 

Where, 

 

𝜃(𝑀) = ∏ 𝜆
𝑖

1
𝐿−𝑀

𝐿

𝑖=𝑀+1

 (45) 

 

𝜙(𝑀) =
1

𝐿 −𝑀
∑ 𝜆𝑖

𝐿

𝑖=𝑀+1

 (46) 

Where L is the number of eigenvalues, N is the number of samples and 𝜆𝑖 is the set of 

eigenvalues. After estimating the value of 𝑀̂, the signal group of eigenvalues is determined 

as 𝜆1… 𝜆𝑀̂ and the noise group eigenvalues as 𝜆𝑀̂+1…𝜆𝐿. To compute the noise 

variance 𝜎𝑧
2, two values 𝜎𝑧1

2  and 𝜎𝑧2
2  are calculated as follows: 

 
𝜎𝑧1
2 =

𝜆𝐿

(1 − √𝑐)
2 (47) 

 
𝜎𝑧2
2 =

𝜆𝑀̂+1

(1 + √𝑐)
2 (48) 

K linearly spaced values in the range [𝜎𝑧1
2 , 𝜎𝑧2

2 ] are denoted as 𝜋𝑘, where 1 ≤ k ≤ K. The 

Marcenko Pastuer density of parameters 𝑐, 𝜎𝑧, is given by, 

 

𝑀𝑃(𝑐, 𝜎𝑧) =  𝑑𝐹
𝑊(𝜈) =

√(𝜈 − 𝜎𝑧2(1 − √𝑐)
2
) (𝜎𝑧2(1 + √𝑐)

2
− 𝜈) 

2𝜋𝜎𝑧
2𝜈𝑐

𝑑𝜈 
(49) 

Where 

𝜎𝑧
2(1 − √𝑐)

2
≤ 𝜈 ≤ 𝜎𝑧

2(1 + √𝑐)
2
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Using equation 49 we can determine K Marcenko Pasteur densities of the parameters 

(1 − 𝛽̂)𝑐 and 𝜋𝑘  where 𝛽̂ =
𝑀̂

𝐿
 and the empirical distribution function (edf) of the noise 

group eigenvalues is given by, 

 
𝑒𝑑𝑓 =  𝐹𝑛(𝑡) =

number of sample values ≤ t

n
 (50) 

Where 𝑛 is the total number of sample values in the noise eigenvalues. The noise 

eigenvalues empirical distribution is then compared with the Marcenko Pastuer densities 

and a goodness of fitting is used to pick the best estimate of 𝜋𝑘 in order to estimate the 

value of 𝜎𝑧
2. 𝐷(𝜋𝑘) is used to denote the goodness of fitting and is given by, 

 𝐷(𝜋𝑘) = ‖𝑒𝑑𝑓 −𝑀𝑃 ((1 − 𝛽̂)𝑐, 𝜋𝑘)‖
2
 (51) 

The estimate of noise variance, 𝜎𝑧
2̂, is given by, 

 
𝜎𝑧
2̂ =

𝑎𝑟𝑔𝑚𝑖𝑛

𝜋𝑘
(𝐷(𝜋𝑘)) 

(52) 

The total received power is given by, 

 

𝑃𝑡̂ = (
1

𝑁𝐿
∑∑|𝑥𝑖,𝑗|

2
𝑁

𝑖=1

𝐿

𝑗=1

) (53) 

Where 𝑥𝑖,𝑗 is the received signal samples. Therefore the SNR is given by, 

 

𝛾̂ =
𝑃𝑠̂

𝜎𝑧
2̂
=
𝑃𝑡̂ − 𝜎𝑧

2̂

𝜎𝑧
2̂

= (
1

𝑁𝐿𝜎𝑧
2̂
∑∑|𝑥𝑖,𝑗|

2
𝑁

𝑖=1

𝐿

𝑗=1

) − 1  (54) 

c) Sixth-order Statistics based Non-Data aided SNR Estimator 

 The second and fourth-order moment based SNR estimators were studied. The SNR 

estimator considered here is based on the sixth-order statistics. The second and fourth order 

estimator perform well with constant modulus constellations as its variance tends to be a 
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constant with SNR∞. In the case of non-constant modulus constellations the variance 

increases as the SNR is squared. This being undesirable a workaround would be to partition 

the set of observations in subsets corresponding to symbols of equal modulus and then 

perform estimation [3.21]. Unless the SNR is high this partitioning technique also has lots 

of errors leading to a low-performance estimator. The 6th-order statistics estimator’s 

advantage is to deal with constellations with two different amplitude levels. From the 

process of estimating the SNR with the second and fourth order estimators we re-write 

equation 22 as, 

 𝑀4 = 𝑐4𝑆
2 + 4𝑆𝑁 + 2𝑁2 (55) 

Where 𝑆 is the signal power scale factor, 𝑁 is the noise power scale factor, 𝑘𝑎 = 𝑐4 

and 𝑘𝑤 = 2. In general constellation moments for 𝑥𝑘 complex-valued transmitted symbols 

is given by, 

 𝑐𝑝 = 𝐸{|𝑥𝑘|
𝑝} (56) 

We know that the moments-based estimators are based on the sample moments given by, 

 

𝑀̂𝑝 =
1

𝐾
 ∑|𝑟𝑘|

𝑝 

𝐾

𝑘=1

 (57) 

Using the fact that 𝐸{|𝑛𝑘|
2𝑚 = 𝑚!. 𝑁𝑚 and the even-order moments 𝑀2𝑛 are seen to admit 

closed form expression in terms of 𝑆, 𝑁 and 𝑐2𝑚, 0 ≤ m ≤ n [3.21]: 

 
𝑀2𝑛 = ∑

(𝑛!)2𝑐2𝑚𝑆
𝑚𝑁𝑛−𝑚

(𝑛 −𝑚)! (𝑚!)2

𝑛

𝑚=0

 (58) 

Proceeding further we obtain the equations for 𝑀2
3, 𝑀2𝑀4 and 𝑀6 as, 

 𝑀2
3 = 𝑆3 + 𝑆2𝑁 +  3𝑆𝑁2 +𝑁3 (59) 
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 𝑀2𝑀4 = 𝑐4𝑆
3 + (4 + 𝑐4)𝑆

2𝑁 + 6𝑆𝑁2 + 2𝑁3 (60) 

 𝑀6 = 𝑐6𝑆
3 + 9𝑐4𝑆

2𝑁 + 18𝑆𝑁2 + 6𝑁3 (61) 

The authors of [3.21] established a linear relationship between the above three variables 

as, 

 𝐷 = 𝑀6 − 𝑎𝑀2
3 − 𝑏𝑀2𝑀4 (62) 

Where 𝑀2 is the second order moment, 𝑀4 is the fourth order moment, 𝑀6 is the sixth 

order moment and 𝑀2𝑀4 is the second and fourth order moment. Choosing 𝑎 = 2(3 − 𝑏), 

substituting equation 59, 60 and 61 in equation 62 we see that the terms 𝑆𝑁2 and 𝑁3, get 

cancelled out and yield, 

 𝐷 = [(𝑐6 − 6) − 𝑏(𝑐4 − 2)]𝑆
3 + (9 − 𝑏)(𝑐4 − 2)𝑆

2𝑁 (63) 

Substituting equation 21 in equation 60 and dividing by 𝑀2
3 on both sides we get, 

 𝐷

𝑀2
3 = (𝑐6 − 9𝑐4 + 12)𝑧

3 + (9 − 𝑏)(𝑐4 − 2)𝑧
2 (64) 

Where 𝑧 is the normalized SNR given by, 

 
𝑧 =

𝑆

𝑆 + 𝑁
 (65) 

Therefore, with 𝐷̂ = 𝑀̂6 − 2(3 − 𝑏)𝑀̂2
3 − 𝑏𝑀̂2𝑀̂4 an estimate 𝑧̂ can be obtained by 

solving for the roots in (0, 1) of 

 
−
𝐷̂

𝑀̂2
3
+ (𝑐6 − 9𝑐4 + 12)𝑧̂

3 + (9 − 𝑏)(𝑐4 − 2)𝑧̂
2 = 0 (66) 

The roots are found by tabulating it in terms of 𝐷̂ 𝑀̂2
3⁄  with an iterative rule using, 

 

𝑧̂𝑛+1 = √
𝐷̂ 𝑀̂2

3⁄

(𝛼𝑧̂𝑛 + 𝛽′) 
 

(67) 
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Where 𝛼 =  (𝑐6 − 9𝑐4 + 12) and 𝛽′ = (9 − 𝑏)(𝑐4 − 2); choosing 𝑧̂0 = 0 𝑜𝑟 1 as the 

starting point. The authors of [21] observed that for large|𝑏|, this estimator approaches the 

𝑀2𝑀4 estimator, whereas for 𝑏 = 0, it was seen that this estimator approached the 

estimator proposed in [3.22]. Hence based on the constellation used, the value of the free 

parameter 𝑏 must be chosen. 

d) Eigenvalue-based SNR Estimation 

 In [3.23], an eigenvalue based spectrum sensing technique in the presence of 

correlated noise is analyzed. The final spectrum sensing decision is made using the 

standard-condition-number (SCN)-based decision statistics which is based on the 

asymptotic random matrix theory (RMT). The author here proposes an SNR estimation 

technique which is based on the maximum eigenvalue of the covariance matrix of the 

received signal. The author has also studied the effect of noise correlation on the eigenvalue 

based spectrum sensing process under both the 𝐻0 (noise only) and 𝐻1 (signal plus noise) 

hypothesis. Following the work on the eigenvalue based spectrum sensing and the study of 

noise correlation, the SNR estimation technique under consideration is based on the 

asymptotic eigenvalue probability distribution function of the covariance matrix of the 

received signal. The covariance matrix of the received signal is given by,  

 
𝑅𝑌 = (

1

𝑁
)𝑌𝑌𝐻 (68) 

Where 𝑌 is the MxN received signal matrix, 𝑁 is the number of samples and 𝑀 is the 

fractional sampling rate at the input of the cognitive receiver. Three cases are considered 

by the authors 1) Signal plus correlated noise, 2) Correlated noise only and 3) Signal plus 

white noise. They initially developed a table with different parameters such as SCN, 𝛽, 

SNR(dB) and 𝜆𝑚𝑎𝑥 using the three aforementioned cases. With the study of the eigenvalue 
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based spectrum sensing technique, they computed the values of the maximum eigenvalues, 

𝜆𝑚𝑎𝑥, for the three different cases and the SCN, which is related to 𝜌, the correlation 

coefficient of the noise correlation as 

 
𝑆𝐶𝑁 =

1 + 𝜌

1 − 𝜌
 (69) 

The decision of the spectrum sensing is based upon the calculated value of SCN. With the 

help of the table and the calculated value of 𝜆max of the received signal’s covariance matrix, 

the corresponding value of the SNR can be determined. The value of 𝛽 =
𝑀

𝑁
 is assumed to 

be known as the operating parameter of the sensing module.  

3.2.3 Comparison of SNR Estimators 

 In the above sections, the different types of SNR estimators have been studied. In 

order to evaluate the efficiency of the estimators, the performance of the estimators are 

compared. The best SNR estimator is the one that exhibits least bias or is unbiased and has 

the smallest variance. The statistical mean square error or MSE is the one that reflects both 

the bias and variance of the SNR estimate and is given by, 

 𝑀𝑆𝐸{𝜌̂} = 𝐸{(𝜌̂ − 𝜌)2}  (70) 

Where, 𝜌̂ is an estimate of the SNR and 𝜌 is the true SNR. The authors of [3.1] performed 

simulations to compute the sample MSE for each estimator from a number of estimates 𝜌𝑖̂ 

according to 

 

𝑀𝑆𝐸{𝜌̂} =
1

𝑁𝑡
∑(𝜌𝑖̂ − 𝜌)

2

𝑁𝑡

𝑖=1

 (71) 

Where 𝑁𝑡 is the number of trials. 
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 Apart from the normalized mean square error, the Cramer-Rao Bound (CRB) is 

used as a reference to assess the absolute performance of each estimator. In [3.8] Thomas 

derived the CRB for real channels, based on which the authors of [3.1], extended the 

derivation to complex channels. For complex AWGN channels the CRB is given by, 

 
𝑁𝑀𝑆𝐸{𝜌̂} ≥

2

𝜌𝑁𝑠𝑦𝑚
+

1

𝑁𝑠𝑠𝑁𝑠𝑦𝑚
 (72) 

Whereas for real AWGN channels it is given by, 

 
𝑁𝑀𝑆𝐸{𝜌̂} ≥ 2(

2

𝜌𝑁𝑠𝑦𝑚
+

1

𝑁𝑠𝑠𝑁𝑠𝑦𝑚
) (73) 

 

Figure 14 compares the performances of the SSME1, SSME2, and the ML SNR Estimators 

for BPSK modulated signals in real AWGN. From the Figure, it is clearly evident that the 

ML TxDA performs better when compared to the SSME1 and SSME2. At high levels of 

SNR the ML RxDA performs well as it avoids enough receiver errors and its performance 

is indistinguishable from the ML TxDA. The SSME1 and SSME2 do not perform well as 

compared to the ML TxDA and ML RxDA estimators although SSME2 being a slightly 

modified approach yields a better performance than the SSME1. 

 
Figure 14. Normalized MSE with BPSK signals in real AWGN (Nss=1 and Nsym=64) 

[3.1]  



42 

 

Figure 15 shows the NMSE comparison of the SVR, M2M4 and the SNV estimators. 

Similar to ML TxDA and ML RxDA in Figure 4, the SNV TxDA and SNV RxDA 

estimators also exhibit good performance at higher levels of SNR. 

 

Figure 15. Normalized MSE with BPSK signals in real AWGN (Nss=1 and Nsym=64) 

[3.1]  

 The authors of [3.13] use the normalized mean square error to compare the 

performance of their newly proposed SNR estimator to that of some other SNR estimators. 

The useful range of this estimator extends down to -5 dB and below -3 dB this estimator 

has an NMSE lower than that of the other techniques. This estimator also has a better 

performance than the previously discussed SNV RxDA SNR estimator. As observed this 

estimator has a low bias even at low SNR values and low values of N. Furthermore, with 

the increase in the value of N, the NMSE and the bias improve significantly when compared 

to that of the other estimators which exhibit slight improvements. This is shown in Figure 

16. 

 On the other hand, the wavelets based estimator 1 and wavelets based estimator 2 

were compared at different sampling frequencies to that of the Moments based estimator 

and it was observed that the wavelets based estimator 2 with higher sampling frequency 
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performed well than wavelets bases estimator 1 and was slightly inferior to the moments 

based estimator at high SNR. 

 

Figure 16. Normalized MSE for various SNR estimators (N=1024) (modified from [13]) 

Figure 17 illustrates the performance analysis of the sixth-order statistics based 

estimator for the most optimum value of b and compares that with the M2M4 and partition 

based estimator. The author of [3.21] has performed a Monte Carlo simulation for a 16-

APSK constellation similar to the one in the DVB-S2 standard. In comparison to the M2M4 

estimator, the proposed estimator performs poorly until 5 dB and beyond 5 dB shows 

performance improvement but tends to be biased for higher SNR. 

 

Figure 17. Mean Square Error and Theoretical variance for the SNR estimators, 𝑀2𝑀4, 

partition based and 6th order statistics based [3.21] 
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Figure 18 illustrates the performance of the Eigenvalue based SNR estimator 

proposed in [3.23]. The results illustrated are for different scenarios of the signal plus the 

correlated noise and signal plus white noise scenario. Reduction in the SCN decreases the 

error rate among the correlated noise scenario and still lesser errors are observed in the 

white noise scenario. The best performance here is exhibited by the white noise scenario 

having the least NMSE even at -2 dB. Beyond the 3 dB, the NMSE is constant for all the 

above mentioned cases. 

 

Figure 18. NMSE vs SNR for the technique proposed in [3.23] 

 In the above sections the different types of SNR estimators that have been 

developed over the years have been studied. Some of these serve as a fundamental 

technique for the recent works that are aimed at improving the initial works. Each technique 

was developed and simulated using different signal conditions in order to assess its overall 

performance. This performance measurement was done using the normalized mean square 

error metric. To the best of our knowledge on the study performed above it is seen that the 

ML TxDA estimator is one of the best estimators. But, this estimator has its own 

disadvantages like other SNR estimators which requires the knowledge of the transmitted 
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data sequence. Some other estimators have also been studied that do not make use of the 

transmitted data sequence. Since the efficiency of the radio spectrum scanning can be 

improved with estimation of SNR of the received signal samples it is the interest of this 

thesis to implement an SNR estimation technique that can estimate the SNR based on the 

received signal samples alone and without any knowledge of the transmitted data sequence. 

