
Service Level Agreement

Specification for IoT Application

Workflow Activity Deployment,

Configuration and Monitoring

Awatif Alqahtani

School of Computing

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

Newcastle University December 2020

I would like to dedicate this thesis to my loving grandma, parents, mother-in-law,

husband and my children

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of

this thesis has previously been submitted for a degree or any other qualification

at Newcastle University or any other institution. This dissertation contains

approximately 50,000 words, excluding appendices, bibliography, footnotes,

tables and equations, and has approximately 50 figures.

Awatif Alqahtani

December 2020

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors: Dr

Ellis Solaiman, Prof Rajiv Ranjan and Prof Aad van Moorsel for giving me the

opportunity and support to complete this research and for all their valuable

comments, hints, suggestions and many more insights that inspired this work.

I would have been lost without their support and I wish to express my appreci-

ation. I would also like to thank the members of my examining committee Dr.

Dhavalkumar Thakker and Dr. Nigel Thomas.

My gratitude is also extended to the School of Computing for giving me the

opportunity to undertake this memorable learning experience. I would also like

to thank all the people and staff of the school who assisted me at different stages

of the research.

I would also like to thank my best friend ever "Sameeha Alahmadi" for her

support and for being a lively and entertaining part of the journey and being there

whenever I needed her. Additionally, I thank my friends, in particular, "Aisha

Blfgeh" and "Shaimaa Bajoudah" for their constant supportive and encouraging

words. Special thanks go to Yinhao Li, Adam Booth and Saleh Mohamed for their

assistance when I needed it.

I would like to take this opportunity to express my greatest debt to my family,

in particular my mother, father, mother-in-law and my brothers, my brothers-

in-law, my sisters and my sisters-in-law. They never stopped encouraging me

to finish this thesis. Finally, heartfelt thanks go to my husband, "Mohammed

Alqahtani", and my children : "Aseel", "Turki" and "Feesl" who have stood behind

me and given me huge support during the thesis work; they suffered considerably

because of my academic interests. I thank my special daughter "Eqlima" for

being part of our family these past two years; she really means a lot to me. I

thank God for all that and all the things that have happened to me in my life.

Abstract

Currently, we see the use of the Internet of Things (IoT) within various domains

such as healthcare, smart homes, smart cars, smart-x applications, and smart

cities. The number of applications based on IoT and cloud computing is pro-

jected to increase rapidly over the next few years. IoT-based services must meet

the guaranteed levels of quality of service (QoS) to match users’ expectations.

Ensuring QoS through specifying the QoS constraints using service level agree-

ments (SLAs) is crucial. Also because of the potentially highly complex nature

of multi-layered IoT applications, lifecycle management (deployment, dynamic

reconfiguration, and monitoring) needs to be automated. To achieve this it is

essential to be able to specify SLAs in a machine-readable format.

currently available SLA specification languages are unable to accommodate

the unique characteristics (interdependency of its multi-layers) of the IoT domain.

Therefore, in this research, we propose a grammar for a syntactical structure

of an SLA specification for IoT. The grammar is based on a proposed conceptual

model that considers the main concepts that can be used to express the require-

ments for most common hardware and software components of an IoT application

on an end-to-end basis. We follow the Goal Question Metric (GQM) approach to

evaluate the generality and expressiveness of the proposed grammar by review-

ing its concepts and their predefined lists of vocabularies against two use-cases

with a number of participants whose research interests are mainly related to IoT.

The results of the analysis show that the proposed grammar achieved 91.70% of

its generality goal and 93.43% of its expressiveness goal.

To enhance the process of specifying SLA terms, We then developed a toolkit

for creating SLA specifications for IoT applications. The toolkit is used to simplify

the process of capturing the requirements of IoT applications. We demonstrate

the effectiveness of the toolkit using a remote health monitoring service (RHMS)

x

use-case as well as applying a user experience measure to evaluate the tool by

applying a questionnaire-oriented approach. We discussed the applicability of our

tool by including it as a core component of two different applications: 1) a context-

aware recommender system for IoT configuration across layers; and 2) a tool for

automatically translating an SLA from JSON to a smart contract, deploying it

on different peer nodes that represent the contractual parties. The smart con-

tract is able to monitor the created SLA using Blockchain technology. These two

applications are utilized within our proposed SLA management framework for IoT.

Furthermore, we propose a greedy heuristic algorithm to decentralize work-

flow activities of an IoT application across Edge and Cloud resources to enhance

response time, cost, energy consumption and network usage. We evaluated the

efficiency of our proposed approach using iFogSim simulator. The performance

analysis shows that the proposed algorithm minimized cost, execution time, net-

working, and Cloud energy consumption compared to Cloud-only and edge-ward

placement approaches.

Table of contents

List of figures xv

List of tables xix

1 Introduction 1

1.1 Motivation and research problem . 4

1.2 Research Aim and Questions . 10

1.2.1 Question 1 . 10

1.2.2 Question 2 . 12

1.3 Publication . 12

2 Background 15

2.1 Background . 15

2.1.1 Service Level Agreement (SLA) 20

2.1.2 Blockchain . 22

2.1.3 Smart Contract . 24

2.2 State of the art . 25

2.2.1 Research Methodology . 25

2.3 Results . 27

2.3.1 Works Related to SLA Lifecycle Category 29

2.3.2 Works Related to SLA Applications Category 45

2.4 Discussion . 55

2.5 Conclusion . 62

3 SLA Conceptual Model for IoT Applications 63

3.1 Introduction . 63

3.1.1 Remote Health Monitoring Service (RHMS) 64

3.2 Related Work . 66

xii Table of contents

3.3 An End-to-End SLA Conceptual Model for IoT Applications 73

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 80

3.4.1 Infrastructure Resources . 81

3.4.2 Service Concept . 87

3.5 Evaluation . 102

3.5.1 Experiment . 102

3.5.2 Participants . 102

3.5.3 Procedure . 102

3.5.4 Experimental results . 104

3.5.5 Evaluation Analysis . 107

3.6 Conclusion and Future Work . 108

4 Service level Agreement Specification for IoT Applications 109

4.1 Introduction . 110

4.2 SLA Grammar for IoT Applications 112

4.2.1 <SLA> . 114

4.2.2 <Party> . 116

4.2.3 <slo> . 116

4.2.4 <workflowActivity> . 118

4.2.5 <configurationRequirement> 118

4.2.6 <price> . 120

4.3 Evaluation . 122

4.3.1 Goal/question/metric (GQM) approach 122

4.3.2 Applying the GQM approach to evaluate the Proposed SLA

Specification for IoT Applications 124

4.4 Comparison with Other SLA Languages 147

4.5 Conclusion and Future Work . 150

5 SLA Specification Tool for IoT Applications 151

5.1 Introduction . 151

5.2 Design Goals . 153

5.3 System Architecture . 154

5.4 Evaluation . 162

5.4.1 Experiment results . 163

5.4.2 Evaluation Analysis . 164

5.5 Conclusion and Future Work . 168

Table of contents xiii

6 Application Scenario Where the SLA Specification Tool Brings New

Value for SLA Management 171

6.1 Introduction . 171

6.2 Background . 173

6.2.1 Hyperledger Fabric . 173

6.2.2 IoT-CANE (Context-Aware recommendatioN systEm) 174

6.2.3 From SLA to Smart Contract Java Library 176

6.3 Proposed SLA management Framework 177

6.4 Proof of Concept . 181

6.4.1 Use Case Study: Flood Monitoring and Prediction (FMP) . . . 182

6.4.2 Implementation . 183

6.5 Discussion . 189

6.5.1 Comparison with Other SLA Management Frameworks . . . 191

6.6 Conclusion and Future Research . 196

7 SLA-aware Approach for IoT Workflow Activities Placement Across

Layers 199

7.1 Introduction . 201

7.2 SLA- and context-aware approach for IoT activity placement across

the Cloud and the Edge . 203

7.2.1 Problem Definition and Modelling 204

7.2.2 Time Complexity Analysis . 212

7.3 Evaluation . 213

7.3.1 Use-Case Studies . 214

7.3.2 Physical network . 217

7.3.3 Performance Evaluation Results 217

7.4 Discussion . 225

7.5 Conclusion and Future Research . 225

8 Conclusion and Future Research 227

8.1 Thesis Summary . 227

8.1.1 Limitations . 231

8.2 Future Research . 232

8.2.1 SLA negotiation protocol to enhance consumer experience

when selecting a service provider 232

xiv Table of contents

8.2.2 Build cross-layer multi-provider SLA-based monitoring sys-

tems for the IoT . 234

References 237

Appendix A Questionnaire 287

Appendix B SLA Specification for RHMS 305

Appendix C SLA for Case study 1 in Chapter 8 321

Appendix D SLA for Case study 2 in Chapter 8 329

Appendix E SLA for Case study 3 in Chapter 8 337

List of figures

1.1 An example of dependency between workflow activity 7

2.1 Reference IoT Architecture . 20

2.2 SLA high-level lifecycle stags [432]. 21

2.3 SLA lifecycle six steps [432] . 22

2.4 The steps of the systematic mapping process [384] 25

2.5 Study selection step of the systematic mapping process 28

2.6 Main categories based on our conducted search in relation to SLA . 29

2.7 Result of mapping relevant publications to the subcategories of SLA

lifecycle category . 56

2.8 Result of mapping relevant publications to subcategories of SLA-

aware approaches category . 57

2.9 Result of year-based classification of the relevant publications re-

lated to the SLA lifecycle category 57

2.10Result of year-based classification of the relevant publications under

the SLA-aware approaches category 58

2.11Number of Publications Related to SLA Specifications per year . . . 58

2.12Number of Publication Related to SLA-aware service placement.

Specification per year . 59

3.1 cooperated layers to deliver RHMS 64

3.2 WSLA conceptual model [378, 293] 67

3.3 WS-Agreement conceptual model [378, 293] 68

3.4 WS-Agreement conceptual model [378, 293] 69

3.5 WS-Agreement conceptual model [293] 71

3.6 The definition of a term in the SLA. The term is used to define a

metric in SLAC [293] . 72

xvi List of figures

3.7 SLA conceptual model for IoT applications that captures the key

entities of an SLA and the corresponding relationships 74

3.8 Conceptual model with examples to illustrate the relationships be-

tween the key concepts of an SLA for the IoT 80

3.9 Results of the evaluation: Satisfaction 105

3.10Results of the evaluation: Generality 106

3.11Results of the evaluation: Coverability 106

4.1 Conceptual mapping to reflect the relationship between workflow

activity and service and infrastructure resource concepts 121

4.2 The hierarchical structure of a GQM model [98] 124

4.3 Sample of the questions given to the participants 131

4.4 Satisfaction ratio and miss ratio for all questions related to goal 1

“Generalizability of the grammar” . 136

4.5 Satisfaction ratio and miss ratio for all questions related to goal 2

“Expressiveness of the grammar” . 136

4.6 Suggested Workflow Activities . 137

4.7 Suggested Computing Layers . 137

4.8 Suggested Services . 138

4.9 Suggested Requirements for IoT devices 139

4.10Suggested Requirements for Edge Computing Layer 139

4.11Suggested Requirements for Cloud Computing Layer 140

4.12Suggested Requirements for Sensing Service 140

4.13Suggested Requirements for Networking Service 141

4.14Suggested Requirements for Machine Learning Service 142

4.15Suggested Requirements for Stream-processing Service 142

4.16Suggested Requirements for Batch-processing Service 143

4.17Suggested Requirements for Database Service 143

4.18Distribution of Dissatisfaction in 14 questions among 11 participants 144

4.19Distribution of participants who mentioned missing/suggested vo-

cabularies in 14 questions . 145

5.1 The layered architecture of the tool 155

5.2 Sequence diagram of the tool . 156

5.3 Step 1: Specify Service-level Objectives at the application level . . 157

5.4 Step 2: Select and connect the application workflow activities step 158

List of figures xvii

5.5 Step 3: Map each selected workflow activity to its required service

and infrastructure resource step . 158

5.6 Step 4: Specify the requirements of each selected activity step . . 159

5.7 Step 5: Generate the SLA in the JSON format based on previous

specifications . 160

5.8 Mapping activities to the required service as well as the infrastruc-

ture resource . 161

5.9 The abstract structure of the main concepts that are considered

within the resulting SLA document 162

5.10Participants’ responses to the questions related to the tool 164

5.11Comparison between the overall satisfaction with the conceptual

model and the tool . 166

5.12Comparison that reflects how satisfied the participants were with

the generality of the conceptual model and the tool 166

6.1 ER diagram of recommendation rules [274] 175

6.2 Abstracted generated smart contract from SLA specification steps 176

6.3 Proposed SLA management framework 178

6.4 Abstracted SLA monitoring using Blockchain technology 181

6.5 Flood monitoring and prediction (FMP) case study 183

6.6 A screenshot of the IoT-CANE screen to fill in some details of the

stream processing service and recommend the configuration require-

ments of the service . 184

6.7 From SLA in JSON format to SLA-based smart contract 186

6.8 Reporting the monitored SLOs of the “examine capture EoI” activity

when no violation is reported . 187

6.9 Check the violation status of the monitored data 187

6.10Reporting the monitored SLOs of the “examine capture EoI” activity

where a violation is reported . 188

6.11Check the violation status of the monitored data 188

6.12A snippet of functionality provided within the generated smart con-

tract to update some metrics and reflect the violation status 189

7.1 Task dependency example for an IoT application 205

7.2 Processor graph . 206

7.3 Time execution of case study 1 . 218

xviii List of figures

7.4 Control loop delay in case study 1 219

7.5 Network usage of case study 1 . 219

7.6 Energy consumption of case study 1 220

7.7 Cloud cost of case study 1 . 221

7.8 Time execution of case study 2 and case study 3 222

7.9 Network usage of case study 2 and case study 3 223

7.10Energy consumption of case study 2 and case study 3 224

7.11Cloud cost of case study 2 and case study 3 224

List of tables

2.1 Keywords of the Search . 26

2.2 Results of mapping published studies to SLA lifecycle phases 30

2.3 Results of mapping published studies to SLA applications category 46

3.1 Terminology/vocabulary definitions related to IoT devices 82

3.2 Terminology/Vocabulary definitions related to Edge infrastructure

resources . 84

3.3 Terminology/Vocabulary definitions related to Cloud infrastructure

resources . 86

3.4 Terminology/Vocabulary definitions related to sensing services . . . 88

3.5 Terminology/Vocabulary definitions related to networking services . 90

3.6 Terminology/vocabulary definitions related to ingestion services . . 92

3.7 Terminology/vocabulary definitions related to stream-processing

services . 95

3.8 Terminology/Vocabulary definitions related to batch-processing ser-

vices . 98

3.9 Terminology/vocabulary definitions related to machine-learning al-

gorithm services . 100

3.10Terminology/vocabulary definitions related to database services . . 101

3.11A brief description of participants’ research interests 103

3.12Result of conceptual model using the Wilcoxon test 108

4.1 SLA Grammar of IoT Application . 115

4.2 Main elements of the GQM goal definition template [479] 125

4.3 Defining our first goal following the template in [98] 126

4.4 Defining our second goal following the template in [98] 126

4.5 Participants’ research interest . 130

xx List of tables

4.6 Number of selected vocabularies for each question 132

4.7 Participants’ responses to question 1 as a first step to calculating

the metric value of question 1 (Q1) 133

4.8 Calculated metrics, overall dissatisfaction percentage and overall

satisfaction percentage of goal 1 . 134

4.9 Calculated metrics, overall dissatisfaction percentage and overall

satisfaction percentage of goal 2 . 134

4.10Descriptive statistics for 14 questions for participants who men-

tioned missing/suggested requirements 146

4.11Comparison of SLA languages. Black circles represent features sup-

ported in the language, empty circles represent a partially supported

feature and a hyphen (-) means not covered [27] 149

5.1 Result of conceptual model using the Wilcoxon test 165

5.2 Comparison of attitudes towards the conceptual model and the tool

using the Wilcoxon test . 167

6.1 Number of Detected Violated Cases 191

6.2 Comparison of the SLA management frameworks. Black circles

represent features fully supported in the framework, empty circles

represent a partially supported feature and a hyphen (-) means not

supported. 195

7.1 Notations for the Offline Integer formulations and symbols used in

the algorithm . 210

7.2 Associated latency of network links 217

7.3 Configuration description of infrastructure resources 217

Chapter 1

Introduction

The Internet of Things (IoT) is a new computing paradigm in which uniquely

addressable objects such as radio-frequency identification (RFID) tags, sensors,

actuators and mobile phones become part of the Internet environment [160, 399].

This paradigm opens the door to new innovations that will build a novel type of

interaction among things and humans. It enables the realisation of smart cities,

infrastructures and services that can enhance quality of life and the utilisation

of resources [96]. It is estimated that the number of connected smart objects

will reach 212 billion by the end of 2020 [168, 166]. Such a large number of

connected smart objects will generate huge volumes of data, which need to be

analysed and stored [392].

Storing and processing such large volumes of data is not a trivial task; thus,

utilising the flexibility and capabilities offered by Cloud computing is essential

[530]. Cloud computing offers a pool of configurable resources (hardware/soft-

ware) that are available on-demand [135], allowing users to submit jobs to service

providers on the basis of pay-per-use. While the IoT provides smart devices with

the ability to sense and generate large amounts of data at different data speeds,

Cloud computing offers advanced technologies for ingesting, analysing and stor-

ing data [108]. Consequently, the number of applications based on IoT and Cloud

computing will increase rapidly over the next few years.

The IoT has traditionally delegated most of its workflow activities (e.g., com-

puting, filtering, storing) to Cloud computing as the main infrastructure. However,

researchers have argued that for many reasons, outsourcing all IoT workflow

2 Introduction

activities to the Cloud is not efficient [372]. IoT delay-sensitive applications (e.g.,

a remote health monitoring service (RHMS)) cannot depend on a centralised data

centre that is situated far away, thereby affecting the end-to-end response time.

Another reason for inefficiency is that most data generated by the IoT might not

be useful; therefore, it is better to discard data generated at or close to the data

sources than to waste resources by transferring all of the generated data to the

Cloud.

Edge computing is a computing paradigm that aims to push intelligence (com-

putation) near data sources in order to improve performance. Thus, the emerging

Edge computing paradigm is essential because it allows the computation capabili-

ties of Edge resources to be utilised, especially given that the computing capacity

of Edge resources is continuously increasing. Moreover, the emergence of Edge

computing allows most of the required computations to be performed near the

data sources whenever possible, which reduces unnecessary network delays and

network usage [372, 284].

Gascon and Asin [47] predicted that in the near future, there will be approxi-

mately 54 types of IoT-based applications addressing different domain-specific

problems, including the domains of security and emergency, smart environment,

smart cities, smart metering, smart water, smart animal farming, smart agri-

culture, industrial control, retail, logistics, domestic and home automation, and

eHealth [96]. Users’ expectations of the services provided through the IoT revolu-

tion are no different from those of most traditional computer- and Internet-based

services in that the services must be delivered within the guaranteed Quality of

Service (QoS) level. QoS is an indicator that describes non-functional characteris-

tics such as response time and throughput. QoS requirements can be expressed

as Service Level Objectives (SLOs). An SLO is an expression associating each QoS

requirement with the target level it is expected to achieve [471] within a Service

Level Agreement (SLA). An SLA is a contract between a service provider and a

service consumer (with the possibility of also involving signatory parties/third

parties) that lists the agreed-upon terms of the QoS requirements [165]. In

addition to guaranteeing the QoSs, an SLA indicates the actions required if this

guarantee is violated [432, 262].

3

SLAs have been used in many IT-related fields and platforms over many years

[77]. For example, the Web Service Level Agreement (WSLA) was introduced in

2003. The WSLA is a framework composed of SLA specifications and a number of

SLA monitoring tools for web services [228]. The WSLA aims to allow consumers

and service providers to explicitly define and determine the measurement of

SLA parameters. Furthermore, WS-Agreement [38] is a Web Service Agreement

which defines the specification of the web service agreement as a domain-specific

language. Thus, service providers can utilise the WS-Agreement as a protocol to

advertise their resource capabilities and create agreements with end users.

In Cloud computing, there are a number of works related to SLAs. For ex-

ample, an expert group of the European Commission published a report titled

“Cloud Computing Service Level Agreements – Exploitation of Research Results”

[252]. This report surveys European and national projects, presents research

outcomes and discusses the outcomes from an SLA lifecycle perspective. Based

on the projects discussed in [252], there are a number of works that have con-

tributed to SLA specifications, such as the blueprint concept in the 4CaaSt project

[376]. A blueprint is a descriptive document that expresses the service depen-

dencies across and within Cloud layers. Another project that has contributed to

SLA specifications is SLA@SOI [463]. SLA@SOI is a framework that addresses

multi-level, multi-provider SLA lifecycle management within a service-oriented

architecture and Cloud computing. Within the SLA specification phase, SLA@SOI

provides a description of a service called SLA Template (SLA(T)). SLA(T) is an

abstract syntax template that uses notations for describing the functional and

non-functional characteristics of a service; these notations can be modelled later

using Extensible Markup Language (XML), Web Ontology Language (OWL), or

any other format.

Traditional SLAs that focus on availability and reliability are not enough for

IoT applications due to the need for strict SLA guarantees (of functions such as

accuracy and the speed of the detection of the event of interest) [489]. Further-

more, having an individual SLA management mechanism for each layer of the IoT

is inadequate because of the huge dependency across layers [28]. Moreover, the

majority of service providers available, such as Cloud providers, offer a descrip-

tive summary of the terms and conditions of their services. This poses certain

4 Introduction

disadvantages, such as uncertainty and no facility to automate the searching for

services or the negotiation of contractual terms [472]. Therefore, providing a

machine-readable 1 SLA specification is crucial.

The importance of providing machine-readable SLA specification is also high-

lighted by the need for formal guarantees that the services offered comply with

the terms negotiated, as Cloud users may, for example, outsource their core

business functions to the Cloud [472]. Many languages have been proposed for

defining machine-readable SLAs and to simplify their assessment and negotiation

[472]. Nevertheless, available SLA frameworks vary between being too specific

or too generic [165]. Therefore, we argue that these languages cannot cope

with the IoT’s distinctive features, such as multi-layer multi-provider nature of

IoT agreements and deployment models. In IoT applications, there is a need to

aggregate QoS requirements from the perspectives of the cooperated layers such

as Cloud, network, and sensing layers. The main purpose of considering QoS

across layers is to deliver the promised IoT functionalities that match consumers’

expectations at the application level, as agreed upon within the SLA.

1.1 Motivation and research problem

To shed light on the complexity of IoT applications needing end-to-end SLA speci-

fication, we considered three of the best-known computing paradigms: Cluster,

Grid, and Cloud, illustrating the discrepancies between them and the IoT. Cluster

computing, for example, is a type of computing that makes several nodes run

as a single entity [226, 12]. All the nodes on the system can simultaneously run

the same application. It is a system where computers (processing elements)

work together to accomplish tasks. In Grid computing, resource segregation

(separation) from multiple sites is used to solve a problem that cannot be solved

by using single computer processing [226, 12]. Users have no or little knowledge

about where these resources are placed or what the underpinning infrastructures,

operating systems, hardware or software are [213, 12]. Unlike Clusters that have

to be onsite, Grids are distributed across the globe; that is, they use Internet

power to link resources together irrespective of their geographical location. This

1Machine readable: "a data format that can be automatically read and processed by a computer,
such as CSV, JSON, XML, etc. Machine-readable data must be structured data" [494]

1.1 Motivation and research problem 5

moves the emphasis in Cluster computing from performance to resource sharing,

eliminating the need for Single System Image (SSI) as long Grid machines are

heterogeneous and geographically dispersed [12].

Cloud computing is a model that makes it possible to access a common pool

of configurable computing resources (i.e., networks, servers, storage, apps and

services) on-demand. The computing resources are delivered quickly and re-

leased with minimal management effort or interaction from the service provider

[118, 12]. Thus, unlike Cluster or Grid computing, where the focus is on pro-

cessing resources to solve the problem, Cloud computing is about delivering

on-demand services [12].

The IoT is a system of devices that are equipped with unique identification

(UID) and the possibility of the network sharing of data without the need for

human-to-computer interaction [493]. Owing to the integration of various innova-

tions – real-time computing, artificial intelligence, sensors and embedded devices

– the IoT has developed [493]. Embedded systems (including home and building

automation), wireless sensor networks, control systems, and other technologies

all contribute in IoT.

In Cluster computing, Grid computing or Cloud computing, the emphasis is on

computation power to solve problems and the provisioning of services on-demand.

On the other hand, the emphasis in the IoT is on combining performance, the

provision of services on-demand, and the distribution of computing power in

order to allow real-time processing while respecting SLA constraints at the appli-

cation level (e.g. the response time of an application is less than 5 milliseconds).

Therefore, we argue that it is essential to propose an SLA for the IoT on an

end-to-end basis. By ‘end-to-end basis’ we mean considering the constraints of

the QoS and configuration requirements for all the involved components (services

and infrastructure resources) that are part of an IoT ecosystem. Therefore, we

introduce a workflow activity term within our proposed SLA specification (which

is introduced in Chapter 3) to allow us to capture requirements across layers and

within the layer itself.

6 Introduction

One of the factors that raises the importance of specifying the SLA on an

end-to-end basis is the fact that the IoT can be delivered by many providers and

each provider might be a consumer as well. As a result, SLAs in the IoT have a

strong dependency relationship with each one of the whole system’s components,

regardless of whether this component is hardware, software or a human being.

This means that a violation of one or more constraints by one or more actor(s)

affects the adherence to the quality of service at application level. To illustrate

the concept, consider a Remote Healthcare Monitoring Service (RHMS) where

patients wear sensors and accelerometers to measure their heart rate and sugar

levels, reminding them when it is time to take medications and detecting abnor-

mal activity such as falling down. Patients can register in a remote healthcare

monitoring service and pay for this service. They can then be sent to the hospital

as an emergency case and their caregivers and doctors will be alerted whenever

their health is/might be in a critical situation. Subscribed patients are looking

for a service that can satisfy the following high-level requirement: detecting

abnormal activity such as falling down, within x milliseconds, and contacting the

ambulance, caregivers and doctors within y minutes.

From the above scenario, adherence to SLAs in the IoT is a critical process

and complex since it can be seen that in order to achieve the SLA at the applica-

tion level (e.g., end-to-end response time), many nested-dependent QoS should

be considered. For example, as patients need to receive the required aid based

on their health status within Y minutes, that means that the aggregation of the

required time for detecting/transferring/analysing /alerting should be within the

time constraints, i.e. less than or equal to Y minutes. That requires high-quality

sensors with minimum event detection delay, available networks with low latency,

and a notification service with low response time to deliver the desired value

of the application. In Figure 1.1, we can see that in order to respond within

the expected time constraints, any delay within the dotted ovals or arrows are

counted and can affect the quality level of the delivered response. For example,

if there was a delay in filtering data activity, it would lead to a late response

at the front-end which then might exceed what the consumer was expecting.

Consequently, if the response time was behind consumer expectations, this might

lead to catastrophic results, especially if it were a matter of life and death.

1.1 Motivation and research problem 7

Fig. 1.1 An example of dependency between workflow activity

Although large efforts have been made by big companies in the field such as

Amazon and Microsoft, which offer platforms that enable users/applications to

connect their devices and benefit from the available cloud services, there are still

limitations on the guaranteed quality of services. A number of works consider

SLA specifications for all the Cloud tiers or just one of the Cloud tiers. For exam-

ple, a Cloud Service Level Agreement (CSLA) [245] is a specification language

developed specifically for the Cloud domain. Another example is Service Level

Agreement Language for Cloud Computing (SLAC), which is defined by [476].

However, the focus of SLAC is only related to Infrastructure as a Service (IaaS)

[476]. Furthermore, while an effort has been made to develop an SLA specifi-

cation for Networking, as far as we know, no works address SLA specifications

in such a way that they consider SLAs on an end-to-end basis by considering

the IoT layers (described in Chapter 2): the IoT devices layer, Edge layer, Cloud

layer and application layer. Therefore, the performance of an RHMS relies not

only on the correctness of the provided functionalities but also on the quality

of the offered services across the Edge and/or Cloud computing environments.

