2,785 research outputs found

    SMT-based Model Checking for Recursive Programs

    Full text link
    We present an SMT-based symbolic model checking algorithm for safety verification of recursive programs. The algorithm is modular and analyzes procedures individually. Unlike other SMT-based approaches, it maintains both "over-" and "under-approximations" of procedure summaries. Under-approximations are used to analyze procedure calls without inlining. Over-approximations are used to block infeasible counterexamples and detect convergence to a proof. We show that for programs and properties over a decidable theory, the algorithm is guaranteed to find a counterexample, if one exists. However, efficiency depends on an oracle for quantifier elimination (QE). For Boolean Programs, the algorithm is a polynomial decision procedure, matching the worst-case bounds of the best BDD-based algorithms. For Linear Arithmetic (integers and rationals), we give an efficient instantiation of the algorithm by applying QE "lazily". We use existing interpolation techniques to over-approximate QE and introduce "Model Based Projection" to under-approximate QE. Empirical evaluation on SV-COMP benchmarks shows that our algorithm improves significantly on the state-of-the-art.Comment: originally published as part of the proceedings of CAV 2014; fixed typos, better wording at some place

    Automated incremental software verification

    Get PDF
    Software continuously evolves to meet rapidly changing human needs. Each evolved transformation of a program is expected to preserve important correctness and security properties. Aiming to assure program correctness after a change, formal verification techniques, such as Software Model Checking, have recently benefited from fully automated solutions based on symbolic reasoning and abstraction. However, the majority of the state-of-the-art model checkers are designed that each new software version has to be verified from scratch. In this dissertation, we investigate the new Formal Incremental Verification (FIV) techniques that aim at making software analysis more efficient by reusing invested efforts between verification runs. In order to show that FIV can be built on the top of different verification techniques, we focus on three complementary approaches to automated formal verification. First, we contribute the FIV technique for SAT-based Bounded Model Checking developed to verify programs with (possibly recursive) functions with respect to the set of pre-defined assertions. We present the function-summarization framework based on Craig interpolation that allows extracting and reusing over- approximations of the function behaviors. We introduce the algorithm to revalidate the summaries of one program locally in order to prevent re-verification of another program from scratch. Second, we contribute the technique for simulation relation synthesis for loop-free programs that do not necessarily contain assertions. We introduce an SMT-based abstraction- refinement algorithm that proceeds by guessing a relation and checking whether it is a simulation relation. We present a novel algorithm for discovering simulations symbolically, by means of solving ∀∃-formulas and extracting witnessing Skolem relations. Third, we contribute the FIV technique for SMT-based Unbounded Model Checking developed to verify programs with (possibly nested) loops. We present an algorithm that automatically derives simulations between programs with different loop structures. The automatically synthesized simulation relation is then used to migrate the safe inductive invariants across the evolution boundaries. Finally, we contribute the implementation and evaluation of all our algorithmic contributions, and confirm that the state-of-the-art model checking tools can successfully be extended by the FIV capabilities

    Soft Contract Verification

    Full text link
    Behavioral software contracts are a widely used mechanism for governing the flow of values between components. However, run-time monitoring and enforcement of contracts imposes significant overhead and delays discovery of faulty components to run-time. To overcome these issues, we present soft contract verification, which aims to statically prove either complete or partial contract correctness of components, written in an untyped, higher-order language with first-class contracts. Our approach uses higher-order symbolic execution, leveraging contracts as a source of symbolic values including unknown behavioral values, and employs an updatable heap of contract invariants to reason about flow-sensitive facts. We prove the symbolic execution soundly approximates the dynamic semantics and that verified programs can't be blamed. The approach is able to analyze first-class contracts, recursive data structures, unknown functions, and control-flow-sensitive refinements of values, which are all idiomatic in dynamic languages. It makes effective use of an off-the-shelf solver to decide problems without heavy encodings. The approach is competitive with a wide range of existing tools---including type systems, flow analyzers, and model checkers---on their own benchmarks.Comment: ICFP '14, September 1-6, 2014, Gothenburg, Swede

    Higher-order Program Verification as Satisfiability Modulo Theories with Algebraic Data-types

    Full text link
    We report on work in progress on automatic procedures for proving properties of programs written in higher-order functional languages. Our approach encodes higher-order programs directly as first-order SMT problems over Horn clauses. It is straight-forward to reduce Hoare-style verification of first-order programs into satisfiability of Horn clauses. The presence of closures offers several challenges: relatively complete proof systems have to account for closures; and in practice, the effectiveness of search procedures depend on encoding strategies and capabilities of underlying solvers. We here use algebraic data-types to encode closures and rely on solvers that support algebraic data-types. The viability of the approach is examined using examples from the literature on higher-order program verification

    Combining Static and Dynamic Contract Checking for Curry

    Full text link
    Static type systems are usually not sufficient to express all requirements on function calls. Hence, contracts with pre- and postconditions can be used to express more complex constraints on operations. Contracts can be checked at run time to ensure that operations are only invoked with reasonable arguments and return intended results. Although such dynamic contract checking provides more reliable program execution, it requires execution time and could lead to program crashes that might be detected with more advanced methods at compile time. To improve this situation for declarative languages, we present an approach to combine static and dynamic contract checking for the functional logic language Curry. Based on a formal model of contract checking for functional logic programming, we propose an automatic method to verify contracts at compile time. If a contract is successfully verified, dynamic checking of it can be omitted. This method decreases execution time without degrading reliable program execution. In the best case, when all contracts are statically verified, it provides trust in the software since crashes due to contract violations cannot occur during program execution.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Sequentializing Parameterized Programs

    Full text link
    We exhibit assertion-preserving (reachability preserving) transformations from parameterized concurrent shared-memory programs, under a k-round scheduling of processes, to sequential programs. The salient feature of the sequential program is that it tracks the local variables of only one thread at any point, and uses only O(k) copies of shared variables (it does not use extra counters, not even one counter to keep track of the number of threads). Sequentialization is achieved using the concept of a linear interface that captures the effect an unbounded block of processes have on the shared state in a k-round schedule. Our transformation utilizes linear interfaces to sequentialize the program, and to ensure the sequential program explores only reachable states and preserves local invariants.Comment: In Proceedings FIT 2012, arXiv:1207.348
    corecore