3.3 Methodology 

 As previously explained, the Bayesian inference model, to measure in real time the 

occupancy of the spectrum, depends on several parameters and variables, including SNR. 

In this section we will describe the methodology used for estimating the SNR, and thus the 

noise. The technique is based on the eigenvalues of the covariance matrix formed from the 

received samples. This method was originally proposed by Hamid. M et al [3.15]. In the 

above section, this SNR estimator was studied and three fundamental variables K 

(Marchenko-Pastur distribution size), L (number of eigenvalues) and N (number of 

samples of the received signal) were recognized. The initial works did not involve any 

analysis of how these variables impacted the results of the SNR estimations. Therefore in 

our work we implement this SNR estimator and also make a comparative study of these 

variables and their impact on the estimated SNR. 

 In this thesis, both simulations and real experiments were performed. The analog 

signal input to the Universal Software Radio Peripheral (USRP) is digitized with a 

sampling rate of 1 MHz. The received samples are comprised of both noise component, 𝒁, 

and signal component, 𝑺. Therefore it is necessary to determine the noise power i.e. noise 

variance, 𝜎𝑧
2, in order to estimate the SNR. 
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 𝑁𝑠 number of received signal samples, 𝑥(𝑛), from the USRP is obtained and stored 

in a Python-Numpy array as shown below: 

 [𝑥(0), 𝑥(1), 𝑥(2), … , 𝑥(𝑁𝑠 − 1)]  

 A value known as the smoothing factor is chosen and denoted as 𝐿. An 𝐿 x 𝑁𝑠 

dimension matrix is formed, where each row of the matrix is comprised of 𝐿 time shifted 

versions of the received signal samples, 𝑥(𝑛), as shown below: 

𝑿 = (

𝑥1,1 ⋯ 𝑥1,𝑁
⋮ ⋱ ⋮
𝑥𝐿,1 ⋯ 𝑥𝐿,𝑁

) 

Where 𝑥𝑖,𝑗 is the received signal vector sample, 𝐿 is the number of eigenvalues and 𝑁 is 

the length of the received signal vector. The sample covariance matrix is computed as the 

product of matrix, 𝑋 and its Hermitian transpose averaged over 𝑁𝑠 samples which is given 

by, 

 
𝑹̂𝑥 =

1

𝑁
𝑿𝑿𝐻 (74) 

The eigenvalues of the resultant 𝐿 x 𝐿 matrix is computed, sorted in descending order and 

stored in an L-element array. The descending order sort is performed as per the Minimum 

Descriptive Length criterion which implies that the first 𝑀 eigenvalues represent the 

transmitted signal component and the rest 𝐿 −𝑀 eigenvalues represent the noise 

component. The eigenvalues Python-Numpy array is as shown below:  

[𝜆1, 𝜆2, … , 𝜆𝑀, 𝜆𝑀+1, … , 𝜆𝐿] 

The value of 𝑀 is estimated using the Minimum Descriptive Length criterion as given by, 

 
𝑀̂ =

𝑎𝑟𝑔𝑚𝑖𝑛

𝑀
(−(𝐿 −𝑀)𝑁 log (

𝜃(𝑀)

𝜙(𝑀)
) +

1

2
𝑀(2𝐿 −𝑀) 𝑙𝑜𝑔𝑁) ; (75) 
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0 ≤ 𝑀 ≤ 𝐿 − 1 

where, 

 

𝜃(𝑀) = ∏ 𝜆
𝑖

1
𝐿−𝑀

𝐿

𝑖=𝑀+1

 (76) 

 

𝜙(𝑀) =
1

𝐿 −𝑀
∑ 𝜆𝑖

𝐿

𝑖=𝑀+1

 (77) 

where 𝑀̂, is the estimated value of 𝑀. After the estimation of 𝑀, the array of eigenvalues 

is split up based on the noise group and transmitted signal group as given below: 

𝜆𝑆𝑖𝑔𝑛𝑎𝑙 = [𝜆1, 𝜆2, … , 𝜆𝑀̂] 

𝜆𝑁𝑜𝑖𝑠𝑒 = [𝜆𝑀̂+1, 𝜆𝑀̂+2, … , 𝜆𝐿] 

To estimate the noise power, 𝜎𝑧
2 using the array 𝜆𝑁𝑜𝑖𝑠𝑒, two values 𝜎𝑧1

2  and 𝜎𝑧2
2  are 

calculated as follows: 

 
𝜎𝑧1
2 =

𝜆𝐿

(1 − √𝑐)
2 (78) 

 
𝜎𝑧2
2 =

𝜆𝑀̂+1

(1 + √𝑐)
2 (79) 

where, 𝑐 = 𝐿/𝑁. In random matrix theory, the Marchenko-Pastur law provides the 

probability density function of singular values of large rectangular random matrices, when 

its dimensions tend to infinity. In this case, the matrix 𝑋 is the rectangular random matrix 

whose entries 𝑋𝑖,𝑗 are independent and identically distributed random variables with mean 

zero and variance 𝜎2. A set of 𝐾 linearly spaced values in the range [𝜎𝑧1
2 , 𝜎𝑧2

2 ] are generated 

and denoted as 𝜋𝑘, where 1 ≤ k ≤ K. The Marchenko-Pastur density of the parameters 

(1 − 𝛽̂)𝑐 and 𝜋𝑘  where 𝛽̂ =
𝑀̂

𝐿
 is given by, 
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 𝑀𝑃 ((1 − 𝛽̂)𝑐, 𝜋𝑘)

=  

√(𝜈 − (𝜋𝑘 (1 − √(1 − 𝛽̂)𝑐)) 
2) ∗ ((𝜋𝑘 (1 + √(1 − 𝛽̂)𝑐))

2

− 𝜈)

2 ∗ 𝜋 ∗ 𝜋𝑘
2 ∗ (1 − 𝛽̂)𝑐 ∗ 𝜈

 

(80) 

where, 

 
(𝜋𝑘 (1 − √(1 − 𝛽̂)𝑐)) 

2  ≤ 𝜈 ≤  (𝜋𝑘 (1 + √(1 − 𝛽̂)𝑐)) 
2 

 

The values of the Marchenko-Pastur distribution are computed and stored in an array, 𝑀𝑃𝑑. 

The empirical distribution function of the noise group eigenvalues, 𝜆𝑁𝑜𝑖𝑠𝑒 is computed by, 

 
𝐸𝑑 =  𝐹𝑛(𝑡) =

number of sample values ≤ t

n
=
1

𝑛
∑1𝜆𝑁𝑜𝑖𝑠𝑒(𝑖) ≤ 𝑡

𝑛

𝑖=1

 (81) 

where 

𝑛 =  𝐿 − 𝑀̂ + 1 

and is stored in an array 𝐸𝑑. Both the arrays, 𝑀𝑃𝑑 and 𝐸𝑑 are compared and a goodness of 

fitting, 𝐷(𝜋𝑘), is used to find the best estimate of 𝜋𝑘, thereby estimating the value of the 

noise power, 𝜎𝑧
2. The goodness of fitting is given by, 

 𝐷(𝜋𝑘) = ‖𝐸𝑑 −𝑀𝑃𝑑‖2 = √∑(𝐸𝑑 −𝑀𝑃𝑑)
2 (82) 

From the array of values of 𝐷(𝜋𝑘), the index of the minimum value of 𝐷(𝜋𝑘) is obtained 

and the corresponding value of the array 𝜋𝑘 for the obtained index is the estimate of noise 

variance, 𝜎𝑧
2̂, which is given by, 

 
𝜎𝑧
2̂ =

𝑎𝑟𝑔𝑚𝑖𝑛

𝜋𝑘
(𝐷(𝜋𝑘)) 

(83) 
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With the noise power estimated, the signal power can be calculated as the difference 

between the total received power and the estimated noise power. The total received power 

is given by, 

 

𝑃𝑡̂ = (
1

𝑁𝑠𝐿
∑∑|𝑥𝑖,𝑗|

2

𝑁𝑠

𝑖=1

𝐿

𝑗=1

) (84) 

Therefore the SNR, 𝛾̂, is given by, 

 

𝛾̂ =
𝑃𝑠̂

𝜎𝑧
2̂
=
𝑃𝑡̂ − 𝜎𝑧

2̂

𝜎𝑧
2̂

= (
1

𝑁𝑠𝐿𝜎𝑧
2̂
∑∑|𝑥𝑖,𝑗|

2

𝑁𝑠

𝑖=1

𝐿

𝑗=1

) − 1  (85) 

 With these mathematical formulations, the process of SNR estimation is 

programmed in Python. To assess the performance of the SNR estimator, initial 

experiments were performed by simulating a BPSK signal and fusing it with additive white 

Gaussian noise with mean 0 and standard deviation, 𝜎𝑧
2, which was subjected to the SNR 

estimation technique. This experiment was performed to study how the three independent 

variables K (Marchenko-Pastur distribution size), L (smoothing factor/number of 

eigenvalues) and N (number of samples) impacted the accuracy of the estimated SNR value 

by measuring the normalized mean square error. The values of K, L and N were varied 

between a range of values and simulations were run repeatedly for a specified number of 

iterations. The results of these experiments were analyzed and an optimized value for the 

variables K, L and N were selected for use in real experiments and in the process of 

scanning the radio spectrum. A flowchart summarizing the estimation technique is as 

shown in Figure 19. As the first step shows, the received samples are stored in an array and 

based on the value of the smoothing factor variable L, a received sample’ matrix of LxN 

dimensions is generated. The sample covariance matrix of the newly generated matrix is 
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computed and its eigenvalues is extracted. From this set of eigenvalues the value of M is 

estimated which aids in the splitting of noise group and signal group eigenvalues. With the 

noise group eigenvalues, the Marchenko-Pastur density values and the empirical 

distribution are computed, from which the noise power is computed. With the availability 

of the noise power and the total received power, computed from the received signal, the 

signal power can be calculated as their difference. The ratio of the signal power to the noise 

power yields the estimated value of the SNR. 

Start

Generate the LxN matrix, X

Read Ns Signal Samples

Compute sample covariance matrix, Rx

Compute the eigenvalues of the sample 
covariance matrix

Estimate value of M

Compute the noise group eigenvalues 
empirical distribution

Estimate the noise power

Compute the SNR

Print the value of the 
SNR

Stop

A

A

Calculate total received power

Compute the  Marchenko Pastur density

 

Figure 19. Flowchart of SNR Estimation technique 

3.4 Results & Conclusion 

 From the SNR estimation technique equations, it is observed that N (number of 

samples), L (smoothing factor), and K (length of Marchenko-Pastur distribution) are the 
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fundamental variables that affect the efficiency. Therefore, an investigation was performed 

on how these variables impact the value of the normalized mean square error in the 

estimation of the SNR. A set of simulation experiments were performed, wherein simulated 

additive white Gaussian noise was added to a simulated BPSK signal. The values of the 

three variables N, L, and K were varied in multiple combinations and the resulting values 

of the normalized mean square error was 3D-plotted in MATLAB against either of the 

combination of any two variables out of the three keeping the third variable as a constant. 

It is interesting to note that the 3D-subplots show different colors in different regions of 

the plot when there is a wide range of variations in the output values. In the current scenario 

the output value is that of the NMSE and in each subplot if the values of the NMSE is in a 

wide range, then a color transition is observable from the higher end to the lower end of 

the values in the output range. All the values of the NMSE have been presented in the semi-

log range. 

 In the first set of results, we shall analyze the changing trend of the normalized 

mean square error for different values of SNR with respect to the different values of K and 

L as illustrated in Figure 20 and Figure 21. In these figures, K is represented on the x-axis, 

L on the y-axis and the normalized mean square error (NMSE) on the z-axis. The range of 

values of K in these experiments is varied from 10 to 50 with a step of 1, whereas L is 

varied from 10 to 100 with a step of 1. Since the values of K and L have been varied over 

a range of values, N is kept constant. The value of N in Figure 20 is 1024 whereas that in 

Figure 21 is 2048. Each 3d-subplot illustrates the variation of the NMSE for a specific 

value of the SNR. In Figure 20 we see that in each of the subplot, the value of K does not 

impact the change of the normalized mean square error drastically with the variation of 
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values from 10 to 50. Few more simulations were performed for higher values of K at the 

range of 150 and 200, but no change in the value of the normalized mean square error was 

noticed. With this we understand that the value of K does not impact the error of the 

estimation and therefore this variable can be fixed to a constant value. Secondly, it was 

noticed during the experiments that a higher value of K leads a higher processing time in 

the estimation of the SNR. This is because of the complexity that arises in the for-loop 

implemented to generate the Marchenko-Pastur distribution values. Since K essentially 

describes the Marchenko-Pastur distribution size, any increase to the size of the distribution 

leads in a higher number of for-loops involved in the computation of the distribution values. 

Therefore in order to choose a fixed value of K, it was ensured that the value was low so 

that it could produce the same result as that of any higher value of K and at the same time 

it could also perform the process of SNR estimation consuming the lease amount of time. 

From this analysis the optimum value of K was set to 10 for real experiments and the 

spectrum survey. 

 Proceeding with the analysis of the variable L after the analysis of K, we shall 

observe how the variable L impacts the value of the NMSE. In Figure 20, in the first three 

3D-subplots, wherein the SNR ranges from -5 dB to 5 dB it is seen that the NMSE remains 

unchanged or is not impacted much with the change in the value of L. From the fourth 

subplot onwards, wherein the SNR is 10 dB and greater, the range of values of the NMSE 

show significant variation. In the 3D-subplot with SNR equal to 10 dB the variation of the 

NMSE is very gradual and this change occurs with the value of L between 30 and 40. With 

further increase in the value of SNR, in the other subplots too, the same observation is 

made wherein the value of the NMSE starts to drop with L in the range of 30 to 40, but this 
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drop turns from a gradual one to a very steep one. The value of L essentially signifies the 

number of eigenvalues that can be obtained from the sample covariance matrix. It is clearly 

evident that more the number of eigenvalues available for the estimation process, higher is 

the accuracy of estimation.  Another important observation made during these simulations 

were that the time taken for estimation of the SNR increased with the value of L. The 

increase in estimation time with that of the value of L was not highly significant as that of 

the increase in the value of K where the estimation time increased rapidly. Therefore the 

value of L that has to be chosen must be a value greater than 40 and one that ensures low 

error and low processing time. To decide on this value, the timing performance analysis of 

the estimator had to be studied. 

 The next variable to analyze is N, which indicates the number of samples that was 

involved in the SNR estimation process. In Figure 20, the value of N was kept constant at 

1024 for the entire simulation. In a similar manner simulations were performed for varying 

values of K and L, keeping the value of N constant at 2048 and the results of the same is 

illustrated in Figure 21. From Figure 21, it is seen that the NMSE decreases further on for 

each value of the SNR as the lower range of the NMSE varies till 10-4 when compared to 

that of Figure 21 where the lower range of the NMSE varies only till 10-3. Similar to L and 

K, the processing time was seen to be higher with higher value of N. The estimation time 

increases overall with the increasing number of samples, as it increases the time to acquire 

N samples and every other computation in the estimation of the SNR has to deal with this 

N number of samples. 



54 

 

 

Figure 20. Variation of the normalized mean square error with respect to the values of K 

and L (N=1024) 
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Figure 21. Variation of the normalized mean square error with respect to the values of K 

and L (N=2048) 
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 After the analysis of the variables K and L with constant N, we shall now study the 

impact of the variables L and N to the NMSE, wherein the value of N was increased from 

1024 to 7168 with a step of 1024, L was varied from 10 to 100 with a step of 1, and K was 

constant at 10. Examples of results of this simulation for an SNR of 15 dB are shown in 

Figure 22 and Figure 23, illustrating the variation of the NMSE with respect to L and N. 