Therefore, SLAs undoubtedly need to consider requirements across all layers

of the Edge and/or Cloud environment – for example, at what rate data should

be collected, transferred, and ingested and how fast and accurate the analysis

should be.

In IoT applications, there is a need for strict SLA guarantees [489]. Thus,

within an end-to-end SLA, it is necessary to express constraints/policies that

determine which data can be processed within the Edge data centres as well as

which data need to be exported to be processed/analysed in Cloud data centres

under certain constraints. Additionally, specifying the contractual terms of an

SLA on an end-to-end basis is important to assure consumers that their QoS

requirements will be observed across layers. Therefore, for such applications and

others, ensuring that consumer requirements are accurately and unambiguously

specified within SLAs is crucial. Accurately specified SLAs are contracts that can

form the basis of a strategy to regulate and automate transactions and activities

8 Introduction

between interacting parties (service providers and consumers).

When specifying SLA terms on an end-to-end basis within a formal syntax

language, standardising the vocabularies used to describe the offered/requested

services is crucial. With the multi-layered nature of IoT applications, it is possible

to have more than one provider. Having multiple providers is a serious issue

that requires the terminologies used within the SLA to be standardised in order

to avoid ambiguity. For example, within the Cloud environment, there is a lack

of standardised vocabularies for expressing SLAs. For example, availability is

expressed differently by well-known Cloud providers: Amazon EC2 offers avail-

ability as a monthly uptime percentage of 99.95%; Azure offers availability as a

monthly connectivity uptime service level of 99.95%; and GoGrid offers a server

uptime of 100% and an uptime of the internal network of 100% [24]. Further-

more, within the Edge environment, sampling rate [214] and sampling frequency

[280] are used interchangeably to describe the rate at which a sensor sends

data. Therefore, standardising the vocabularies used to describe the offered

and requested services can play a significant role in minimising the ambiguity

between cooperating parties which in turn could provide successful interactions

between consumers and providers.

Furthermore providing machine-readable SLA is important not only for SLA

management purpose but in service provider’s selection. A consumer who wishes

to start an SLA must first select a service provider/s. Selecting service provider/s

can be a challenging process, especially when considering the multi-layered

nature of the IoT. Since IoT applications have a multi-layered architecture, IoT

administrators need to consider different categories of providers (e.g., network

provider, Cloud provider) and find the best candidate for each category. Most

popular Cloud providers (e.g., AWS, MS Azure, Oracle) currently provide de-

scriptive take-it-or-leave-it SLAs for their services. When consumers need to

compare these SLAs from different providers to select the most suitable, they

must evaluate them manually [495]. IoT applications can potentially be much

more complex than Cloud applications, and such a comparison therefore becomes

difficult. Therefore, standardising the vocabularies used to describe the QoS

of the offered and requested services can be a first step towards enhancing

and automating the process of selecting service providers using certain search

1.1 Motivation and research problem 9

criteria.

Not having a machine-readable format 2 has many disadvantages. For exam-

ple, it creates confusion regarding SLA interpretation and makes automation of

the SLA lifecycle3 infeasible [472]. In addition to the importance of standardising

SLA vocabularies and structures, providing SLAs in a machine-readable format

is an important step towards automating the process of application deployment,

monitoring, and dynamic re-configuration [472, 290]. For example, once an IoT

application has been deployed, it is important to continuously monitor the extent

to which the application adheres to what has been agreed upon, as well as to

reconfigure the application dynamically, on the fly, as needed to avoid/minimise

SLA violations [337].

Nevertheless, specifying and managing end-to-end SLA cross-computing envi-

ronments is not a trivial task, since there are a number of challenges that need

to be addressed [28] [392]:

• Heterogeneity of key QoS metrics across computing environments:

Considering key performance metrics and their variation across computing

environments and within their layers is crucial. There are different QoS

metrics for each layer, which are not necessarily the same [214]:

1. application layer (e.g., event detection and decision-making delays).

2. Cloud layer (e.g., the QoS of big data frameworks such as the through-

put of batch processing and the QoS of the infrastructure layer, such

as CPU utilisation and memory utilisation).

3. Edge environment (e.g., gateway throughput and latency).

4. IoT devices (e.g., precision and data quality).

Therefore, it is essential to provide a coherent taxonomy that considers

various QoS metrics for the involved computing layers.

2A machine-readable format means an SLA can be read and processed by a computer such as
CSV, JSON, XML, etc., and the data are structured.

3The SLA lifecycle consists mainly of discovering the service provider, defining the SLA,
establishing the agreement, monitoring the SLA, terminating the SLA, and enforcing penalties if
there is a violation; for more details about the SLA lifecycle, refer to 2.1.1

10 Introduction

• Heterogeneity of application requirements:

An IoT application has specific requirements according to its purpose and

domain. For example, Smart Home applications place a high priority on

energy consumption, while environmental prediction applications place a

high priority on data accuracy and action response time.

• Cross-layer dependencies:

Some issues related to the dependency nature of IoT applications need to

be addressed in order to meet end-to-end SLA cross-computing paradigms.

For example, if the consumer needs to process collected data within a time

constraint, then the end-to-end execution time is affected not only by the

processing time at the Cloud layer, if using a Cloud resource, but also by

the time it takes to collect and transfer data.

1.2 Research Aim and Questions

To address the challenges discussed earlier, the high-level aim of this thesis

is to "design and develop an SLA specification language for IoT application

workflow activity deployment, dynamic re-configuration, and monitoring on end-

to-end basis". To address this aim, this thesis addresses the following research

questions:

1.2.1 Question 1

How can an end-to-end SLA for an IoT application be specified?

It is well known that SLA specification languages for various application domains

do indeed exist; for example, see [3, 77, 165, 316, 347, 399]. However, in their

current formats, to the best of our knowledge, there is a lack of consideration for

the requirements of all the layers (end-to-end) that cooperate to deliver an IoT

application.

Providing an answer to this question implies several sub-tasks:

• Provide/select an IoT reference architecture – a number of research studies

regarding IoT architecture exist, implying variety in the proposed/studied

IoT architecture. Therefore, selecting a reference architecture is a necessity.

1.2 Research Aim and Questions 11

Consequently, we present a reference architecture of IoT ecosystems. Fur-

thermore, we provide background information about SLAs and we present

a review of the existing research related to the SLA lifecycle over the last

decade. This is presented in Chapter 2.

• Propose An SLA conceptual model- The purpose is to provide the meta-

model for the proposed SLA specification. Such a model can capture the

main concepts that need to be considered within the SLA and the relation-

ships among them. We then evaluate the proposed conceptual model using

a questionnaire-oriented approach. This is presented in Chapter 3.

• Provide a predefined list of vocabularies related to the QoS metric and

common configuration parameters for the considered IoT ecosystem compo-

nents. The conceptual model introduces the related vocabularies to specify

QoS and configuration parameters as a step to unify used terminologies.

This is presented in Chapter 3.

• Present a new multi-layered context-free grammar to describe the recursive

syntactic structure of the SLA specification formally for IoT applications.

Then, we evaluate the proposed grammar in Chapter 4.

• Provide a Graphical User Interface (GUI)-based tool to generate an end-to-

end SLA in a machine-readable format with comprehensive vocabularies.

This increases the SLA’s inter-portability between the IoT ecosystem compo-

nents to deal with the integration of different services provided by different

providers. Furthermore, the purpose of this step is to simplify the process

of generating the SLA for those who are interested in doing so. Thus, they

will not have to worry about the correctness of the syntax of the SLA speci-

fication when specifying their requirements. The tool allows providers and

consumers to express their capabilities and requirements, respectively, on a

fine-grained level of details. We demonstrate the tool employing a use case.

Then, we evaluate the usability and generalizability of the tool for capturing

the requirements of different use cases. This is presented in Chapter 5.

• an SLA management framework for IoT which is mainly consists of SLA

specification, negotiation, monitoring and enforcement phases. Further-

more, we provide a mechanism to automatically convert a machine-readable

12 Introduction

SLA for IoT into a smart contract that is capable of automatically monitoring

adherence to the specified QoS requirements. The generated SLA-based

smart contract is utilized in the SLA monitoring phase of the proposed SLA

management framework. Furthermore, we present a proof of concept to

show that providing a machine-readable SLA can be utilised in more than

one phase of the proposed SLA management framework. This is presented

in Chapter 6.

1.2.2 Question 2

Ensuring that the SLA is enforced requires the application of several SLA man-

agement policies. Therefore, in our second research question we investigate how

decentralising workflow activities across Cloud and Edge layers aids the process

of adhering to the SLA, for example by reducing the cost, time, network usage,

and power consumption?

Providing an answer to this question implies the following sub-tasks:

• An SLA-aware heuristic algorithm to decentralise workflow activities among

Edge and Cloud resources. The Algorithm aims to reduce latency, Cloud

energy consumption, Cloud cost, and network usage for IoT applications.

This is presented in Chapter 7.

• Evaluate the effectiveness of the proposed algorithm using iFogSim4.

1.3 Publication

• A. Alqahtani, K. Alwasil, N. Ayman, K. Mitra, E. Solaiman and R. Ranjan,

" The Integration of Scheduling, Monitoring, and SLA in Cyber Physical

Systems," Handbook of Integration of Cloud Computing, Cyber Physical

Systems and Internet of Things, 2020 [There are parts of it included

partially in CHAPTER 2 and 3]. (Note: My contribution is discussing

SLAs in Cyber Physical Systems as well as presenting and discussing the

challenges associated with the Integration of scheduling, monitoring and

SLA in Cyber Physical Systems.)

4iFogSim is an open-source toolkit for modelling and simulating resource management ap-
proaches for the IoT, Edge and Fog computing https://github.com/Cloudslab/iFogSim

1.3 Publication 13

• A. Alqahtani, E. Solaiman, R. Buyya and R. Ranjan "End-to-End QoS Specifi-

cation and Monitoring in the Internet of Things," Newsletter, IEEE Technical

Committee on Cybernetics for Cyber-Physical Systems, Volume 1, Issue 2,

August 01, 2016.

• A. Alqahtani, Y. Li, P. Patel, E. Solaiman and R. Ranjan, " End-to-End

Service Level Agreement Specification for IoT Applications," The Interna-

tional Conference on High Performance Computing & Simulation (HPCS

2018).[Covered in CHAPTER 4].

• A. Alqahtani, P. Patel, E. Solaiman and R. Ranjan, " Demonstration Abstract:

A Toolkit for Specifying Service Level Agreements for IoT applications," The

International Conference on High Performance Computing & Simulation

(HPCS 2018), IoT especial session. [Covered in CHAPTER 5].

• A. Alqahtani, P. Patel, E. Solaiman, S. Dustdar and R. Ranjan,"Service

Level Agreement Specification for End to End IoT Applications Ecosystems",

Software: Practice and Experience - Wiley Online Library is Accepted as a

Journal Paper [Covered in CHAPTER 4,5].

• Y.Li, A. Alqahtani, E. Solaiman, C. Perera, P. P. Jayaraman, R. Buyya, G. Mor-

gan, and R. Ranjan, "IoT-CANE: A Unied Knowledge Management System for

Data-Centric Internet of Things Application Systems," Journal of Parallel and

Distributed Computing (JPDC), https://doi.org/10.1016/j.jpdc.2019.04.016,

Elsevier. is Accepted as a Journal Paper [partially referred to in CHAP-

TER 7]. (Note: My contribution is providing explanations related to the

knowledge base, which is derived from integrating the SLA specification

tool and IoTCANE in the implementation phase.)

• A. Alqahtani, P. Patel, E. Solaiman and R. Ranjan, " SLA-aware Approach

for IoT Workflow Activities Placement based on Collaboration between

Cloud and Edge," Accepted in Fisrt Workshop on Cyber-Physical Social

Systems (CPSS) 2019 [Covered in CHAPTER 8].

Chapter 2

Background

Overview

In this chapter, we provide a background to the basic technologies that are

related to the research carried out within this thesis. We start by presenting

the background information related to Service Level Agreements (SLAs) and

the Internet of Things (IoT) in Section 2.1. We conduct a systematic mapping

study to collect research that is related to SLAs for the Cloud, Edge and IoT

from a technical perspective. The aim is to identify current research topics in

SLA, particularly for the IoT. We map around 400 papers from different scientific

databases. We identify two main categories that most research work related to

SLAs falls into: work related to the SLA lifecycle (Section 2.3.1) and work that

focuses on SLA applications (Section 2.3.2).

The results show that around two-thirds of the papers focus on the SLA

lifecycle: SLA specification, SLA negotiation, SLA monitoring, SLA enforcement,

and SLA management. The remaining papers focus on SLA applications such

as SLA-aware resource allocation, scheduling applications or other SLA-related

topics. We track growth in SLA research through the last 10 years, and we

address some of research gaps that need to be considered in future studies

2.1 Background

The IoT is a field about connecting everyday physical objects and devices (such

as washing machines, cars, etc.) to the Internet. These devices could share data

16 Background

about their surroundings via sensors or they could be remotely controlled by their

users via smartphone applications. One popular example of an IoT application is

a connected car (e.g., Ola Cabs, Uber) that can be tracked and rented using a

smartphone. However, one of the IoT’s limitations is its limited computing and

storage capacity, which has made it necessary to move storage and processing to

powerful resources. Therefore, Cloud computing plays a significant role with its

processing and storage capability, specifically with its pay-as-you go model.

"A Cloud is a type of parallel and distributed system consisting of a collection

of inter-connected and virtualised computers that are dynamically provisioned

and presented as one or more unified computing resource(s) based on SLAs

established through negotiation between the service provider and consumer"[95].

The largest benefit of Cloud computing is that the resources are shared through

a shared infrastructure.

The advancements in Cloud computing and its computational technology have

led many big-name companies (e.g., Google, Amazon, IBM, Microsoft) to nurture

this popular paradigm as a utility. As a result, Cloud-based services such as

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a

Service (SaaS), etc. have emerged, which has increased the number of applica-

tions that benefit from Cloud services.

This kind of integration between the IoT and Cloud computing paradigms

allows many sources (sensors, humans, applications) to start generating data

and organisations tend to store this data for a long time due to their inexpensive

storage and processing capabilities [517]. While the centralised architectures

of Cloud computing play a role in creating an effective economy, considering a

logical extreme, a full centralisation approach could bring unintended results

[284]. López et al. [284] mention four fundamental problems with centralised

approaches: first, it is necessary to make a trade-off between releasing personal

and sensitive data, using centralised services such as social networks, location

services, and privacy. Another fundamental problem is that users of Cloud ser-

vices delegate control of the applications and systems to the Cloud. A third

fundamental problem relates to using Cloud resources and neglecting the fact

that new generations of Edge devices are embedded with high computational

capacity and the ability to communicate seamlessly. Consequently, sufficient stor-

2.1 Background 17

age space is a misuse of that embedded intelligence power. Another fundamental

problem is that Cloud-based centralisation hinders human-centred designs, which

limits the link between man and machine. Therefore, moving computations to

the Edge under certain conditions will minimise the Cloud-based centralisation

issues as well as enhance the utilisation of Edge devices’ computational power.

Edge computing’s fundamental idea is to bring the computing facilities closer

to the data source. Edge computing performs lightweight-computational and

analytical operations (e.g., filtering, analysing, detecting, etc.) on the received

IoT data to improve the performance, save unnecessary data transfers, accelerate

decision making, and carry out automatable actions on physical environments.

Edge computing is more secure and private than Cloud computing, as sensitive

data can be processed and stored more securely [284]. However, Edge computing

resources do not offer the same high throughput resources as those offered by

the Cloud. Therefore, cooperation for data processing between the Cloud and

the Edge is essential for a trade-off between energy efficiency, cost, latency, and

bandwidth [366, 225].

Since this research focuses on SLA specifications for the IoT, priority is given

to having an IoT architecture to refer to when specifying requirements of the

main elements that should be covered within SLAs.

IoT architecture

The IoT paradigm allows billions or trillions of heterogeneous devices to be

connected in a seamless manner. Therefore, it is essential to have a flexible

IoT architecture that can meet different application needs. The ever-increasing

number of proposed architectures has not converged into a model of reference

[14]. However, some projects, such as IoT-A 1 are attempting to design a common

architecture based on the analysis needs of both researchers and industry [14].

A number of proposed models consider IoT architectures that consist of three

layers, while other works consider IoT architectures that consist of four-layer

and five-layer architectures. For example, authors in [288] and [106] propose a

four-layer architecture that includes the following:

1For more information about IoT-A: https://iotforum.files.wordpress.com/2013/07/iot-a.pdf

18 Background

• Edge Technology Layer: This is a hardware layer where embedded devices,

sensors, and tags are located. This layer is responsible for collecting data

from a system or an environment and it also offers information processing

and communication support.

• Access Gateway Layer: Data handling, publishing and subscribing services,

message routing and communication support are the functionalities offered

by this layer.

• Middleware Layer: This layer is responsible for aggregating and filtering re-

ceived data, performing information discovery, and controlling applications’

access to the devices.

• Application layer: This layer provides different application services.

Furthermore, a number of works (e.g., [49, 235, 531, 325, 14]) have proposed a

five-layer architecture that includes the following:

• Objects Layer: This is also referred to as the "Device Layer". The objects

layer consists of sensor devices and physical objects.

• Object Abstraction Layer: This can be called "the network layer" or the

"transmission layer". The object abstraction layer transfers information

securely from the object layer (e.g., sensor devices) to the information-

processing system. The transmission medium can be wired or wireless and

depending on the sensor devices, the technology can be 3G, WiFi, Bluetooth,

ZigBee, etc.

• Service Management Layer: This layer is responsible for the management

of the services. The service management layer receives information from

the network layer and stores it in a database. It then performs information

processing and makes automatic decisions based on the processing results.

• Application Layer: This provides global application management based on

the information about objects processed in the middleware layer. Examples

of IoT applications include Smart Health, Smart Home, Smart City, Smart

Farming, etc.

• Business Layer: This is responsible for managing the IoT system as a whole,

including applications and services. Based on the data received from the

2.1 Background 19

application layer, it builds business models, graphs, flowcharts, etc. The IoT

technology’s real success also depends on good business models. This layer

will help to determine future actions and business strategies based on the

analysis of the results.

The integration of IoT devices and Edge and Cloud layers has been considered by

some studies, such as [146]. The main purpose of integrating different computing

paradigms is to increase performance, enhance energy efficiency, improve the

response time, and ensure better localised accuracy for future IoT and Cyber-

Physical System (CPS) applications. Therefore, in our work, we attempt to

consider an IoT architecture as our reference architecture, with the architecture

mainly consisting of the following layers (Figure 2.1):

1. IoT Devices Layer: This layer consists of devices for sensing and reflecting

the physical world, such as sensors, actuators, cameras, and smart mobile

devices.

2. Edge Computing Layer: This layer pushes the intelligence (computation)

to the edge of the network to improve the performance and reduce unnec-

essary data transference to Cloud datacentres. Moreover, the computing

capacity of Edge resources is increased continuously, which allows inde-

pendent decision making to take place on the Edge. Edge resources also

contain sensitive personal and social data, which means that the manage-

ment and control of the data flow must be moved to the Edge so that it can

be managed in a more secure and private manner.

3. Cloud Computing Layer: This layer provides both hardware infrastructure

and programming models (e.g., streaming and batch processing) for Big

Data 2.

• Big Data Programming Models layer: because of the Cloud’s capa-

bilities to deal with the large volume of data generated from various

resources and at different rates, this layer consists of the following

components, as described in [399]:

– Data ingestion: accepts data from multiple sources such as online

services or back-end system logs.

2Big Data has three main characteristics: Volume (large volume of data), Velocity (real time,
near to real time) and Variety (different type of data: messages, sensor data, images,..)

20 Background

– Data analytic: consists of many platforms including stream/batch

processing frameworks, and scalable machine learning frameworks

that ease the implementation of data analytic use cases, such as

Smart City applications on Cloud and Edge data centres.

– Data storage: to store intermediate or final datasets. The ingestion

and analytic layers make use of different databases during execu-

tion and where required persist/load the data into/from the storage

layer.

• Cloud Infrastructure Layer: provides the consumer with processing

capabilities, access to networks, storage and other basic computing

resources. It enables the service user to run arbitrary software, such

as applications and operating systems [495].

IoT	Devices

IoT	Devices

IoT	Devices

Raspberry	Pi VM

Raspberry	Pi VM

Edge	Computing	Layer

Edge	Computing	Layer Cloud	Computing	Layer
Big	Data	Programming	Models	(PaaS)

Ingestion	Service
Stream	Processing	Service

Storage	Service

Batch	
Processing	
ServiceEdge	Servers

Edge	Servers

Cloud	infrastructure	layer
Network

Computing

Storage

Fig. 2.1 Reference IoT Architecture

2.1.1 Service Level Agreement (SLA)

An SLA is defined by [495] as follows: "An explicit statement of expectations

and obligations that exist in a business relationship between two organisations:

the service provider and customer". SLAs must include a guarantee of the qual-

ity of the service, and an indication of the actions that will be required if this

2.1 Background 21

guarantee is violated [432] [262]. SLAs increase the level of trust between the

service consumer and the service provider. Consumers are assured that a certain

level of quality is guaranteed, and if this level is not met, then they will receive

compensation for any damage suffered as a result [432] [262].

Over many years, SLAs have been used in many IT-related fields and platforms

[77]. An SLA passes through different stages, and these stages represent the

SLA lifecycle [495]. Ron and Aliko [444] illustrate the SLA lifecycle in three

stages as shown in Figure 2.2: 1) The creation phase, which allows consumers

to find a provider that matches their requirements; 2) the operation phase,

in which the consumers have a read-only view of the agreed-upon SLA; 3) the

removal phase, during which the SLA is terminated and removed from the system.

Fig. 2.2 SLA high-level lifecycle stags [432].

The Sun Microsystems Internet Data Centre Group (2002) [327] defines the

SLA lifecycle in more detail by expressing it in six phases as shown in Figure

2.3. The first step is to discover a service provider by finding one that can

offer services that match the consumer’s requirements. The second step is the

identification of facilities, groups, penalty policy, and QoS criteria for defining

SLA terms. In this process, a mutual agreement can be reached between the

parties. The third step is to establish an SLA, in which an agreement is formed

and the parties begin to commit to the terms of the agreement. The fourth step is

"monitoring SLA violation", in which the performance of the provider is assessed

against the agreement terms. The fifth step is "Terminate SLA", in which the

SLA ends because of a timeout or a breach of any term. In the sixth section,

22 Background

"enforce-penalties for SLA violation", the relevant penalty clauses are applied

and enforced if any party violates a term of the agreement.

Fig. 2.3 SLA lifecycle six steps [432]

2.1.2 Blockchain

In its simplest form, a Blockchain can be defined as a distributed data structure

(ledger) that transparently and securely holds transactional records. The data

stored in a Blockchain network is fully open and available within the network.

Moreover, once the data is added to a Blockchain, any changes are extremely

difficult or almost impossible to make, so Blockchains are very secure networks.

The first commonly used Blockchain platform was the cryptocurrency Bitcoin,

which was created under the pseudonym of Satoshi Nakamoto [351]. Several

other cryptocurrencies have emerged since Bitcoin evolved, including Ethereum

and Litecoin. Blockchain is not limited to cryptocurrencies; it can also be used

in other domains such as health records, supply chains and asset ownership

[206]. The information stored on a Blockchain can take different forms (e.g.

money transfer, ownership, object ID, prices, etc.) depending on the technology

2.1 Background 23

application. The data stored on Blockchain are open to all Blockchain network

users. To add a new transaction to the Blockchain, a group of users must verify it

and a consensus should be reached among them.

Essentially, Blockchain consists of chains of blocks in which each block holds

information or data, its hash key and the hash key of its previous block. A hash is

a fixed-length data fingerprint and it is created using a special function (called

the hash function). The hash keys provide security and integrity for the data

stored inside the blocks in a Blockchain network. If data within a specific block

are modified, the hash of that block is also modified. This makes it easy to de-

tect fraudulent malicious behaviours within a Blockchain network. Transactions

within a block are authorised only if the hash stored in that block is correct.

If a single node within the Blockchain network wants to transfer a transaction,

the sender generates a block containing information such as a digital signature,

timestamp, and the public key of the recipient. The information block is then

broadcasted through the network. After that, the validation process begins,

which is one of Blockchain’s most significant features. Validation is the phase

where transactions are validated to prevent malicious data alteration [521]. Vali-

dated transactions are listed to be appended to the Blockchain using a consensus

protocol. Every node validates transaction and user status. When checked by

the majority of nodes in the network, the block is timestamped and added to

the current blockchain. Eventually, Blockchain’s current copies are updated to

reflect network changes.

Consensus protocol is one of Blockchain’s most important aspects, as it helps

to create an irrefutable system of real-time agreement between various users of

a universally shared ledger. Owing to the Blockchain’s decentralised nature, no

centralised authority verifies updates to the ledger or new transactions. Users

have to agree among themselves which transactions are to be added to the

Blockchain. But how can thousands of users distributed around the globe reach

such an agreement? This is where a consensus algorithm comes in. To achieve a

consistent shared ledger state, all of the participants in a decentralised network

must follow the protocol. Different Blockchain implementations use different

consensus protocols to achieve a shared ledger. Proof of Work (PoW), Proof

24 Background

of Stake (PoS) and Byzantine fault tolerance are the most popular consensus

protocols used by the major Blockchain applications such Bitcoin, Etherium, and

Monero.

2.1.3 Smart Contract

A Smart Contract is a decentralised transactional protocol enforcing the terms

of a contract with the intention of satisfying common contractual requirements

between the parties involved [393].

The idea of smart contracts was initially coined by Szabo in 19943. Szabo

claimed that the hardware and software could be linked to a number of contrac-

tual clauses in a way that would make the violation of a contract very costly.

Although the concept of smart contracts had existed for decades, smart contracts

gained the publicity we see today only after the advent of Blockchain technology.

Blockchain allows a set of rules to be implemented on a distributed ledger in

the form of a computer program and it implements and enforces the terms of

agreements automatically. Blockchain-based smart contracts make it possible to

exchange items in the form of money, shares, properties, etc., quickly, transpar-

ently, and cheaply between different parties. In addition, Blockchain-based smart

contracts eliminate the need for trusted intermediaries like banks, attorneys,

advisors etc. In addition to implementing the contract terms and conditions

specified in the agreement, smart contracts are capable of carrying out other

activities, such as collecting data from outside the Blockchain and processing it

according to the contract terms [259].

In general, smart contracts, also called Cryptographically Enabled Contracts

(CryptoECs) [149], work for digital asset transactions with multiple participants

who can automatically handle properties. Assets can be distributed among par-

ticipants according to the rules stated in the contracts. Smart contracts are

performed in real time and are self-enforcing and tamper-proof due to their

decentralised nature.

3http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html

2.2 State of the art 25

2.2 State of the art

In this section, the focus is on providing an overview of available SLA studies,

which are classified from a technical point of view. However, with the limited

work on SLAs for IoT, previous works, especially works related to Cloud comput-

ing, have also been considered. The reason behind considering Cloud-related

works is the dependency between the IoT and the Cloud. We have applied a

systematic review approach to surveying the published works. The following

section presents this approach and the survey results.

2.2.1 Research Methodology

We followed the systematic mapping study discussed in [384] due to its clarity

and easy-to-follow presentation. The purpose of applying a systematic mapping

study is to explore available research related to SLAs for IoT applications. The

steps for applying the systematic mapping study are presented in Figure 2.4.

Each step has an outcome and the outcomes from one step are inputted into the

next step. The final outcome of the systematic mapping process enables us to

identify the research area and the research gaps related to SLAs for the IoT.

Fig. 2.4 The steps of the systematic mapping process [384]

In the following we provide details about each step of the systematic mapping

study (depicted in Figure 2.4) and how it can be applied:

• Step 1: Definition of Research Questions - The main purpose of this step

is to define the research questions in order to guide our research process

towards answering them:

– RQ1. What are the current research topics related to SLAs for the IoT?

26 Background

– RQ2. How active are research topics related to SLAs? (Measured by

capturing the number of publications in the last 10 years)

– RQ3. What is the number of publications per year related to SLA

specifications?4

– RQ4. What is the number of publications per year related to SLA-aware

service placement?5

– RQ3. What are the research gaps that need to be addressed in future

studies?

