2 research outputs found

    Service level agreement specification for IoT application workflow activity deployment, configuration and monitoring

    Get PDF
    PhD ThesisCurrently, we see the use of the Internet of Things (IoT) within various domains such as healthcare, smart homes, smart cars, smart-x applications, and smart cities. The number of applications based on IoT and cloud computing is projected to increase rapidly over the next few years. IoT-based services must meet the guaranteed levels of quality of service (QoS) to match users’ expectations. Ensuring QoS through specifying the QoS constraints using service level agreements (SLAs) is crucial. Also because of the potentially highly complex nature of multi-layered IoT applications, lifecycle management (deployment, dynamic reconfiguration, and monitoring) needs to be automated. To achieve this it is essential to be able to specify SLAs in a machine-readable format. currently available SLA specification languages are unable to accommodate the unique characteristics (interdependency of its multi-layers) of the IoT domain. Therefore, in this research, we propose a grammar for a syntactical structure of an SLA specification for IoT. The grammar is based on a proposed conceptual model that considers the main concepts that can be used to express the requirements for most common hardware and software components of an IoT application on an end-to-end basis. We follow the Goal Question Metric (GQM) approach to evaluate the generality and expressiveness of the proposed grammar by reviewing its concepts and their predefined lists of vocabularies against two use-cases with a number of participants whose research interests are mainly related to IoT. The results of the analysis show that the proposed grammar achieved 91.70% of its generality goal and 93.43% of its expressiveness goal. To enhance the process of specifying SLA terms, We then developed a toolkit for creating SLA specifications for IoT applications. The toolkit is used to simplify the process of capturing the requirements of IoT applications. We demonstrate the effectiveness of the toolkit using a remote health monitoring service (RHMS) use-case as well as applying a user experience measure to evaluate the tool by applying a questionnaire-oriented approach. We discussed the applicability of our tool by including it as a core component of two different applications: 1) a contextaware recommender system for IoT configuration across layers; and 2) a tool for automatically translating an SLA from JSON to a smart contract, deploying it on different peer nodes that represent the contractual parties. The smart contract is able to monitor the created SLA using Blockchain technology. These two applications are utilized within our proposed SLA management framework for IoT. Furthermore, we propose a greedy heuristic algorithm to decentralize workflow activities of an IoT application across Edge and Cloud resources to enhance response time, cost, energy consumption and network usage. We evaluated the efficiency of our proposed approach using iFogSim simulator. The performance analysis shows that the proposed algorithm minimized cost, execution time, networking, and Cloud energy consumption compared to Cloud-only and edge-ward placement approaches

    SLA data management criteria

    No full text
    Service Level Agreements (SLAs) represent service management contracts that are processed by monitoring and measurement mechanisms for the evaluation of the signatories adherence to the agreed service levels during service execution. The paper discusses SLA data management characteristics that need to be considered in the design of data models for SLA documents. The SLA anatomy is introduced with respect to the Web Service Level Agreement (WSLA) [1] language specification. Furthermore, the paper highlights current obstacles for the integration of automated SLA management in the cloud business setting. The contributed SLA data analysis maps SLA terms to data management attributes according to their operational relevance during the SLA activity. We present an SLA digraph model for the automated SLA formulation and data handling. The SLA digraph is introduced as a programming module that sits on the application layer and communicates with backend data stores for the SLA persistence
    corecore