Figure 22 illustrates the 3D-plot with N on the x-axis, L on the y-axis and NMSE on the z-

axis and Figure 23 illustrates the 2D-plot of the same with L on the x-axis and NMSE on 

the y-axis. From these figures, it is evident that the NMSE decreases with increasing value 

of L as seen previously. As observed previously, the value of L where the NMSE begins 

to drop steeply is in the range of 30 to 40 and this evident from Figure 23. We also observe 

that the NMSE decreases to a very great extent of the order of 10-4 with the value of N 

increasing to 7168. The trade-off here is that with such a high number of samples being 

used, the SNR estimation time also increases reducing the overall performance of the 

system. 

 
Figure 22. 3D plot of NMSE variation with respect to L and N 
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Figure 23. 2D plot of NMSE variation with respect to L and N 

 Performance Analysis: In order to select an optimum value for the variables L and 

N, we performed a timing performance analysis, wherein we computed the total processing 

time for estimating the SNR. In order to perform this analysis, we repeated the simulation 

trials with the value of N ranging from 1024 to 7168 with a step of 1024 and the value of 

L selected as 50, 75 and 100. These three values were chosen as we needed to choose any 

value of L greater than 40. The results of this simulation tests are shown in table 1. The 

frequency of the CPU used in these simulation tests is 3.16 GHz. Figure 24, illustrates the 

graph of the processing time with varying number of samples for the three different values 

of L. 

 From table 1 and Figure 24, it is evident that the processing time to estimate the 

SNR increases almost exponentially. We see that for the lowest value of L i.e. 50, the 

processing time varies from anywhere between 31.639 milliseconds for 1024 samples to 
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76.524 milliseconds for 7168 samples. The processing time varies from 46.8401 

milliseconds to 145.225 milliseconds and 70.036 milliseconds to 262.381 milliseconds for 

L = 75 and L = 100 respectively with the number of samples ranging from 1024 to 7168. 

Relative to L = 50, it can be stated that the processing time for L=75 increases by almost 

double and that for L = 100 is approximately 3 to 4 times higher. Considering the NMSE 

variation from Figure 22 and Figure 23 and the processing time variations from Figure 14, 

we fixed the number of samples to an optimum value of 3072 and the value of L to 100 in 

order to achieve the SNR estimation with low error and low processing time. 

Table 1. SNR estimation processing time for varying number of samples 

N Processing time (milliseconds) 

 L = 50 L = 75 L = 100 

1024 31.6391 46.8401 70.0357 

2048 38.4594 62.2195 94.1586 

3072 43.9810 76.8402 122.8769 

4096 52.3450 96.6398 153.2981 

5120 59.2664 112.8243 181.7936 

6144 63.3584 124.1219 226.6534 

7168 76.5241 145.2247 262.3810 
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Figure 24. Graph of processing time with varying number of samples 

 After investigating the impact of various variables on the error and deciding upon 

the fixation of an optimal value for each, we performed real experiments using the USRP. 

In this experiment, a constant signal was generated from the signal generator that was fed 

to the USRP and fused with additive white Gaussian noise. The result of this experiment 

is illustrated in Figure 25, with both the simulation and the experimental plots performed 

under the same estimation conditions. It is observed that the error in simulation result and 

the experimental result do not differ much from each other at low values of SNR i.e. SNR 

less than -10 dB. With SNR values greater than -10 dB, the error in the simulation tends to 

be lesser than that of the experimental result and with increasing SNR this is clearly 

evident. 
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Figure 25. Simulation and Experimental result comparison for SNR estimation 

 From the above results we conclude that the implemented method of SNR 

estimation has shown simulation results that match with the experimental results. This 

technique is also suitable for the scenario of spectrum scanning as it does not require any 

knowledge of the transmitted signal.
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Chapter 4 

SPECTRUM SENSING 

4.1. Background  

Spectrum sensing is the process of obtaining awareness about the spectrum usage and 

existence of primary users in a determined area [4.1]. This falls in the domain of signal 

detection theory, in which we decide among some finite number of possible situations or 

“states of nature” [4.2]. The final decision made herein, ascertains the presence or absence 

of the primary user in the space and channel of interest for the secondary user. This 

essentially creates a situation of binary hypothesis where we are solely interested in the 

determination of presence or absence of a signal i.e. a transmission by the primary user or 

not. 

 𝐻0 ∶ 𝑥(𝑛) = 𝑤(𝑛) (1) 

 𝐻1 ∶ 𝑥(𝑛) = 𝑠(𝑛) + 𝑤(𝑛) (2) 

Equations 1 and 2, depict the binary hypothesis discussed above, where 𝑥(𝑛) in the above 

equations represents the received signal samples, 𝑠(𝑛) represents the transmitted signal 

and 𝑤(𝑛) is the noise of the additive white Gaussian noise (AWGN) channel. 𝐻0 is the null 

hypothesis representing the situation of no transmission by the primary user and 𝐻1 is the 

situation representing the primary user's signal transmitted with noise.
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4.2. State of the Art 

 Various spectrum sensing techniques have been proposed in literature over the last 

decade [4.5-4.10] . As shown in Figure 26, these techniques can be classified in 4 

categories: 

1) Energy detection based techniques [4.5] 

2) Cyclostationary feature based detection [4.6- 4.8] 

3) Matched Filtering based detection [4.3,4.9] 

4) Covariance based detection [4.10] 

Figure 27 shows a comparison of the accuracy and the complexity of some of the most 

popular spectrum sensing techniques. 

 
Figure 26. Spectrum sensing techniques classification 

 

 
Figure 27. Comparison of spectrum sensing techniques (Modified from [4.1]) 

Spectrum Sensing 
Techniques

Energy Detection
Cyclostationary 

Feature Detection
Matched Filter 

Detection
Covariance Based 

Detection
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4.2.1. Energy Detection 

 Energy detection is the most simplest spectrum sensing approach in cognitive radio 

[4.3]. This method does not require the any prior information about the transmitted signal. 

In order to attain better performance there is still a requirement for the knowledge of the 

noise power [4.4]. In this technique, the total energy of the incoming signal is computed, 

therefore no dependency over the type of modulation scheme involved is present. Figure 

28 shows the implementation of the energy detection technique using Welch periodogram 

averaging with a continuous time signal as the input to the analog-to-digital converter of 

the detector. In Figure 28, the signal input to the A/D is converted from analog to digital 

and then the digital samples are subject to the N-Pt FFT block for computation of the fast 

Fourier transform. These FFT values are averaged over the total number of samples and 

compared with the threshold in the energy detect block. Based on the comparison made 

with the threshold a decision is made as to the signal is present or absent. 

A/D N-Pt FFT Average over T Energy Detect

Threshold

x(t)

Figure 28. Implementation of an energy detector using Welch periodogram averaging 

[4.5] 

 

The average energy of 𝑁 samples of the incoming signal 𝑥(𝑛), is computed as given below, 

 

𝑇𝐸𝐷 =
1

𝑁
∑|𝑥(𝑛)|2
𝑁

𝑛=1

 (3) 

where, 𝑇𝐸𝐷 is the decision statistic of 𝑁 number of samples in a detection cycle. The final 

decision of the detection is made by comparing the decision statistic against a pre-

determined threshold, 𝜆𝐸𝐷, that depends on the noise floor [4.6]. Usually a fixed threshold 
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is used; however, the noise is uncertain, which degrades the sensing performance. A work-

around to this issue would be to use a dynamic threshold instead of the fixed threshold. The 

major drawback of the energy detection is its inability to distinguish between the noise and 

the signal. There is a certain threshold known as SNR wall [4.7]. If the signal power is 

below this threshold then the energy detector fails to distinguish between this signal and a 

noise of even a slightly larger power. The conditions for energy detection with a threshold, 

𝜆𝐸𝐷, is given as, 

 𝑇𝐸𝐷 < 𝜆𝐸𝐷 ∶ 𝑆𝑖𝑔𝑛𝑎𝑙 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 → 𝐻0 (4) 

 𝑇𝐸𝐷 > 𝜆𝐸𝐷 ∶ 𝑆𝑖𝑔𝑛𝑎𝑙 𝑒𝑥𝑖𝑠𝑡𝑠 → 𝐻1 (5) 

4.2.2. Cyclostationary Feature Detection 

 Cyclostationary Feature Detection relies on the features or the inherent properties 

of the incoming received signal [4.14]. Some statistics of the transmitted signal are periodic 

because of the inherent periodicities such as modulation rate and carrier frequency [4.8]. 

These features are perceived as cyclostationary features, whereas the noise is stationary. 

Therefore these periodicities enable these detectors to distinguish between primary user's 

signal and noise [4.9-4.12]. It also differentiates between different types of transmissions 

and primary systems [4.13]. An implementation of the cyclostationary feature detector is 

shown in Figure 29. In this figure the received analog signal was digitized by the A/D block 

and its Fast Fourier Transform was computed in the N-Pt FFT block. These FFT values 

were correlated with itself in the Correlate block and then averaged. The averaged outcome 

was subject to feature detection. Unlike energy detection which performs the energy 

computation using the time-domain samples, a cyclostationary feature detector performs a 

transformation from the time domain into the frequency domain and then conducts a 
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hypothesis test in the new domain [4.8]. 

A/D N-Pt FFT Average over T
Feature 
Detect

x(t) Correlate

 
Figure 29. Implementation of a cyclostationary feature detector [4.5] 

Cyclic-autocorrelation function of the received signal, 𝑦(𝑡) is given by, 

 𝑅𝑦
𝛼(𝜏) = 𝐸[𝑦(𝑡 + 𝜏)𝑦∗(𝑡 − 𝜏)𝑒𝑗2𝜋𝛼𝑡] (6) 

Where E[.] is the expectation operator, * denotes the complex conjugates and 𝛼 is the 

cyclic frequency. The cyclic spectrum density is calculated as the Fourier series expansion 

of the cyclic autocorrelation function, which is given by, 

 
𝑆(𝑓, 𝛼) =  ∑ 𝑅𝑦

𝛼(𝜏)𝑒−𝑗2𝜋𝑓𝜏
∞

𝜏= −∞

 (7) 

The CSD function has peaks when the cyclic frequency, 𝛼 is equal to the fundamental 

frequnecy of the transmitted signal. For any other frequencies no peaks are observed 

signifying the presence of noise which is hypothesis 𝐻0. Furthermore a peak detector [4.15] 

or a generalized likelihood ratio test [4.11, 4.13] can be used to differentiate between the 

two hypothesis [4.8]. The ability of the cyclostationary detector to distinguish between 

noise and signal allows it to be less susceptible to noise uncertainty and hence has a lesser 

probability of false alarm. 

4.2.3. Matched Filtering Detection 

 In the event of the secondary user being aware about the primary user's signal a 

priori, the matched filtering detection technique serves as the best option for signal 

detection as it maximizes the received signal-to-noise ratio [4.5]. To detect the presence of 

the primary user the matched filter technique correlates the already known primary user 
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signal with the incoming received signal. The merit of the matched filtering technique is 

that it requires less processing time as it needs very few samples to achieve a specific 

detection performance such as low probabilities of misdetection and false alarm. This merit 

is a conditional merit, in the sense, that the number of samples required is small only when 

the signal-to-noise ratio is high. But with the signal-to-noise ratio decreasing, the number 

of samples required by the matched filter also grows. Another drawback of the matched 

filter is that it needs to have a complete knowledge of the primary user's signal such as the 

bandwidth, frequency, modulation type, packet format in order to perform a precise 

matched filtering. If any of the information provided is incorrect then this would lead to an 

incorrect correlation in the matched filter, in turn leading to a degradation of the 

performance of the detector. In the event of unavailability of the perfect information of the 

primary user's signal, if a close-match pattern is known from the received signals then 

coherent detection or waveform-based sensing can be implemented to detect the presence 

of the primary user's signals [4.16], where the information about the waveform patterns is 

a pre-requisite. Similar to matched filter detection, more the accuracy of the information 

available, better is the sensing performance of the detector. 

 𝐻0: 𝑦(𝑡) = 𝑛(𝑡) (8) 

 𝐻1: 𝑦(𝑡) =  √𝜖𝑥𝑝(𝑡) + √1 − 𝜖𝑥(𝑡) + 𝑛(𝑡) (9) 

Equations 8 and 9 depict the hypothesis for the coherent detection case as in [4.8]. In 

coherent detection, a pilot tone, 𝑥𝑝(𝑡), with 𝜖, the fraction of energy allocated to it, is 

orthogonal to 𝑥(𝑡), the desired signal and 𝑛(𝑡) is the additive white noise. The test statistic 

is given as the projected received signal in the pilot direction: 
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𝑇 =
1

𝑁
∑𝑦(𝑡)𝑥̂𝑝(𝑡)

𝑁

𝑡=1

 (10) 

With increasing 𝑁, the test statistic under 𝐻1 is greater than that of 𝐻0. Comparing the value 

of 𝑇 with a pre-determined threshold the presence of the primary user can be decided. The 

merits of the coherent detection are attributed to its robustness to noise uncertainty and it 

not being limited to the SNR wall unlike the matched filter detection. It is also seen to 

perform better than the energy detection in terms of the sensing convergence time [4.17, 

4.18] as the sensing time of energy detection is observed to increase quadratically with 

reduction of SNR, unlike the coherent detector which increases linearly. 

4.2.4. Covariance Based Detection 

From the aforementioned sensing techniques, a conclusion can be drawn that the matched 

filtering detection and the cyclostationary features detection techniques require prior 

knowledge of the signal, whereas the energy detection technique requires the knowledge 

of the noise power if not the signal. A technique in spectrum sensing that can overcome the 

above mentioned problems is the covariance-based detection. This method capitalizes on 

the fact that the covariance matrix of the noise only samples behave differently from that 

of the covariance matrix of the signal samples. Therefore, the covariance matrix of the 

receiver obtained samples contains information which can be exploited for spectrum 

sensing. This technique is superior to the previously mentioned techniques because it does 

not require any signal or noise power to perform spectrum sensing [4.19]. Zeng and Liang 

in [4.19] and [4.20] have proposed two methods that utilize the covariance matrix to extract 

information required to detect the presence of a primary user’s transmission. In [4.19], two 

statistics are introduced. The first one deals with the sum of the matrix elements that are 
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not in the main diagonal whereas the second one deals with the sum of the matrix elements 

that are in the main diagonal. The ratio of these two statistics is computed and then 

compared with a threshold which signifies either the presence of signal plus noise or only 

that of noise. In [4.20], the authors have proposed two metrics: the Minimum-to-Maximum 

Eigenvalue (MME) and the average received power to the minimum eigenvalue ratio also 

known as Energy with Minimum Eigenvalue (EME). Similar to the ratio of the two 

statistics in [4.19], the ratio of the MME to the EME is compared with a threshold to 

differentiate between noise and signal. In [4.19], the authors presented the received samples 

under the hypothesis, 

 𝐻0  ∶ 𝑥(𝑛) = 𝜂(𝑛) (11) 

 𝐻1 ∶ 𝑥(𝑛) = 𝑠(𝑛) + 𝜂(𝑛) (12) 

where, 𝑠(𝑛) is the transmitted signal samples passed through a wireless channel consisting 

of path loss, multipath fading and time dispersion effects; 𝜂(𝑛) is an i.i.d white noise 

having a zero mean and variance 𝜎𝑧
2. The signal, 𝑠(𝑛) was assumed to be a superposition 

of received signal from multiple primary users. Hence no synchronization was needed 

[4.19]. 𝐿 consecutive samples were considered defining the following vectors: 

 x(𝑛) = [𝑥(𝑛)     𝑥(𝑛 − 1)   …      𝑥(𝑛 − 𝐿 + 1)]𝑇 (13) 

 s(𝑛) = [𝑠(𝑛)     𝑠(𝑛 − 1)   …      𝑠(𝑛 − 𝐿 + 1)]𝑇 (14) 

 η(𝑛) = [𝜂(𝑛)     𝜂(𝑛 − 1)   …      𝜂(𝑛 − 𝐿 + 1)]𝑇 (15) 

where 𝐿 is the smoothing factor. The statistical covariance matrices of the signal and 

noise are defined as, 

 𝑅𝑥 = 𝐸[x(𝑛)x
𝑇(𝑛)] (16) 

 𝑅𝑠 = 𝐸[𝑠(𝑛)s
𝑇(𝑛)] (17) 
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It can be verified that, 

 𝑅𝑥 = 𝑅𝑠 + 𝜎𝜂
2𝐼𝐿 (18) 