• Step 2: Conduct Search - In this step, we searched scientific databases

for all relevant scientific research papers using search strings. We se-

lected IEEE, Science Direct, ACM Digital Library and Springer as scientific

databases due to their high scientific impact. The keywords that we used to

collect the relevant resources are presented in Table 2.1:

Table 2.1 Keywords of the Search

Row No. Keywords that are used for the search
I SLA? OR Service Level Agreement?
II Cloud Computing OR Cloud OR Internet of Things OR IoT OR Edge OR Fog

– First, to retrieve a broader result and determine the classification

criteria that should be used to classify the available research, we built

the query string, which is comprised of the terms in the first row of

Table 2.1.

– Second, to narrow our research results we utilised the first row and

the second row, joining the keywords with the AND connector.

We used the ? wildcard to retrieve relevant topics regardless of whether

they were in the singular or plural form.

• Step 3: Screening of Papers - In this step, we aimed to select the papers

that were related to our topic of interest, so we followed the following steps:

the title of the paper was considered to be the first indicator of whether

4This is because we are interested in the SLA specification phase
5This is because we are interested in SLA-aware service placement for further research

2.3 Results 27

or not the paper should be considered. If the title did not indicate an

approach related to our topic, then we read through the abstract, checked

its contribution and discarded any studies that did not contribute to our

research questions. If the abstract was not enough to indicate the relevance

of the paper, we examined the paper by reading its content.

• Step 4: Keywording using Abstracts - In this step, we read the abstract

to identify the most important keywords that reflected the contribution

of the research. If the abstract was not enough to indicate the relative

keywords, then we read through the paper. After identifying the keywords,

we clustered them into categories in order to form the classification scheme

for mapping purposes.

• Step 5: Data Extraction and Mapping Process - This step allows the review-

ers to answer the research questions. Thus, we gathered different data

items from each selected scientific publication to understand its main aim

and contributions to answer the research questions.

2.3 Results

In this section, we discuss the criteria that we apply for screening the search

results, as well as the classification mechanisms.

We applied our search strings as discussed in Section 2.2.1 for different

scientific databases. After that, we applied the screening step to select relevant

papers. First, we managed to collect 2,511 papers. Then, we excluded papers that

displayed one or more of the following characteristics: repeated (i.e., appeared

more than once in the search results); not written in English; too general (i.e.,

presented knowledge about SLAs in general); or the focus was not on SLAs. As a

result, the number of considered papers was reduced to 288 and to 124 for work

related to the SLA lifecycle class and SLA applications class, respectively. Figure

2.5 shows the searching and screening results. We found that a considerable

number of works could fall into the following categories (see Figure 2.6).

• SLA Lifecycle Category: This consists of works whose main contribution is

focused on one phase or more of the SLA lifecycle. This category consists

of the following subcategories: 1) SLA specification; 2) SLA negotiation; 3)

SLA monitoring; 4) SLA enforcement; 5) SLA management; 6) Others.

28 Background

Collected	References	
=	2511

Remove	Duplicate	papers	 2385

Title	and	abstract	exclusion	(with	
full	text	scan	if	needed) ->	766

Map	selected	work	to	SLA	Lifecycle	
category	->	288

Map	selected	work	to	SLA	
applications	category	->	124

Identifying	the	categories	to	map	
selected	work

Fig. 2.5 Study selection step of the systematic mapping process

• SLA Applications Category: This includes works that provide solutions,

mechanisms, and policies to deliver the required functionalities while con-

sidering the SLA constraints. This category consists of the following sub-

categories: 1) Scheduling; 2) Load balancing; 3) Elasticity; 4) Resource

provisioning and allocation; 5) Resource management; 6) Service place-

ment; and 7) Orchestration.

2.3 Results 29

Fig. 2.6 Main categories based on our conducted search in relation to SLA

The results show that about two-thirds of the papers focus on the SLA lifecycle

while the remaining papers focus on SLA applications.

In the following sections we present an overview of some works that are

mapped to the subcategories of the two categories reflected in our classification

scheme presented in Figure 2.6:

2.3.1 Works Related to SLA Lifecycle Category

From the literature, we found many studies whose main contribution focuses

on one phase or more of the SLA lifecycle. Table 2.2 maps the selected work to

the following sub-categories: SLA specification, negotiation, monitoring, enforce-

ment, and management.

T
a
b

le
2

.2
R

e
su

lts
o
f

m
a
p

p
in

g
p

u
b

lish
e
d

stu
d

ie
s

to
S

L
A

life
cycle

p
h

a
se

s

S
L

A
S

p
e
cifi

ca
tio

n
S

L
A

n
e
g

o
tia

tio
n

S
L

A
M

o
n

ito
rin

g
S

L
A

E
n

fo
rce

m
e
n

t
S

L
A

M
a
n

a
g

e
m

e
n

t
O

th
e
rs

[1
3

]
[2

5
6

]
[2

4
5

]
[1

6
9

]
[1

6
3

]
[3

0
1

]
[3

0
0

]
[8

6
]

[4
6

9
]

[3
3

4
]

[4
3

4
]

[7
8

]
[4

7
6

]
[9

]
[2

9
9

]
[3

9
0

]
[3

7
4

]
[2

2
0

]
[2

8
7

]
[4

0
7

]
[2

5
0

]
[4

5
4

]
[2

2
2

]
[2

1
1

]
[2

1
7

]
[4

4
3

]
[1

7
2

]
[4

2
7

]
[1

9
4

]
[1

2
9

]
[3

4
9

]
[1

9
9

]
[2

0
5

]
[2

0
9

]
[2

3
2

]
[3

0
0

]
[4

1
6

]
[4

6
9

]
[3

0
2

]
[2

0
9

]
[2

3
2

]
[3

3
6

]
[5

2
6

]
[4

5
6

]
[4

5
5

]
[5

1
6

]
[1

8
9

]
[2

4
]

[2
3

3
]

[3
6

]
[3

8
7

]
[3

6
2

]
[9

0
]

[2
0

4
]

[2
8

5
]

[3
1

8
]

[3
3

6
]

[4
0

4
]

[3
3

4
]

[4
7

7
]

[3
9

5
]

[1
0

]
[8

8
]

[4
1

1
]

[2
3

]
[1

9
]

[3
9

4
]

[2
5

1
]

[3
3

1
]

[2
5

5
]

[4
2

1
]

[4
7

5
]

[3
3

3
]

[2
9

8
]

[1
6

]
[2

9
5

]
[4

0
6

]
[4

1
7

]
[4

6
7

]
[2

1
5

]
[5

3
2

]
[4

3
4

]
[2

2
0

]
[3

6
]

[2
5

5
]

[4
2

1
]

[3
3

3
]

[1
5

3
]

[3
3

2
]

[4
3

2
][4

4
7

]
[4

2
2

]
[4

6
0

]
[1

9
6

]
[2

4
6

]
[5

7
]

[5
1

0
]

[3
7

3
]

[4
3

8
]

[3
4

1
]

[2
0

0
]

[3
8

0
]

[1
2

4
]

[2
5

7
][3

1
9

]
[3

0
1

]
[2

7
8

]
[3

1
9

]
[2

2
1

]
[5

2
5

]
[3

4
2

]
[1

3
6

]
[4

3
5

]
[2

6
8

]
[1

5
3

]
[2

8
2

]
[2

8
3

]
[4

3
6

]
[2

5
3

]
[3

6
3

]
[3

1
2

]
[2

0
]

[3
5

5
]

[6
2

]
[1

2
2

]
[4

7
3

]
[2

5
7

]
[7

2
]

[4
6

4
]

[1
2

5
]

[3
4

4
]

[2
9

2
]

[4
4

8
]

[4
4

6
]

[1
5

]
[2

3
8

]
[1

9
1

]
[3

1
]

[5
3

0
]

[3
2

4
]

[1
1

1
]

[1
8

5
]

[4
1

9
]

[1
6

4
]

[1
5

6
]

[5
1

9
]

[3
3

0
]

[4
4

9
]

[1
5

8
]

[2
0

8
]

[2
5

2
]

[2
2

8
]

[3
8

]
[2

2
7

]
[7

8
]

[5
]

[1
3

]
[4

9
8

]
[5

6
]

[3
5

0
]

[3
2

6
]

[4
1

1
]

[4
1

]
[4

3
]

[7
1

]
[4

9
7

]
[4

7
6

]
[1

9
0

]
[4

1
2

]
[1

2
0

]
[1

4
2

]
[3

9
8

]
[1

4
5

]
[4

6
1

]
[1

8
]

[2
5

4
]

[4
7

0
]

[5
2

4
]

[1
3

8
]

[2
4

7
]

[4
2

0
]

[4
3

9
]

[3
4

]
[2

7
5

]
[3

6
9

]
[2

9
4

]
[2

9
1

]
[2

8
1

]
[3

8
3

]
[8

1
]

[8
4

]
[4

4
6

]
[1

5
7

]
[2

6
6

]
[1

7
4

]
[3

6
8

]
[1

3
0

]
[2

1
1

]
[1

7
3

]
[1

1
3

]
[2

1
7

]
[3

2
2

]
[3

5
4

]
[3

5
6

]
[3

6
1

]
[5

8
]

[2
7

0
]

[3
7

1
]

[1
8

2
]

[7
4

]
[2

0
1

]
[4

0
5

]
[1

0
2

]
[3

1
9

]
[2

2
8

]
[1

9
2

]
[3

4
0

]
[4

0
3

]
[1

7
]

[3
3

9
]

[4
4

0
]

[1
5

5
]

[3
8

2
]

[1
2

3
]

[3
9

7
]

[3
8

8
]

[3
8

9
]

[1
9

7
]

[3
2

8
]

[2
3

]
[4

2
4

]
[1

7
2

]
[2

5
]

[9
1

]
[2

9
7

]
[5

0
2

]
[3

5
8

]
[5

0
]

[3
3

5
]

[3
6

7
]

[1
5

2
]

[2
4

9
]

[1
1

4
]

[1
8

1
]

[1
7

5
]

[1
8

0
]

[4
6

5
]

[7
]

[1
4

4
]

[4
5

1
]

[4
5

0
]

[7
2

]
[3

3
0

]
[4

1
4

]
[2

1
9

]
[2

3
4

]
[2

9
6

]
[1

1
9

][2
6

7
]

[5
2

3
]

[5
2

]
[2

5
8

]
[1

0
3

]
[1

9
8

]
[2

0
7

]
[1

2
0

]
[4

5
7

]
[4

]
[5

3
4

]
[4

8
5

]
[1

3
4

]
[5

2
2

]
[3

7
]

[5
1

]
[4

6
2

]
[7

3
]

[4
9

0
]

[1
2

6
]

[4
1

0
]

[7
5

]
[4

8
6

]
[1

9
3

]
[2

6
]

[4
4

9
]

[4
1

]
[3

5
4

]
[3

5
6

]
[1

6
1

]
[1

6
2

]
[3

6
5

]
[4

1
2

]
[1

5
1

]
[2

5
2

]
[1

1
6

]
[1

8
4

]
[2

2
8

]
[3

8
]

2.3 Results 31

SLA specification/definition:

This sub-category includes works related to the SLA specification, mostly provid-

ing/defining the SLA template/language to express the consumers’ requirements

and the providers’ capabilities. The SLA definition is an important step in mitigat-

ing the risk of ambiguity and high expectations. Based on our survey, we mapped

35 published works under the SLA specification category. This section provides a

more detailed description of the available works related to SLA specifications:

Specifying and monitoring SLAs in the grid have been studied by [412] where

they propose an architecture for specifying and monitoring SLAs. To formalise

SLAs, they specify an SLA based on measurable data constrained by date (start

date, end date) and a set of service-level objectives. SLA@SOI [252] is a frame-

work to address multi-level multi-provider SLA lifecycle management within

service-oriented architecture and Cloud computing. Within the SLA specification

stage, SLA@SOI provides a service description template for SLA which is called

Service Level Agreement Template (SLA(T)). SLA(T) model is a language and

technology independent model and it can be modelled using XML, OWL, human

readable language or any concrete syntactic format. It provides an abstract

syntax for describing the functional and non-functional characteristics of a ser-

vice. However, there is a need to add more domain-specific vocabularies related

to the domain it describes [472]. Thus, we aim, in our work, to consider more

domain-specific vocabularies for the IoT to allow for specifying requirements at

fine-grain details level.

The Web Service Level Agreement (WSLA) framework [228] comprises an SLA

specification and a number of SLA monitoring services. The WSLA framework

provides a WSLA specification that is specified using XML language and it con-

sists of three sections: 1) Parties: the service consumers and the service provider

are called the signatory parties, while other external agents such as third parties

are called supporting parties. The signatory party descriptions include identifica-

tion and technical properties such as address. Supporting parties have additional

attribute to indicate the sponsor of the supporting party. 2) Service Description:

to specify the features of the service and its parameters. 3) Obligations: to define

the guarantees and constraints of the SLA parameters. WSLAs have several key

features: the metrics are flexible (supporting composite metrics for example) and

32 Background

extensible, and WSLAs contain extensive documentation. Importantly, WSLAs

have been structured so that the contractual and monitoring clauses are sep-

arated; this means that a third party can be employed to provide the service

without giving them access to sensitive information [472].

On the other hand, WSLAs have some weaknesses [472]. There are formal se-

mantics for the language [495]; it is linked to the monitoring infrastructure in the

commercial solution [495]; it lacks reusability and is based on the XML-Schema,

the semantics of which are not appropriate for constraint-oriented reasoning

and optimisation [227] [472]. Furthermore, despite the online monitoring and

contracting techniques employed by WSLAs, under which circumstances the

service objective is violated is not clearly specified [22].

The web service agreement (WS-Agreement) from the Open Grid Forum (OGF)

defines a web service agreement specification as a protocol for launching an

agreement between two parties, including an agreement template to aid the

discovery process for well-suited agreement parties. The objective of the WS-

Agreement specification is to define a language and a protocol for advertising

the capabilities of service providers, creating agreements based on creational

offers and monitoring agreement compliance at run-time [38]. Specifying the WS-

Agreement serves several purposes: it defines a language and protocol so that

service providers can advertise their capabilities; it creates agreements based

on creational offers; and it monitors compliance with the agreement at run-time

[38]. However, similar to WSLA, WS-Agreement is also linked to XML-Schema,

the semantics of which are not suitable for constraint-oriented reasoning or the

optimisation demands of operation research [227]. Furthermore, WS-Agreements

relate to web services, while in an end-to-end SLA specification of the IoT ap-

proach, the specifications of the Cloud, network and Edge layers are required.

Nevertheless, WS-Agreement only provides an SLA specification for web services

at a high level (e.g., details about the contractual parties and the start and end

dates of the agreement). It leaves the fine-grained content unspecified [472].

This might cause ambiguity due to the possibility of having different definitions

among the involved parties .

2.3 Results 33

SLA* is an SLA language that provides finely detailed specifications of SLA

content, making it extensible and extremely expressive. It is seen by many as

another promising language [227]. It was developed to be a generalised and

refined form of the web-service specific XML standards: WS-Agreement, WSLA,

and WSDL. Rather than dealing with just web services, SLA* deals with services

in general, and it is not dependent on any language. It can be used to support

a wide range of functions from controlled customisation to arbitrary domain-

specific requirements. Furthermore, the SLA* framework can be applied to any

phase of the SLA lifecycle and it has been tested in a variety of domains. The

disadvantages of SLA* are that its multi-domain approach means that it does

not possess precise semantics and it cannot support brokerage. Furthermore, a

specific vocabulary needs to be developed for each domain [472].

It is increasingly common for applications or web services to be utilised across

organisational boundaries, with new services appearing at the network and stor-

age levels. Industry is also making an increased use of languages to specify

interfaces for such services. End-to-end QoS has been researched and it has been

confirmed that the provision of QoS is multi-faceted, requiring complex agree-

ments between network services, storage services, and middleware services

[256]. SLAng [256] is a language for defining SLAs which is introduced to meet

these needs. SLAng includes: 1) an end-point description of the contractors, such

as the location or facilities of the provider or customer; 2) contractual statements

such as when the agreement starts, how long it will last and the charges that

will apply; and 3) Service Level Specifications (SLSs), i.e. the technical QoS

description and the associated metrics.

The strengths of SLAng lie in the fact that it utilises a domain-specific vo-

cabulary related to IT services and Application-Service Provision (ASP). It also

emphasises SLA compatibility, monitorability and constrained service behaviour

[472]. The weaknesses of SLAng include the fact that the domain-specific QoS

constraints are limited, it focuses on electronic services [227], and it has not

been updated since 2009 [432]. Furthermore, it is very complex [472]. It is

difficult to gain a full understanding of its specification and then to use this

specification to generate SLAs and extend the language. Technical experts are

needed to employ it due to its formal nature and the way it combines techniques

34 Background

such as Object Constraint Language (OCL) and Essential Meta-Object Facility

(EMOF). Real-world cases require extensions that are similar in size to the SLAng

language itself [432]. All of these factors mean that SLAng is not only difficult

for users to employ, but it is also expensive.

Cloud Service Level Agreement (CSLA) [245] is a specification language de-

veloped specifically for the Cloud domain presented in [245]. There are new

features in CSLA, for example QoS/ functionality degradation and an advanced

penalty model, which means that providers are able to determine the fine details

of contracts in order to improve the self-adaptation capabilities of services and

minimise SLA violations. In terms of structure, CSLA has many similarities to

WS-Agreement. The dates that the SLA begins and expires are described under

validity. The parties section of the agreement defines the parties involved, while

the services, constraints, charges and termination conditions are defined in the

template [472].

CSLA provides novelty because it facilitates pay-as-you-go charging models,

as well as conventional fixed-price charging [472]. It also introduces fuzziness

and Confidence concepts. fuzziness determines the margin of error for the met-

rics included in the agreement, and confidence. Confidence provides a definition

of the minimum ratio by which the metric values are allowed to surpass the

threshold, although the fuzziness threshold cannot be exceeded. For example, if

the threshold for a service’s response time is set to 3 seconds, the fuzziness value

is 0.5 and the confidence is 90%. For every 100 requests, at least 90 requests

should be between 0 and 3 seconds and no more than 10 requests can be between

3 and 3.5 seconds, otherwise the SLA is violated. However, CSLA is not formally

defined and some parties who have significant roles, such as the broker, are not

supported [472].

Another example is Service-Level-Agreement Language for Cloud Computing

(SLAC), which is defined by [476]. The language is developed for specifying

SLAs in the Cloud computing domain. It is differentiated from previous specifica-

tion languages in that it is domain specific, facilitates multi-party agreements,

supports the principle of Cloud deployment models and has formally defined

semantics. The business elements of Cloud computing are also supported, such

2.3 Results 35

as pricing schemes, business actions, and metrics. Even SLAC provides domain-

specific vocabularies for Cloud computing. However, the focus of SLAC is only

related to Infrastructure as a Service (IaaS) [476], whereas we aim to consider

SLA specification on end-to-end basis. End-to-end SLA allows us to consider all

of the parties/components involved in an IoT ecosystem.

Al Falasi and Serhani [13] address SLA specification and negotiation difficul-

ties in a federated Cloud network, CloudLend. They suggest a weighted SLA

specification model to capture the QoS of clients and to manage the specification

of multi-level SLAs. For each Cloud service in CloudLend, there is a public

SLA profile that includes the following specifications: information related to the

Cloud service, and information related to QoS terms and their specified weight.

The weight specifies the percentage of the values that a CloudLend member

preserves for each SLA term and its specified parameters. Furthermore, for

each established relationship between two Cloud providers, the SLA captures the

following details: information related to both services, including name and type

of service, the provider and a reference to the service; information related to

the agreed-upon relationship, indicating reference, type, initiator and attendant

service, the start time of the relationship, the duration of validity, and QoS terms.

However, CloudLend is developed for the Cloud computing paradigm and there

is no formalism of the specification. Furthermore, the specification is in an XML

format, whereas there are other formats such as JavaScript Object Notation

(JSON) which can be more human-readable as well as more lightweight.

Although the above-mentioned works are very close to the topic that we are

aiming to investigate, i.e. SLA specifications, a considerable number of works

are relevant in some way to SLA specification and modelling. For example, Cloud

Security-SLA standardisation [190] enables a simple and automated assessment

of the safety products of service suppliers. It also assists Cloud clients to perform

a more guided decision-making and selection process. The presented work in

[190] suggests a new strategy for building the normal Security-SLA format based

on the security services usually supplied or to be supplied in Cloud environ-

ments. It focuses mainly on the protection of the essential security requirements,

confidentiality, integrity and availability, as the primary goals of the security

36 Background

agreement.

For the formalisation and management of SLA information, Stamou [446]

suggests a directed property-graph data model. The presented work follows the

semantics and structure of the WSLA specification presented in [228], which

means that it is an XML-based format to serve the purpose of information porta-

bility. Klingert [238] presents the GreenSLAs concept, which is described as

an SLA between a datacentre and its consumers, to provide more eco-efficient

operations than those provided under traditional performance-based SLAs. If the

data centre provided all the facilities in the most eco-efficient way (technically

feasible), neglecting the effect on QoS, GreenSLAs would not be required. Thus,

a GreenSLA is provided along with regular SLAs, using co-efficiency as a key

differentiation factor. However, it is an XML-based SLA since it follows the WSLA

format where we are looking for more compact serialisation for transmission or

mass storage.

Another study is presented in [283], which extends the XML-based WSLA

framework in [228] in order to provide a flexible template for IT service contracts.

The proposed work aims to overcome two main issues in SLA management:

the lack of standard models to represent service contracts and their associated

SLAs in service-oriented architecture; and networking environments. These

are resolved by extending the WSLA framework. Another issue is providing

a machine-readable SLA and this is overcome by modelling the template as a

digraph, which is implemented using a NoSQL graph DBMS.

The study presented in [196] introduces a schema to manage the green energy

of data centres. One of the main contributions presented in [196] is extending

CSLA [245] to support a Green SLA by adding two threshold parameters (mini-

mum and maximum thresholds). However, it inherits CSLA’s weaknesses as there

is no formalism and it is an XML-based SLA . Li et al. [268] propose a PaaS Level

SLA Description Language (PSLA), a well-structured description language based

on WS-Agreement. The PaaS Level SLA summarises and defines the semantic

clauses that need to be considered, in particular specific feature of PaaS such

as work elasticity. However, [268] considers the PaaS tier only, whereas we are

interested in considering an SLA on an end-to-end basis.

2.3 Results 37

In the Edge datacentre, there is lack of research on SLA management. How-

ever, [307] reviews some works within the literature under the Fog computing

paradigm, where data in Fog computing are handled at the edge of the network.

The reviewed works consider different service-level objectives (SLOs), which

have been achieved by moving intelligence to the edge of the network. Exam-

ples of SLOs are: network management as in [117, 140], resource management

for the IoT as in [1, 183], and latency management in 5G cellular networks as

in [370, 212]. Furthermore, some research extends the WSLA specification to

consider devices (sensor devices) as a fourth section that can be listed in the SLA

specification, as in [165]. However, this work did not specify any related aspects

of Cloud computing services, such as data storage or analysis, since its focus is

on wireless sensor networks.

SLA negotiation:

This section includes works concerned with negotiating SLA terms between

services and consumers in order to reach an agreement that satisfies the in-

volved parties. There is a considerable amount of research that investigates

SLA negotiation; we have mapped 74 works to the SLA negotiation sub-category.

For example, Baig et al. [57] propose a formal model of SLA-based negotiation

to enable a multi-round SLA negotiation that can adapt to a variety of client

requirements, pricing models, and decision strategies. This work is developed

using the WASAG4J library, which is part of WS-Agreement implementation [38].

Nevertheless, [57] is applied to support real-time bilateral negotiations for Cloud

services.

Yaqub et al. [510] tackle the inflexibility problem of the available take-it-or-

leave-it SLAs by proposing a robust and inexpensive negotiation method that

can create near-to-optimal SLAs, considering the time constraints. The proposed

work allows for providing a dynamic SLA negotiation that was evaluated; the

experiments show an improved level of participant satisfaction. Al Falasi and

Serhani [13] address SLA specification and negotiation difficulties in a federated

Cloud network, CloudLend. They implement an independent model of SLA nego-

tiation that adopts an improved game of fair division. A number of studies have

considered multi-issue negotiation [436, 363, 439, 297]. For example, [436] and

38 Background

[439] propose an interactive SLA negotiation strategy to support multi-criteria

negotiation, including negotiations about time slots and prices. Furthermore,

other studies that are interested in SLA negotiation propose a multi-stage SLA

negotiation mechanism, such as [198, 369, 427]. However, all of these studies ap-

ply to Cloud computing, which means that their practicality have not been tested

for IoT applications, where there is a greater possibility of having multi-party

agreements.

Additionally, a number of studies have addressed negotiation and renego-

tiation approaches, such as [194, 72, 197]. For example, Hashmi et al. [197]

present a framework for web service negotiation that would be used by both

consumers and web service providers to automate negotiations for the quality

level of web services. It is a flexible framework that is protocol independent

and it supports communication, negotiation, and SLA development based on

participant policies. In a multi-service and multi-party negotiation scenario, it

allows multi-round negotiation for multi-criteria negotiated service modelling

since it extends WS-Negotiation [207] and WS-Renegotiation [197]. However,

the proposed protocol is applied to the web service paradigm.

Applying optimisation solutions to SLA negotiations has been studied by a

number of researchers. For example, Abulkhair et al. [5] apply a parallel imple-

mentation of particle swarm optimisation in order to enhance SLA negotiation

in the Cloud, aiming to reduce negotiation time while increasing throughput.

Furthermore, Copil et al. [120] design an SLA negotiation mechanism to provide

a balance between the consumed energy and the offered performance in the

Cloud by applying particle swarm optimisation techniques. Maity and Chaudhuri

[312] apply multi-objective genetic algorithms to provide an optimal negotiation

of the SLA in a federated Cloud environment.

The current SLA negotiation literature is limited, especially when considering

large-scale, dynamic environments such as the IoT. The negotiation protocol is

a crucial area of the SLA negotiation phase and is discussed in various Cloud

projects. However, existing IoT negotiation strategies follow a centralised ap-

proach, which may not be realistic, given the dynamicity and distributed nature

of the IoT environment [267]. However, Li et al. [267] suggest a negotiation

2.3 Results 39

process using decentralised network brokers to negotiate efficiently on behalf

of service customers with multiple IoT service providers. The framework uses a

hierarchical architecture to manage the message flows during the negotiation

process and to cluster service information. Nevertheless, there is a need for

further research to consider an efficient, dynamic negotiation protocol. Further-

more, Zheng [530] implements a mixed approach to Cloud service negotiation in

the IoT environment based on the "chicken game". However, the focus is related

to negotiating Cloud services.

SLA Monitoring:

This sub-category includes works whose main focus is SLA compliance (by de-

tecting a violation or predicting a violation before it occurs). We have mapped

103 out of 288 works to the SLA monitoring sub-category. Table 2.2 shows the

mapped references; most of the publications are related to Cloud computing. For

example, in [412], after specifying the SLA, the monitoring stage takes place

within the proposed SLA management framework [412]. This allows measur-

able metrics to be collected between the contractual parties of grid services, to

evaluate the management properties of grid services in the lifecycle [21]. The

authors, in the case of non-local measurement, design a measurement-exchange

protocol to minimise the cost of the transmitted data, taking into account the

time at which the SLA evaluation is triggered [412]. Although this work monitors

SLAs by collecting measurements between different contractual parties, which is

similar to the idea of having multi-providers in an IoT application. However, the

specification of their work still focuses on grid requirements.

Cloud providers tend to use available monitoring tools with some adaptations.

These tools, in most cases, are designed for a homogeneous environment, are not

scalable, and do not provide a mapping facility from low-level resource metrics

(e.g. mapping from uptime/downtime) to high-level SLA parameters (e.g., the

availability objective) [151]. Emeakaroha et al. [151] aim to monitor and enforce

SLA objectives in the Cloud environment, in particular scalability, efficiency and

reliability requirements. They provide an LoM2HiS Framework, which aims

to map low-level resource metrics to high SLA objectives. LoM2HiS is part of

the Foundation of Self-governing ICT Infrastructure (FoSII) research project at

Vienna University of Technology. Each FoSII service has three interfaces: the

40 Background

negotiation interface, the job-management interface and the self-management

interface to prevent SLA violations. FoSII has two components: the Enactor

Component and the LoM2HiS Framework.

In the LoM2HiS Framework, when the SLA objectives have been agreed upon,

the mapped rule from the agreed SLA, using domain-specific language, will

be stored in an agreed SLA repository. When the customer makes a resource-

provisioning request, the run-time monitoring will load the service SLA from the

agreed SLA repository, and then monitoring agents will monitor the resource

metrics, which can be accessed by host monitoring. The host monitoring will

transmit the extracted metric-value pairs, periodically, to the run monitoring

and to the enactor component using the designed communication mode. The

main contribution of this work is having the mapping stage between the low-level

metrics and the high-level SLA. However, it is applied only to monitor the infras-

tructure layer.

SLA@SOI also provides a three-layered SLA-driven monitoring framework

[252]. There is a sensing and adjustment layer (lower layer) to collect the events

using a reasoner (monitor), which has the ability to understand SLAs and then im-

plement monitoring rules using abstract syntax trees. The research in SLA@SOI

is driven by four use cases: ERP Hosting, Enterprise IT, Service Aggregation, and

e-Government, but none of these are IoT-based use cases.

Cicotti et al. [116] provide a QoS monitoring for Cloud IaaS (QoSMONaaS).

QoSMONaaS is designed and implemented in such a way to allow for event

collection, event-pattern recognition, and event correlation using Complex Event

Processing to satisfy high-performance requirements, as well as working in a dy-

namic and heterogeneous environment. QoSMONaaS monitors QoS at a business

level, not only network and/or Cloud resources. The authors present the concept

of Quality Constraint (QC), which for each single Key Performance Indicator (KPI)

uses a Boolean condition. Here the KPIs are specified within the SLA, along with

the time interval within which the KPI will be measured.

The QoSMONaaS framework [116] consists of two layers: a business logic

layer to perform QoS checking and monitoring and a data layer, which includes

2.3 Results 41

a Complex Data Processor (CDP). The CDP is used for real-time data stream

analysis and processing, as well as for storing data related to SLAs in a DBMS

for managing SLA negotiation, registration, and monitoring. This work provides

monitoring as a service, which gives Cloud users the ability to use it seamlessly. It

also takes into consideration the high-performance requirement that is essential

in real-time systems. This means that its implementation could be of benefit for

QoS monitoring applications in the IoT paradigm.

Furthermore, SLA monitoring is essential to ensure that the service is deliv-

ered according to specified quality levels. Therefore, many studies have been

conducted on QoS/SLA monitoring, such as [228, 38, 412]. They provide SLA

monitoring in web services and at the Grid and Cloud level, while [184] implement

a distributed monitoring system for network resources. Furthermore, Cicotti

et al. [116] provide monitoring as a service and support the monitoring system

by using mapping rules from low-level metrics to high-level SLA requirements.

However, it is applied to monitor collected data of Cloud infrastructure tier.

Most of the above-presented works are related to Cloud computing. However,

from the IoT perspective, there is a need to build a cross-layer multi-provider

SLA-based monitoring system for the IoT. This can play a role in enhancing the

end-to-end SLA adherence process of IoT applications.

SLA enforcement:

This includes works that provide mechanisms/polices to enforce an SLA. In the

literature on this field, there are a number of studies that focus on investigating

SLA enforcement strategies. We have mapped 19 works to the SLA enforcement

sub-category, such as [220, 36, 257, 434, 532, 395, 10, 477].

A number of works aim to automate SLA enforcement. For example, Kapassa

et al. [220] present a black box approach to mapping the high-level requirements

to the low-level parameters defined in the infrastructure management policies,

to guarantee QoS enforcement. Vakilinia et al. [477] propose a strategy to

automate SLA enforcement for Cloud services by detecting and predicting events

that cause SLA violations. It, first, trains a Dynamic Bayesian Network (DBN),

using the collected data to calculate the dependency between different entities

42 Background

across Cloud layers. Then, it feeds the correlation values into the long short-term

memory neural network for prediction purposes. However, this work is applied to

Cloud services where the dependencies across IoT entities are more complicated.

Madheswari et al. [302] state that SLA enforcement can be achieved using

their proposed system. They propose a performance-optimised routing mecha-

nism to be applied by a Cloud broker. Based on the mechanism, the broker can

decide which data centre offers the best service for the consumer’s requests.

As a result, using the routing mechanism and considering different types of

clients, the QoS constraints of high-priority clients can be achieved. However,

the presented work is applied to the automation of SLA enforcement of Cloud

services.

In addition, due to the dynamic nature of IoT and Cloud-based interactions,

automated monitoring and enforcing of the service contract policies are essential.

The authors Solaiman et al. [434] propose a novel model that uses business

rules to represent contract terms in order to check contract compliance and

enforce the contract clauses. They define which events the underlying messaging

middleware needs to generate and capture, and determine important technical

issues related to designing a state-aware contract monitoring and enforcement

service. However, the proposed work does not consider the multi-layer nature

and complexity of the IoT since the implementation does not reflect multi-level

interactions. It seems that they applied it to a single consumer and a provider.

Due to the lack of a trustworthy platform, enforcing SLA in the Cloud is

challenging. Zhou et al. [532] introduce a witness model to enforce the Cloud

SLA terms. By implementing the witness role and using a smart contract based

on Blockchain, it resolves the trust problems about who can detect the service

breach, how the breach is verified and how compensation is guaranteed. In this

model, in order to select autonomous witnesses to form a witness committee,

a verifiable consensus-sorting algorithm is suggested. The witness committee

receives payment for monitoring and detecting breaches in the SLA, thus it is es-

sential to develop the pay-off function of the witness in the contract. Furthermore,

the study utilises game theory to evaluate and demonstrate that the witness is

trustworthy, in order to avoid the greedy nature that might affect the reporting

2.3 Results 43

of a violation. When the witness commission confirms the service breach, the

compensation is automatically transmitted to the client using the smart contract.

To show the feasibility of the study, they implement a proof-of-concept prototype

with the Ethereum Blockchain’s smart contract. However, it is applied to enforce

the trustworthiness of Cloud SLAs.

SLA management:

This includes works whose main concern is SLA management. Typically, SLA

management includes more than one phase of the SLA lifecycle such as SLA

negotiation, monitoring, and enforcement. We have mapped 48 works to the

SLA management sub-category. For example, Keller and Ludwig [228] provide

a WSLA framework that comprises the SLA specification and a number of SLA

monitoring services. The WSLA framework implements 5 stages for the web

service SLA management lifecycle: SLA negotiation and establishment; SLA

deployment; service-level measurement and reporting; corrective management

actions and SLA termination. However, although WSLA offers an adequate level

of online monitoring and contracting techniques, there is no clear specification

of the level at which the service objective can be described as being in a violation

state [22].

In [464], the authors propose an SLA management framework for Cloud com-

puting and inter-Cloud environments in particular. This framework is based on

the WSLA implemented by IBM, but it has been altered to fit Cloud computing.

Zhao et al. [525] present a new approach to the SLA-based management of

Cloud-hosted databases. They present an end-to-end framework for managing

Cloud-hosted databases with a consumer-centred SLA. The framework promotes

the adaptive and dynamic provision of the software applications database level,

based on application-defined constraints to meet their own SLA performance

demands. It allows avoiding the cost of any breach of SLA and controlling the

financial cost of the assigned computing resources. The framework monitors the

application-defined SLA continuously and, when required, automatically triggers

the execution of the necessary corrective actions (database tier scaling out/in).

The framework is a platform-agnostic database which utilises processes for the

replication of a database based on virtualisation. It needs a zero change of the

44 Background

source code for Cloud-hosted software applications. The experimental findings

show the efficacy of the proposed SLA-based system in offering the flexibility

needed to meet SLA demands. However, their work only considers SLA manage-

ment for the database tier. Mavrogeorgi et al. [319] present a Cloud-based SLA

management system. To proactively detect and manage possible SLA violations,

they propose an SLA enforcement mechanism for Cloud services based on rules,

and these rules are updated in run-time.

Liu et al. [278] introduce a low-intrusion lightweight Cloud environment. The

suggested Cloud platform is helpful for enabling the concept validation of new

research insights and/or for conducting empirical analysis experiments based on

their scalable features. The suggested SLA breach detection method is efficient

and it offers important prototyping and experimentation parameters. However, it

is applied for Cloud paradigm.

Moreover, as the implementation of SLAs can mitigate the potential hazards

associated with availability, performance, and security in Cloud computing, Ben-

driss et al. [72] introduce the design of Cloud-oriented SLA services that depend

on the use of a REST-based API. These services can readily be built into current

Cloud applications, platforms, and infrastructures to promote the delivery of

SLA-based Cloud services.

Most of the above-mentioned studies cover SLA management for Cloud Com-

puting. Nonetheless, there is a lack of feasible SLA management systems that

can standardise SLAs and which have the ability to manage all aspects, from

specification, negotiation, and monitoring to the compliance of the SLA with the

IoT, autonomously and efficiently [375].

Other:

Several publications consider one or more phases of the SLA lifecycle as the

focus of their contribution. A number of works focus on SLAs but their main

contributions are classified as review, survey, or guide papers.

Hussain et al. [208] provide a comprehensive overview of the current state of

the art related to Cloud-based SLA management approaches and their features

2.3 Results 45

and shortcomings from the service provider’s point of view when creating an

applicable SLA.

Faniyi and Bahsoon [158] examine the SLA-based Cloud study landscape sys-

tematically to know the state of the art and to identify open issues. Considering

an SLA for resource allocation, the results of the study show that: (1) a minimum

number of SLA parameters are considered; (2) heuristics, policies, and optimisa-

tion are most frequently used for resource allocation methods; and (3) the style

of monitor-analysis-plan-execute (MAPE) design predominates in autonomous

Cloud systems. These findings contribute to the fundamental and autonomous

management of engineering Cloud SLAs, as well as forming a motivation for

further research and industrial-oriented proposals and solutions.

Moreover, as an SLA reflects an agreement in the context of a service provi-

sion between a Cloud provider and a Cloud-based service consumer, this raises

the following question: how can we describe the SLA clauses between signa-

tories, such as service rates, service quality constraints, penalties etc., in the

case of an SLA breach? Maarouf et al. [292] present an extensive overview of

how SLAs are created, managed, and used in the Cloud computing and web

services paradigm. This study reviews a number of available works related to

SLA language specifications. After that, a comparison of the reviewed studies is

presented to highlight their strengths and weaknesses.

2.3.2 Works Related to SLA Applications Category

This category includes works that provide solutions, mechanisms, and policies to

enhance the delivery of the required functionality while considering the SLA con-

straints at the same time. This category consists of the following subcategories:

1) Scheduling, 2) Load balancing, 3) Elasticity, 4) Resource provisioning and

allocation, 5) Resource management, 6) Service placement, and 7)Orchestration.

Table 2.3 maps the selected work to the the following sub-categories:

T
a
b

le
2

.3
R

e
su

lts
o
f

m
a
p

p
in

g
p

u
b

lish
e
d

stu
d

ie
s

to
S

L
A

a
p

p
lica

tio
n

s
ca

te
g

o
ry

S
ch

e
d

u
lin

g
L

o
a
d

B
a
la

n
cin

g
E

la
sticity

R
e
so

u
rce

P
ro

visio
n

in
g

/A
llo

ca
tio

n
R

e
so

u
rce

M
a
n

a
g

e
m

e
n

t
S

e
rvice

P
la

ce
m

e
n

t
O

rch
e
stra

tio
n

[8
],

[2
6

1
]

[4
6

],
[1

1
5

]
[3

5
3

],
[8

9
]

[2
9

],
[4

5
3

],
[5

2
0

],
[1

5
0

]
[1

0
0

],
[3

1
3

]
[6

9
],

[3
1

0
]

[1
1

0
],

[4
0

9
]

[3
3

8
],

[2
9

]
[1

3
3

],
[1

7
1

]
[5

3
6

],
[3

2
]

[4
9

9
],

[3
4

5
],

[4
5

3
],

[1
5

9
]

[2
7

2
],

[1
0

9
]

[3
1

1
],

[4
4

]
[3

2
1

],
[3

9
]

[8
3

],
[2

7
3

]
[2

0
2

],
[3

5
9

]
[4

0
],

[3
5

7
]

[5
0

9
],

[2
8

6
],

[4
9

1
],

[4
9

6
]

[2
6

9
],

[4
7

8
]

[9
4

],
[4

3
1

]
[5

0
8

],
[5

1
8

]
[2

3
6

],
[3

6
0

]
[2

2
9

],
[4

1
3

],
[1

0
7

],
[5

0
0

]
[1

7
8

],
[9

2
]

[2
6

3
],

[4
5

8
]

[5
2

9
],

[5
2

7
]

[4
4

1
],

[5
1

2
]

[4
1

5
],

[1
0

5
],

[3
0

],
[4

4
2

]
[2

7
6

],
[4

0
2

]
[2

3
9

],[1
3

9
]

[2
6

0
],

[1
1

2
]

[4
2

],
[1

4
3

]
[2

7
7

],
[5

1
3

],
[5

1
1

],
[4

9
2

]
[4

5
],

[2
7

1
]

[5
0

1
],

[4
5

9
]

[2
1

6
]

[5
0

7
],

[3
5

2
],

[9
3

],
[4

8
]

[3
4

6
],

[1
0

1
]

[3
2

9
]

[2
2

3
],

[2
2

4
]

[5
0

4
],

[5
3

5
],

[4
2

8
],

[1
7

7
]

[4
2

9
],

[5
2

8
]

[4
6

8
],[3

4
8

]
[4

5
2

],
[5

9
]

[4
2

6
],

[5
0

6
],

[5
1

4
],

[4
3

7
]

[8
7

],
[2

]
[2

7
9

],[2
4

3
]

[2
4

2
],

[2
4

1
]

[8
3

],
[3

1
7

],
[5

0
5

],[2
3

0
]

[4
2

3
]

[3
8

1
],

[7
9

]
[5

4
],

[2
3

1
][3

2
9

],
[3

1
1

]
[1

3
9

],
[4

3
1

]

2.3 Results 47

Scheduling:

This includes work that provides an SLA-aware scheduling technique. SLA-aware

scheduling is a technique that considers SLA constraints, such as response time,

when deciding which activity can start and which execution mode (e.g., space-

shared/time-shared) can be applied. We have mapped 21 works to the SLA-aware

scheduling sub-category. Among the mapped works, there are a number of works

that consider SLAs in their proposed scheduling solution for Cloud services,

such as: [8, 261, 338, 29, 83, 273, 529, 527, 508, 518]. For example, Leitner et

al. [261] present a strategy to efficiently schedule incoming requests to virtual

Cloud computing resources to minimise the sum of resource costs and SLA vi-

olations. However, the IoT is not the research focus within the above-listed works.

In order to achieve SLA-aware benefit optimisation in Cloud services, Moon et

al. [338] present a resource scheduling analysis. In the performance evaluation

phase, the results show that the choice of resource scheduling strategy based

on resource scheduling analysis has a significant impact on the Cloud service

provider’s SLA delivery and overall gain. Furthermore, works such as [223, 224,

216] propose scheduling solutions for the Fog computing paradigm. Additionally,

Stavrinides et al. [452] present a scheduling approach for real-time IoT workflows

in both Fog and Cloud environments. Contrary to traditional approaches in which

the primary processing of IoT tasks is carried out in the Fog layer, their approach

aims to schedule compute-intensive tasks with low communication demands in the

Cloud, and communication demand tasks with low computational requirements

in the Fog. This makes use of potential differences in the schedule of virtual

machines for the Fog and the Cloud. Nevertheless, because of the use of Cloud

services, the proposed approach comes at significant monetary expense because

it uses a reserved dedicated hosts [452] .

Load Balancing:

This includes works that provide SLA-aware load balancing techniques. Load

balancing is an approach that allows the distribution of requests coming to a

resource (e.g., VM) while taking into account the current load of that resource.

For example, it aims to distribute requests among available nodes evenly. SLA-

aware load balancing for the Cloud environment has been investigated by a

48 Background

considerable number of studies, such as [46], [115], [133], [171]. For example,

Ashouraei et al. [46] provide a parallel genetic algorithm-based approach for

prioritising tasks. The aim is to use resources efficiently and reduce the waste

of resources in Cloud environments. This is achieved by enhancing the load

balancing rate when choosing better resources in a shorter time with a lower

task failure rate to accomplish arrival tasks. However, the proposed algorithm is

applied for load balancing purpose in the Cloud environment.

Additionally, a number of works have studied load balancing to improve the

performance of the Fog environment under certain constraints. One example is

[202], which integrates Fog, Cloud and software-defined networking to enhance

the load balancing of the Internet of Vehicle. However, the main QoS metric that

they consider is latency. Furthermore, Neto et al. [359] propose an algorithm

to distribute the load efficiently in Fog environments. They consider resource

utilisation, response time and multi-tenancy, but there is no consideration of

other factors such as cost.

Elasticity:

This includes works that study the SLA-aware elasticity approach. Elasticity is

defined by [323] as “Rapid elasticity: Capabilities can be elastically provisioned

and released, in some cases automatically, to scale rapidly outward and inward

commensurate with demand. To the consumer, the capabilities available for pro-

visioning often appear to be unlimited and can be appropriated in any quantity

at any time”. We have mapped 12 works to this sub-category. Works such as

[353, 89, 536, 32, 40, 357] study elasticity solutions for the Cloud environment to

scale up or down under certain constraints. For example, [40] proposes a scaling

model for the VMs that contains the services of the distributed applications, to

scale dynamically based on variations in the number of users of the application.

However, the proposed approach is applied only to Cloud infrastructure manage-

ment.

El Kafhali and Salah [143] study elasticity for the Fog environment. They

present a computational and analytical model to study and analyse the per-

formance of the Fog computing system. The proposed mathematical model

calculates the number of Fog nodes needed to satisfy the QoS parameters such as

2.3 Results 49

response time, system loss rate, system throughput, and CPU utilisation, under

any IoT workload provided. However, the effect of the approach on overall cost

was not discussed.

Resource Provisioning and Allocation

This includes work that considers providing SLA-aware resource provision-

ing and/or resource allocation. The reason for combining both approaches

(i.e., resource provisioning and allocation) is the lack of a clear definition that

differentiates between the two. We mapped around 46 studies to this cate-

gory. Resource provisioning and allocation concerns providing and allocating

resources according to the workload, considering certain constraints. There are

a number of studies that have contributed to the Cloud environment, such as

[29, 453, 499, 345, 509, 286, 229, 413, 453, 159].

For example, work in [29] models user requests considering budget and

deadline constraints. It then models infrastructure resources as a list of data

centres, VMs, data sources and network throughputs. It proposes cost-aware

and SLA-based algorithms to provide Cloud resources and schedule analytic

tasks. Moreover, the research presented in [345] allows developers to auto-

mate resource provisioning. It allows developers to specify their preferences

for resources and resource attributes, then, the system can propose solutions

that match their needs. However, in reality, resources in the Cloud have a limit,

thus when consumers submit a massive number of requests, a Cloud provider

may need to lease resources from other providers. Therefore, the study in [105]

proposes a combinatorial auction-based approach to dynamically provide and

allocate resources to solve this problem, considering consumer time limit con-

straints. However, all of these works are applied to allocate resources in the

Cloud environment.

There are a number of works for the Fog/Edge environment, such as: [277,

513, 507, 352, 329, 311, 139, 431, 505]. Yao and Ansari [506] research the

trade-in maximising reliability and minimising system costs for the provision of

Fog resources in IoT networks. They formulate an integer linear programming

problem as an algorithm to address the aforementioned issue but it suffers from

high computational complexity. They then propose an alternative approach with

50 Background

better time efficiency to deliver suboptimal solutions. However, the considered

QoS requirements are not mentioned explicitly, except within the evaluation.

They consider response time as a QoS requirement to reflect the fact that the

approach is capable of trading-off between cost and service delivery within the

predefined time constraint.

Resource Management:

This includes works that provide SLA-aware resource management. Resource

management performs more than one task including, but not limited to, schedul-

ing, selection, load balancing, resource provisioning, and orchestration. We have

mapped around 19 studies. Works such as [272, 109, 269, 478, 178, 92] propose

SLA-aware management solutions for the Cloud environment. For example, [109]

provides an SLA-aware solution that can provide green resource management

for the Cloud infrastructure. Furthermore, [402] proposes a novel learning

automata-based algorithm that enhances the use of resources and decreases

energy consumption. The proposed algorithm takes into account changes in the

resources required by the user to predict the Physical Machine (PM) that may

be overloaded. Because the proposed algorithm avoids database congestion, it

increases the use of PMs, reduces the number of migrations and shuts down

idle servers to minimise the data centre’s energy consumption. However, the

proposed approach is not applied to the IoT.

Serrano et al. [423] illustrate a Cloud service management using matchmak-

ing operations and applying self-management principles. These enhance the

distribution and management of IoT services among various Cloud providers and

they use the analytical results as a mechanism for controlling applications and the

deployment of services in Cloud systems. They claim that the proposed approach

can be applied to Cloud-based IoT applications or Cloud systems; however, they

applied it to manage IaaS in the Cloud computing domain.

2.3 Results 51

Service Placement:

This includes studies that consider consumers’ constraints when mapping the

required services to a resource in order to accomplish that required service6.

We have mapped 17 works to the SLA-aware service placement approach sub-

category. Most available works propose placement policies to map tasks to Fog

resources such as [329, 431] and/or across Fog and Cloud resources such as

[310, 69].

Mahmud et al. [310] propose a profit-aware application placement strategy

for integrated Fog-Cloud systems to address these issues. It is implemented using

the Integer Linear Programming Model, which simultaneously improves profit

and guarantees QoS during the process of application placement. It also provides

customers with compensation for any violation of their SLA. In a simulated Fog-

Cloud environment using iFogSim, the quality of the proposed policy is tested

and the results show that there is an increase in the profit level of the provider

and the satisfaction rate of the consumer. However, application constraints such

as deadline is considered at the application level only. No consideration is given

to deadline constraints for each involved activity that delivers the application,

since it considers placing the application as a whole on one instance without

considering the possibility of having sub-modules that can be distributed across

layers.

Ben et al. [69] introduce Network Function Virtualisation (NFV) placing and

optimisation approaches across the Edge and Cloud carrier network. They take

into account QoS constraints and the use of queuing and QoS models. The main

design objectives are to maximise resource utilisation, prevent cloudlet overload,

and avoid violations of the SLA. Through extensive simulations, they show how

these conflicting goals can achieve a trade-off. Skarlet et al. [431] investigate the

placement of IoT services across Fog instances, taking their QoS requirements

into consideration. They demonstrate that the proposed optimisation model

avoids QoS violations and reduces the execution costs by 35 percent compared

to a Cloud-only approach. In maximising the use of the Fog environment, the

application QoS metrics, i.e. deadlines for applications, are taken into account.

6Due to the fact that we are interested in service/activity placement, this section is more
detailed than others

52 Background

However, budget constraints are left as future work.

The work in [311] details the evolution in the design and development of the

Fog computing architecture for IoT services. It optimises the number of Fog

resources in order to decrease the total latency generated by aggregation and

processing. The results show that an optimum deployment of Fog nodes can

reduce latency in comparison to a traditional Cloud environment. However, this

work is architecture oriented and it focuses on the number of deployed Fog nodes

rather than mapping services to Fog nodes. Apat et al. [44] implement an efficient

architecture for managing an IoT system application for Fog layer service and an

analytical model to determine the placement of services and energy consumption

in IoT-Fog-Cloud scenarios. As they focus on reducing energy consumption, it is

necessary to check the power consumption of a device before using it; thus there

is a need to compute the working hours of devices and their idle time during the

service request. They formulate an energy equation, apply various optimisation

techniques, and compare the quality of the proposed techniques with other work.

However, this work is mainly concerned with energy consumption.

Kochovski et al. [239] introduce a new decision-making approach with an

optimal QoS for database containers. They also provide software engineers with

QoS guarantees. Lastly, a multi-stage orchestrating approach is provided to

automate the entire process of using Big Data applications to automate. QoS

measurements from a distributed monitoring system are the input for the pro-

posed Markov Decision Processes method. The measurements, obtained with

QoS constraints, are used later to derive models for particular workloads and

database deployment. The created models are automatically produced. However,

the main focus of this work is related to database container placement.

Taneja and Davy [459] present a module mapping algorithm to utilise Fog

and Cloud infrastructures for IoT applications. The calculation is dynamically

spread through Fog and Cloud layers, and the modules can be deployed on Fog

layer devices close to the source. The proposed algorithm is generic and it can

be applied to different network typologies for a wide range of standardised IoT

applications, regardless of the workload. However, this work only considers

mapping modules based on their computing requirements and it finds resources

2.3 Results 53

with an appropriate processing capacity, whereas we aim to consider budget, the

deadline associated with each task, and computing capacity constraints.

In [329], referring to a multi-layer Fog computing architecture for IoT service

provisioning, a new mechanism for service placement is proposed to optimise the

decentralisation of services in the Fog computing environment. This is achieved

by leveraging context-aware information such as location, QoS, and time. An

experiment is conducted with several models of smart grid applications in order

to test the proposed approach. The results show that the proposed approach is

effective when compared to Cloud-only models with regard to reducing latency,

power consumption, and networking loads. However, the proposed work does

not consider the deadline constraints of each of the applications’ modules.

Tran et al. [468] offer a new, multi-layer, IoT-based Fog computing architec-

ture. In particular, they develop a service placement mechanism that optimises

service decentralisation in the Fog landscape by using context-aware information

such as location, response time, and service resource consumption. The approach

is used in an optimal way to increase the efficiency of IoT services in terms of

response time, energy, and cost reduction. Experimental results from simulated

data and real-world applications show the efficiency of the solution. It optimises

Fog device use and reduces latency, energy consumption, network load, and

operating costs. The results show that the proposed system is robust and that it

is capable of maximising IoT potential. However, this work considers the tasks to

be independent while in reality, IoT applications’ modules are not independent.

Naas et al. [348] present the iFogStor approach, which aims to reduce the

overall latency of storage and data retrieval in Fog. They formulate the data

placement problem as a GAP (Generalised Assignment Problem) and propose two

solutions: 1) an exact solution using integer programming; and 2) a geographi-

cally based solution to decrease the solving time. Both solutions are proven to be

very good, as latency is lowered by more than 86% in comparison with a Cloud-

based approach and 60% in comparison with a naive Fog solution. The use of the

heuristic geographical zoning process can effectively solve problems with many

Fog resources and make iFogStor possible and scalable in a few seconds. How-

54 Background

ever, its focus is related to storing data at the Edge in order to ease data retrieval.

IoT service placement in Fog architecture is studied in [139]. The authors

propose an infrastructure and IoT application model as well as a placement

approach, taking into account the power consumption of a system and minimising

delay violations using a Discrete Particles Swarm Optimisation (DPSO) algorithm.

iFogSim simulator is used to evaluate the proposed approach. The results are

compared with: Binary particle swarm optimization (BPSO), Dicothomous Mod-

ule Mapping (DCT), IoTFogOnly, IoTCloud (IC) and Fog-Cloud (FC) placement

approaches. However, it only considers the effect on energy consumption and

delays, while we aim to reflect the impact on cost and time, in addition to energy

consumption.

In [279], the authors apply queuing theory to carry out a comprehensive study

on energy use, delays in execution, and the costs of the offloading process in a

Fog computing system. Three queuing models are used in mobile devices and Fog

and Cloud centres, and data rates and wireless connection power consumption

are explicitly considered. The theoretical analysis formulates a multi-objective

optimisation problem with a common aim of minimising energy consumption,

execution delay, and payment costs by selecting the optimal probability for of-

floading and transmitting power for each mobile device. Extensive simulation

studies are performed to show the effectiveness and performance of the proposed

scheme compared to several existing schemes.