Therefore, if there was no signal then 𝑅𝑠 = 0 and the off diagonal elements of 𝑅𝑥 are all 

zeros. In case  a signal is said to be present and was correlated then the matrix 𝑅𝑠 ≠ 0 and 

therefore some off-diagonal elements of 𝑅𝑥 are non-zero. Denoting 𝑟𝑛𝑚 as the element of 

the matrix 𝑅𝑥 at the mth row and nth column, the two statistics are defined as, 

 

𝑇1 = (
1

𝐿
)∑∑ |𝑟𝑛𝑚|

𝐿

𝑚=1

𝐿

𝑛=1

 (19) 

 

𝑇2 = (
1

𝐿
)∑ |𝑟𝑛𝑛|

𝐿

𝑛=1

 (20) 

The ratio of 
 𝑇1

𝑇2
= 1 if there is no signal and  

𝑇1

𝑇2
> 1, in the presence of a signal. Therefore 

this ratio can be used to detect the presence of the signal. In practice the ratio of 𝑇1 and 𝑇2 

is compared with a threshold 𝛾1 which is chosen to meet the requirements of the probability 

of false alarm. Since in practice we only have limited number of samples we cannot obtain 

the statistical covariane matrix and hence obtain the sample covariance matrix. The 

autocorrelation of 𝑁𝑠 number received signal, 𝑥(𝑚), is given by 

 

𝜆(𝑙) = (
1

𝑁𝑠
) ∑ 𝑥(𝑚)𝑥(𝑚 − 𝑙)

𝑁𝑠−1

𝑚=0

,         𝑙 = 0,1, … , 𝐿 − 1 (21) 

Using the sample covariance matrix, the statistical covariance matrix 𝑅𝑥 can be 

approximated. The sample covariance matrix is defined as, 

 

𝑅𝑥̂(𝑁𝑠) =  [

𝜆(0)           𝜆(1)             …             𝜆(𝐿 − 1)

𝜆(1)           𝜆(0)              …            𝜆(𝐿 − 2)
⋮                   ⋮                  ⋱                   ⋮   

𝜆(𝐿 − 1)    𝜆(𝐿 − 2)       …                 𝜆(0)

] (22) 
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Therefore to perform signal detection, firstly the received signal samples are auto 

correlated, with 𝐿 as the chosen smoothing factor, to form the sample covariance matrix as 

defined above. Using this sample covariance matrix, the two statistics 𝑇1(𝑁𝑠) and 𝑇2(𝑁𝑠) 

are calculated. A threshold 𝛾1 is chosen to meet the requirements of the probability of false 

alarm. The ratio of the statistics is compared with this threshold and a signal is present 

if  
𝑇1

𝑇2
> 𝛾1. 

 In [4.20], the authors propose two detection methods which again derives itself 

from the sample covariance matrix. The authors here, again, consider the received signal 

𝑥(𝑛) as a combination of 𝑠(𝑛), the transmitted signal samples passed through a wireless 

channel consisting of path loss, multipath fading, and time dispersion effects; and 𝜂(𝑛), an 

independent and identically distributed white noise having a zero mean and variance 𝜎𝑧
2. 

 In the Maximum minimum eigenvalue (MME) detection, the sample covariance 

matrix of the received signal is given as, 

 

𝑅𝑥(𝑁𝑠) ≝ (
1

𝑁𝑠
) ∑ x̂(𝑛)x̂+(𝑛)

𝐿−2+𝑁𝑠

𝑛=𝐿−1

 (23) 

where x̂(𝑛) is defined as, 

 x̂(𝑛) ≝ [x𝑇(𝑛), x𝑇(𝑛 − 1),… , x𝑇(𝑛 − 𝐿 + 1)]𝑇 (24) 

 

 x(𝑛) ≝ [𝑥1(𝑛), 𝑥2(𝑛), … , 𝑥𝑀(𝑛)]
𝑇 (25) 

𝑥(𝑛) is the received signal sample, 𝐿 is the smoothing factor, 𝑀 is the factor by which the 

received signal is over-sampled and 𝑁𝑠 is the number of samples collected. Using the 

sample covariance matrix, 𝑅𝑥(𝑁𝑠), its maximum and minimum eigenvalues are computed 

as 𝜆max and 𝜆𝑚𝑖𝑛. The ratio of 𝜆max and 𝜆𝑚𝑖𝑛 if greater than the chosen threshold  𝛾1, a 
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signal is said to be present, otherwise no signal is present. 

 In another method proposed in [20], the energy with minimum eigenvalue is 

considered for detection. This method is similar to the previous method as it also computes 

the sample covariance matrix as in equation 23. In the next step, the average power of the 

received signal is computed as, 

 

𝑇(𝑁𝑠) = (
1

𝑀𝑁𝑠
)∑ ∑|𝑥𝑖(𝑛)|

2

𝑁𝑠−1

𝑛=0

𝑀

𝑖=1

 (26) 

This is similar to the energy detection, with 𝑇(𝑁𝑠) being the decision statistic, 𝑀 is over-

sampling factor and 𝑁𝑠 is the number of received signal samples. The minimum eigenvalue 

of the covariance matrix 𝑅𝑥(𝑁𝑠), is computed as 𝜆𝑚𝑖𝑛. The ratio, 𝑇(𝑁𝑠)/𝜆𝑚𝑖𝑛 is compared 

with a chosen threshold, 𝛾2. If 
𝑇(𝑁𝑠)

𝜆𝑚𝑖𝑛
> 𝛾2, then a signal exists, else no signal exists. 

 The merit of the EME technique over that of the energy detection is that, the energy 

detection technique compares the energy of the signal to that of the noise power whose 

knowledge is to be known in advance, whereas in the case of the EME, the energy of the 

signal is compared with that of the minimum eigenvalue of the covariance matrix which is 

obtainable from the received signal only. Since these techniques like energy detection use 

only the received samples to perform detection without the aid of information about the 

transmitted signal and channel, they can be termed as blind detection methods [4.20]. 

4.2.5. Summary 

 A literature study of the different spectrum sensing techniques employed in 

detecting the presence of the primary users is performed. The aforementioned sections 

began by taking a short glimpse over the principle of spectrum sensing prior to the 
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understanding of the aforementioned spectrum sensing techniques. Different types of 

spectrum sensing techniques were reviewed such as energy detection, cyclostationary 

detection, matched filter detection, and covariance based detection. Unable to handle the 

noise uncertainty turned out to be the drawback of energy detection, which leads to the 

research of other types of spectrum sensing techniques that dealt with the properties of the 

received signals and were able to distinguish between the signal plus noise and noise only 

components of the received signal. Although the issue of noise uncertainty was taken care 

off, but each technique possessed a drawback in terms of design complexity or detection 

accuracy or the requirement of the knowledge of the transmitted signal prior to its 

reception. The covariance based detection has been simulated and tested by several authors 

in order to evaluate the performance of their methods. Mate et al. [4.21] performed 

experiments with GNU Radio software and Universal Software Radio Peripheral TM (USRP 

TM) devices to evaluate the covariance and MME detection methods proposed in [4.19, 

4.20]. Their results of the simulation tests implied that these methods performed poorly in 

practice because the autocorrelation of the noise samples were not delta correlated as 

assumed in [4.19, 4.20]. An in-depth analysis over the covariance based sensing technique 

has been performed in this survey as it is chosen as the foundation for the development of 

a new spectrum sensing technique which shall be looked upon in the upcoming section. 

4.3. Methodology 

4.3.1. Energy Detection 

 The energy detection technique, as discussed previously is one of the easily 

implementable spectrum sensing techniques. The decision statistic which is calculated 
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from the received signal samples is computed as the sum of the squared magnitude FFT of 

the received signal samples averaged over N samples. Mathematically it is given by  

 
𝑇𝐸𝐷 =

1

𝑁
∑|𝑥(𝑛)|2
𝑁

𝑛=1

 (27) 

𝑁 number of received signal samples from the USRP are stored in a Python-Numpy array 

whose FFT is computed using the Numpy library based numpy.fft.fft function. The 

resulting array of FFT elements is then squared, summed and averaged over 𝑁 samples to 

obtain the decision statistic. This decision statistic is then compared with a threshold 𝜆 and 

a decision is made as to the channel is busy or available based on the below mentioned 

condition 

 𝑇𝐸𝐷 < 𝜆𝐸𝐷 ∶ Signal does not exist / available → 𝐻0 

(28) 

 𝑇𝐸𝐷 > 𝜆𝐸𝐷 ∶ Signal exists / busy → 𝐻1 

4.3.2. Autocorrelation at lag 1 

The authors in [4.19] assume that the noise 𝜂 is such that 

 𝐸(𝜂(𝑛)𝜂(𝑛 + 𝜏)) = 0 for any 𝜏 ≠ 0 (29) 

and 

 𝐸(𝜂(𝑛)𝜂(𝑛 + 𝜏)) ≠ 0 for any 𝜏 = 0 (30) 

where, 𝐸 represents the expectation operator and 𝜏 is a discrete time shift. This implies that 

the autocorrelation of the noise is a delta-dirac function and therefore the noise is regarded 

as delta-correlated. This holds well if the noise is Gaussian. In practice it is observed that 

the noise is not Gaussian as non-Gaussian noise components are also present, hence, the 
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autocorrelation of noise a non-delta-dirac function. The autocorrelation of 𝑁𝑠 number of 

received samples, 𝑥(𝑛) is given by, 

 

𝜆(𝑙) =  ∑𝑥(𝑛)𝑥∗(𝑛 − 𝑙)

𝑁𝑠

𝑛=0

 (31) 

where, 𝜆(𝑙) is the autocorrelation at lag 𝑙 and * denotes the complex conjugation operator. 

To compute the autocorrelation at lag 1, equation 31 is evaluated at 𝑙 = 1 and the resulting 

value i.e. 𝜆(1) is compared with a threshold. This threshold was determined experimentally 

analyzing the performance metrics probability of detection and false alarms. 

 Similar to energy detection, the number of received signal samples from the USRP 

are stored in a Python-Numpy array and auto correlated using the numpy library based 

numpy.correlate() function. Numpy.correlate() function has three different modes of 

operation: full, valid, and same. Each of these modes varies by the number of points 

involved in the autocorrelation process. In our works, we have chosen the full mode, in 

order to ensure all the signal samples overlap in the process of auto correlation and 

therefore the resulting, the resulting array of auto correlated values is an array of 𝐿 

elements, where 𝐿 = 2𝑁𝑠. This 𝐿-element array is symmetric about its midpoint as shown 

in Figure 30 and Figure 31. Therefore only the second-half of the L/2 elements are 

considered for analysis. Of the L/2 elements, the 𝐿/2th element denotes the auto correlation 

value at 𝑙 = 0 and the 𝐿th element denotes the auto correlation value at 𝑙 = 𝑁𝑠. For the auto 

correlation at lag 1 method, only the (
𝐿

2
+ 1)th element at which 𝑙 = 1 is of interest here. 

This value is then compared with a pre-determined threshold 𝛾 based on the rule given 

below, 
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 𝜆(1) < 𝛾 ∶ Signal does not exist / available → 𝐻0 

(32) 

 𝑇𝐸𝐷 > 𝛾 ∶ Signal exists / busy → 𝐻1 

 
Figure 30. Autocorrelation of signal 

 

Figure 31. Autocorrelation of Noise 

4.3.3. Correlation Distance 

In [4.22], Hector, Reyes et al. proposed and developed a new technique based on the 

principle of autocorrelation. Since the additive white Gaussian noise is random, its 

autocorrelation is highly uncorrelated. However, the autocorrelation of the signal is 
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correlated as shown in Figure 30 and the degree of correlation defines the strength of the 

signal; higher the degree of correlation, the greater the signal strength. The autocorrelation 

of noise is uncorrelated and is illustrated in Figure 31.  

𝑁𝑠 number of samples are received from the USRP receiver and stored in a Python-Numpy 

array. The autocorrelation of these 𝑁𝑠 received signal samples is computed using equation 

31 and stored in an M-element Python-Numpy array. As mentioned previously in auto 

correlation at lag 1, the 𝑀-element array is a symmetric one representing both the positive 

and negative values. Therefore this 𝑀-element array is reduced to an 𝐿-element array 

where 𝐿 =
𝑀

2
 and consisting of only the positive-half of the autocorrelation values. A 

reference line 𝑅, is another Python-Numpy array consisting of values that satisfy the 

equation given below: 

 
𝑅 =  (−

1

𝐿
) 𝑡 + 1 ;       0 ≤ 𝑡 ≤ 𝐿 (33) 

The Euclidean distance between the reference line vector, 𝑅 and the autocorrelation vector, 

𝜆(𝑙) is the metric that is used to determine the sensing result. It is denoted as 𝐷𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

and is given by, 

 
𝐷𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = √∑(𝑅 − 𝜆(𝑙))

2
 

(34) 

This metric was further compared with an experimentally determined, fixed threshold, 𝛾 

to arrive at the consensus of the spectrum sensing decision based on the following 

conditions: 

 𝐷𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 > 𝛾  ;    𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛:𝐻0 
(35) 

 𝐷𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 < 𝛾  ;    𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛:𝐻1 
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This newly developed spectrum sensing technique was coined the term “Correlation 

Distance”. 

As discussed above the autocorrelation of noise is supposed to be a delta-dirac function, 

but this was not that was observed when the samples received from the USRP were auto 

correlated. This was due to the existence of non-Gaussian noise components and the same 

was observed in the autocorrelation at the first lag, 𝜆(1), proposed in [4.23]. The 

autocorrelation at the first lag, ideally states that, 𝜆(1) = 0 in the absence of signal and 

𝜆(1) ≠ 0 in the presence of signal. In an attempt to improvise the autocorrelation at the 

first lag technique and the correlation distance technique, an estimate of the non-Gaussian 

noise introduced by the USRP receiver was subtracted. This was performed, by creating a 

matrix consisting of several vectors containing 𝑁𝑠 number of samples of the noise 

generated by the USRP. This matrix was then averaged into a single vector of 𝑁𝑠 samples 

and was subtracted from every 𝑁𝑠 number of received samples from the USRP. 

The performance of the correlation distance technique was assessed by performing 

measurements of metrics such as probability of false alarm and probability of detection as 

a function of signal-to-noise ratio. Such metrics have been involved in the performance 

analysis of other spectrum sensing techniques. In this thesis, we also perform a comparative 

evaluation of the energy detection technique with fixed threshold, autocorrelation at lag 1, 

and the correlation distance technique in order to determine the most suitable sensing 

technique to enhance the process of radio spectrum scanning. 

4.4. Results & Conclusion 

 Based on the aforementioned spectrum sensing techniques, several experiments 

were performed to validate and test the efficiency of the newly developed Correlation 
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distance technique. Furthermore the performance of this technique was evaluated and 

compared with that of the energy detection and autocorrelation at lag 1 using the metrics 

probability of detection and false alarm. In this section the results of the same have been 

discussed. 

As mentioned before the autocorrelation of noise was a non-delta dirac function due to 

other non-Gaussian noise components. An estimate of the non-Gaussian noise introduced 

by the USRP receiver was subtracted from the received samples. Figure 32a demonstrates 

the result of the autocorrelation prior to subtraction of the non-Gaussian noise estimate. It 

is seen that the component with no signal has its first lag at 0.5 which signifies that the 

autocorrelation of noise is a non-delta dirac function. On the other hand, Figure 32b, 

illustrates the result of autocorrelation after subtraction of the non-Gaussian noise estimate. 

In this an overall shift is observed in each component when compared to its counterpart in 

Figure 32a. Also the no autocorrelation of the no signal component is a delta-dirac function, 

thereby signifying that the autocorrelation of noise is an uncorrelated one. 
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Figure 32. (a) Auto correlation of signal samples before subtraction of inherent USRP 

noise (b) Auto correlation of signal samples after subtraction of inherent USRP noise 

[4.22] 

 In order to evaluate the impact of threshold selection on the performance of the 

method, experiments were run for the correlation distance and auto correlation at lag 1 

techniques with multiple threshold values. The probability of detection was the preferred 

metric to evaluate and select a specific threshold. The result of this experiment is illustrated 

in Figure 33a and 33b. Figure 33a illustrates the variation of the probability of detection 

with respect to SNR for different threshold values of the correlation distance technique. 