Kolomvatsos and Anagnostopoulos [243] suggest a smart decision-making sys-

tem to assign tasks locally. The remaining tasks in the network or the Fog/Cloud

will be transferred to peer nodes. To minimise the execution time, they implement

a two-step decision process. The first step is to decide whether or not a task

can be performed locally; if not, the second step includes the advanced selection

of the most suitable peer to assign the task to. When no node is capable of

performing the job throughout the Edge network, it is then sent to the Fog/Cloud

for maximum latency. They assess the suggested system thoroughly, showing its

applicability and optimally on the Edge of the network. However, their view is

that tasks should be processed in a sequential order, which is not typically the

case with an IoT application, where there is the possibility that tasks can be run

2.4 Discussion 55

in parallel.

Orchestration:

This includes works that contribute to orchestration while respecting SLA con-

straints, such as [110, 409, 321, 39]. Chhetri et al. [110] define Cloud resource

orchestration as "The process of provisioning computing resources comprises the

following phases – selection, assembly and deployment of computing resources,

and monitoring of deployed resources [400]".

In [409] the authors introduce e-eco, an energy-efficient Cloud orchestrater

that enhances the trade-off between power savings and application efficiency

through a series of power-saving techniques. A prototype is developed and tested

in real and simulated Cloud environments, and the tests show that e-eco pre-

serves the balance between power savings with minimal impact on performance.

From the IoT perspective, Mechalikh et al. [321] propose a task orchestration

for the IoT. They focus on Edge computing’s role in ensuring a high scalability

environment. The study introduces an algorithm for task orchestration based on

the Fuzzy Decision Tree. It leverages learning from reinforcement, which helps

it to respond to unexpected changes in the environment. The proposed design

offers greater scalability and low delays, regardless of the number of devices,

compared to existing solutions. The approach considers QoS requirements such

as CPU utilisation, delay and energy consumption. However, there was no

mention of the impact of the proposed approach on the cost of the system when

applying the proposed task orchestration.

2.4 Discussion

This section describes the outcomes of the study and responds to the research

questions identified in Section 2.2.1.

RQ1. What are the current research topics related to SLAs for the

IoT?

The main focus of our research falls into the first category, which consists of

56 Background

technical works related to the SLA lifecycle, in particular SLA specification. Table

2.2 maps the retrieved works’ topics to the most technical approaches related

to the SLA lifecycle. These include SLA specification, negotiating, monitoring

enforcement, and management. Figure 2.7 depicts the mapped publications to

each sub-category, revealing that monitoring and negotiation are among the most

discussed topics.

SLA	Specification SLA	Negotiation SLA	Monitoring SLA	Enforcement SLA	Management Others
Series1 35 74 103 19 48 20

0

20

40

60

80

100

120

N
um

be
r	o

f	P
ub

lic
at
io
ns

Fig. 2.7 Result of mapping relevant publications to the subcategories of SLA
lifecycle category

For the second category, which is SLA applications, we consider only work

which states clearly that the main focus is SLA oriented. Most of the retrieved

works are related to the Cloud, i.e. there is little work related to the Edge,

Fog and IoT paradigms. Thus, we consider QoS-oriented studies to find works

performed for the Fog, Edge, IoT environments. Table 2.3 reflects the results of

this systematic mapping study by mapping the retrieved works’ topics to the most

SLA-aware approaches. These include SLA-aware scheduling, load balancing,

elasticity, resource provisioning/allocation, and resource management. Figure

2.8 depicts the mapped publications to each sub-category, showing that resource

allocation, management, and scheduling are among the most investigated topics.

2.4 Discussion 57

Schedualing Load	balancing Elacticity Resource	
Provisioning/Allocation

Resource	Management Service	Placement Orchestration

Series1 21 6 12 46 19 17 4

0

5

10

15

20

25

30

35

40

45

50
N
um

be
r	o

f	P
ub

lic
at
io
ns

Fig. 2.8 Result of mapping relevant publications to subcategories of SLA-aware
approaches category

RQ2. How active are the research topics related to SLAs? (Measured

by capturing the number of publications in the last decade)

There are a considerable number of works that have been published within the

last decade. Figure 2.9 shows the number of publications per year related to the

SLA lifecycle. Years 2013 and 2014 are among those with the highest number of

publications, which reflects the association with the period of the Cloud’s growth,

especially given that most of the published works are for the Cloud environment.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Series1 2 6 8 15 34 44 39 35 32 33 29 11

0

5

10

15

20

25

30

35

40

45

50

N
um

be
r	o

f	P
ub

lic
at
io
n	

Fig. 2.9 Result of year-based classification of the relevant publications related to
the SLA lifecycle category

Figure 2.10 shows the number of publications per year under the SLA appli-

cations category. Years 2016, 2018 and 2019 are among those with the highest

number of publications. However, most of the mapped publications that con-

tribute to the Fog/Edge paradigm were published in 2018, beside works on the

Cloud paradigm, which might explain the high level of published works in this

year.

58 Background

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Series2 0 1 3 10 7 7 14 10 18 14 21 18 1

0

5

10

15

20

25

N
um

be
r	o

f	P
ub

lic
at
io
n

Fig. 2.10 Result of year-based classification of the relevant publications under
the SLA-aware approaches category

RQ3. What is the number of publications per year related to SLA

specifications?

The number of relevant publications per year in the research area related to

SLA specifications is plotted in Figure 2.11. We are interested in work related

to SLA specifications for the IoT. However, the work presented in Figure 2.11 is

related, mostly, to the Cloud. Some are specifically for one of the Cloud layers

such as CSLA or for all the Cloud layers such as SLAC [245, 476].

0

1

2

3

4

5

6

7

8

9

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
um

be
r	o

f	P
ub

lic
at
io
ns

Year

Fig. 2.11 Number of Publications Related to SLA Specifications per year

RQ4. What is the number of publications per year related to SLA-

aware service placement?

The number of relevant publications per year related to SLA-aware service

placement is plotted in Figure 2.12. Years 2018 and 2019 reflect the highest

number of publications.

2.4 Discussion 59

0

1

2

3

4

5

6

7

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

N
um

be
r	o

f	P
ub

lic
at
io
ns

Year

Fig. 2.12 Number of Publication Related to SLA-aware service placement. Speci-
fication per year

RQ5. What are the research gaps that need to be addressed in future

studies?

From this systematic mapping study, we have identified a number of research

gaps derived from the literature insight provided in Section 4.2. These gaps can

be covered by future research.

• The first gap is a lack of studies on standardising SLA specifications/defini-

tions for the IoT. In particular, there are few studies that consider the multi-

layered nature of the IoT, where there are several different software and

hardware components across layers (IoT devices, Edge computing, Cloud

computing). Therefore, many contractual parties (e.g., Cloud provider, Net-

working provider) need to cooperate, which increases the need to unify the

vocabularies used in order to reduce ambiguity.

Although there is a considerable number of works related to SLA specifica-

tions/languages for Grid Computing, web services, and the Cloud, from the

IoT perspective there is a lack of research in this area (as reflected in the

collected references that are listed in Table 2.2). As a result, according to

[375], future factories would need SLA standardisation, with the possibility

of handling all the aspects addressed autonomously and effectively. It needs

to handle aspects from the specification to the negotiation, from monitoring

60 Background

to enforcing SLAs [375].

According to [472], the extensions needed to support the domain. The

availability of domain-specific vocabularies are a significant feature in an

SLA definition language [472]. A domain SLA language must therefore not

only be straightforward for all the involved parties but also support the

domain [472]. Furthermore, to avoid ambiguity in SLAs and disagreements

over the meaning of contracts, the SLA vocabularies must have formal

interpretations [472]. Moreover, providing a machine-readable end-to-end

SLA for an IoT application will enhance SLA management since a machine-

readable SLA can automate the process of selecting a service provider and

negotiating, monitoring, enforcing, and managing the SLA [472, 290].

• Current SLA negotiation literature is limited, especially when consider-

ing large-scale, dynamic environments such as the IoT. The negotiation

protocol is a crucial area of the SLA negotiation phase and is discussed

in various Cloud projects. However, existing IoT negotiation strategies

follow a centralised approach, which may not be realistic, given the dy-

namicity and distributed nature of the IoT environment [267]. However,

Li et al. [267] suggests a negotiation process using decentralised network

brokers to negotiate efficiently on behalf of service consumers with multiple

IoT service providers. The framework uses a hierarchical architecture to

manage the message flows during the negotiation process and to cluster

service information. Nevertheless, there is a need for further research to

consider an efficient, dynamic negotiation protocol, since SLA negotiation

barely discussed in IoT contexts [265]. For example, it would be valuable to

propose a mechanism to calculate an acceptable time limit and finalise the

negotiation, considering the sensitivity of IoT applications.

• The nature of IoT interaction means that different components need to in-

teract with each other and those components might be provided by different

providers. Each one may have its SLA which specifies its QoS capabilities.

As a result, one of the big challenges is how to collect and integrate the

metrics among those different providers for monitoring purpose.

However, from the IoT perspective, there is still a need for an end-to-end

SLA monitoring. It enables organisations to ascertain the cause of any

2.4 Discussion 61

performance issue they are experiencing, whether it be the application

design, the infrastructure of the network, or the Cloud service provider

[408].

• There are a considerable number of studies in the literature covering SLA

management. However, there is a shortage of available feasible SLA man-

agement frameworks that can standardise the SLAs with the possibility of

managing all aspects: definition, negotiation, monitoring and enforcement

of SLA for IoT, autonomously and efficiently [375]. Furthermore, available

SLA frameworks float between being too specific or too generic [165], thus,

we believe that there is a need to provide an SLA management framework to

address the general requirements of the IoT applications as well as consider

domain-specific requirements.

• Utilising Blockchain-based smart contracts for SLA monitoring, enforce-

ment, and compensation is in its early stages [418]. There are a few works

that investigate and apply Blockchain-based smart contracts for SLAs such

as [33, 418, 533]. However, most of the available works are in their early

stages and are mostly tested using prototypes or simulation environments.

Thus, there is a clear research gap in investigating the application of

Blockchain-based smart contracts in association with SLA lifecycle phases

for the IoT paradigm. It can be applied to enforce SLAs and overcome the

trust issues concerning the monitoring of SLA violation and compensation.

Generally speaking, most available works are for the Cloud environment,

however, in the last three years, there has been considerable work covering

the Edge/Fog/IoT environment. While some of the work investigated SLAs or

QoS related to Cloud, Edge/Fog, and/or IoT paradigms, considering SLAs across

these layers still requires further contributions. Nevertheless, one of the key

reasons for having research gaps is that the topic is still young and the scientific

community is still developing SLA management frameworks, languages, and

techniques [375].

62 Background

2.5 Conclusion

This chapter provided a background overview of the research undertaken in

SLAs in the last decade. As many IoT applications depend on Cloud and Edge

resources for computing, analysing, and storage purposes, this chapter presented

brief knowledge related to Cloud computing and Edge computing. Additionally, it

explored previous works relevant to SLAs in general and to the SLA lifecycle in

particular. From the IoT perspective, there is a lack of research focusing on SLA

specification, negotiation, monitoring, enforcement, and management; most of

the presented work is Cloud based.

In this research, our interest is mainly related to SLA specifications for the

IoT and we consider the multi-layered nature of the IoT since a number of

contractual parties (e.g., Cloud provider, Networking provider) need to cooperate

according to user requirement constraints, as specified within the SLA. Therefore,

an SLA specification language should consider that consumers and parties are

not domain experts; thus, the language for the description of SLAs should be

easy to understand [472]. Also, an essential feature of an SLA language is the

possibility to extend it to provide and support the domain-specific vocabularies

[472]. Therefore, a domain SLA language must not only be straightforward for

all the parties involved but it must also provide domain-specific support features

[472]. Furthermore, to avoid ambiguity in SLAs and disagreements over the

meaning of contracts, the SLA vocabularies must have formal interpretations

[472]. Therefore, in the next chapter, we propose an IoT conceptual model as

well as rich domain-specific vocabularies as a first step towards proposing an

end-to-end SLA for the IoT.

Chapter 3

SLA Conceptual Model for IoT

Applications

Overview

Since SLAs specify the contractual terms that are formally used between

consumers and providers, there is a need to aggregate the QoS requirements

from the perspectives of Clouds, networks and devices to deliver the promised

IoT functionalities. Therefore, the main objective of this chapter is to provide a

conceptual model of an SLA for the IoT as well as rich vocabularies to describe

the QoS and domain-specific configuration parameters of the IoT on an end-to-end

basis. We first propose a conceptual model which identifies the main concepts

that play a role in specifying end-to-end SLAs. Then, we identify some of the most

common QoS metrics and configuration parameters related to each concept.

We evaluate the proposed conceptual model using a goal-oriented approach.

The participants in the study report a high level of satisfaction regarding the

proposed conceptual model and its ability to capture main concepts in a general

way.

3.1 Introduction

IoT applications are mostly time-sensitive applications. Thus, it is important to

consider when data need to be collected, what the next processing step is, and

where to process each step. Therefore, there is a need to aggregate QoS require-

ments from the perspectives of Clouds, networks and IoT device layers to deliver

64 SLA Conceptual Model for IoT Applications

the promised IoT functionalities at the required quality level, as agreed upon

within the SLA. Furthermore, the associated QoS requirements for each step

should be specified in an unambiguous way by formally defining them, so their

meaning and used terminology are known and unified. For further illustration,

consider the following use-case scenario:

3.1.1 Remote Health Monitoring Service (RHMS)

Fig. 3.1 cooperated layers to deliver RHMS

In a remote health monitoring service (RHMS), patients are monitored re-

motely, and if there is an urgent case, it can be detected and even predicted to

avoid health-related disasters (Figure 3.1 shows the typical layers involved in an

RHMS). An RHMS uses body sensors, radio frequency identification readers and

accelerometers to monitor changes in heart rate and sugar levels for the timely

administration of medications and the avoidance of falls. An RHMS involves many

workflow activities, such as collecting real-time data from various IoT devices

(e.g., sensors to capture the patterns of human activity and video-streaming

cameras). The collected data are analysed to determine whether there are any

abnormal activity patterns (e.g., the possibility of a heart attack) by comparing

newly collected data with historical/stored data. The users of this application

will require real-time constraints. For example, events such as heart attacks or

falls should be detected within milliseconds, and automatic alerts should be sent

to emergency services within seconds of detection. To achieve these high-level

objectives, a list of nested objective constraints should be used to ensure that

3.1 Introduction 65

the service is provided to the subscribed patients at the same level as they expect.

This sort of application is time-sensitive, meaning that any unforeseen delay

in one or more phases of the data flow (e.g., collection, transfer, ingestion or

analysis) will affect the accuracy and appropriateness of the actions taken. For

example, a delay in the network could lead to a late response, which could cause

harm to the subscribed patient. Thus, the application’s performance depends not

only on the provided functionality but also on the quality of the services offered

across Edge and/or Cloud computing environments, which can be affected by

resource capabilities and other configuration parameters. As a result, the specifi-

cations of low-level technical requirements need to be considered due to their

extreme impacts on meeting the QoS requirements of an application. In RHMS,

in addition to the constraints at application level (e.g., an end-to-end response

time less than X time units), more than one constraint must be considered for

each involved service. For instance, the data collected from IoT devices should be

accurate and up to date. Moreover, it is important to minimise the latency of data

pre-processing (e.g., data filtering), which can be achieved using a raspberry

pi, mobile phone or Edge server, among other options. Furthermore, it may be

possible to perform an analysis and compare incoming data with historical data

or the results of a predefined model. Consequently, more than one constraint

must be considered: applying machine-learning algorithms requires a high accu-

racy constraint, stream processing requires a low latency constraint and batch

processing requires a high throughput constraint.

As a result, we attempt to contribute to the SLA of the IoT by proposing a

conceptual model that captures the knowledge base of IoT-specific SLAs. This

chapter contributes to the SLA for the IoT by:

• Proposing an SLA conceptual model.

• Introducing key concepts of SLAs for the IoT and the related vocabulary

terms that can be used for specifying QoS and configuration parameters;

• Evaluating the proposed conceptual model using a questionnaire-oriented

approach from the domain experts’ point of view.

In the following text, Section 3.3 introduces the proposed conceptual model for

IoT applications. Then, Section 3.4 presents the vocabulary terms that can be

66 SLA Conceptual Model for IoT Applications

part of an SLA to reflect the QoS and configuration requirements. We evaluate

the proposed conceptual model in Section 3.5.

3.2 Related Work

With the ever-increasing number of service providers and solutions for IoT-based

services, there is rising demand for a mechanism that will regulate and automate

the transactions and activities between the parties involved. This mechanism

needs to take the form of an SLA. Although SLAs exist, we believe that in their

current format they are unable to accommodate the unique characteristics of IoT

applications. This section therefore provides details of a number of commonly

used SLAS.

In web services, there are two main specification languages for the SLA.

In the following we discuss the main components involved within WSLA and

WS-Agreements.

WSLA [228] reflects all the details usually found in the SLA agreement [378, 293].

This information is based on three main parts (see Figure 3.2): 1) Parties: where

service consumers and service providers are called the Signatory Parties and

other external agents such as third parties are called the Supporting Parties. The

signatory party description includes identification and technical properties such

as address and how they accept events, while supporting parties have additional

attributes that indicate the sponsor of the supporting party. 2) Service Descrip-

tion: to specify the features of the service and its parameters. 3) Obligations: to

define the guarantees and constraints of the SLA parameters.

3.2 Related Work 67

Fig. 3.2 WSLA conceptual model [378, 293]

The WS-Agreement is formulated as follows in three parts[293]: 1)The

Agreement Scheme (Agreement Development Offer Scheme). This is used by the

Agreement Initiator to create a template-based offer. The offer and the agreement

are structurally the same. The agreement offer includes 1) the agreement name,

the context (including the parties involved and the life span of the agreement),

and the terms, which are the most critical aspect of an agreement offer. each

term has at least one service term and zero or more guarantee terms that could be

merged using logical operators. 2) Agreement Template Schema: The Agreement

Respondent uses this template to promote acceptable offers. 3) Port type and

operations: these are used to coordinate and control the life-cycle operations of

the agreement (see Figure 3.3).

68 SLA Conceptual Model for IoT Applications

Fig. 3.3 WS-Agreement conceptual model [378, 293]

3.2 Related Work 69

In Cloud computing, there are number of specification languages for the

SLA such as SLA* and CSLA. In the following we discuss the main components

involved within SLA*, CSLA and SLAC.

SLA* [227] has an SLA Template (SLA(T)) that comprises five parts (see

Figure 3.4):1) SLA attributes template SLA; 2) the parties to the agreement; 3)

service descriptions; 4) variable declarations; and 5) the terms of the agreement.

The parties are defined by their position in the abstract SLA(T) syntax (supplier,

customer). The service description is described by the interface statements.

A declaration interface is used to associate a local interface with an identifier,

and the local interface can be a functional interface or a resource description.

To improve readability and avoid repetition of text, variable declarations are

provided. The clauses of the agreement are formalised as two-type guarantees:

action warranty and status. In addition, the SLA proposes a formal model for

formalising penalties.

Fig. 3.4 WS-Agreement conceptual model [378, 293]

A CSLA [245] language comprises three parts (see Figure 3.5): a section

that specifies the scope of the agreement, a section that describes the parties to

the agreement and a section that refers to a template for the agreement. The

validity determines the length of a contract. A CSLA considers two groups of

parties: the signatory parties, which include service providers and consumers

70 SLA Conceptual Model for IoT Applications

of services, and supporting parties (for example, trusted third parties). A CSLA

template is similar to an SLA pattern and it consists of the following elements:

Definition of cloud services, Parameters, Guarantees and Terminations. Any XaaS

service (SaaS, PaaS or IaaS) is specified in a Cloud service specification. The

authors in [245]) suggest the concept of functionality degradation (i.e. standard

vs. degraded mode) for each SaaS and PaaS application to handle any unpre-

dictable and dynamic environment (i.e. 3D vs. 2D display). Parameters provide a

means of identifying variables within the agreement context. Guarantees provide

a range of guarantees. Every guarantee is composed of four elements: scope,

requirements, terms and penalties. CSLA offers two billing types: a Pay as

You Go plan and an All-in plan. Ultimately, the agreement starts based on the

time specified within effectiveFrom and it ends before the time specified within

effectiveUntil, which are defined within the Termination section.

3.2 Related Work 71

Fig. 3.5 WS-Agreement conceptual model [293]

72 SLA Conceptual Model for IoT Applications

SLAC is [476] defined as a domain-specific language for the Cloud. In SLAC,

the key elements of an SLA are: the contract description, the specification of

terms and the definition of the guarantees provided for those terms. Figure 3.6

presents the main elements of the conceptual model of a term definition in the

SLAC.

Fig. 3.6 The definition of a term in the SLA. The term is used to define a metric
in SLAC [293]

In summary, our work varies considerably from those mentioned above: it

emphasises the formal aspects of domain-specific SLAs by considering the par-

ticularities of the IoT domain, and it provides a base for defining an SLA on an

end-to-end basis. Due to the multi-layer nature of the IoT and the importance

of considering constraints on data while they flow across layers, we introduce

the "workflow" concept. The reason behind defining the "workflow" concept is to

allow us to define the associated requirements for the involved components on

both the hardware and software levels. The next section introduces our proposed

SLA conceptual model for IoT.

3.3 An End-to-End SLA Conceptual Model for IoT Applications 73

3.3 An End-to-End SLA Conceptual Model for IoT

Applications

An end-to-end IoT ecosystem includes components through which application

data flows. Components can include services (e.g., a sensing service or a real-

time analysis service), infrastructure resources (e.g., IoT devices, Edge resources

and Cloud resources) and/or humans. In an end-to-end SLA, it is important to

consider the requirements of all of the services and infrastructure resources

involved in delivering the IoT application. Considering an SLA on an end-to-end

basis is essential because the level of quality at which the involved services are

delivered has an impact on the SLOs at the application level. For example, in an

RHMS, an SLO (SLOapp1) for urgent case detection, which requires a response

within less than Y time units, is an SLO at the application level, and it involves

many activities, such as analysing real-time data. Analysing real-time data re-

quires a stream-processing service at an acceptable level of latency, and if the

stream-processing service exceeds this level, then the SLOapp1 at the application

level might be violated.

As a result, we propose a conceptual model that captures the knowledge

base of IoT-specific SLAs. The conceptual model expresses the key entities

of the IoT ecosystem and the relationships between those entities within the

SLA context. Due to the lack of a standard IoT architecture, we refer to the

reference IoT architecture as presented in (Section 2.1) to identify the main

concepts and the relationships between them. Additionally, since we aim to

capture SLA requirements on an end-to-end basis, we define a new concept,

"workflow activity", within the conceptual model. The purpose of this is to allow

us to specify requirements related to services and infrastructures where data is

flowing in between. This led us to associate "Workflow activity" with the "service"

and "infrastructure resource" concepts. Other concepts: SLA, SLO and Party, are

derived from previous works discussed above such as [228].

Figure 3.7 presents our conceptual model. In the following section, we

describe the concepts covered in the conceptual model and give a brief discussion

of the relationships associated with these concepts.

74 SLA Conceptual Model for IoT Applications

requires requires

Literal

1..*
1..*

0..*

Fig. 3.7 SLA conceptual model for IoT applications that captures the key entities
of an SLA and the corresponding relationships

3.3 An End-to-End SLA Conceptual Model for IoT Applications 75

The conceptual model is composed of the following entities:

1. SLA: The SLA includes basic data, such as the title of the SLA, the corre-

sponding ID, the type of application (i.e., smart home, smart health, etc.)

and the start and end dates.

2. Party: This part describes an individual or group involved in the SLA and it

usually includes the name of a service provider and/or consumer or a third

party [166]. For example, in an RHMS, the parties could be the hospital

management group, patients, the network provider and the Cloud resource

providers.

3. SLO: The SLO provides the quantitative means to define the level of a service

that a consumer can expect from a provider. The SLO quantifies the required

value of a QoS metric. It expresses the objective(s) of an agreement for

both the application and any involved services and infrastructure resources.

For example, an SLO (at the application level) of an RHMS could be the

response to urgent cases within Y time units. The QoS metric in this example

is response time, and the constraint is less than Y time units. Furthermore,

SLO parameters can be used to specify an SLO for low-level services. For

example, for a data-ingestion service, an SLO can be: ingest data with

latency less than Z time units. For an infrastructure resource such as the

CPU of a VM, an SLO can be: CPU utilisation is greater than 80% .

4. Workflow Activity: IoT applications have certain activities that must be

considered as part of the application requirements to function correctly.

For example, in an RHMS, one of the possible workflow activities include

capturing interesting data, analysing real-time data, and storing interesting

results in a database (e.g., SQL or NoSQL). In general, workflow activities

mostly include:

• Capturing events of interest

• Examining the captured events of interest on the fly

• Filtering the captured events of interest

• Aggregating the captured events of interest

• Ingesting data from one or more data resources

76 SLA Conceptual Model for IoT Applications

• Small-scale real-time data analysis

• Large-scale real-time data analysis

• Large-scale historical data analysis

• Storing structured data

• Storing unstructured data

5. Service: This concept covers the main services that can be run/deployed to

perform a certain functionality. To achieve SLOs at the application level, it

is important to establish adequate cooperation between particular services

under the SLO constraints. For example, in an RHMS, to detect urgent

cases within Y time units, it is necessary to transfer data from sensors to

the ingestion service using networking service and to process data on the

fly using a stream-processing service while respecting the time limit.

Here, we list the most common services that can cooperate to deliver an

IoT application.

(a) Sensing service: This service collects data using IoT devices and it

sends the collected data through a communication protocol to a higher

layer. The sensing service specifies the type of data and when to collect

the data. For example, in an RHMS, a heartbeat sensor attached

to the chest and an accelerometer as a hand-wrist device reflect a

patient’s health state continuously or periodically, based on what has

been specified within the SLA for the service.

(b) Networking service: This service transfers the collected data from one

layer to another. For example, in an RHMS, a home gateway uses the

network to deliver collected data to the next layer for further analysis

under certain bandwidth requirements.

(c) Ingestion service: This service ingests data from many data producers

and then forwards the data to subscribed/interested destinations such

as storage and analysis services under certain requirements, such as

throughput limit.

(d) Batch-processing service: A batch-processing service receives data

from resources such as ingestion layers, appends them to a master data

3.3 An End-to-End SLA Conceptual Model for IoT Applications 77

set and then provides batch views. For example, in an RHMS, to iden-

tify urgent cases, it is important to run machine-learning algorithms

on historical patient records to recognise patterns regarding certain

health issues and to establish a predictive model. The predictive model

can be used later with the real-time data of current patients to detect

particular health issues. Batch views can be computed/queried within

response time constraints, as specified by consumers/subscribers.

(e) Stream-processing service: This service processes incoming data from

data resources such as an ingestion service to complete real-time tasks.

For example, collected data are processed on the fly, and if the analysis

shows an abnormality such as a high heart rate, then appropriate

action is required, such as sending an ambulance. However, to exploit

real-time data to the greatest extent possible, consumers/subscribers

can specify certain requirements such as the maximum acceptable

latency for computing/querying real-time views.

(f) Machine learning service: This is a service that applies different

machine-learning algorithms for different purposes, such as providing

predictions and extracting different dimensions of knowledge from

collected data. For example, the service may apply a machine-learning

algorithm to historical data collected from previous heart attach inci-

dents as training data to create a model. The model can play a part

in predicting new heart-attach incidents based on incoming real-time

data. This approach may prevent disasters from happening or at least

reduce damage by warning people in advance.

(g) Database service (SQL and NoSQL databases): This service is used by

other services such as ingestion, batch and stream-processing services

. It is used to store or retrieve data for batch views and/or real-time

views as intermediate or final data sets. Consumers can provide their

requirements, such as setting a query response time, and specify

whether data encryption is required.

6. Infrastructure resource: This concept covers the required hardware for

computations, storage and networking, which are essential for deploy-

ing/running the above-mentioned services. The infrastructure resources

78 SLA Conceptual Model for IoT Applications

can be IoT devices, Edge resources and/or Cloud resources.

(a) IoT devices: These devices has the ability to sense to reflect the physi-

cal world, then actuate and execute actions in some cases.

(b) Edge resources: These resources allow data processing to take place

at the Edge of the network and they include various types of resources,

such as border routers, set-top boxes, bridges, base stations, wire-

less access points and Edge servers [305]. These examples of Edge

resources, with specialised capabilities [305], can be used to support

Edge computations.