Among the four thresholds chosen for this technique 0.95, 0.9, 0.85 and 0.8; a higher 

probability of detection was observed for the threshold 0.95 as it began to detect the signal 

at a very low SNR of -18 dB and attained 100% detection by -9 dB. When compared with 

that of the autocorrelation at lag 1 technique in Figure 33b, among the four threshold values 

0.1, 0.15, 0.2 and 0.25, the lowest threshold i.e. 0.1 had the higher probability of detection 

with initial detection at -16 dB and a 100% detection at -7 dB. Comparing the two 

techniques, we see that the correlation distance technique is more efficient as it attains a 

100% detection probability at a lower SNR when than the autocorrelation at lag 1 method. 
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Figure 33. Variation of probability of detection with respect to signal-to-noise ratio for 

multiple thresholds – (a) Correlation distance technique (b) Autocorrelation at lag 1 

technique [4.22] 

 With the selection of the thresholds for both the techniques, the evaluation of the 

above techniques with respect to different number of samples is performed. In the 

following experiment, the number of samples selected were 256, 512 and 1024. The reason 

for choosing lesser number of samples is that it will improve the overall processing time. 

But from the results of the experiment, as illustrated in Figure 34a and 34b, it is seen that 

with lesser number of samples the probability of detection is also lowered. In Figure 34a, 

it is observed that the initial detection of the signal with 256 samples occurs at an SNR 

lower than that of 512 and 1024 samples. But to attain a 100% probability of detection, the 

signal with 1024 samples is more efficient as it attains the same at an SNR of -9 dB whereas 

the signal with 256 samples attains the same at -8 dB. A similar pattern of result is seen for 

autocorrelation at lag 1 technique in Figure 9b where, the signal with 1024 samples at a 

100% detection  probability at an SNR of -7 dB, lower than that of the signal with 512 and 

256 samples. 
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Figure 34. Variation of probability of detection with respect to signal-to-noise ratio for 

different number of samples – (a) Correlation distance technique (b) Autocorrelation at 

lag 1 technique [4.22] 

 Figure 35, illustrates a plot summarizing the results of Figure 33 and 34, by 

selecting the scenario of higher efficiency. In Figure 35, the variation of the probability of 

detection with respect to the signal-to-noise ratio is analyzed for the correlation distance 

technique with a threshold of 0.95 and for the autocorrelation at lag 1 technique with a 

threshold of 0.1. The number of samples used for this analysis is 1024. From this figure, 

we conclude that the correlation distance technique has a higher probability of detection 

when compared to the autocorrelation at lag 1 as it attains a 100% detection probability at 

an SNR of -9 dB, lower than that of the autocorrelation technique. 
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Figure 35. Variation of probability of detection with changing signal-to-noise ratio for 

1024 samples and threshold level of 0.95 for correlation distance and 0.1 for ACF(1) [22] 

 In an attempt to compare the performance of the correlation distance technique with 

energy detection and the auto correlation at lag1 techniques with the varying number of 

samples used, experiments were performed to measure the probabilities of detection and 

false alarm. The number of samples used for these experiments varied from 1024 to 3072 

and threshold values for each were chosen to analyze the worst-case scenarios in order to 

understand the variation of the probability of false alarm. Figure 36, illustrates the results 

of the same. From the plots of the probability of detection, it is observed that with 

increasing number of samples, the probability of detection increases. This increase is 

highly observable in the energy detection technique whereas the increase in the case of the 

autocorrelation at lag 1 is not very significant and this significance reduces even further for 

the correlation distance technique. Furthermore from the analysis of the probability of false 

alarm with increasing number of samples as illustrated in Figure 36, it is observed that the 

false alarm probability increases with higher number of samples in the case of energy 

detection technique. A probability of false alarm of 0% is attained at an SNR of -1 dB for 
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1024 samples whereas the same is attained at an SNR of 5 dB for 3072 samples. In the case 

of the autocorrelation at lag 1 technique, it is seen that with increasing number of samples 

the probability of false alarm decreases and for the correlation distance technique the false 

alarm tends to get closer to 0%.  The false alarm probability almost remains a constant in 

the case of the autocorrelation at lag 1 technique and correlation distance technique for a 

given number of samples. 

 Experiments and simulations have shown that the Correlation Distance method 

developed herein is more efficient than the ACF(1) method in terms of probability of 

detection and false alarm, and more efficient than the energy detection method in terms of 

probability of false alarm. 
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Figure 36. Performance analysis of energy detection, auto correlation at lag 1 and 

correlation distance technique for different number of samples.
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Chapter 5 

INFERENTIAL TECHNIQUE 

5.1. Background 

 Statistics is the field of science that deals with the process of gathering data, 

performing analysis and interpreting results about the same in an organized and meaningful 

manner. These data are the foundation of modern science and are information used for 

reasoning, discussion or calculation [5.1]. The analysis of the data is usually performed 

using descriptive statistics or inferential statistics. In descriptive statistics the data known 

as population is collected, grouped and analyzed by assigning a proper descriptive model 

or a distribution family to it. Whereas on the other hand, inferential statistics is preferred 

when it is necessary to infer the behavior of the entire population from a subset of sample 

data [5.2]. The authors of [5.3] describe four paradigms of statistical inference: (i) Classical 

Statistics Paradigm (ii) Bayesian Paradigm (iii) Likelihood paradigm and (iv) Akaikean 

Paradigm. The paradigms of statistical inference that are of interest for this thesis are the 

Classical Statistics or Frequentist Inference and the Bayesian Inference as shown below. 

 

Figure 37. Statistical Inference Paradigms Classification

Statistical Inference 
Paradigms

Classical 
Statistics (or) 
Frequentist

Bayesian 
Paradigm

Likelihood 
Paradigm

Akaikean 
Paradigm
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5.2. State-of-the-Art 

There are two techniques that can be used for scanning the radio spectrum: 

 1. The frequentist inference infers the probability based on the frequency of  

     observations. 

 2. The Bayesian inference infers the probability based on the previous knowledge     

     and the current observation/evidence. 

5.2.1. Frequentist Inference 

The frequentist inference is a paradigm of statistical inference that is associated with the 

frequentist probability, wherein the probability of occurrence of the event is the limit of its 

frequency given a large number of trials. Therefore statisticians adapting the approach of 

frequentist inference assign probabilities to a repeatable event in which the uncertainty is 

due to randomness. 

 In the frequentist approach, the sample space is defined as the set of all possible 

outcomes of a random experiment, wherein an event, 𝑋, is a subset of the sample space 

under consideration. The frequency of occurrence of this event is a measure of its 

probability, 𝑃(𝑋) and is observed repeatedly in numerous iteration of the experiment. In a 

total of 𝑁𝑇 trials, where 𝑁𝑋 is the number of occurrences of the event, the probability or 

the frequency of occurrence is given by, 

 𝑃(𝑋) = 𝑁𝑋/𝑁𝑇 (1) 

It is seen that for a higher number of trials, the probability or frequency of occurrence tends 

to the true probability. 
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 Hypothesis testing is a statistical method of making decisions given the data. In 

frequentist inference, it is seen that an alternate hypothesis is used to contrast the null 

hypothesis. Once both the null hypothesis and the alternate hypothesis are available, the 

data of the alternate hypothesis is used to calculate a test statistic which is then compared 

with the statistic that would occur when calculated with the data of the null hypothesis 

[5.4]. The comparison of these two values results in a p-value (probability value), which 

indicates if the null hypothesis must be accepted. In other words, the p-value is the 

probability of occurrence of the test statistic if the null hypothesis were to be true. This p-

value has been misinterpreted at times as the probability of the null hypothesis to be true. 

A hypothesis cannot be assessed by probabilistic values as probability by frequentist 

interpretation considers long-run frequencies rather than available data. It is also to be 

noted that the p-value is the probability under null hypothesis of observing data at least as 

extreme as the data that were actually observed; meaning that the p-value is partly 

determined by data that were never observed [5.5]. Another point owing to the problem of 

the frequentist inference is that, since, the p-values were calculated over the sample space, 

any changes to this sample space could greatly affect the p-value [5.5]. 

 Frequentist Inference, although possesses drawbacks as mentioned above, but still 

is a widespread approach in the calculation of probability of the long-run frequency of 

certain measurement or observation and hence its presence in multitude of applications. 

With the focus of this thesis being cognitive radios and radio spectrum scanning, it is worth 

mentioning that the frequentist inferential approach has been employed in the process of 

spectrum occupancy measurement surveys. A spectrum occupancy measurement and 

analysis was performed in Beijing, China in the year 2012 [5.6]. In this survey, a spectrum 
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analyzer in conjunction with a broadband antenna was used to record the data. With energy 

detection technique used for spectrum sensing, whenever the received samples’ computed 

decision statistic exceeded a fixed threshold, the sensed channel was said to be occupied 

by a signal. Numerous scans were performed across different channels and then the channel 

occupancy was computed as, 

 
average_spectrum_occupancy =

𝑁𝑜
𝑁

 
(2) 

where 𝑁𝑜, is the number of observations where the channel was said to be occupied and𝑁, 

is the total number of observations. It can be seen here that with increasing the total number 

of observations, a true probability of the occupancy of a channel can be found. 

5.2.2. Bayesian Inference 

 Bayesian inference is another statistical inference paradigm that is primarily 

associated with the Bayes’ Rule. As discussed previously Bayesian networks consist of 

variables with causal relations that are graphically represented as a directed acyclic graph. 

Bayesian inferential learning is aimed at computing the Bayesian probabilistic inference. 

It is based on a hypothesis space 𝐻 of possible causal models and given some observation 

data 𝑑, which describes the states of one or more variables in the causal system for different 

cases or situations. With the hypothesis and the observation data, the posterior probability 

distribution is computed and this distribution denotes the degree of belief that the causal 

model ℎ corresponds to the true causal structure [5.7]. Mathematically to compute the 

posterior distribution, two quantities are needed; the first one is the prior probability and 

the second is the likelihood. The prior probability, 𝑃(ℎ) measures the plausibility of each 

causal hypothesis, ℎ without taking into consideration the observation data, 𝑑. 
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Likelihood, 𝑃(𝑑|ℎ) measures the likeliness of observing the data considering the 

hypothesis to be true. The posterior probability is dictated by the Bayes’ Rule as the product 

of the prior probability and the likelihood and normalized by the sum of the same product 

over all alternate hypotheses. It is given by, 

 
𝑃(ℎ|𝑑) =

𝑃(𝑑|ℎ)𝑃(ℎ)

∑ 𝑃(𝑑|ℎ′)𝑃(ℎ′)𝑘′
 

(3) 

 The advantage of Bayesian inferential learning arises from its ability to use highly 

structured and informative priors and likelihoods that are drawn from its background 

knowledge. Another approach in defining the posterior as given in [5.8] considers a 

hypothesis (𝜃) whose prior probability is given by 𝑃(𝜃). The data observed is denoted 

as 𝐷. The posterior is then defined as, 

 
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 x 𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
 

(4) 

 
𝑃(𝜃|𝐷) =

𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)
 

(5) 

where, 𝑃(𝜃|𝐷) is the posterior probability, 𝑃(𝐷|𝜃) is the likelihood which is the 

conditional probability of observing the data given the hypothesis to be true and 𝑃(𝐷) is 

the marginal likelihood or also known as the evidence. Comparing equation 1 and 3 and 

replacing 𝜃 and 𝐷 by ℎ and 𝑑 respectively yields, 

 𝑃(ℎ) =  ∑𝑃(𝑑|ℎ′)𝑃(ℎ′)

𝑘′

 
(6) 

In general in equation 3, the marginal likelihood 𝑃(𝐷) can be ignored. In order to 

understand why it can be ignored, let us consider a hypothesis 𝜃, to be a binary one which 

takes upon two values 0 and 1. The prior probability distribution is given by 𝑃(𝜃). The 

data observed, 𝐷, has a marginal likelihood 𝑃(𝐷) and the likelihood for this observed data 
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under both the hypothesis is given as 𝑃(𝐷 = 0,1|𝜃 = 0) and 𝑃(𝐷 = 0,1|𝜃 = 1). 

Therefore, the posterior distribution for hypothesis 𝜃 = 0 and 𝜃 = 1, is given as, 

 
𝑃(𝜃 = 0|𝐷 = 0,1) =

𝑃(𝐷 = 0,1|𝜃 = 0)𝑃(𝜃 = 0)

𝑃(𝐷 = 0,1)
 

(7) 

 
𝑃(𝜃 = 1|𝐷 = 0,1) =

𝑃(𝐷 = 0,1|𝜃 = 1)𝑃(𝜃 = 1)

𝑃(𝐷 = 0,1)
 

(8) 

In both, equations 4 and 5, it is seen that any change in the marginal likelihood, 𝑃(𝐷), 

proportionally changes the value of the posterior under both conditions of 𝜃 = 0 and 𝜃 =

1. Hence this has no impact on the final posterior value that is computed, therefore it is 

ignored and equation 3 can be rewritten as, 

 𝑃(𝜃|𝐷) = 𝑃(𝐷|𝜃)𝑃(𝜃) (9) 

Some of the applications of Bayesian inference in the field of Cognitive Radio are: 

 Bayesian Sensing Scheduler 

 Bayesian Channel Quality Prediction 

 Bayesian Spectrum Sensing 

Bayesian Sensing Scheduler 

 In cognitive radios, there are two types of users, primary user (PU) and secondary 

user (SU). Spectrum sensing is performed in order to find the best available channel for 

transmission by the SU. Multiple channels are sensed in a row and this can be performed 

periodically or on-demand. In [5.9], one-channel policy is considered wherein a single 

channel is used as long as that channel is idle and thereafter on becoming busy the spectrum 

sensing is performed to search for another channel. In [5.10], multiple-channel policy is 

considered wherein channels are sensed periodically for underutilization in order to support 

increased data rate. In both these policies the order of sensing the channels in order to be 
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aware of the PU status has a great impact on the total system efficiency. In [5.11] a 

Bayesian Sensing Scheduler is proposed which is based on statistical learning rather than 

rule-based learning. The scheduler has two phases: learning phase and the operation phase. 

A parameter known as the success rate is estimated through the Bayes’ rule and from the 

law of large numbers theorem it is seen that after many sensing attempts this success rate 

is approximately close to the actual idle probability of the sensing channel. In the learning 

phase, each channel is sensed in an order at the beginning of its time slot and its success 

rate distribution is updated according to the Bayesian rule: 

 
𝑃(𝑆|𝑋) =

𝑃(𝑋|𝑆)𝑃(𝑆)

𝑃(𝑋)
 

(10) 

Where X is the channel sensing random process and S is the success rate. Each channel has 

a utilization parameter apart from the success rate parameter and when the distance 

between these two parameters approaches a value that is smaller than a pre-determined 

threshold then the operation phase starts, wherein an eligibility vector is calculated based 

on the success rate, probability of detection, probability of false alarm and the channel 

quality of each channel. 

Bayesian Channel Quality Prediction  

 In [5.12] a study of different spectrum prediction techniques in Cognitive Radio 

Networks has been studied. Some of the prediction based techniques are Hidden Markov 

Model-Based Prediction, Multilayer Perception Neural-Network-Based Prediction, 

Bayesian-Inference-Based Prediction, Moving-Average-Based Prediction, 

Autoregressive-Model-Based Prediction and Static-Neighbor-Graph-Based Prediction. 

From the aforementioned prediction techniques we shall now look into an application of 

Bayesian-inference-based prediction in cognitive radio networks applied in channel quality 
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prediction [5.13]. In this paper, the authors consider the cognitive radio network to be a 

time-slotted one wherein the secondary user performs spectrum sensing using one of the 

classical methods of spectrum sensing, energy detection at the beginning of a time slot. 

Once an idle channel is found the secondary user initiates transmission until the end of the 

time slot. It is assumed herein that the channel status is contained within a time slot i.e. the 

status of the channel does not change until the end of the time slot. 

An illustration of this is shown in Figure 38. 

 

Figure 38. An illustration of the traditional spectrum sensing process [5.13]  

 The above spectrum sensing process can be modelled as a Hidden Markov Model. 