(c) Cloud resources: These resources provide infrastructure as a service

(IaaS) and are mostly located geographically far from the source [305].

The relationships between the above entities, depicted in the conceptual

model (Figure 3.7), are as follows. There is a one-to-many relationship between

the SLO and the SLA entities to express the SLO constraints at the application

level. Therefore, each SLA entity has a composite relationship with SLO entity.

An example of an SLO at the application level could be the end-to-end response

time of an application should be less than Y time units. Furthermore, SLA has

a composite relationship with Party, since parties can play part in providing a

service, consuming a service and/or playing third-party roles (e.g., to monitor a

service).

Additionally, an IoT application has a set of workflow activities (e.g., capture

an event of interest (EoI) or analyse real-time data) that cooperate to deliver the

application. Therefore, there is a composite relationship between the SLA and

WorkflowActivity entities. Each workflow activity requires a service (e.g., a

sensing service, networking service, or stream-processing service). Each service

is deployed on one of the infrastructure resources (for example, an IoT device, an

Edge resource, or a Cloud resource). Furthermore, each one of the services (e.g.,

sensing is a service) and infrastructure resources (e.g., VM is an infrastructure

resource) can have an SLO/SLOs. For example, maximising the level of data fresh-

ness could be an SLO for sensing services, and maximising CPU utilisation could

be an SLO for a VM. Furthermore, each one of the services and infrastructure

3.3 An End-to-End SLA Conceptual Model for IoT Applications 79

resources can have zero or more configuration parameters (e.g., the sample rate

of the sensing service and number of CPUs per VM of an infrastructure resource).

Therefore, there is an association relationship between InfrastructurResource

and Service and a composite relationship between the InfrastructurResource,

Service, SLO and ConfigurationRequirement entities. The dashed rectangle in

the conceptual model (See Figure 3.7) has a set of predefined data types which

are defined as enumeration.

Figure 3.8 associates the concepts presented in the conceptual model with ex-

amples to illustrate the relationships between infrastructure resources, services,

configuration requirements and SLO concepts. For example, "capture event of

interest" is a possible workflow activity in an RHMS and it requires a sensing

service. The sensing service has SLO constraints such as the required level of

data freshness. The sensing service will be deployed/hosted on an IoT device.

Therefore, it is important to consider the requirements of the IoT device, such as

its type (e.g., sensor or RFID), the mobility of the device (e.g., fixed or mobile), the

communication mechanism (e.g., pushing data or pulling data) and the battery

life. The same conditions are applied for the "filter a captured event of interest"

activity, which is performed at the Edge of a network to filter data and utilise net-

work bandwidth by neglecting uninteresting data. This task uses certain devices,

such as a mobile phone or raspberry pi. Each of these devices has specific compu-

tational capabilities, such as a given CPU speed and memory size. Furthermore,

to perform the "real-time data analysis" activity, a stream-processing service can

be used with certain requirement constraints, such as low latency and certain

configuration requirements, including the specification of the window type as a

time-based window or event-based window. The stream-processing service can

be deployed on a Cloud. Thus, certain requirements related to a Cloud resource

can be specified, such as the number of VMs and the acceptable percentage

of CPU utilisation. Due to the important of specifying requirements of each

involved service and the infrastructure which deploys that service and unifying

used vocabularies, the next section identifies the related vocabulary terms that

can be used for specifying QoS and configuration parameters of common services

and infrastructure resources.

80 SLA Conceptual Model for IoT Applications

SLA
has

SLO
e.g.Minimize	

response	time

Workflow	Activity

has

Service Infrastructure	Resource

requires requires

e.g.Sensing,	
Networking,…

e.g. IoT	device,	
Edge,	Cloud

e.g. Capture	event	of	interest,	Analyze	
large	scale	data	on	fly,…

has has

SLO Configuration	
Requirement

e.g.

Maximize	data	
freshness Sample	rate

e.g.

has has

SLO Configuration	
Requirement

e.g.

Maximize
CPU	utilization Number	of	VMs

e.g.

deployOn

Fig. 3.8 Conceptual model with examples to illustrate the relationships between
the key concepts of an SLA for the IoT

3.4 Vocabulary Terms of the Configuration Param-

eters and QoS Metrics

In this section, we cover in depth the "service" and "infrastructure resource" con-

cepts with their sub-classes depicted in Figure 3.7. We describe the "service" and

"infrastructure resource" concepts below with some of the related QoS metrics

and configuration parameters.

We search the literature to collect vocabulary terms that are related to the

QoS metrics and configuration parameters. The reason behind considering the

terms related to configuration parameters is the strong correlation between the

QoS and the configuration parameters. For example, the data publishing rate, as

a configuration parameter, affects the data freshness as a QoS metric. This step

comes after specifying the main components of the IoT reference architecture;

then, the vocabulary terms that can be used to express consumer requirements

are identified for each component. We believe that identifying domain-specific

terms is the first step in providing unified/standardised vocabularies to mitigate

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 81

the risk that can be caused by the ambiguity between the different providers who

cooperate to deliver an IoT application (Section 3.4.2 and Section 3.4.1).

3.4.1 Infrastructure Resources

Infrastructure resources include the type of the infrastructure resource used to

deploy/host a service. An infrastructure resource can be an IoT device, an Edge

resource or a Cloud resource. In the following, we give more details about the

type of infrastructure resource and their related vocabulary terms:

IoT devices

IoT devices consist of heterogeneous sets of devices such as sensors that capture

information about the physical world by sensing some physical parameters of

interest or detecting other smart objects [137]. There are several QoS metrics

related to perception layers, such as the optimum number of active sensors,

sensor quality, energy consumption, data volume, trustworthiness, coverage and

mobility [77, 214, 280].

Although some of these identified metrics may be inconsiderable for a single

IoT device [280], they are not trivial when considering the number of deployed

devices that cooperate to deliver a service. For example, a sensor with a power

consumption value equal to 0.9 watt-seconds seems fine, but when a network of

hundreds of sensors is deployed, the cumulative value of the power consumption

makes a difference [280].

IoT communication protocols can be varied in their communication range,

bandwidth and power consumption. Thus, it is important to consider support for

different types of protocols, and the most appropriate type that satisfies the appli-

cation requirements should be selected. For example, if the power consumption

is the most important key requirement, then ZigBee, as a communication protocol

that can be characterised as a low power consumption protocol [131], should

be used. Alternatively, WiMax is a protocol that provides a high communication

bandwidth. Therefore, it is essential to select devices that support the preferred

communication protocol. Some of the available communication protocols are

Bluetooth, WiFi, ZigBee, 6LowPAN, Cellular, ANT, Z-Wave, Thread, WiMax and

82 SLA Conceptual Model for IoT Applications

NFC 1. Table 3.1 lists a number of vocabulary terms that can be used to express

the requirements related to IoT devices.

Table 3.1 Terminology/vocabulary definitions related to IoT devices

Terminology Definition/Description /Example
Device accuracy Description of how well the device reflects an interesting

event correctly.
Device precision Description of how precisely the device reads an interest-

ing event in a stable manner.
Type of device For example, sensors and RFID tags.
Number of devices The number of deployed devices.
Mobility of devices Specification of whether the device is fixed or mobile (this

feature affects network coverage).
Communication
mechanism

The mechanism of pushing/pulling data to/from the next
layer. This mechanism can be a built-in hardware feature,
a software feature or both.

Communication tech-
nology

The communication protocol with other devices that are
supported, such as by WiFi and Bluetooth. This technology
can be a built-in hardware feature, a software feature or
both.

Battery life Battery life is a measure of battery performance and
longevity, which can be quantified in several ways: as
the run time on a full charge, as the milliampere hours
estimated by a manufacturer, or as the number of charge
cycles until the end of useful life.

Warranty period The time period in which a purchased device may be
returned or exchanged.

Storage size The storage size of an IoT device that can be used to store
data.

Memory capacity The maximum or minimum amount of memory an IoT
device has.

CPU capacity The capability and speed of a processor, which reflect how
many operations it can perform within a given amount of
time.

Edge resources

In the Edge layer, intelligent computation abilities are allocated to Edge re-

sources (a gateway, server, etc.) to improve performance and reduce unnecessary

1See [148] for further details and a comparison of communication protocols

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 83

data transfers to Cloud data centres. Sensitive and personal data, data manage-

ment and control tasks are moved to the Edge to be managed in a secure and

private manner [170]. Edge resources mostly include border routers, set-top

boxes, bridges, base stations, wireless access points, Edge servers, etc. These

examples of Edge resources can be equipped to support Edge computations with

specialised capabilities [305]. Certain type of IoT devices (e.g., sensors) requires

a gateway to link IoT devices with the Cloud layer, in this case, sensors have

lightweight functionality [96]. Other type of IoT devices (e.g., smart sensors)

can work without a gateway if the they have the ability to communicate directly

with the Internet. Furthermore, for a more cost-effective approach with typical

sensors that do not have gateway capability, it is possible to use many-to-one

mapping. Many-to-one mapping is mapping many sensors to one gateway to

allow data transferring by adding TCP/IP connectivity. [96].

Smart gateways can handle resource constraints on the processing power,

power consumption and bandwidth of connected devices by allowing constrained

devices to outsource some functionalities to the gateway. These gateways can

be provided with local databases for temporarily storing sensed data, as well as

enhancing data fusion, aggregation and internal device communication [396].

When specifying the QoS for an application, it is necessary to decide whether to

deploy typical sensors and a gateway or a smart sensor. For example, using smart

sensors (a smart sensor (with some processing capabilities) can behave as an IoT

or an Edge resource) reduces the delay that is required for transferring data to

the Cloud layer, which might be located at a distant position, and the data can be

processed within the Edge resources instead of forwarding them to the next layer.

Some configuration parameters can affect the overall QoS of an IoT applica-

tion. For example, the data publishing rate at the gateway is a concern because

an increase in this rate might cause the the ingestion service to be "overloaded",

which then causes messages to be dropped [61]. Another configuration parame-

ter is the buffer/storage size, which plays a significant role in the performance

of an IoT gateway. For instance, [60] proposes a multi-threaded gateway and

considers different values for different parameters, including different buffer

sizes to enhance gateway performance when evaluating the proposed model.

84 SLA Conceptual Model for IoT Applications

Table 3.2 Terminology/Vocabulary definitions related to Edge infrastructure
resources

Terminology Definition/Description /Example
Availability The ratio of the time that the resource is functioning as ex-

pected and ready for use divided by the total run time.
Type of device For example, a mobile, raspberry pi, or server devices.
Gateway
throughput

The amount of data transferred through the gateway per sec-
ond.

Gateway delay The delay in data collection from nodes.
Publishing rate Specifies when data need to be sent.
Number of de-
vices

Total number of devices within the Edge infrastructure.

Mobility of de-
vices

Specification of whether a device is fixed or mobile (this feature
affects network coverage).

Communication
mechanism

The mechanism of pushing data to the next layer or pulling
data from the next layer; it can be a built-in hardware feature,
a software feature or both.

Communication
technology

The communication protocols with other devices, such as the
communication protocols based on WiFi and Bluetooth. Such
protocols can be a built-in hardware feature, a software feature
or both.

Storage/buffer
size

The buffer/storage size that can be used to buffer/store data
due to limited throughput for out-coming data or to buffer/store
data until delivery confirmation is received.

Memory capac-
ity

The maximum or minimum amount of memory an Edge resource
is capable of having.

CPU capacity The capability and speed of a processor which reflects how
many operations it can perform within a given amount of time.

Table 3.2 lists a number of vocabulary terms that can be used to express the

requirements related to Edge resources.

Cloud resources

Most Cloud data centres are distributed internally across several physical data

centres. As a result, many Cloud providers not only provide fault tolerance for

a single machine or single rack but also provide resilience for full data centre

failures, which yields a high level of reliability. Cloud providers supply computer

resources on an on-demand basis. This approach quickly enables (typically in

minutes) an arbitrarily large number of computing nodes to be accessed with

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 85

scale-up and scale-down possibilities [537].

Cloud resources can have one or more than one SLO; for example, an SLO can

be "CPU utilisation should be more than 80%". Furthermore, a Cloud resource

can have a configuration parameter, such as a number of vCPUs. Most Cloud

systems provide a variety of storage features, such as those for the storage

bandwidth, size, cost, latency, and access control for different storage types,

including local instance storage, distributed block storage, distributed file sys-

tems and object (Binary Large OBjects e.g., (BLOB) storage. These various

services can lead to very different choices regarding software design, depending

on the system or application requirements [537]. Table 3.3 lists a number of QoS

and configuration parameters for Cloud resources. There are different types of

instances, e.g., instances with more RAM versus more storage, or with specific

hardware components, such as GPUs or FPGAs [537].

86 SLA Conceptual Model for IoT Applications

Table 3.3 Terminology/Vocabulary definitions related to Cloud infrastructure
resources

Terminology Definition/Description /Example
Availability The ratio of the time that the resource is functioning

as expected and ready for use divided by
the total run time.

CPU utilisation Percentage representing how the CPU is being utilised.
Outage length The length that the resource is not available.
Throughput The data transfer rate to and from a Cloud resource per second.
Storage size Available disc space for data storage purposes.
Storage bandwidth Measure of the capacity to transfer data between a service and

storage.
Storage type Type of storage for a service (e.g., local SSD or local HDD).
Input/output storage
operations

The specified number of input/output operations for storage.

Access protocols Cloud access protocols such as SSH and SSL.
Memory capacity The memory capacity is the maximum or minimum amount of

memory a computer or hardware device is capable of having or
the amount of memory required for a program to run.

Network bandwidth Network speed among the internal service nodes involved (e.g.,
100BASE-T, 100BASE-SX).

vCPU capacity The capacity of each virtual central processing unit (vCPU)
which reflects how many operations a vCPU can perform within
a given amount of time.

No. of vCPUs The number of vCPUs per VM.
No. of cores per VM The number of cores per VM.
Vertical scale-down
limit

The minimum number of CPUs if scaling is not automatic.

Vertical scale-up limit The maximum number of CPUs if scaling is not automatic
Horizontal scale-up
limit

The maximum number of VMs if scaling is not automatic.

Horizontal scale-down
limit

The minimum number of VMs if scaling is not automatic.

Replication factor The number of copies of data that one wants the cluster to
maintain.

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 87

3.4.2 Service Concept

To achieve SLA constraints at the application level, it is important to ensure an

adequate cooperation between some services under the SLO constraints. There-

fore, we use the service concept to capture the name of the required services. A

service has one or more SLO constraints and configuration requirements. There

is a number of possible services which includes, but not limited to, sensing, net-

working, stream processing, batch processing, database, and machine-learning

algorithm services. Each one of the previously mentioned services can have

one SLO or more; for example, an SLO for stream-processing service can be

"minimising latency to be less than 5 time units". Furthermore, each of the previ-

ously mentioned services can have configuration requirements; therefore, there

is a relationship between the service and configuration requirement concepts

as depicted in Figure 3.7. For example, a service such as stream processing

can specify a requirement related to the “window size” (the window size is a

configuration parameter). In the following section, we list the most common

services that can cooperate to deliver an IoT application.

Sensing Services

A sensing service is responsible for collecting data from IoT devices and send-

ing the collected data through a communication protocol to another layer. The

sensing service specifies the number of sensors, type of sensors, and sampling

rate. In an RHMS, for example, in order to provide a sensing service, we need

to specify the type of sensors associated with a patient, such as a heartbeat

sensor attached to the chest and an accelerometer on the hand/wrist to reflect

the patient’s activities. A sensing service is associated with different parameters

that play a significant role in the overall QoS of an IoT application.

For example, different applications require varying sampling rates depending

on their criticality. The sampling rate determines the frequency at which an

observed phenomenon is measured by a sensor (e.g., 5 Hz) [214]. Moreover,

gaps in historical data can cause IoT applications to behave unexpectedly, which

affects the final outcome and can lead to a bad user experience. Therefore, the

IoT platform must attempt to maximise data freshness [481]. The importance of

the freshness parameter from the perspectives of both producers and consumers

88 SLA Conceptual Model for IoT Applications

has been recently discussed in [391]. The authors argued that for transient IoT’s

content, both data of interest and data packets should have a certain freshness

to perform accurate caching and retrieval operations. Additionally, old content

is automatically discarded from data storage as a consequence of the freshness

requirement [188]. Moreover, data freshness is one of the security requirements

in the IoT because if an attacker first captured data and resent them, the data

would become old [385][176].

Another metric is data quality, which is a complicated metric since it relies on

other metrics, such as data accuracy [315]. Data accuracy, itself, is affected by

data freshness and precision [244], reflecting the high interdependence among

metrics. Furthermore, application objectives such as reducing energy consump-

tion and non-functional properties are interdependent. For example, increasing

the sampling rate plays a significant role in enhancing data freshness, which in

turn improves the information quality; however, this change decreases battery

life (i.e., increases energy consumption). Table 3.4 lists some of the vocabu-

lary terms that can be used to express the QoS constraints and configuration

parameters relevant to sensing services.

Table 3.4 Terminology/Vocabulary definitions related to sensing services

Terminology Definition/Description /Example
Availability The ratio of the time that the service is functioning

as expected divided by the total run time.
Data freshness The age of sensor data because data cannot always be trans-

mitted in real time/near-real time
Sampling rate The rate at which a sensor measures an observed phenomenon

(e.g., 5 Hz). Different applications require different sampling
rates based on their criticality.

Data accuracy The error rate of data. It is possible to specify the average
number of errors over a given time period.

Data integrity Data integrity reflects the degree to which data have been
maintained or altered.

Data type e.g., Capturing weather temperature or humidity.

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 89

Networking Service

Networking service is used for passing the collected data from one layer to

another. They also provide a bidirectional connection for cases in which an

instruction needs to be sent to one or more devices. For example, in an RHMS,

gateways use the network to deliver collected data to the Cloud for further

analysis. A networking service is also used when a command is sent back to a

sensor, for example, to reconfigure the sampling rate, to collect more data or

check a patient’s status. Thus, a network service is responsible for transferring

data between an IoT and an Edge resource [97]. Furthermore, in some cases, an

IoT device has the ability to communicate without needing a gateway; in such a

case, the networking service is used to immediately connect the device to Cloud

services (e.g., ingestion service and/or stream-processing service). The quality

of the network is crucial to being able to deliver the data within the acceptable

time limit before they lose value. Therefore, it is critical to consider the QoS

requirements of the network layer.

QoSs have been extensively researched in the field of network communications

and have well-defined and measurable characteristics, such as throughput, jitter

or packet loss [244], which impact the network delay [264] [121] [237] [76]

[141]. Table 3.5 lists some of the vocabulary terms that can be used to express

QoS constraints and configuration parameters that are relevant to networking

services.

90 SLA Conceptual Model for IoT Applications

Table 3.5 Terminology/Vocabulary definitions related to networking services

Terminology Definition/description/Example
Availability The ratio of the time that the network is fully operational as

expected and ready for use, divided by the period of time.
Link bandwidth The maximum amount of data that can be transferred through

a link per second.
Network delay The delay in data transmission.
Data-in rate The amount of incoming data per time unit.
Data-out rate The amount of outgoing data per time unit.
Jitter The time delay variance between data packets over a network

in milliseconds (ms).
Packet loss rate The ratio of the number of packets lost to the total number of

packets sent. Each packet has a deadline for execution, and
if meeting this deadline is not possible, the scheduler tries to
minimise the number of packets lost due to deadline issues.

Data integrity Data integrity reflects the degree to which data have been
maintained or altered.

Ingestion Services

An ingestion service allows data to be ingested from many data producers [399]

and then forwarded to subscribed/interested destinations, such as a storage

service, analysis service and/or application.

An ingestion service can be associated with different parameters, such as

configuration requirements (e.g., the number of servers/nodes and compres-

sion/decompression support) and SLO constraints (e.g., maximising throughput

and minimising latency).

In an ingestion service, data often come from a variety of sources, including

web logs, databases, various kinds of applications, etc., making it difficult to

understand what sort of data the system will ingest. One alternative is to use big

data (BD) software, which can collect and aggregate data from various sources.

Projects such as Flume 2 and Scribe 3 enable the collection, aggregation and

transfer of large quantities of log information from many distinct sources to a

centralised data storage centre [484].

2http://flume.apache.org/
3https://github.com/facebookarchive/scribe/wiki

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 91

Data retention is one of the parameters that service consumers need to specify

to indicate how long data can be stored before they are deleted. Therefore, the

data rate and data retention time are interdependent since they represent key

factors related to resource storage. For example, in Kafka 4, the data rate of a

partition is the rate at which it generates information; in other words, it is the

average size of the message multiplied by the amount of messages per second.

The data rate indicates how much retention space is needed in bytes for a given

amount of time, in order to ensure retention. If there is a lack in knowledge re-

garding the data rate, the retention space needed to meet a time-based retention

goal cannot be calculated properly [314].

Messaging systems provide some replication-related functionality to improve

various factors, including reliability, fault tolerance and accessibility for repli-

cating data/messages on different servers. For example, replication is used by

default in Kafka; even unreplicated topics are implemented as replicated topics

[218]. Data encryption, data compression and delivery guarantee mechanisms

are application dependent. Thus, for example, if providing a low-latency solution

is important, then providing data encryption and delivery guarantee mechanisms

may cause delays. Furthermore, if reliability is important, then providing a

delivery guarantee mechanism that ensures that messages/data/requests are

delivered using the ingestion service is crucial. In other cases, when throughput

is highly prioritised over latency, data compression is a key concern. The avail-

able messaging systems provide compression, encryption and delivery guarantee

mechanisms. As an example, Amazon Kinesis Data Firehose 5 enables the com-

pression of information before it is delivered, and it supports the GZIP, ZIP and

SNAPPY compression formats [53]. Amazon Kinesis Data Firehose, also, allows

for data encryption using the AWS Key Management Service [53]. RabbitMQ 6

and Kafka both offer durable messaging guarantees. Both offer at-most-once

and at-least-once guarantees, but in very restricted situations, Kafka provides

precisely once guarantees [480]. Table 3.6 lists some of the vocabulary terms that

can be used to express some of the QoS constraints and configuration parameters

that are relevant to ingestion services.

4https://kafka.apache.org/
5https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
6https://www.rabbitmq.com/

92 SLA Conceptual Model for IoT Applications

Table 3.6 Terminology/vocabulary definitions related to ingestion services

Terminology Definition/Description /Example
Availability The ratio of the time that the ingestion service is function-

ing as expected
divided by the period of time.

Throughput The amount of data transferred through the messaging
platform per second.

Latency The time required to process a single input/output trans-
action before forwarding it to its destination within the
ingestion service framework.

Data-in rate The amount of incoming data per time unit.
Data-out rate The amount of data output per time unit.
Data retention time
limit

The limit of how long data can be saved in the ingestion
layer.

Publishing rate Rate at which data is sent from a message broker per time
unit.

Storage size The amount of storage that can be used to store data due
to limited throughput constraints, considering the amount
of incoming data, to store data until delivery confirmation,
or to store data during the specified retention time.

Replication factor How many replicas can be stored.
Data compression
support

A Boolean value that expresses whether data can be com-
pressed/ decompressed depending on the requirements.

Data encryption sup-
port

A Boolean value that expresses whether data can be en-
crypted/decrypted depending on the requirements.

Delivery guarantee
mechanism

It reflects if data have been delivered to the destination.
The network bandwidth is affected if the type of delivery
guarantee mechanism requires sending an acknowledge-
ment back to the data producer.

Data integrity Data integrity reflects the degree to which data have been
maintained or altered.

Name of ingestion
framework

e.g., RabbitMQ, Amazon Kinesis Data Firehose, Flume,
Scribe

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 93

Stream-processing services

A stream-processing service refers to processing incoming data from different

data sources and/or ingestion services to compute real-time views. Further-

more, real-time views can be combined with saved computed batch views using a

database framework (such as Cassandra 7) to answer some questions that rely on

both real-time views and batch views. In an RHMS, data can be collected using

different sensors, such as wearable accelerometers, that can be augmented by

distributed-motion sensors for activity recognition purposes [379]. If the col-

lected data show abnormality for a given activity, such as an elderly person falling

down, then an appropriate action, such as sending an ambulance, is required.

However, applications such as RHMSs rely on real-time data, therefore any delay

in data processing could cause the data to lose their value.

High throughput and low latency are very important QoS requirements in

stream processing. If incoming data are not analysed in real or near-real time,

then the action taken may not be appropriate since actions are based on data

that are no longer considered real-time/near-real-time data due to the delay.

Another important metric is data completeness, which "measures the percent-

age of incoming stream data that are used to compute the query results" [515].

To illustrate the concept of data completeness, consider a data stream with a

number of incoming tuples. In the ideal case, the query should be performed

using a large sliding window, e.g., containing 30 tuples; however, due to resource

constraints, 15 tuples are sampled and used to execute the query, representing

50% of the 30-tuple window size. The sampling method decreases the query data

completeness to 50% [515]. Furthermore, another QoS metric is the miss ratio,

which "evaluates the number of queries that are not completed within the given

time constraints" [515].

In addition, single-point resource estimation is insufficient to handle stream

processing workloads in which information flows endlessly through the operator

graph and yields changes in performance and resource demands. Therefore, to

illustrate the effects of certain configuration parameters on performance and

resource usage, consider the work in [377] as an example. Patel et al [377]

7http://cassandra.apache.org/

94 SLA Conceptual Model for IoT Applications

present a novel method using mixed density networks, a mixed structure of

neural networks and mixed models to estimate the resource usage of data stream

processing workloads in the Cloud. To train the proposed model, a set of features

is used as the model input; the set includes the size of windows that can be

expressed in time units (second) or tuple units (number), the sliding value of

the window type, the average arrival rate of tuples (tuple/second) to query, the

total number of nested sub-queries and the operator type. The set of features is

customised based on the prediction goal because the impact varies with respect

to the CPU and memory. A feature that is correlated with memory consumption

may not be correlated with CPU usage. For example, the selection results for

features suggest that the size of the window has an insignificant effect on the

prediction of CPU use but a notable influence on the prediction of memory use

[377].

Furthermore, the QoS requirements of stream processing are affected by

other configuration parameters, such as the window size and query size; in addi-

tion, the choice of a stream processing framework affects the QoS. For instance,

selecting a framework (such as Spark streaming) 8 that stores data before pro-

cessing affects the latency level; Apache storm 9 can process data immediately

with no need to store them first to save time and reduce latency [135]. Table 3.7

lists the key terms/definitions related to stream-processing services to express

the requirements for both QoS metrics and configuration parameters.

8https://spark.apache.org/streaming/
9https://storm.apache.org/

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 95

Table 3.7 Terminology/vocabulary definitions related to stream-processing ser-
vices

Terminology Definition/Description /Example
Throughput The stream size processed per second.
Latency The time required to process a single input/output trans-

action for a stream-processing service.
Data completeness Measurement of "the percentage of incoming stream data

that are used to compute the query results." [515]
Miss ratio "Miss ratios measure the percentage of queries that are

not finished within the given deadlines." [515]
Time-based window
size

The size of the window with respect to the time required
to process data that occur within the window.

Event-based window
size

The size of the window based on a number of
events/records/messages within a given window.

Sliding window Determines the length of the window and the portion
of the range that is retrieved when the window moves
forward; the intervals can overlap. This value can be time
based, count based or based on a hybrid scheme.

Tumbling window A series of fixed-sized, non-overlapping and contiguous
time intervals.

Micro batch size Specification of the size of data that need to be buffered
first before being processed; however, in stream process-
ing, data are not required to be stored first. It is better
if data are processed in active mode, which means that
data are processed as they arrive and not when they are
pulled.

Data arrival rate Specification of how many data are expected to be re-
ceived per second.

Write capacity Specification of the capacity of writing in one go.
Read capacity Specification of the capacity of reading in one go.
Replication factor Expression of how many replicates can be stored.
Total number of
queries

Specification of how many queries should be considered.

Data Compression
support

A Boolean value that expresses whether data can be com-
pressed/ decompressed depending on the requirements.

Data Encryption Sup-
port

A Boolean value that expresses whether data can be en-
crypted/decrypted depending on the requirements.

Data Integrity Data integrity reflects the degree to which data have been
maintained or altered.

Name of stream pro-
cessing

e.g., Spark streaming, Apache storm

framework

96 SLA Conceptual Model for IoT Applications

Batch Processing Services

A batch-processing service refers to receiving data from ingestion layers and/or

other data sources, appending the data to the master dataset and then obtaining

batch views; moreover, the computed batch views can be stored for inquiry

purposes. Batch processing can be based on incremental algorithms or recompu-

tation algorithms [316], considering the type of job that needs to be accomplished.

For example, in an RHMS, if hospital management is interested in recording

some statistics regarding detected urgent cases, one interesting statistic might

be the total number of urgent cases that have been detected. The count function

can then be applied using an incremental algorithm or recomputation algorithm.

However, since the number of newly detected cases can be added to the previous

calculated total number of detected cases, an incremental algorithm could be

more suitable. The reason for choosing an incremental algorithm in this case is

that the total number can be calculated without considering the entire dataset;

this process avoids the need for additional computational resources since it only

requires an increment step.

However, if the query must consider the whole dataset, for example a query

regarding the average age of people who have a certain health issue, then when-

ever new cases arrive, there is a need to recompute the average considering all

of the recorded ages, which requires a recomputation algorithm. Selecting the

appropriate algorithm is important. Recomputation algorithms require computa-

tional efforts/resources to handle the master dataset, while fewer computational

resources are required for incremental algorithms. However, a recomputation

algorithm is more robust since it is human-fault tolerant because batch views are

continuously recomputed [316].

In batch-processing services, the throughput and query response time are

key QoS requirements in which users are interested. The related terminology/vo-

cabulary definitions are used to express configuration requirements (such as the

number of map and reduce tasks and the batch size). Furthermore, the choice

of batch-processing framework affects the QoS. For instance, Hadoop 10 is a

powerful batch-processing framework; however, it is not the appropriate choice

10https://hadoop.apache.org/

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 97

when there is a need to apply machine-learning algorithms because it requires

data to be reloaded from the disk, which increases the latency; therefore, in this

case, Apache Spark could be an ideal choice [135].

Furthermore, [203] presented a mathematical model for the optimum number

of map tasks in MapReduce resource provisioning, to estimate the optimum

number of mappers based on the resource specifications and data set size. The

MapReduce library divides input data into several InputSplits11. A map task

reads an InputSplit and processes the InputSplit using the user-defined map

function. The map function takes input key/value pairs and creates a set of pairs

for an intermediate key/value. The mapper memory buffers the intermediate

key/value pairs. If the size of the data set reaches the memory buffer threshold,

intermediate key/value pairs are stored on the local disc and partitioned to reduce

the task requirements using the hash function. The reduce tasks involve reading

and sorting steps for the intermediate data and group data with the same key.

Then, the key and intermediate value sets are sent as inputs to the reducer to

be written to the reducer’s memory, and the reduce function is invoked [483].

The output of the reduce function is concatenated and then written to the output

file [203]. The MapReduce model and Hadoop Open Source Implementation are

effective for large data processing tasks. They are inherently built for batch

processing jobs with high throughput requirements [425]. Throughput, as a

QoS metric, indicates the number of MapReduce jobs completed per time unit

(e.g., minutes) [147]. Furthermore, it should be noted that the number of map

tasks can be used as a cost estimator, as applied in [147]. Table 3.8 lists the

terminology/vocabulary definitions related to expressing the QoS metrics and

configuration parameters of batch-processing services.

11InputSplit represents the data which can be processed by an individual Mapper

98 SLA Conceptual Model for IoT Applications

Table 3.8 Terminology/Vocabulary definitions related to batch-processing services

Terminology Definition/Description /Example
Throughput The number of batches that can be processed per second.
Response time The time required to process a submitted job and receive

a response.
Batch size The limit on the size of each batch that is submitted to be

processed.
No. of batch jobs The number of submitted batch jobs.
Process running fre-
quency

Specification of how frequently the process needs to be
run, e.g., twice per hour.

Max. memory of the
map task

Amount of memory assigned to the map task.

Max. memory of the
reduce task

Amount of memory assigned to the reduce task.

No. of mappers The number of mappers.
No. of reducers The number of reducers.
Write capacity The capacity of writing in one step.
Read capacity The capacity of reading in one step.
Replication factor Expression of how many replicas can be stored.
Total number of
queries

Expression of how many queries should be considered.

Data compression sup-
port

A Boolean value that expresses whether data can be com-
pressed/ decompressed depending on the requirements.

Data encryption sup-
port

A Boolean value that expresses whether data can be en-
crypted/decrypted depending on the requirements.

Data integrity Data integrity reflects the degree to which data have been
maintained or altered.

Name of batch pro-
cessing

e.g., Hadoop

framework

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 99

Machine Learning Services

A machine learning service refers to a service that permits the use of various

machine-learning algorithms to predict the purposes and different dimensions of

knowledge from the collected data. For instance, a machine algorithm can be

applied to historical data collected from patients with heart attack incidents to

obtain training data. Then, the training data can be used to create a model to

predict heart attack cases based on incoming real-time data, which can prevent

emergencies from happening or at least reduce patient damage by warning

patients in advance.

In terms of practical needs, there are different QoS metrics, including speed,

accuracy, etc., as in most topic detection and tracking (TDT) applications. Fur-

thermore, different types of algorithms for machine learning affect accuracy and

speed differently. The algorithm class reflects the type of algorithm, including

classification, clustering, etc., whereas the algorithm name refers to the specific

algorithm used, such as K-means, linear discriminant analysis (LDA) and naive

Bayes 12. Different algorithms, even if they are from the same class, can have

different impacts on the performance of a system. For example, some clustering

algorithms, such as the K-means and Canopy algorithms, differ substantially

in their speed of execution; specifically, K-means has more than one iteration,

while Canopy has only one iteration [488]. Table 3.9 shows a list of the main

QoS metrics and configuration parameters that are related to machine learning

services.

12Refer to [128] for further details about machine-learning algorithms

100 SLA Conceptual Model for IoT Applications

Table 3.9 Terminology/vocabulary definitions related to machine-learning algo-
rithm services

Terminology Definition/Description /Example
Accuracy The accuracy of the analysis.
Class of ML The name of the class in which an algorithm is classified. For

example, supervised learning involves classification and regres-
sion algorithms, and the unsupervised learning class includes
clustering and association algorithms.

Name of ML al-
gorithm

Specifies the name of the algorithm required, such as logistic
regression, decision forest, decision jungle, neural network,
support vector machine, principal component analysis (PCA)-
based anomaly detection, K-means, or naive Bayes.

Way to run the
ML algorithm

Examples of this process are Sequential and MapReduce.

Data integrity Data integrity reflects the degree to which data have been
maintained or altered.

Database Services

A database service can be used for data retrieval with different services, such as

ingestion, batch and streaming services. The database service stores incoming

data as an intermediate or final dataset, a set of computed batch views or a set

of computed real-time views. For instance, the incoming data can be initially

stored, such as with Hadoop Distributed File System (HDFS)13 in Hadoop, before

any further processing. Then, the data can be retrieved for analysis or can be

processed on the fly, and the derived results are stored in a database such as

Cassandra.

Different types of databases are selected based on the purpose of the appli-

cation and the required QoS. For example, in stream processing, data can be

stored in databases that support low-latency read and write operations, whereas

cases that require immutable data can use durable object storage platforms

such as Amazon S314, which is preferable to other applications. Furthermore,

to handle large amounts of data, a distributed database platform is employed,

such as the available open-source distributed database Druid15, which supports

13HDFS represents the storage component of Hadoop framework.
14https://aws.amazon.com/s3/
15http://druid.io/

3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics 101

data ingestion as well as queries with low latency, and Apache HBase16, which

supports the random and real-time reading/writing of large volumes of data.

However, the selection of the appropriate platform is affected by several factors,

such as the query response time [135]. Table 3.10 lists some of the most common

QoS metrics and configuration parameters of database services.

Table 3.10 Terminology/vocabulary definitions related to database services

Terminology Definition/Description /Example
Throughput The queries that can be processed per second.
Response time The time from when a user sends a request to when they receive

a response.
Type of
database

For example, SQL or NoSQL.

Type of NoSQL For example, a key-value, document-based, graph-based, or
column-based NoSQL.

Read error rate The number of errors associated with reading attempts per
time unit (seconds).

Cache hit ratio The ratio of cache hits to misses, expressed as a percentage. A
cache hit is when the data requested for processing are found
in the cache memory. A cache miss is when the data requested
for processing are not found in the cache memory.

Write error rate Rate of errors associated with writing attempts per time unit
(seconds).

Write capacity The capacity of writing in one step.
Read capacity The capacity of reading in one step
Replication fac-
tor

Expression of how many replicas can be stored.

Compression
support

A Boolean value that expresses whether data can be com-
pressed/decompressed depending on the requirements.

Data encryp-
tion support

A Boolean value that expresses whether data can be encrypt-
ed/decrypted depending on the requirements.

Data Integrity Data integrity reflects the degree to which data have been
maintained or altered.

16http://hbase.apache.org/

102 SLA Conceptual Model for IoT Applications

3.5 Evaluation

Our evaluation method is designed to introduce the participants to the conceptual

model, discuss it and clarify any unclear points. Then, the participants can offer

their opinions based on what has been introduced and their knowledge of the

field, using a questionnaire.

Previous works, such as [476, 245, 227], did not mention any form of evalua-

tion to their proposed conceptual model. However, in this section, we present our

evaluation approach to assessing the proposed conceptual model. We have ap-

plied a goal-oriented questionnaire approach, and further details of the evaluation

procedure and the results are presented in the following section.

3.5.1 Experiment

The main purpose of the conducted experiment was to evaluate the proposed

conceptual model and to determine whether it meets the relevant predefined

goals: generality, based on the coverage of general concepts that are common in

IoT applications; coverability, or the extent to which IoT application requirements

are covered, considering the main concepts that can be used within an SLA to

express QoS constraints and configuration requirements.

3.5.2 Participants

The potential users of our proposed work are IoT administrators. Therefore, the

research interests/topics of the participants in our experiment are mainly related

to the IoT. The study was conducted with 14 participants; most of them are Ph.D.

students who are working on topics related to the IoT, such as remote health

and smart city applications. Their research interests included Cloud computing,

Edge computing and networking. Table 3.11 provides a brief description of the

research interests of each participant.

3.5.3 Procedure

The experiment was carried out following a well-defined procedure. Our evalu-

ation method was a focus group followed by a questionnaire. The focus group

approach has several advantages, for instance, the collection of in-depth in-

3.5 Evaluation 103

Table 3.11 A brief description of participants’ research interests

Participant Research Interest
1 IoT Workflow composition and configuration management
2 Topics related to the network layer of the IoT and the Cloud
3 Monitoring performance of BigData cluster in multi-Cloud
4 IoT data management and analytics
5 Remote health monitoring using the IoT
6 Research related to IoT projects
7 Real-time ambulance system
8 BigData workflow orchestration
9 Monitoring of building energy performance using the IoT
10 Security of the IoT
11 Fault tolerance in the IoT
12 Automating Computational Placement in IoT environments

across heterogeneous platforms
13 Research related to IoT and Cloud projects
14 Blockchain and IoT

formation and the expansion and clarification of questions. Thus, we use the

focus group approach to review the conceptual model and follow it up with a

questionnaire to allow the participants to express their opinions.

To encourage the participants to take part in this evaluation, and to save their

time, the questions were closed questions 17. However, there was a comment

textbox to allow the participants to comment and make suggestions, provide

criticisms or give other feedback.

First, in the focus group18, the participants received an introduction to the

SLA and the reference architecture of the IoT, and a presentation was given on

the conceptual model. The participants were allowed to discuss and comment

on the conceptual model. A use-case was employed for scenario clarification

purposes (RHMS). At the end of this period, the participants were asked to

submit a written version of the completed questionnaire, in which there are three

questions related to the conceptual model. Furthermore, there is a comment

textbox to allow the participants to comment and make suggestions, provide

17Closed questions are questions that provide participants/respondents with pre-populated
answer choices

18The size of the focus groups varied based on the availability of the participants

104 SLA Conceptual Model for IoT Applications

criticisms or give other feedback.

We present the participants with three questions that reflect the objectives

that we aim to measure. There are positive and negative options associated

with each question. The three questions related to the conceptual model are as

follows:

• Overall, how satisfied or dissatisfied are you with our conceptual model?

• To what extent does the conceptual model cover your requirements?

• How satisfied are you with the conceptual model’s generality?

3.5.4 Experimental results

We applied Likert scales, which are very common because they are one of the

most popular ways of measuring attitudes, beliefs and behaviors. In contrast to

binary questions, which only yield two answers, Likert-type questions provide

more granular feedback.

This approach allows researchers to discover degrees of opinion that could

make a real difference to understanding the feedback. Often, it can recognise

places where developments could be made to the service or product. However,

this type of questionnaire has weaknesses, such as acquiescence, meaning that

the participants might consent to statements made in order to "please" the

experimenter. However, to minimise this risk, the experimenter made it clear

that providing names was optional. Furthermore, the experimenter provided

negative options such as "Dissatisfied" and "Very dissatisfied" for each question

in addition to other positive options such as " Satisfied". In addition, to minimize

the influence of colleagues (such as avoid having cases where one participant is

affected by his/her colleagues opinion when answering the questionnaire), each

participant provided their feedback separately to prevent any external influence

and on their own time to prevent time pressure.

Figures 3.9, 3.10 and 3.11 show the results based on the participants’ answers

with regard to the proposed conceptual model. Fifty percent of the participants

described their overall satisfaction level as satisfactory, while the other fifty

3.5 Evaluation 105

percent were very satisfied. Regarding the generality of the conceptual model,

more than 60% of the participants were very satisfied, and the rest were satisfied.

Regarding the coverability (capturing the main related concepts) of the con-

ceptual model, more than 40% of the participants answered that the model

provided full coverage, and the rest of the participants answered: “mostly cov-

ered”.

0%
10%
20%
30%
40%
50%
60%
70%
80%

Very	satisfied Satisfied Neither	satisfied	
nor	dissatisfied

Dissatisfied Very	dissatisfied

Overall,	how	satisfied	or	dissatisfied	are	you	
with	our	conceptual	model?	

Fig. 3.9 Results of the evaluation: Satisfaction

106 SLA Conceptual Model for IoT Applications

0%
10%
20%
30%
40%
50%
60%
70%
80%

Very	satisfied Satisfied Neither	satisfied	
nor	dissatisfied

Dissatisfied Very	dissatisfied

How	satisfied	are	you	with	the	conceptual	
model’s	generality?

Fig. 3.10 Results of the evaluation: Generality

0%
10%
20%
30%
40%
50%
60%
70%
80%

Fully	covers Mostly	covers Hardly	covers Does	not	cover	them	
at	all

To	what	extent	does	the	conceptual	model	
cover	your	requirements?

Fig. 3.11 Results of the evaluation: Coverability

3.5 Evaluation 107

3.5.5 Evaluation Analysis

As the answer for each question was based on a Likert scale, ordinal codes

were assigned to the answers. For example, from very satisfied=1 to very

dissatisfied=5, and from fully covers=1 to does not cover them at all=5. Per-

centages were used to explore the distribution of answers, while the median

was computed to define the general tendency of the participants. The Wilcoxon

test for one sample was used and it is a nonparametric test which we used due

to the small sample size [132]. The Wilcoxon test was used, in this study, to

examine whether there was a significant satisfaction with the conceptual model’s

generality (median<=2) and coverability (median<=2). P-value is used to decide

if the difference is significant. A p-value of 0.05 was used as the threshold for

significant results (0.05 is a rule of thumb, so the result is significant if p-value

<0.05).

The results in 3.12 indicate that the participants were very satisfied with the

conceptual model (median=1.50), at a very highly significant level (p-value<.001).

Regarding the coverability,the participants believed that the conceptual model

mostly covered the main concepts (median=2.00), at a very highly significant

level (p-value<.001). The participants were satisfied with the generality of the

conceptual model (median=2.00), at a very highly significant level (p-value<.001).

There were a few comments regarding the concept names that describe resources,

and it was suggested that “resources” be changed to "infrastructure resources".

Furthermore, there was a comment regarding the presentation of the conceptual

model as follows: "it would be better if it (the conceptual model) was represented

in hierarchical view" and both comments are considered.

108 SLA Conceptual Model for IoT Applications

Table 3.12 Result of conceptual model using the Wilcoxon test

Median p-value
(Wilcoxon
test)

Decision

Overall, how satisfied or dissatisfied
are you with our conceptual model?

1.5 <.001 Significant
result

To what extent does the conceptual
model cover your requirements?

2 <.001 Significant
result

How satisfied are you with the con-
ceptual model’s generality?

1 <.001 Significant
result

3.6 Conclusion and Future Work

In this chapter, we tried to overcome one of the end-to-end SLA specification

challenges related to the heterogeneity of key QoS metrics across the computing

environment. We proposed a conceptual model for an IoT-specific SLA. Then we

identified domain-specific vocabulary terms that can be used as a starting point

for an SLA specification, considering both the QoS constraints and configuration

parameters across layers.

There is a limitation in the presented work related to the sample size of

participants who evaluated the SLA conceptual model. However, the reason

for the small sample size is that we sought participants with domain-specific

knowledge, especially as we were looking to review our conceptual model with

experts. In future work, we will try to extend the identified services and infras-

tructure resources and identify a list of vocabulary terms related to QoS metrics

and possible configuration parameters. Furthermore, we will try to evaluate the

proposed model with a larger sample size.

In the next chapter, we present an SLA grammar set derived from the work

presented in this chapter.

Chapter 4

Service level Agreement

Specification for IoT Applications

Overview

It is essential to consider the SLA specification as a first step towards SLA moni-

toring and management. We believe that current SLA specification formats are

inadequate and unable to accommodate the unique characteristics of the IoT

domain, such as its multi-layered nature. Therefore, this chapter proposes a

grammar for the syntactical structure of an SLA specification for the IoT. The

syntax is based on the proposed conceptual model (Chapter 3), which considers

the main concepts employed for expressing the requirements of the services and

infrastructure resources of an IoT application on an end-to-end basis.

To evaluate the proposed SLA specification, we conducted a user study with

domain experts. The participants were researchers whose main research inter-

ests were related to Cloud computing, networking and the Internet of Things. The

evaluation process was conducted by applying the goal/question/metric (GQM)

approach to reflect user satisfaction with the identified vocabularies. The results

show a high level of satisfaction with the generalizability and expressiveness of

the considered vocabularies in terms of capturing the QoS metrics and configura-

tion parameters of an IoT ecosystem.

110 Service level Agreement Specification for IoT Applications

4.1 Introduction

Specifying constraints within an SLA is essential because it protects consumer

rights from any damage encountered during the contract period. Thus, it in-

creases the level of trust between a service consumer and a service provider

[432, 248]. Additionally, due to the multi-layer nature of the IoT and the huge

dependency between cooperating layers [28], the individual SLA management

mechanism for each layer of the IoT is inadequate. Therefore, this chapter pro-

poses a grammar for the syntactical structure of an end-to-end SLA specification

for the IoT. The syntax is based on the proposed conceptual model presented in

Chapter 3. The importance of providing SLA grammar lies in its role in unifying

the structure of the SLA and standardising the vocabularies used to formally

describe the offered/requested services. Furthermore, it is a first step towards

providing a machine-readable SLA specification. In the machine-readable SLA

specification, the data is structured following the proposed grammar. They can be

processed by a computer and is presented in a CSV1, JSON2, XML3, etc. format,

with no need for human intervention in the interpretation. Having the SLA in a

machine-readable format has advantages such as minimising the risk of confu-

sion over the SLA interpretation [472, 290]. Additionally, it is an important step

towards automating the processes of application deployment, monitoring and

dynamic reconfiguration [472, 290]. Furthermore, providing a machine-readable

end-to-end SLA for an IoT application enhances and automates the process of

selecting a service provider and negotiating, monitoring, enforcing and managing

the SLA [472, 290].

Several projects have focused on the development of SLA specification lan-

guages [347, 165, 77, 3, 445, 316] 4. For example, [445] present a framework

that enables application developers to specify SLA metrics, how they can be

calculated, the evaluation period, and constraints to avoid SLA violations using

their SLA grammar, termed XCLang. However, their main focus is the Cloud

1A CSV file (Comma Separated Values) is a plain text file that contains a data set, which is
used for transferring data between different applications.

2JSON (JavaScript Object Notation) is a lightweight format for data exchange.
3Extensible Markup Language (XML) is a markup language that specifies a collection of

document encoding rules in human-readable, machine-readable format.
4Refer to Chapter 2 for further details about these references

4.1 Introduction 111

database tier.

Gámez Díaz et al [167] propose iAgree. iAgree is a language used to describe

a vendor-neutral SLA, and it aims to model a considerable number of scenarios,

including computational services (e.g., RESTful APIs) and human services (e.g.,

business processes).

The above-mentioned studies [227, 167, 347, 165, 77, 3, 445, 316] are works

that define an SLA in a machine-readable format. However, none of the specifi-

cation languages have been developed for the IoT. This means that there is no

consideration of an end-to-end specification, which implies that the huge depen-

dency between IoT layers has been neglected. In SLAs for IoT ecosystems, it is

important to specify end-to-end contractual terms to ease the process of tracing

when the quality of service becomes degraded [408]. Additionally, specifying

end-to-end contractual terms ensures that service providers deliver services that

match consumers’ expectations and it protects their rights if they encounter any

damage during the contract period [432, 248].

Therefore, the main goal of this chapter is to design and create an end-to-end

SLA specification for the IoT while taking the following challenges into account

[392]:

1. The multi-layered nature of the IoT (IoT device layer, Edge computing layer,

Cloud computing layer).

2. Several metrics are required to capture the performance of the services

and infrastructure resources for each layer of an IoT application (e.g., data

freshness at the IoT devices layer and the latency of stream processing in

the Cloud layer).

The main contributions of this chapter are as follows:

• Propose a new multi-layered grammar for the syntactical structure of an

SLA specification for IoT applications.

• Evaluate the proposed grammar.

The remainder of this chapter is organised as follows: The SLA grammar is

presented in Section 4.2. We evaluate our work and discuss the results in Section

112 Service level Agreement Specification for IoT Applications

4.3. Section 4.4 provides a comparison of approaches that are similar with

respect to a number of important criteria. Our conclusions and future research

directions are presented in Section 4.5.

4.2 SLA Grammar for IoT Applications

One of our main objectives is to provide a machine-readable SLA specification

that can be used by an application orchestrator to automatically deploy IoT

applications and monitor adherence to the QoS requirements. In this section, we

propose an SLA grammar for IoT applications based on the conceptual model

(presented in Chapter 3). We define the SLA grammar formally using the extended

Backus-Naur form (EBNF). The EBNF is a context-free grammar that can define

the syntactic structure of a language. A context-free grammar is a collection of

recursive rules for creating string patterns and it consists mainly of [430]:

• Terminal symbols: These are the smallest block in the grammar (e.g., quoted

literal and a regular expression); they can be defined as tokens and they

are always on the right side of the production rule.

• Non-terminal symbols: These are defined by a set of terminals and other

non-terminals and they are always placed on the left side of the production

rules.

• Production rules: These are a series of production rules that replace non-

terminal symbols. Production rules have the following form:

non-terminal symbol −> non-terminal symbols and terminals symbols.

Some of the operators used within the grammar are:

• “?” indicates that the symbol (or set of symbols in parentheses) to the left

of the operator is/are optional and can be included or not included.

To represent the number of occurrences/repetitions of a symbol, we use the

following operators:

– “*” means that the symbol (or set of symbols in parentheses) to the left

can occur zero or more times.

– “+” means that the symbol (or set of symbols in parentheses) to the

left can occur one or more times.

4.2 SLA Grammar for IoT Applications 113

The EBNF is used to define the syntactic structure of our proposed SLA

specification for the IoT. Table 4.1 shows the grammar of the proposed SLA spec-

ification, which is formally defined in EBNF. The SLA grammar consists of a list

of production rules; each production has a non-terminal symbol on its left-hand

side, while its right-hand side represents the non-terminal production rule. The

production rule consists of at least one non-terminal and/or terminal symbol.

Terminal symbols are written between single or double quotation marks. The

SLA language, then, can be produced from the given context-free grammar by

simply producing a set of terminal symbols that result from frequently replacing

any non-terminal in the sequence with its production rule. For example, in the

first line of Table 4.1, the production rule for the non-terminal: < SLA > is:

< appType>? < slaId >? < startDate>? < endDate>? < description>? < slaState>?
< party >+? < slo >* < work f lowActivity >* < budget >

Furthermore, within the production rules, there are many non-terminal symbols.

Each of the defined symbols in the production rules of non-terminal < SLA >

has its own production rule. Therefore, each symbol can be replaced by its

production rule. For example, < id > can be replaced by < digit >, and < digit >

can be replaced by its production rule:

< digit > := ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’|‘8’ | ‘9’.

The process of replacing each non-terminal with its production rule is repeated

until the outcome is an SLA specification language for the IoT.

Consider the following example: < SLA > ::= < appType >? < slaId >? <

startDate >? < endDate >? < description >? < slaState >? < party > +? < slo >*

< work f lowActivity >* < budget >

This example can be read as an SLA (< SLA >) that consists of optional charac-

teristics id (< slaId >), a start date (< startDate >), an end date (< endDate >), a

description (< description >), an SLA state (< slaState >) and a budget constraint

(< budget >). This example additionally consists of one or more parties (< party>),

zero or more SLOs (< slo >) and zero or more workflow activities

(< work f lowActivity >).

In the following, we give a brief description of each non-terminal symbol listed

in the proposed grammar presented in Table 4.1. Some of the non-terminal sym-

bol presented below are inspired by works presented in [472, 227, 256, 245, 476]

114 Service level Agreement Specification for IoT Applications

such as < startDate > < endDate > < party >. We introduce the non-terminal

< work f lowActivity > symbol and its related non-terminal symbols listed in its

production rule (e.g., < activity > < service > < in f rastructureResourceType > <

con f igurationRequirement >) as well as most of the listed domain-specific vocabu-

laries (e.g., ‘Persistence of Customer Information’| | ‘Encryption Support’| ‘No of

vCPU’ |....... | ‘Write Capacity’):

4.2.1 <SLA>

An SLA attribute consists of the following:

• <appType> Indicates the type of application, such as a smart home applica-

tion, remote health application, or smart metering.

• <slaId> Assigns a unique identifier to an SLA.

• <description> Assigns a descriptive context to the SLA.

• <startDate> Defines the start date of an agreement.

• <endDate> Defines the end date of an agreement.

• <slaState> Reflects the state of the SLA as an offer, request or finalised

agreement. It helps in the SLA negotiation phase.

• <party> An attribute to hold attributes that describe the parties involved in

an SLA. We describe the <party> parameter in more detail in 4.2.2.

• <slo> An attribute to define a list of the SLOs of a system (at the application

level). For example, in the RHMS, one of the SLOs at the application level is

“detect urgent cases within 300 seconds time unit”. We describe the <SLO>

attribute in more detail in 4.2.3.

• <workflowActivity> Lists the main workflow activities of the application.

We describe the <workflowActivity> attribute in more detail in 4.2.4.