With the validation of the existence of a Markov chain in the channel utilization of a PU 

over time domain as in [5.14], the hidden channel occupancy states 𝑄 = {𝑞1,

𝑞2, … , 𝑞𝑛, … , 𝑞𝑇} is modelled as a Hidden Markov process. The SU on the other hand 

senses and generates the observations states 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑛, … , 𝑜𝑇} which is a random 

Markov process dependant on the PU acitivty and sensing accuracy of the SU. Thus the 

complete spectrum sensing process can be modelled as a Hidden Markov Model. The 

authors of [5.13], model this HMM with transitional probabilities which are functions of 

time and hence non-static. The HMM with non-static transition probabilities are referred 
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as non-stationary hidden Markov models (NSHMMs). The priors for the NSHMM 

parameters are determined and are used in the process of the Bayesian Inference with Gibbs 

sampling as it is seen as a viable approach to reduce the computational complexity. The 

Gibbs sampling is an iterative process where the probability distribution obtained at 

iteration K-1 can be used as prior probability distribution for iteration K and the parameters 

obtained from iteration K-1 can be used as observations for iteration K. On deriving the 

posterior probability distribution for the kth iteration, the estimated parameters of the 

NSHMM are obtained and are used in a subsequent process to predict the channel quality 

which ranks the channels in a descending order of channel quality. Simulation results 

showed that the order of channels obtained here can be used for both spectrum sensing and 

spectrum decision to attain improved network performance. 

Bayesian Spectrum Sensing  

 In [5.15], a Bayesian approach to signal detection in cognitive radios is proposed. 

The received samples, 𝑦, is represented as a vector of concatenated real and imaginary 

parts whose probability distribution function is in the form of standard multivariate normal 

distribution which is given by, 

 
𝑝(𝑦|𝑣)  ∝ 𝑣−𝑁𝑒−

𝑁𝑠
𝑣  

(11) 

Where, 𝑦 is the received samples vector, 𝑣 is the variance, 𝑁 is the number of samples, 𝑠 

is the sample energy. Considering 𝜃 as the parameter to indicate the presence or absence 

of a signal, the variance 𝑣 is known when 𝜃 is perfectly known and its conditional 

distribution is is given by, 

 𝑝(𝑣|𝜃) = 𝛿(𝑣 − 𝑣𝜃) (12) 
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The prior of 𝜃 is denoted as 𝜋0 = P(𝜃 = 0) and 𝜋1 = 𝑃(𝜃 = 1). The join posterior 

distribution of 𝜃 and 𝑣 is given as 

 
𝑝(𝜃, 𝑣|𝑦) ∝ 𝑝(𝑦|𝑣)𝑝(𝑣|𝜃)𝑝(𝜃) ∝ 𝑣−𝑁𝑒−

𝑁𝑠
𝑣 𝑝(𝑣|𝜃)𝜋𝜃 

(13) 

Marginalizing out 𝑣 and substituting equation 12 we get, 

 
𝑝(𝜃|𝑦) ∝ 𝜋𝜃∫𝑣

−𝑁𝑒−
𝑁𝑠
𝑣 𝑝(𝑣|𝜃)𝑑𝑣 

(14) 

 
∝ 𝜋𝜃𝑣𝜃

−𝑁𝑒
−
𝑁𝑠
𝑣𝜃  

 

A loss function or penalty function, 𝐿(𝑎, 𝜃) is introduced which is given by, 

 
𝐿(𝑎, 𝜃) =  {

𝐿𝐹𝐴        𝑎 = 0, 𝜃 = 1
𝐿𝑀𝐷       𝑎 = 1, 𝜃 = 0
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(15) 

Where 𝐿𝑀𝐷 is the penalty for misdetection and 𝐿𝐹𝐴 is the penalty for false alarm. The 

expected losses are given by 

 𝐸[𝐿(0, 𝜃|𝑦) = 𝐿𝑀𝐷𝑝(𝜃 = 1|𝑦) (16) 

 𝐸[𝐿(1, 𝜃|𝑦) = 𝐿𝐹𝐴𝑝(𝜃 = 0|𝑦) (17) 

In order to perform the best decision of deciding 𝑎 = 1, with the goal of minimizing the 

expected loss is, if 𝐸[𝐿(1, 𝜃|𝑦)] < 𝐸[𝐿(0, 𝜃|𝑦)], which can be expressed in the form of 

odds ratio as, 

 
Φ =

𝑝(𝜃 = 1|𝑦)

𝑝(𝜃 = 0|𝑦)
=
𝜋1
𝜋0
(1 + ρ)N(

s
𝑣̅−1) >

𝐿𝐹𝐴
𝐿𝑀𝐷

 
(18) 

Where 𝑣̅ =
𝑣1𝑣0 ln(

𝑣1
𝑣0
)

𝑣1−𝑣0
 . After manipulations, the above equation is equivalent to, 

 
𝑠 > 𝛾𝐵𝐷 = 𝑣̅ + (

1

𝑁
) .

𝑣1𝑣0
𝑣1 − 𝑣0

. ln (𝐿𝛾 (
𝜋0
𝜋1
)) 

(19) 
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Where 𝐿𝛾 =
𝐿𝐹𝐴

𝐿𝑀𝐷
 is the loss ratio and 𝛾𝐵𝐷 is the threshold of the Bayes Detector. Using the 

above ideology an Iterative Bayes Detector is designed. The convention followed in Energy 

Detection is that the threshold is set by setting a target 𝑃𝐹𝐴 and sample size N, but the 

detector is seen as unable to exploit the advantage of situations with good SNR where a 

sensing decision could have been made with a very small number of samples. But on the 

other hand a decision can be reached by a smart detector for sample size lesser than 𝑁 for 

a high level of SNR denoted by the samples energy 𝑠 and is given by, 

 

𝑠 =
1

2𝑁
∑[(𝑦𝑖

𝑟𝑒)2 + (𝑦𝑖
𝑖𝑚)

2
 ]

𝑁

𝑖=1

 (20) 

The Bayes detector unlike the Energy Detection, has an odds ratio as defined in equation 

18 which provides a reliability value to the decision made by the detector based on the 

sample energy, 𝑠 and the sample size. The author of [5.15] starts of by noting the 𝑃𝐹𝐴 and 

𝑁 for energy detection where the detection happens for 𝑃𝐷 = 0.99. The SNR at this point 

is given by, 

 

𝜌0.99 =

𝛾𝐸𝐷 − 1 −
𝑄−1(0.99)𝑣0

√𝑁
𝑄−1(0.99)𝑣0

√𝑁
+ 𝑣0

 (21) 

Where the energy detection threshold is given by, 

 
𝛾𝐸𝐷 =

𝑄−1(𝑃𝐹𝐴)𝑣0

√𝑁
+ 𝑣0 (22) 

Since the objective of the new algorithm is to attain a guaranteed detection with the same 

SNR for lesser number of samples and with a 𝑃𝐷 not inferior to that of the ED, two rules 

are set. The first rule decides upon the presence of a signal or 𝜃 = 1, by setting a high value 

for the target odd Φ1
𝑡𝑔𝑡

, looping through a set of sample sizes, 𝑛 < 𝑁, calculating the odds 
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for 𝜌0.99 and comparing it with the value set initially checking. If higher then signal is 

detected else repeat for higher sample size until the sample size equals the maximum 

allowable for ED. The second rule also performs the same except for absence of the signal 

with a low value for target odd Φ0
𝑡𝑔𝑡

 and decides for absence when the value is lesser than 

the set value. At each and every iteration of the iterative Bayes detector, a new threshold 

is computed as the sample number varies for every iteration. This threshold is given by, 

 
𝛾1,𝑛 = 𝑣̅0.99 + (

1

𝑛
) (

𝑣̅0.99
log(1 + 𝜌0.99)

) log (𝛷𝑡𝑔𝑡 (
𝜋0
𝜋1
)) (23) 

Where 𝑣̅0.99 =
𝑣0(1+𝜌0.99) log(1+𝜌0.99)

𝜌0.99
. 

 

5.2.3. Summary 

 A study of the statistical inferential techniques enabled us to compare the 

frequentist and Bayesian inference techniques. As stated in [5.16], “A frequentist can 

calculate probabilities precisely, but often not the probabilities we want. A Bayesian can 

calculate the probabilities we want, but often cannot do it precisely.” An observation made 

here is that the frequentist method is acclaimed to be more popular and frequently used in 

day-to-day life to perform inference based on the frequency of a large run of observations. 

On the other hand the Bayesian inference is more useful in situations requiring an 

inferential scheme that can provide the true probability of occurrence of an event at the 

instant of observing the evidence with a prior knowledge. Therefore we shall adopt the 

Bayesian inference in our works to enhance the process of scanning the radio spectrum. 

5.3. Methodology 

5.3.1. Bayesian Inference – Simplified Bayesian Model 
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 The Bayesian approach is a probabilistic model that requires the prior knowledge 

in order to compute the posterior distribution. In the case of channel occupancy 

measurement, an array of linearly spaced values from 0 to 1 are considered to represent the 

set of occupancy probability values ranging from 0% to 100%. This set of probability 

values is denoted by 𝑃𝑂𝑐𝑐. The prior knowledge, denoted as 𝑃𝑟𝑖𝑜𝑟𝑂𝑐𝑐, is the prior 

occupancy values of the channels under consideration. In the event of not knowing the 

prior occupancy values of the radio spectrum, the prior distribution is characterized by a 

uniform distribution or binomial distribution. In the spectrum scanning process, we have 

considered the prior distribution as a uniform distribution; therefore all the channels 

initially have equal occupancies. Figure 39 demonstrates the Bayesian inference approach 

for the spectrum sensing scenario from a simulation performed in Python. The prior 

distribution chosen here is a uniform distribution. The subplots in these figures depict the 

variation of the posterior probability distribution with certain number of observations. The 

maximum value of the posterior probability distribution indicates the occupancy level of 

the particular channel under consideration. In subplots (a) and (b), we see that the detection 

remains consistently busy thereby inferring a 100% occupancy. In the subsequent subplots 

(c), (d), (e) and (f), the occupancy levels have varied from 75% to 56.3%. This variation in 

the occupancy levels is primarily attributed to those sensing attempts in which no signal 

was detected by the specific spectrum sensing technique. In subplot (e), the total number 

of detections is 10 out of a total number of 16 observations thereby resulting in a 62.5% 

occupancy. In the final subplot (f), the occupancy has further dropped down to 56.3%. With 

the availability of the prior distribution, 𝑁𝑠 samples are sampled out of the USRP at a 

sampling frequency of 𝐹𝑠 and is subject to spectrum sensing using energy detection, 
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autocorrelation at lag 1, and correlation distance technique. The resulting decision of each 

of the spectrum sensing technique is a binary value with 0 denoting absence of signal and 

1 denoting the presence of signal. This decision is used to compute the likelihood, wherein, 

the decision value 0 signifies a signal presence probability, 𝑆𝑆𝑃𝑟𝑜𝑏 of 0% and decision 

value 1 signifies a signal presence probability of 100%. 

 
Figure 39. Variation of posterior using the Bayesian Inference Approach 

The likelihood, 𝐿𝑖𝑘𝑂𝑐𝑐 is given by, 

 𝐿𝑖𝑘𝑂𝑐𝑐 = (𝑃𝑂𝑐𝑐)
𝑆𝑆𝑃𝑟𝑜𝑏 x (1 − 𝑃𝑂𝑐𝑐)

1−𝑆𝑆𝑃𝑟𝑜𝑏 (24) 

where, 𝐿𝑖𝑘𝑂𝑐𝑐 denotes the likelihood of observing a signal given the prior usage level, 𝑃𝑂𝑐𝑐 

denotes the set of probability values from 0 to 1 and 𝑆𝑆𝑃𝑟𝑜𝑏 is the signal presence 

probability which is dependent on the decision of the spectrum sensing. With the 

computation of the likelihood, the posterior distribution, 𝑃𝑜𝑠𝑡𝑂𝑐𝑐, can be computed as, 

 𝑃𝑜𝑠𝑡𝑂𝑐𝑐 = 𝑃𝑟𝑖𝑜𝑟𝑂𝑐𝑐 x 𝐿𝑖𝑘𝑂𝑐𝑐 (25) 
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where, 𝑃𝑜𝑠𝑡𝑂𝑐𝑐 is the posterior distribution, 𝑃𝑟𝑖𝑜𝑟𝑂𝑐𝑐 is the prior distribution of values 

(usage level) and 𝐿𝑖𝑘𝑂𝑐𝑐 is the likelihood computed in equation 24. The index of the 

maximum value of the posterior distribution is obtained and the value of the 𝑃𝑂𝑐𝑐 

corresponding to this index gives the occupancy value of the channel at that instant. With 

this, the posterior distribution is assigned as the prior distribution for the next iteration of 

the spectrum sensing. 

 A flowchart describing the above methodology is provided in Figure 40. The first 

step would be to initialize the different variables such as end time of the spectrum survey, 

the array of probability values from 0 to 1 and the prior distribution. In our works the prior 

distribution is initialized with a uniform distribution as the current occupancy of the 

spectrum is unknown. The next step would be to check if the current time has exceeded the 

initialized end time. This check is in place to ensure the scanning process runs iteratively 

until the end time is reached. If the check passes then, the USRP is tuned to a particular 

frequency from a list of frequencies, the samples acquired by the USRP at that particular 

frequency are retrieved and stored in an array. This array of samples is now subject to 

spectrum sensing in the next step and the decision of the spectrum sensing is used to 

compute the likelihood. With the likelihood now available, the next step computes the 

posterior distribution and retrieves the probability value corresponding to the maximum 

value of the posterior distribution. Prior to proceeding to scan the next channel in the list, 

the array of prior distribution is replaced with the array of the newly computed posterior 

distribution. This complete process iterates over and over again till the conditional time 

check placed in the second step fails. Since three sensing techniques have been 

implemented for scanning, three different set of occupancy value calculations are 
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performed. Each technique has an individual prior, likelihood and posterior computation.  

Data is saved at regular intervals of every 15 minutes. In order to analyze the occupancy 

over different time frames as mentioned in table 1, the priors have been reset to a uniform 

distribution at the start of each time frame. 

Start

Tune the USRP to a center frequency

Store the samples from 
the USRP

If
Current_Time < 

End_Time
?

A

A

Compute the probability value

B

B Stop

NO

YES

Compute the posterior distribution

Obtain the decision
Compute the likelihood

Initialize End_Time
Probability values, 
Prior_Distribution

Print occupancy

Assign the prior with 
posterior

Perform Spectrum Sensing using the 
stored samples

 

Figure 40. Experimental approach to spectrum scanning using Bayesian inference for the 

simplified Bayesian model 

 

Table 2. Split-up of time frames 

Time Frame Time Duration 

Midnight 00:00 – 06:00 



101 

 

Morning 06:00 – 12:00 

Afternoon 12:00 – 16:00 

Evening 16:00 – 20:00 

Night 20:00 – 00:00 

 

5.3.2. Bayesian Inference – Improved Bayesian Model 

 The Bayesian inference technique implementation discussed previously is for the 

simplified Bayesian model. Performing inference using the simplified model does not take 

into consideration the handling of uncertainties. In this section, the experimental approach 

to performing the Bayesian inference for the improved Bayesian model is detailed, which 

includes the handling of uncertainties. 

 With the improved Bayesian model, the Bayesian inference technique has been 

further improved to calculate the occupancy of the spectrum by including the detection and 

false alarm probabilities of the spectrum sensing methods. The detection and false alarm 

probabilities for each of the spectrum sensing technique was experimentally determined 

for a given SNR and was used in the occupancy calculation. 

 In the Bayesian Inference for the simplified model, the occupancy was calculated 

based on the decision made by the spectrum sensing techniques. In that, the decision was 

a binary variable, which took upon values 0, for signal absence and 1, for signal presence. 

The likelihood for a decision 0 was computed assuming that the signal presence 

probability, 𝑆𝑆𝑃𝑟𝑜𝑏, is 0%, whereas for a decision 1, it was assumed that the signal 
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presence probability is 100%. Based on the likelihood computed and the prior usage level 

the posterior was computed which gave the updated usage level of the channel. 

 In the Bayesian this approach the SNR is estimated to obtain the probability of 

detection and false alarm values. A correction process is applied to obtain the closest true 

value of the SNR by applying the error of the estimation on the estimated value. The error 

value to be applied was experimentally determined using the SNR estimation technique. 

Based on the true value obtained, the corresponding detection and false alarm probabilities 

for each of the sensing techniques is obtained and this is used in the computation of the 

signal presence probability. The signal presence probability is a conditional probability 

which is conditioned on the decision of the spectrum sensing technique. Unlike the 

simplified Bayesian model inference, where a 0% and 100% signal presence probability 

was assumed for a decision of 0 and 1, here the signal presence probability is computed as 

given by, 

 𝑆𝑆𝑃𝑟𝑜𝑏 =  𝑃(𝑆𝑃 = 1|𝑆𝐷 = 0,1)

=
𝑃(𝑆𝐷 = 0,1 |𝑆𝑃 = 1) 𝑃(𝑆𝑃 = 1)

𝑃(𝑆𝐷 = 0,1|𝑆𝑃 = 1) 𝑃(𝑆𝑃 = 1) + 𝑃(𝑆𝐷 = 0,1|𝑆𝑃 = 0) 𝑃(𝑆𝑃 = 0)
 

(26) 

where, 𝑆𝑃 denotes the signal presence, 𝑆𝐷 denotes the decision of the spectrum sensing 

technique, 𝑃(𝑆𝑃 = 1|𝑆𝐷) is the signal presence probability and 𝑃(𝑆𝑃 = 1) denotes the 

prior usage level of the channel. Since the end goal is to determine the occupancy of the 

channel which is the measure of the presence of the signal in the channel, we equate 𝑆𝑃 =

1 in 𝑃(𝑆𝑃|𝑆𝐷). The above equation depicts both the cases, when a decision is 0 and 1. Eqs. 

27 and 28 examine the above equation in separate cases i.e. 𝑆𝐷 = 1 and 𝑆𝐷 = 0. In the case 

of a signal being detected, 𝑆𝐷 = 1 and the signal presence conditional probability is given 

by, 
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 𝑆𝑆𝑃𝑟𝑜𝑏 =  𝑃(𝑆𝑃 = 1|𝑆𝐷 = 1)

=
𝑃(𝑆𝐷 = 1|𝑆𝑃 = 1) 𝑃(𝑆𝑃 = 1)

𝑃(𝑆𝐷 = 1|𝑆𝑃 = 1) 𝑃(𝑆𝑃 = 1) + 𝑃(𝑆𝐷 = 1|𝑆𝑃 = 0) 𝑃(𝑆𝑃 = 0)
 

=
𝑃𝐷 𝑃(𝑆𝑃 = 1)

𝑃𝐷 𝑃(𝑆𝑃 = 1) + 𝑃𝐹𝐴𝑃(𝑆𝑃 = 0)
 

(27) 

where, 𝑃(𝑆𝐷 = 1|𝑆𝑃 = 1) represents the detection probability, 𝑃𝐷 and 𝑃(𝑆𝐷 = 1|𝑆𝑃 = 0) 

represents the false alarm probability, 𝑃𝐹𝐴. In the case of no signal detection, 𝑆𝐷 = 0 and 

the signal presence conditional probability is given by, 

 

 𝑆𝑆𝑃𝑟𝑜𝑏 =  𝑃(𝑆𝑃 = 1|𝑆𝐷 = 0)

=
𝑃(𝑆𝐷 = 0|𝑆𝑃 = 1) 𝑃(𝑆𝑃 = 1)

𝑃(𝑆𝐷 = 0|𝑆𝑃 = 1) 𝑃(𝑆𝑃 = 1) + 𝑃(𝑆𝐷 = 0|𝑆𝑃 = 0) 𝑃(𝑆𝑃 = 0)
 

=
𝑃𝑀𝐷 𝑃(𝑆𝑃 = 1)

(𝑃𝑀𝐷) 𝑃(𝑆𝑃 = 1) + (1 − 𝑃𝐹𝐴)𝑃(𝑆𝑃 = 0)
 

(28) 

where, 𝑃(𝑆𝐷 = 0|𝑆𝑃 = 1) represents the misdetection probability, 𝑃𝑀𝐷 and 𝑃𝐹𝐴 is the false 

alarm probability. In the case of no signal detection, 𝑆𝐷 = 0 and the signal presence 

conditional probability is given by, 

 With the calculation of the signal presence probability we would now calculate the 

occupancy level of the channel as done in the case of the simplified Bayesian model 

inference approach, by calculating the likelihood as in equation 24 and posterior as in 

equation 25. In the calculation of the likelihood, 𝑆𝑆𝑃𝑟𝑜𝑏 would be equated with the value 

of the newly calculated signal presence probability.  In order to analyze the occupancy over 

different time frames as mentioned in table 1, the priors have been reset to a uniform 

distribution at the start of each time frame. 
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 A flowchart summarizing this complete process is as shown in Figure 41. The first 

step would be to initialize the different variables such as end time of the spectrum survey, 

the array of probability values from 0 to 1 and the prior distribution. In our works the prior 

distribution is initialized with a uniform distribution as the current occupancy of the 

spectrum is unknown. The next step would be to check if the current time has exceeded the 

initialized end time. This check is in place to ensure the scanning process runs iteratively 

until the end time is reached. If the check passes then, the USRP is tuned to a particular 

frequency from a list of frequencies, the samples acquired by the USRP at that particular 

frequency are retrieved and stored in an array. This array of samples is now subject to 

spectrum sensing in the next step after which the array of samples is subject to SNR 

estimation. Based on the estimated SNR value, the probability of detection and false alarm 

are obtained and applied with the binary decision of the spectrum sensing to compute the 

signal presence probability. With this the likelihood is computed followed by the 

computation of the posterior distribution to obtain the probability value corresponding to 

the maximum value of the posterior distribution. Prior to proceeding to scan the next 

channel in the list, the array of prior distribution is replaced with the array of the newly 

computed posterior distribution. This complete process iterates over and over again till the 

conditional time check placed in the second step fails. Rest of the aspects of the scanning 

are similar to the simplified Bayesian model inference. 
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Figure 41. Experimental approach to spectrum scanning using Bayesian inference for the 

improved Bayesian model 

5.3.3. Frequentist Inference 

 In the process of spectrum scanning, multiple channels are sensed in a sequential 

order and this complete process is iterated over and over for a specified number of times 

or for a desired period of time until which the channel occupancies are to be observed. The 

duration of the complete spectrum survey is of utmost importance in scanning the radio 

spectrum using the frequentist inferential technique as the total occupancy of the radio 

spectrum can be calculated only on the completion of the complete scanning process. This 

is because the frequentist inferential technique requires the knowledge of the total number 



106 

 

of observation cycles apart from the total number of cycles in which the spectrum was 

detected with a signal. The frequentist inference is computed as given by,

 
𝑃𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =

𝑁𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

 
(29) 

This equation defines the average spectrum occupancy of a given channel as the ratio of 

the number of sensing attempts where the channel was detected with a signal to that of the 

total number of sensing attempts performed or observed. An example of the spectrum 

sensing using the frequentist inferential method is shown in table 2. The table illustrates 

two columns; the sample number which defines the count of every sample that is observed; 

the sample state which is assigned a value 0 or 1 based upon the state of the channel being 

sensed, with 0 denoting the channel as empty and 1 denoting the channel as occupied. 

Table 3. Spectrum Sensing with Frequentist Inferential Technique 

Sample Number Sample State 

1 1 

2 1 

3 0 

4 1 

5 0 

6 0 

7 1 

8 0 

9 0 

10 1 
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11 1 

12 1 

13 1 

14 0 

15 1 

16 1 

 

Based on the data from table 2 and using equation 29 we can compute the occupancy of 

the channel under consideration as:  

𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 16 

𝑁𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = 10 

𝑃𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =
𝑁𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

=
10

16
= 0.625 

From the above calculations, we infer that the occupancy of the channel is approximately 

62.5%. 

 The Universal Software Radio Peripheral (USRP) is tuned to a particular center 

frequency from a list of frequencies. 𝑁𝑠 number of samples, sampled at a frequency 𝐹𝑠, is 

obtained from the USRP and stored in an array. The samples are processed based on the 

spectrum sensing technique that is applied. In this spectrum scanning procedure, we 

implemented the energy detection technique with a fixed threshold, autocorrelation 

function at lag 1 and the correlation distance technique. Each sensing technique performs 

a decision on the presence of the signal based on the preset threshold. The decision is a 

binary one resulting in a 1 for signal presence and a 0 for signal absence. This result is 

stored in an array and the next frequency from the list of center frequencies is chosen to 
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which the USRP is tuned and the complete process is repeated until the spectrum scanning 

end time is reached. 

 The analysis of the survey data was performed using R. R is a programming 

language and software environment for statistical computing and is widely used among 

statisticians and data miners. In the due process of scanning, a set of variables such as time 

of scan, scanned frequency, the decisions of each of the sensing technique and other 

variables of interest for future analysis are saved in a file. In order to avoid any intermittent 

crashes or data integrity issues, the data was saved after every fixed interval of time. The 

complete data of the spectrum survey is combined and then split into different files based 

on the days of the week of scanning, hence making it easier to analyze the occupancies on 

a daily basis. Each day is further divided into five time frames as shown in table 1, which 

allows us to analyze and understand the occupancy levels of a channel based in different 

times of the day. After splitting up the data based on different times of the day, the 

frequentist inference is applied on the respective decision columns of the sensing 

techniques. 

 A flowchart summarizing the complete process is as shown in Figure 42. The first 

step would be to declare the various variables and arrays required and initialize the same. 

With the initialization of the end time of the spectrum survey, a time check is performed if 

the current time has exceeded the initialized end time. This check is in place to ensure the 

scanning process runs iteratively until the end time is reached. On passing the check, the 

USRP is tuned to a particular frequency from a list of frequencies, the samples acquired by 

the USRP at that particular frequency are retrieved and stored in an array. This array of 

samples is now subject to spectrum sensing, whose binary decision results are stored in an 
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array which is saved in a file at regular intervals of 15 minutes. The USRP is tuned to the 

next frequency in the list and this process is iterative till the time check fails, upon which, 

the scanning process is terminated. After the termination, the stored binary decisions are 

averaged to compute the occupancy of the spectrum. 

Start

Initialize N_Observed = 0
Initialize End_Time

Array Sense_Decision[]

Increment counter, N_Observed by 1
Tune the USRP to a center frequency

Perform Spectrum Sensing

Store the samples form 
the USRP

Store the decision in an 
array, Sense_Decision

If
Current_Time < 

End_Time
?

Sum all elements of Sense_Decision[] 
and store as N_Detected

Compute
P_Occupancy=

N_Detected/N_Observed

Stop

NO

YES

 

Figure 42.Experimental approach to spectrum scanning using frequentist inference 

5.3.4. Experimental Setup 

 In this section, the experimental setup involved in scanning the radio spectrum is 

detailed. The setup description comprises of both the hardware elements used and the 

software programming techniques deployed to perform the scanning. 
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(a) Hardware Specifications 

 The hardware used in the scanning process is a Universal Software Radio 

Peripheral (USRP) Software Defined Radio (SDR) from Ettus Research as shown in Figure 

43. The USRP consists of a daughterboard that is designed to work at a particular range of 

frequencies. The WBX USRP Daughterboard, is used in scanning the cellular bands 

GSM850 and GSM1900, while, the XCVR2450 USRP Daughterboard, is used in scanning 

the Wi-Fi bands 2.4 GHz and 5.8 GHz. The USRP is interfaced with the PC via a Gigabit 

Ethernet cable and on the software end the GNU Radio application is used. 

 

Figure 43. Universal Software Radio Peripheral Software Defined Radio from Ettus 

Research 

 GNU Radio is a free and open-source software development toolkit that provides 

signal processing blocks to implement software radios. From a top-down view, GNU Radio 

executes what is known as a flowgraph, with each flowgraph consisting of signal 

processing blocks. A simple flowgraph is built in this scanning process that reads data from 

the USRP and prints out the sampled signal values. The flowgraph is as shown in Figure 

44 and consists of a USRP Source block, complex to magnitude block and a printer_f block. 

The USRP Source block and the complex to magnitude block are GNU Radio built in 

blocks whereas the printer_f block is a user-defined block that was created as an interface 

to access the data samples read by the USRP Source block. The USRP Source block acts 
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as the software interfacing block of the USRP and the samples output from this block are 

complex by default, therefore, the complex to magnitude block is used to convert the 

complex samples to magnitude which is then input to the printer_f block. The printer_f 

block reads the data input to it from the complex to magnitude block and outputs it as an 

array of values whose length is based on the user input value to this block. 

 

Figure 44. GNU Radio Flowgraph 

 The software development for the spectrum scanning was done in Python. Python 

is a general-purpose, high-level programming language that is shipped with the Ubuntu-

Linux operating system. Since GNU Radio allows users to program in C++ and Python, 

python was chosen over other languages for this project. Python emphasizes code 

readability and its syntax allows programmers to express concepts in fewer lines of code 

than C++. R programming language is another language used in this project. R is suitable 

for statistical computing and graphical environments and has been used only in performing 

data analysis with respect to frequentist inference. R was chosen over python for 

performing data analysis as it has many built-in data manipulation functions that can be 

used to analyze large datasets. 

(b) Software Specifications 

 The radio spectrum scanning was performed twice in the Memorial Union at the 

University of North Dakota. The first survey was started in the last week of December 2014 

which spanned till the first week of January and included the frequentist and the Bayesian 
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Inference techniques. While the second survey included the frequentist, Bayesian and the 

Bayesian with detection and false alarm probabilities techniques and spanned from the 18th 

of July to the 24th of August 2015. The scanning/surveys were performed to measure the 

occupancy of the radio spectrum in the cellular bands, GSM850 and GSM1900, and the 

Wi-Fi bands, 2.4 GHz and 5.8 GHz. 

 A simple algorithm used in the initial survey to perform the scanning is as shown 

in Figure 45. Different channels in the aforementioned bands were scanned and each 

channel was sensed sequentially with the spectrum sensing techniques: Energy detection, 

Autocorrelation at lag 1 and Correlation distance to determine the occupancy status of that 

channel. The occupancy status was denoted by a 1 for signal presence and a 0 for signal 

absence. Table 4 summarizes the different channels scanned in the first survey and table 5 

summarizes the channels scanned in the second survey. The second survey was improvised 

to collect data from channels in the GSM bands with a spacing of 200 KHz. The duration 

of the scan was decided prior to performing the scan and based on this duration the scan 

completion date and time were input to the program. This allowed the scan to progress 

uninterrupted till the specified completion date and time. 

Table 4. List of scanned bands and channels in survey 1 

Band 
Start Frequency 

(MHz) 

Stop Frequency 

(MHz) 

Channel Spacing 

(MHz) 

Number of 

Channels 

GSM850 (U/L) 824 849  3, 2 11 

GSM850 (D/L) 869 894 3, 2 11 

GSM1900 (U/L) 1850 1910 3, 2 25 



113 

 

GSM1900 (D/L) 1930 1990 3, 2 25 

2.4 GHz 2402 2497 5 20 

5.8 GHz 5725 5875 5 31 

 

Table 5. List of scanned bands and channels in survey 2 

Band 
Start Frequency 

(MHz) 

Stop Frequency 

(MHz) 

Channel Spacing 

(MHz) 

Number of 

Channels 

GSM850 (U/L) 824 849  0.2 126 

GSM850 (D/L) 869 894 0.2 126 

GSM1900 (U/L) 1850 1910 0.2 301 

GSM1900 (D/L) 1930 1990 0.2 301 

2.4 GHz 2402 2497 5 20 

5.8 GHz 5725 5875 5 31 

 

 The USRP inherent noise was removed by subtracting an estimate of the non-

Gaussian noise introduced by the USRP receiver. This was performed repeatedly with an 

interval of 15 minutes in order to ensure that no USRP inherent noise impacted the 

measurements of the spectrum scanning. All the channels to be scanned were stored in a 

python list. The USRP was tuned to a particular frequency, tun_freq from the list, using 

the function set_center_freq(self, tun_freq). Once the USRP successfully tuned to the 

frequency tun_freq, 𝑁𝑠 number of samples were received from the USRP and stored in a 
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python-numpy array. This array of samples is subjected to spectrum sensing and the 

decision outcome of each of these techniques is stored for performing inference. These 

decision data need to be stored as the inference can be performed only post-scanning for 

frequentist inference, whereas, in the case of Bayesian inference and Bayesian inference 

with detection and false alarm probabilities, the occupancy of the scanned channel is 

inferred in real-time with the spectrum sensing decision making. After this, the USRP tunes 

to the next frequency in the list and repeats this process over and over. On reaching the last 

frequency in the list the scan still continued by tuning the USRP over to the frequency at 

the beginning of the list. This complete process iterated and lasted till the scan completion 

time was arrived. 

 

Figure 45.Spectrum scanning process illustration 

5.4. Results & Conclusion 
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 The analysis of the results is split into two sections. The first section will focus on 

the results of the first survey in which the occupancy values were calculated using the 

frequentist inference and simplified Bayesian model inference. The next section will follow 

up with the results of the second survey wherein the occupancy calculations were 

performed using the frequentist inference, simplified Bayesian and the improvised 

Bayesian inference. 

5.4.1. Survey 1 results 

(a) Frequentist Inference 

  Examples of results are shown in Figures 46 through 53 [5.17]. Each figure 

illustrates the occupancy of a particular channel in a selected band using the three 

aforementioned techniques (plots a, b, and c).  Plots a illustrate the channel occupancy 

measurement performed using energy detection technique with fixed threshold; plots b 

illustrate the occupancy measurements performed using the ACF at lag 1 technique; and 

plots c illustrate the occupancy measurements performed using the correlation distance 

method. 

  Figures 46, 47, and 48 illustrate the occupancies of channel 1 (2.412 GHz), channel 

6 (2.437 GHz), and channel 11 (2.462 GHz) of the 2.4 GHz band. Figure 46a shows the 

occupancy using the energy detection method. This figure shows that this channel is fully 

occupied (100%) at all times of the day, over the entire week. This high level of occupancy 

is attributed to the small value of the static threshold and the high false alarm rate of the 

energy detection method. Figure 46b illustrates the occupancy of the same channel (2.412 

GHz) using ACF at lag 1, showing varying occupancy at different times of the day, which 

is an expected behavior. This method results in higher occupancy values than expected, as 
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it relies on only the first lag of the autocorrelation. Figure 46c shows the occupancy of the 

channel based on correlation distance. The occupancy values appear to be more realistic and 

expected as compared to those of the above two approaches, with high occupancy values 

during the peak usage hours of 12pm – 4pm (20% - 40%). This method owes its accuracy 

to the signal detection reliance on all the lags/points of the autocorrelation. 

 

Figure 46. Average occupancy of channel 1 (2.412 GHz) of 2.4 GHz Wi-Fi band 

 Figure 47 illustrates the occupancy levels of channel 6 (2.437 GHz) of the 2.4 GHz 

band. The results of the occupancy levels measured with the energy detection method 

(Figure 47a) is similar to that of channel 1 (2.412 GHz) as shown in Figure 10a. With respect 

to the ACF at lag 1 (Figure 47b), we see that there is a slight variation in the occupancy 

levels as compared to the occupancy levels of channel 1. Comparing Figures 46c and 47c, 

a distinguishing result can be observed with the occupancy results of the correlation distance 

method of measurement. It is evident that the overall usage of channel 6 is less than that of 

channel 1. 
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Figure 47. Average occupancy of channel 6 (2.437 GHz) of 2.4 GHz Wi-Fi band 

 The next highly occupied channel in the 2.4 GHz band is channel 11 (2.462 GHz). 

The results of the occupancy measurements with respect to the energy detection (Figure 

48a) and ACF at lag 1 (Figure 48b) are similar to those of the previously mentioned channels 

1 and 6, with slight variations in occupancy levels measured using ACF at lag 1 method. 

The distinguishing result is noticeable in the measurement performed using the correlation 

distance method as shown in Figure 48c, wherein a higher occupancy is noticed overall 

when compared to that of channel 6 (2.437 GHz). From the analysis of the results of the 2.4 

GHz band, it is evident that channels 1, 6, and 11 are the most occupied channels of the 2.4 

GHz band; channel 1 is the most occupied, followed by channel 11 and then by channel 6. 
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Figure 48. Average occupancy of channel 11 (2.462 GHz) of 2.4 GHz Wi-Fi band 

 In the next set of occupancy results, we will analyze the 5.8 GHz band and then the 

cellular bands such as GSM850 and GSM1900. Figure 49 illustrates the results of the 

occupancy measurements of channel 153 (5.765 GHz) of the 5.8 GHz band. As can be seen 

in Figure 49a, the results corresponding to energy detection show constant 100% occupancy 

while those corresponding to the autocorrelation at lag 1, shown in Figure 49b, are lower 

and vary with time. On the other hand, the measurement of the occupancy values 

corresponding to the correlation distance, as shown in Figure 49c, are more realistic and 

expected as compared to those of the above two approaches. 

 Owing to the public holiday on New Year’s Day (January 1, 2015), the correlation 

distance method demonstrates low-to-no activity on that day, hence demonstrating a more 

precise and accurate technique of signal detection. We infer that occupancy is highest in the 

12pm – 4pm interval over the week and is relatively low when compared to the 2.4 GHz 

band, which is expected behavior. 

 



119 

 

 

Figure 49. Average occupancy of channel 153 (5.765 GHz) of 5.8 GHz Wi-Fi band 

 Occupancies of the GSM850 and GSM1900 bands were also measured; their 

occupancy results are illustrated in figures 50 to 53. Figures 50 and 51 show the occupancies 

of the uplink (837 MHz) and downlink (882 MHz) channels, 192 of the GSM850 band. 

Both these channels (uplink and downlink) demonstrate 100% occupancy for all the three 

spectrum sensing techniques. 

 

Figure 50. Average occupancy of channel 192 (837 MHz) of GSM-850 band 
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Figure 51.Average occupancy of channel 192 (882 MHz) of GSM-850 band 

  Figures 52 and 53 depict the occupancies of the uplink and downlink channel 661 

of the GSM-1900 band. Due to broadcasting downlink, the downlink (1960 MHz) channel 

661 of the GSM1900 band demonstrates a 100% usage for all the three techniques, while 

the uplink (1880 MHz) channel 661 of the GSM1900 demonstrates a low occupancy with 

the correlation distance technique and high occupancies with ACF(1) (>60%) and Energy 

Detection (100%). 

 

Figure 52. Average occupancy of channel 661 (1880 MHz) of GSM-1900 band 
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Figure 53. Average occupancy of channel 661 (1960 MHz) of GSM-1900 band 

(b) Simplified Model Bayesian Inference 

 The examples of results shown in figures 54, 55 and 56 are the occupancy values 

of the 2.4 GHz WiFi band calculated using the simplified model Bayesian inference. Since 

this inferential technique does not take into account any uncertainties, the occupancy values 

would be similar to that of the frequentist inference. Since these measurements are 

performed in real time the occupancy values are measured at the specified instant of time 

in order to facilitate a method of comparison with the frequentist method. Similar to the 

plots in the frequentist inference, there are three subplots each depicting the occupancy 

outcome of a particular spectrum sensing technique. 

 Figure 54 depicts the occupancy of channel 1 of 2.4 GHz WiFi band i.e. 2.412 GHz. 

In energy detection technique, we see that the occupancy of the channel is 100%, whereas 

in the case of the ACF(1) the occupancy varies anywhere between 40% and 95%. The 

measurement performed using the Correlation distance technique results in occupancy 

values in the range of 3% to 40% over the week. When compared with Figure 46 

(frequentist inference), the results of the two are similar as expected. 
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Figure 54. Occupancy of channel 1 (2.412 GHz) of the 2.4 GHz band 

 Figure 55 and 56 depict the occupancies of channels 6 and 11 of the 2.4 GHz WiFi 

band. The occupancy levels of both the channels measured using the energy detection 

technique depict a full occupancy. But, as seen previously, this is contradicted by the 

ACF(1) and the Correlation Distance techniques where the occupancy of both the channels 

is less than 100% and the occupancy values measured using the Correlation distance 

technique are more realistic. Similar to the frequentist inference results, once again it is 

shown that channel 1 (2.412 GHz) of the 2.4 GHz WiFi band is highly occupied when 

compared to that of channel 6 (2.437 GHz) and channel 11 (2.462 GHz). 
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Figure 55. Occupancy of channel 6 (2.437 GHz) of the 2.4 GHz band 

 

Figure 56. Occupancy of channel 11 (2.462 GHz) of the 2.4 GHz band 

Figure 57 depicts a comparative evaluation of both the frequentist and Bayesian inference. 

In this comparison of channel 1 of 2.4 GHz WiFi band i.e. 2.412 GHz, the occupancy 

measurement values are almost equal for both the inferential techniques as expected. 
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Figure 57. Comparative evaluation of Frequentist & Simplified Model Bayesian 

Inference: Occupancy of channel 1 (2.412 GHz) of the 2.4 GHz band 

5.4.2. Survey 2 results 

Examples of the results of the second survey are illustrated in figures 58 to 63, which are 

classified based on the inferential techniques. In this survey, besides the frequentist and the 

simplified model Bayesian inference, the improvised model Bayesian inference results 

have also been included. As mentioned previously, in the improvised model Bayesian 

inference, we performed a correction on the estimated value of the SNR with the addition 

and subtraction of the estimation error. Therefore for the improvised model, the occupancy 

values are depicted as bars with two different levels, wherein one level is presented in a 

lighter color shade compared to the other. The darker shade corresponds to occupancy 

values calculated by the subtraction of estimation error and the lighter shade corresponds 

to occupancy values calculated by the addition of estimation error. 

(a) Frequentist Inference 
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Figures 58 and 59, illustrate the occupancy values of channel 1 of the 2.4 GHz band and 

channel 153 of the 5.8 GHz band, measured using the frequentist inference. Since this 

survey spanned over an entire week, the survey results can show a comparison in the 

occupancy values between the weekend and weekdays. In Figure 58, we see that with the 

correlation distance measurement the occupancy of channel 1 of 2.4 GHz is restricted to 

about 10% to 15% over the weekend, whereas during the weekdays the occupancy level of 

this channel ranges from anywhere between 10% to 40% with high occupancy levels being 

consistent during the noon to 4 pm time interval. Figure 59, on the other hand for the 

correlation distance technique represents the occupancy levels of channel 153 of the 5.8 

GHz band (5.765 GHz), wherein the weekend shows no occupancy over the entire weekend 

except for the interval ranging from midnight to 6 am on Saturday where a 3.5% occupancy 

is observed. 

 
Figure 58. Average occupancy of channel 1 (2.412 GHz) of 2.4 GHz Wi-Fi band 
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Figure 59.Average occupancy of channel 153 (5.765 GHz) of 5.8 GHz Wi-Fi band 

(b) Simplified Model Bayesian Inference 

Figures 60 and 61 illustrate the occupancy values of channel 1 of the 2.4 GHz band and 

channel 153 of the 5.8 GHz band, measured using the simplified model Bayesian inference. 

When both the figures 60 and 61 are compared with that of figures 58 and 59, we see that 

they are similar but the numerical values of the occupancy calculations in the Bayesian 

inference varies slightly from that of the frequentist inference. Once again it is evident from 

these figures that the usage level over the weekend has been low compared to that of the 

weekdays, which is as expected. Also it is observed that the usage in the middle of the 

week i.e. Wednesday is higher throughout the day when compared to any other day of the 

week. 
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Figure 60. Occupancy of channel 1 (2.412 GHz) of 2.4 GHz Wi-Fi band 

 
Figure 61. Occupancy of channel 153 (5.765 GHz) of 5.8 GHz Wi-Fi band 

(c) Improved Model Bayesian Inference 

Figures 62 and 63, illustrate examples of results of the improvised model Bayesian 

inference. With the improvised model we do see a significant change in the results of all 

the three spectrum sensing techniques when compared to the frequentist and the simplified 

model Bayesian inference. In figures 62 and 63, we see that the energy detection based 

occupancy values of channel 1 of 2.4 GHz band and channel 153 of 5.8 GHz band, do not 
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show a complete 100% occupancy as compared to figures 57 and 59. The occupancy levels 

herein range between 60% and 100% for both minimum and maximum values of the 

corrected SNR. This deflection from the previous results is attributed to the introduction of 

probability of detection and false alarm, which impacts the occupancy calculation process. 

 
Figure 62. Occupancy of channel 1 (2.412 GHz) of 2.4 GHz Wi-Fi band 

 
Figure 63.Occupancy of channel 153 (5.765 GHz) of 5.8 GHz Wi-Fi band 

Finally we conclude that the various inferential techniques employed with the spectrum 

occupancy measurement technique have shown varying results. The results of the first 
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survey gave us an insight into the occupancy of the different channels measured in different 

bands and also showed the synchronization of results between the frequentist and the 

simplified model Bayesian inferential techniques. Furthermore the results of the second 

survey helped us in understanding how the improvised model could impact the results of 

the simplified model. The impact of introduction of various other variables into the model 

such as detection and false alarm probabilities have shown a significant impact on the 

occupancy results. Since the occupancy measurements were performed using the three 

different spectrum sensing techniques and the spectrum occupancy of certain channels 

were found to be less than 20% in certain bands of the radio spectrum, this has provided us 

with the opportunity to believe that the correlation distance technique seems to showcase 

results which are more realistic than the other techniques thereby signifying its efficiency 

in signal detection when compared to other techniques. The results also show that the 

occupancy changes depending on the time, day, and channel.
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Chapter 6 

CONCLUSION 

  In this thesis, a work aiming the improvement of the efficiency and reliability of the 

radio spectrum scanning has been performed. Initial studies indicated that an efficient 

spectrum sensing technique would provide better measurements in the occupancy 

measurements. Energy detection is an incumbent spectrum sensing technique that has been 

implemented in several spectrum surveys due to its implementation complexity being low. 

But, the major drawback of this technique is its inability to differentiate between signal and 

noise; therefore the results of the spectrum scans implementing this technique provided high 

occupancy measurements for certain bands although they were not expected to be. Further 

studies indicated that randomness or uncertainties existed in the wireless environment such 

as noise and interference that hampered the measurements. Therefore an uncertainty 

handling technique or model had to be developed.  

 The approach followed herein was to first develop a spectrum sensing technique 

that was more efficient than the existing ones. This was achieved by developing a technique 

that was able to differentiate between signal and noise using the principle of autocorrelation 

and Euclidean distance. Comparative evaluations were performed to study the efficiency 

of this technique with respect to the prevalent ones such as energy detection and 

autocorrelation at lag 1. The results of the comparative evaluation showed that the newly 

developed technique was more efficient than the aforementioned techniques. 
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  With the development of the Correlation Distance spectrum sensing technique, a 

spectrum occupancy measurement was performed. The results of this survey yielded a 

significant change in the measurement of occupancy levels using the correlation distance 

technique when compared to the energy detection and auto correlation at lag 1 techniques. 

The occupancy measurement was performed using the frequentist inferential technique, 

wherein the result was computed after the completion of the survey. 

  With the achievement of the above outcome, the next task was to develop a Bayesian 

model to handle the uncertainty. In the initial phase, a simplified Bayesian model was 

developed, consisting of only deterministic variables and measured variables. The previous 

usage level and the spectrum sensing decision were regarded as the deterministic variables 

and the spectrum occupancy level was the measured variable. This Bayesian model in 

conjunction with the Bayesian inference technique were used to compute of the spectrum 

occupancy level. The adoption of the Bayesian inferential technique aided in real-time 

measurement of occupancy levels when implemented in a spectrum scanning experiment. 

It was seen that the results were similar to that of the frequentist inference as expected. Now, 

in order to implement uncertainty handling, random variables were added to the simplified 

Bayesian model. A random variable, received power, was added to the model from which 

the signal-to-noise ratio was estimated and values of probability of detection and false alarm 

for the estimated signal-to-noise ratio and the respective spectrum sensing technique were 

obtained. Bayesian inference was applied using the probabilities of detection and false alarm 

with the spectrum sensing decision and the previous usage level to infer the current spectrum 

occupancy level. Spectrum scanning experiment was performed once again using the 



132 

 

improved Bayesian model which yielded occupancy levels that were influenced by the 

newly included variables in the Bayesian model. 

  We therefore conclude that in order to increase the reliability of the radio spectrum 

scanning process we would have to investigate further to look for other parameters of 

uncertainty that affect the sensing channel and how they could be considered to be added in 

the Bayesian model. This thesis has laid the foundation for this type of work and presented 

itself with an implementation technique.
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