• <budget> : Specifies the financial cost/price limit of an SLA. It has the

following elements:

4.2 SLA Grammar for IoT Applications 115

T
a
b

le
4

.1
S

L
A

G
ra

m
m

a
r

o
f

Io
T

A
p

p
li

ca
ti

o
n

N
o
n

-t
e
rm

in
a
l

P
ro

d
u

c
ti

o
n

ru
le

s

<
SL

A
>

::
=

<
ap

pT
yp

e
>

?
<

sl
aI

d
>

?
<

st
ar

tD
at

e
>

?
<

en
dD

at
e
>

?
<

de
sc

ri
pt

io
n
>

?
<

sl
aS

ta
te

>
?
<

pa
rt

y
>
+

?
<

sl
o
>
+

<
bu

dg
et
>

<
w

or
k

fl
ow

A
ct

iv
it

y
>
+

<
ap

pT
yp

e
>

::
=

‘S
m

a
rt

B
u

il
d

in
g

’
|‘

S
m

a
rt

T
ra

ffi
c’

|..
|‘

S
m

a
rt

C
it

y’
<

sl
aI

d
>

::
=

<
st

ri
ng

>
<

st
ar

tD
at

e
>

::
=

<
da

te
>

<
en

dD
at

e
>

::
=

<
da

te
>

<
de

sc
ri

pt
io

n
>

::
=

<
st

ri
ng

>
<

sl
aS

ta
te

>
::

=
‘o

ff
e
r’

|‘r
e
q

u
e
st

’|‘
a
g

re
e
d

O
n

’
<

pa
rt

y
>

::
=

<
pa

rt
yI

d
>

+
?
<

na
m

e
>

+
<

co
nt

ac
t>

+
<

ro
le
>

+
<

pa
rt

yI
d
>

::
=

<
di

gi
t>

<
na

m
e
>

::
=

<
st

ri
ng

>
<

co
nt

ac
t>

::
=

<
st

ri
ng

>
<

ro
le
>

::
=

‘C
lo

u
d

P
ro

vi
d

e
r’

|‘N
e
tw

o
rk

P
ro

vi
d

e
r’

|‘
S

e
n

si
n

g
P

ro
vi

d
e
r’
|.

..
|‘

B
ro

k
e
r’

|‘
Io

T
a
d

m
in

is
tr

a
to

r’
|‘

E
n

d
U

se
r’

<
bu

dg
et
>

::
=

<
am

ou
nt

>
<

cu
rr

en
cy

>
<

am
ou

nt
>

::
=

<
di

gi
t>

<
cu

rr
en

cy
>

::
=

‘$
’
|..
..
.|

‘£
’

<
sl

o
>

:=
<

qo
sM

et
ri

c
>

<
pr

io
ri

ty
>

<
re

qu
ir

ed
Le

ve
l>

<
va

lu
e
>

<
un

it
>

<
pa

rt
yI

d
>

?
<

qo
sE

va
lu

at
in

gS
ch

ed
ua

le
>

?
<

ac
ti

on
>

?
<

qo
sM

et
ri

c
>

::
=

‘O
u

ta
g

e
L

e
n

g
th

’|‘
R

e
sp

o
n

se
T

im
e
’
|‘

A
va

il
a
b

il
it

y’
|..
..
|‘

T
im

e
li

n
e
ss

’
|‘

C
o
st

’
<

pr
io

ri
ty

>
::

=
‘H

ig
h

’|‘
M

e
d

iu
m

’|‘
L

o
w

’
<

re
qu

ir
ed

Le
ve

l>
::

=
‘g

re
a
te

r
th

a
n

’
|‘g

re
a
te

r
th

a
n

o
r

e
q

u
a
l’
|‘

e
q

u
a
l’
|‘

n
o
t

e
q

u
a
l’
|‘

le
ss

th
a
n

’
|‘

le
ss

th
a
n

o
r

e
q

u
a
l’

<
un

it
>

::
=

‘%
’
|‘

m
il

li
se

co
n

d
’
|‘

se
co

n
d

s’
|‘m

in
u

te
s’

|‘
h

o
u

r’
|‘

m
o
n

th
’
|‘y

e
a
r’

|‘K
B

’|.
..

..
|‘

p
e
r

m
o
n

th
’

<
w

or
k

fl
ow

A
ct

iv
it

y
>

::
=

<
ac

ti
vi

ty
>

<
se

rv
ic

e
>

*
<

in
fr

as
tr

uc
tu

re
R

es
ou

rc
e
>

*
<

ac
ti

vi
ty

>
::

=
‘C

a
p

tu
re

e
ve

n
t

o
f

in
te

re
st

(E
o
I)

’
|‘

E
xa

m
in

e
th

e
ca

p
tu

re
d

(E
o
I)

o
n

fl
y’

|..
|‘

S
to

re
U

n
st

ru
ct

u
re

d
D

a
ta

’
<

se
rv

ic
e
>

::
=

<
se

rv
ic

eT
yp

e
>

<
sl

o
>
∗
<

co
n

fi
gu

ra
ti

on
R

eq
ui

re
m

en
t>

∗
<

pa
rt

yI
d
>
∗
<

pr
ic

e
>

?
<

se
rv

ic
eT

yp
e
>

::
=

‘s
e
n

si
n

g
S

e
rv

ic
e
’
|‘

b
a
tc

h
P

ro
ce

ss
in

g
S

e
rv

ic
e
’
|..
..
.|

‘m
a
ch

in
e
L

e
a
rn

in
g

S
e
rv

ic
e
’

<
in

fr
as

tr
uc

tu
re

R
es

ou
rc

e
>

::
=

<
in

fr
as

tr
uc

tu
re

R
es

ou
rc

eT
yp

e
>

<
sl

o
>
∗
<

co
n

fi
gu

ra
ti

on
R

eq
ui

re
m

en
t>

∗
<

pa
rt

yI
d
>
∗
<

pr
ic

e
>

?
<

in
fr

as
tr

uc
tu

re
R

es
ou

rc
eT

yp
e
>

::
=

‘I
o
T

D
e
vi

ce
’
|‘

C
lo

u
d

R
e
so

u
rc

e
’
|‘

E
d

g
e
R

e
so

u
rc

e
’

<
co

n
fi

gu
ra

ti
on

R
eq

ui
re

m
en

t>
::

=
<

bo
ol

ea
nB

as
ed

C
on

fi
gu

ra
ti

on
>

|<
ty

pe
B

as
ed

C
on

fi
gu

ra
ti

on
>

|<
nu

m
er

ic
al

B
as

ed
C

on
fi

gu
ra

ti
on

>
<

bo
ol

ea
nB

as
eC

on
fi

gu
ra

ti
on

>
::

=
<

co
n

fi
gu

ra
ti

on
F

ea
tu

re
>

<
va

lu
e
>

<
co

n
fi

gu
ra

ti
on

F
ea

tu
re

>
::

=
‘P

e
rs

is
te

n
ce

o
f

C
u

st
o
m

e
r

In
fo

rm
a
ti

o
n

’|
|‘

E
n

cr
yp

ti
o
n

S
u

p
p

o
rt

’|
‘N

o
o
f

vC
P

U
’
|..

..
..

.
|‘

W
ri

te
C

a
p

a
ci

ty
’

<
ty

pe
B

as
ed

C
on

fi
gu

ra
ti

on
>

::
=

<
co

n
fi

gu
ra

ti
on

F
ea

tu
re

>
<

ty
pe

>
<

ty
pe

>
::

=
‘S

S
D

(l
o
ca

l
m

a
ch

in
e
)’
|..

..
..

.
|‘

H
D

D
(l

o
ca

l
m

a
ch

in
e
)’

<
nu

m
er

ic
al

B
as

ed
C

on
fi

gu
ra

ti
on

>
::

=
<

co
n

fi
gu

ra
ti

on
F

ea
tu

re
>

<
re

qu
ir

ed
Le

ve
l>

<
va

lu
e
>

<
un

it
>

?
<

qo
sE

va
lu

at
in

gS
ch

ed
ua

le
>

::
=

<
st

ar
tA

t>
<

un
it

B
as

e
>

<
st

ar
tA

t>
::

=
<

ti
m

e
>

<
da

te
>

<
un

it
B

as
e
>

::
=

‘h
o
u

rl
y’

‘d
a
il

y’
|..
..
|‘m

o
n

th
ly

’
<

ac
ti

on
>

::
=

‘S
e
n

d
N

o
ti

fi
ca

ti
o
n

’
|..
..
|‘

R
e
fu

n
d

A
s

C
re

d
it

’
<

pr
ic

e
>

::
=

<
am

ou
nt

>
<

cu
rr

en
cy

>
<

pe
rU

ni
t>

<
pe

rU
ni

t>
::

=
‘p

e
r

d
a
ta

si
ze

’
|..
..
|‘

p
e
r

V
M

ty
p

e
’

<
va

lu
e
>

::
=

<
st

ri
ng

>
|<

di
gi

t>
|<

do
ub

le
>

|<
B

oo
le

an
>

116 Service level Agreement Specification for IoT Applications

– <amount>: Specifies the amount of money needed to pay for the service

under particular requirements. For example, in the SLA clause of the

RHMS, subscribers pay 100 dollars to use the service.

– <currency>: Specifies the currency (e.g., dollars).

4.2.2 <Party>

This attribute specifies the parties involved in an SLA [165]. It has the following

elements:

• <partyId>: The unique identification of a party involved in an SLA.

• <name>: Specifies, textually, the name of the party.

• <contact>: Specifies the contact details of a party. The contact details can

include phone number, email address and home address.

• <role>: Specifies, textually, the expected role of a party. For example, the

role of a network provider is “providing networking service”.

4.2.3 <slo>

This is an attribute of an <slo>. It defines the metric of interest to measure the

performance of a system with regard to the SLO requirements. An SLO could

minimise the latency to be less than x time unit; latency in this SLO clause is

the QoS metric of the SLO.

• <qosMetric>: Used to name a QoS of interest, for instance, the <qosMetric>

of an slo is latency.

• <priority>: Specifies the priority of the SLO based on consumer prefer-

ences [421]. Each SLO has a priority level: high, median or low. Typically,

the priority attribute is used if there is a need to trade off between two

or more SLOs. It is also considered for resource provisioning and traffic

control purposes.

• <requiredLevel>: Defines operators that are part of the expression. The

required level could be greater than, less than, or less than or equal to. For

instance, the latency of SLO should be less than 300 seconds.

4.2 SLA Grammar for IoT Applications 117

• <value>:Specifies a threshold value of a QoS metric. For example, in SLO,

the latency should be less than 300 seconds, and the threshold value is

300.

• <unit>: Specifies a unit of a threshold value. For instance, where the

time constraints in SLO should be less than 300 seconds, the unit value is

seconds.

• <partyId>: Specifies the ID of the party who is responsible for guaranteeing

the SLO. For example, the provider of the RHMS is the <partyId> who is in

charge of providing the service to detect urgent cases among subscribed

patients while respecting the agreed-upon time constraints.

• <qosEvaluatingSchedual> This defines the schedule for evaluating the

QoS requirement. In other words, it checks whether the service is running

at the expected level. For example, the SLA clause of the RHMS specifies

that every day at 9:00 am, the statistics of the required QoS metric, such as

“required time for detecting urgent cases”, are evaluated. The evaluation

can be performed daily, in which case the evaluation period is between the

last scheduled check (for example, 9:00 am, 11 May 2017) and the next

scheduled check (9:00 am, 12 May 2017).

<qosEvaluatingSchedual> has the following attributes:

– <startAt>: This is a date and time format that indicates when the

required metrics are scheduled to be evaluated against the required

threshold value – from the SLA clause of the RHMS, startAt it is “9:00

am 12 may 2017”.

– <unitBase>: Expresses the intervals at which the validation should be

performed on the basis of "minutely", “hourly”, “daily”, “monthly”, and

“yearly”. The SLA clause of the RHMS indicates that the <unitBase>

is “daily”.

• <action> This parameter specifies an action, such as send notification,

apply reconfiguration policy, or apply compensation policy, that should be

taken if there is a violation of an SLO constraint.

118 Service level Agreement Specification for IoT Applications

4.2.4 <workflowActivity>

This parameter lists common activity and consists of the following elements:

• <activity> describes the activity in text, such as: “capture event of inter-

est” or “store unstructured data”.

• <service> describes the service required to accomplish the activity. It has

the following elements:

– <serviceType>: It includes services such as “sensing service” and

“networking service”.

– <slo>: This element is same as that described in 4.2.3.

– <configurationRequirement>: This element is described in 4.2.5

– <partyId>: This element refers to the Party providing the service.

– <price>: This element is described in 4.2.6

• <infrastructureResource> describes the resources required to host the

service that is needed to accomplish the activity. It has the following

elements:

– <infrastructureResourceType> includes infrastructure resource types

such as “IoT device”, “Cloud Resource” and “Edge Resource”.

– <slo> has the same element as described in 4.2.3.

– <configurationRequirement> is described in 4.2.5.

– <partyId> refers to the Party providing the service.

– <price> is described in 4.2.6.

4.2.5 <configurationRequirement>

specifies the requirements related to some configuration parameters of the

associated infrastructure resource and/or service. It can be one of the following

types:

• <booleanBasedConfiguration> specifies the configuration parameter that

has a Boolean value. It consists of the following elements:

4.2 SLA Grammar for IoT Applications 119

– <configurationFeature>: To reflect the feature, we seek to specify

its value, such as “compression support” to compress data and the

“encryption support” feature.

– <value>: To reflect the value assigned to “configurationFeature”, for

example, to specify that the ingestion service should support data

compression, within the block that specifies the configuration require-

ments of the ingestion service, we can assign the following values:

configurationFeature: “compression Support”, value: “true”,

• <typeBasedConfiguration> is used to reflect the specification of a feature

that has a type-based value, such as a type of cluster, and it consists of the

following elements:

– <configurationFeature>: Reflects the feature of which we seek to

specify the value, such as "type of cluster"

– <type>: Reflects the value assigned to “configurationFeature”, for

example, to specify that the batch-processing service requires a map-

reduce cluster. Therefore, within the block that specifies the config-

uration requirements of the batch-processing service, we can assign

the following values: configurationFeature: “type of cluster”, type:

“map-reduce”,

• <numericalBasedConfiguration> is used to describe the configuration

requirement that requires a numerical value and it consists of the following

elements:

– <configurationFeature>: To reflect the feature, we seek to specify

its value.

– <requiredLevel> defines operators that are part of the expression.

The required level could be greater than, less than, or less than or

equal to.

– <value> reflects the actual numerical value.

– <unit> reflects the unit. For example, the above-mentioned elements of

a <numericalBasedConfiguration> can be used to describe a config-

uration requirement of the store service: configurationFeature: “read

120 Service level Agreement Specification for IoT Applications

capacity”, requiredLevel: “greater than” value: "50", unit:"tuples per

second".

4.2.6 <price>

This is a parameter to specify the financial cost/price of subscribing to a service.

It has the following attributes:

• <Amount> specifies the amount of money to pay for the service under partic-

ular requirements. For example, in the SLA clause of the RHMS, subscribers

pay 100 dollars to use the service.

• <Currency> specifies the currency (e.g., dollars).

• <PerUnit> specifies the base for payment based on the size of the sent data,

per response, or per month of subscription. In the SLA clause of the RHMS,

payment is per month.

The proposed grammar allows the specification of an SLA at the application

level to be used between the consumer and service provider at the front end.

Additionally, it allows each required service to be specified at a fine-grained

level of detail. Therefore, we believe that an SLA specification based on the

proposed grammar can be specified on an end-to-end basis, and it can then

be used by system engineers as well. In our grammar, we use the "workflow

activities" concept to contain the list of involved activities – for example, in the

RHMS use-case, "collect patient’s data" matches the "capture event of interest"

activity in our grammar. Each activity is associated with a service (or services)

and an infrastructure resource to deploy the service(s). Both the service and the

infrastructure resource have their own SLO constraints as well as configuration

requirements (see Figure 4.1).

4.2 SLA Grammar for IoT Applications 121

Workflow	Activity

Infrastructure	
ResourceService

Configuration	
RequirementSLO Configuration	

Requirement SLO

Fig. 4.1 Conceptual mapping to reflect the relationship between workflow activity
and service and infrastructure resource concepts

One of the advantages of using a free-context grammar is the ability to

reduce misunderstandings by providing only one interpretation. The elements

< appType>? < slaId >? < startDate>? < endDate>? < description>? < slaState>?
and < party >+? describe basic information related to the SLA. Each SLA con-

sists of at least one service level objective < slo > to express the required QoS

at the application level (e.g., in the RHMS, response Time is less than 2 min-

utes). Each < slo > has a priority level (e.g., high, medium, low). For example,

in the RHMS, response time has a higher priority than power consumption; in

contrast, for an auto-illuminated building, power consumption has a high pri-

ority. The concept of a < work f lowactivity > is used to express the data flow

activities of an IoT application (e.g., capture the event of interest and perform

small or large-scale real-time data analysis and large-scale historical data anal-

ysis). Each workflow activity is mapped to its required < Service > (such as

sensing service, batch-processing service) and to its < In f rastructureResource >

(e.g., IoT devices, Edge resources, Cloud resources). Each service and in-

frastructure resource has its own < slo > and < con f igurationMetrics >. As

mentioned above, the SLO can express the required QoS for each of the ser-

vices. Configuration requirements such as < numericalBasedCon f iguration >,

< booleanBasedCon f iguration > and < typeBasedCon f iguration > are differentiated

based on their values: some configuration features have Boolean values, others

determine the type of feature, and some have numerical values. For example, the

number of required CPUs, encryption support and type of cluster are examples

122 Service level Agreement Specification for IoT Applications

of < numericalBasedCon f iguration >, < booleanBasedCon f iguration >

and < typeBasedCon f iguration >, respectively.

4.3 Evaluation

After identifying the reference architecture, the main concepts to be considered

within the SLA and the related vocabularies, and after proposing a grammar

for SLA specification, this section presents our approach to evaluating the pro-

posed SLA specification for IoT applications. In Section 4.3.1, we introduce the

goal/question/metric (GQM) approach [98]; then, we apply the GQM approach to

serve our purpose in Section 4.3.2. We present a discussion in Section 4.3.2.

4.3.1 Goal/question/metric (GQM) approach

A software system’s success can be measured by the extent to which it meets

its intended purpose. The process of identifying and documenting stakeholders

and their needs, which is conducive to analysis, communication and subsequent

implementation, can be defined as software system requirement engineering

[364] [386]. The activities of requirement engineering are designed to manage

all knowledge related to requirements. Such knowledge is commonly reflected in

a number of objects, such as use cases, storyboards, natural language documents

and specifications of business processes, which are called system artefacts [386].

Goal modelling is a key part of requirement engineering activities. Goal mod-

els identify stakeholders and business goals, alternative ways to meet the goals

and the positive/negative impact of the goals on various quality aspects. The

analysis of these models guides decisions and the refinement of inaccurate user

requirements towards accurate system requirements [35]. Information collection

can be based on explicit or implicit approaches [68]. In the explicit approach,

information is collected directly from the user, usually through web-enrolment

forms, surveys or psychometric instruments designed for a specific purpose.

On the other hand, in the implicit approach, the system automatically extracts

implicit information, such as tracking user behaviour [68].

4.3 Evaluation 123

Many mechanisms have been introduced in the literature to define measurable

goals [98], such as software quality metrics (SQM) [82] [320], the goal/question/-

metrics (GQM) approach [64] [65] [66] [67] and the quality function deployment

(QFD) [240] approach. The GQM approach combines the majority of the current

measurement approaches and generalises them to include processes, resources,

and products. The GQM approach is an adaptable approach and it can be applied

in different environments; it has been adopted by a number of institutions, e.g.,

NASA, Hewlett-Packard [179], Motorola, and Coopers & Lybrand.

The GQM approach specifies a number of steps to be undertaken to determine

whether the goals have been achieved [98]. First, the goals must be clearly

specified; then, a path must be traced between these goals and the data that

define them. These data can then be interpreted through a framework against

the predetermined goals. Quantified information can be used to measure whether

the goals have been achieved [98].

The approach was initially used to assess weaknesses in a set of projects in

the NASA Goddard Space Flight Center environment. Although the approach

was initially utilised to characterise and assess objectives for a specific extension

in a specific environment, it has since been employed to define and assist goals

for a certain project within a certain environment, such as the objective-setting

step in an evolutionary quality-improvement model customised for a software

development organisation. The result of the application of the GQM approach is

a measurement framework focusing on a specific set of issues and a set of rules

to interpret the measured data. The measurement framework has three levels

[98]:

1. Conceptual level (GOAL): At this level, a goal is defined for an object for

different models of quality within a particular environment and can be from

different points of view for a variety of reasons.

2. Operational level (QUESTION): A set of questions attempts to characterise

the object of measurement (product, process, resource) with regard to a

chosen quality issue and to determine, as a result, its quality from that point

of view.

124 Service level Agreement Specification for IoT Applications

3. Quantitative level (METRIC): This refers to quantifying the answer to a

question by associating a set of data with each question.

A GQM framework consists of a hierarchical structure (Figure 4.2), starting with

a goal. Then, the goal is refined into a set of questions to break the issue to be

measured (defined within the goal) down into its key components. Each question

is refined into metrics as a step towards quantifying the answers to the questions.

Fig. 4.2 The hierarchical structure of a GQM model [98]

4.3.2 Applying the GQM approach to evaluate the Proposed

SLA Specification for IoT Applications

The GQM approach has been applied in different studies (such as those presented

in [6, 127, 503, 11]), and it has shown its effectiveness in serving the purposes

for which it has been applied. Achtaich et al [6] apply the GQM approach to

assess the expressiveness, domain independence and scalability of the state-

constraint transition (SCT) modelling language. SCT is a language that extends

the finite state machine (FSM) [195] paradigm to describe the dynamic behaviour

of self-adaptive systems. Darweesh et al [127] provide a general approach to

determine an agent’s security in multi-agent system environments based on a

GQM approach. The performance of the proposed framework is measured as the

percentage of fulfilment of a set of security requirements, such as confidentiality,

authentication, repudiation and access control. Yahya et al [503] apply a GQM

approach to construct security metrics, which evaluate the security control fea-

tures, and once these metrics are defined, they can be applied to evaluate the

Cloud storage security of an organisation.

We believe that applying the GQM approach allows us to determine whether

or not we have achieved our intended goal of proposing a grammar, especially

4.3 Evaluation 125

because it provides a roadmap that we can use to measure the desired goals

numerically. The GQM approach was chosen because there is a similarity between

what we want to achieve and the GQM approach. We intend to check the

generalizability and expressiveness of the proposed specification, which can be

expressed as the GOAL in the GQM approach. Under each goal, there are a

number of concepts that we can formulate as questions (corresponding to the

questions in the GQM approach), and we can calculate the metric value for each

question based on the participants’ answers (corresponding to the METRIC in

the GQM approach). In the following subsection, we follow the GQM approach to

define our goals and present the list of questions that will be used to calculate

the metrics and reflect the percentage achieved for each stated goal.

Defining the Goals

We aim to measure the generalizability and the expressiveness level of our pro-

posed grammar from the viewpoints of IoT experts/IoT administrators. Therefore,

we intend to specify each of the issues (generalizability and expressiveness of

the proposed specification) as the GOAL based on the GQM approach. The GQM

method provides a template to define a GOAL unambiguously by expressing the

following main elements: purpose, perspective and context characteristics (Table

4.2 illustrates the main elements of the GQM goal definition template [479]).

Table 4.2 Main elements of the GQM goal definition template [479]

Analyse the object under measurement
for the purpose of understanding, controlling or improving the object
with respect to the quality of the object on which the measurement focuses
from the viewpoint of the people who measure the object
in the context of the environment in which the measurement takes place

We set two separate goals (see Table 4.3 and Table 4.4), following the template

for designing a goal as defined in the GQM approach [98]:

126 Service level Agreement Specification for IoT Applications

Table 4.3 Defining our first goal following the template in [98]

Goal 1: Main Element
from [98]

Example related to our work

Purpose: indicate
Issue: the generalizability
of object: of the proposed grammar
viewpoint: from the IoT experts′/IoT administrators′ viewpoints

Table 4.4 Defining our second goal following the template in [98]

Goal 2: Main element
from [98]

Example related to our work

Purpose: indicate
Issue: the expressiveness level
of object: of the proposed grammar
viewpoint: from the IoT experts′/IoT administrators′ viewpoints

Defining the Questions

For each of the predefined goals, a list of questions is prepared. The answers

to the questions are quantified to measure whether or not the goal had been

achieved. The main purpose of the prepared questions is to check whether

the vocabulary terms that we consider within the grammar can capture the

requirements for different use-case scenarios from the viewpoints of the IoT

experts/IoT administrators. Furthermore, using free-text types of questions,

the participants have an opportunity to express what other considerations they

believe to be important.

Defining the Metric

For each question, we tried to quantify the answer by calculating the users’

satisfaction regarding whether or not the grammar could capture the require-

ments for different use-case scenarios and what else should be considered for

different parts of the concepts within the grammar. To calculate the satisfaction

percentage for each goal, the following steps were applied:

• Count the number of missing requirements (NMR). The NMR represents

the number of requirements that we failed to consider from the participants’

4.3 Evaluation 127

viewpoints. Additionally, count the number of selected requirements (NSR)

from the predefined list. The NSR is the number of requirements that a

participant selected from the predefined list. Then, divide the NMR by the

NSR from the predefined list (see equation 4.1). The result of equation

4.1 reflects the ratio of what is missing with regard to questioni from

participant′js point of view. The miss ratio from participant j’s point of view

can be calculated as follows:

miss_ratio j =
NMR
NSR

(4.1)

To calculate the metric value for each question, we apply equation 4.2 to

each questioni:

metrici =
∑

j=P
j=1 miss_ratio j

p
(4.2)

i represents the question for which we are interested in calculating the

metric value. j = 1 · · · ·p, where p represents the number of participants.

• Calculate the overall value, which represents the satisfaction percentage of

achieving the kth goal by applying the following 2 steps:

1. The overall value, which represents the unsatisfied percentage of

achieving goalk:

unsatis f iedPercentagegoalk =
∑

i=n
i=1 Metrici

n
∗100 (4.3)

i = 1 · · · ·n, where n represents the number of predefined questions for

goalk. k = 1 · · · ·G, where G represents the number of predefined goals.

2. The overall value, which represents the percentage of satisfying goalk,

is calculated as follows:

satis f iedPercentagegoalk = (1− ∑
i=n
i=1 Metrici

n
)∗100 (4.4)

i = 1 · · · ·n, where n represents the total number of predefined questions

for goalk

k = 1 · · · ·G, where G is the total number of predefined goals.

128 Service level Agreement Specification for IoT Applications

Experiment

The main purpose of this experiment is to evaluate our proposed grammar and

determine whether or not it met the predefined goals: generalizability and

expressiveness (i.e., capturing the users’ requirements). The potential users

of our proposed work are IoT administrators . Therefore, we conducted the

experiment with participants whose research interests were mainly related to

the IoT, Cloud computing, Edge computing and networking.

Procedure

The experiment was conducted following a well-defined procedure and there

were 11 participants. First, a focus group discussion was held in which the

participants received an introduction to the SLA and our reference architecture

for the IoT, the conceptual model, and the grammar. The number of members

per focus group varied depending on the availability of the participants. The

participants were allowed to discuss, ask for explanations and provide instant

suggestions. A use-case was introduced for clarification purposes. At the end of

the focus group, the participants were asked to fill out a paper-and-pen version

of a questionnaire in which there were three questions related to the first goal

(indicate the generalizability of the proposed grammar from IoT experts’/IoT ad-

ministrators’ viewpoint) and eleven questions related to the second goal (indicate

the expressiveness of the proposed grammar from IoT experts’/IoT administra-

tors’ viewpoint). Table 4.5 sheds light, briefly, on the participants’ research

interests.

Reducing Bias

Considering that the questionnaire is, by its nature, vulnerable to bias, the

researcher has taken the following measures as far as possible to mitigate the

risk of bias:

• The participants were informed that all the collected data would be confi-

dential and would not be shared with others. The privacy and anonymity

of participants were preserved. All the data obtained will only be used

for evaluation by the researcher and the supervisor. This ensured that the

participants gave their feedback with no external influence.

4.3 Evaluation 129

• The participants were not subject to any influence or time constraints.

The researcher conducted the introductory workshop and replied to any

questions the participants posed. Each participant gave his/her feedback

separately at the end of the session to prevent any external influence (e.g.,

influence of colleagues). Furthermore, their name was not required when

answering the questionnaire for anonymity purposes and to seek an honest

opinion without any influence.

• A number of participants had participated before in Chapter 3. However,

to reduce the impact of the possibility that those participants would apply

the same approach when answering the questions, or have the same under-

standing, the nature of the questions was different from those presented in

the previous chapter (i.e., Chapter 3). Furthermore, the participants in this

study were mixed – some had participated before, but for the rest this was

their first time participating.

130 Service level Agreement Specification for IoT Applications

Table 4.5 Participants’ research interest

Participant Research Interest
1 IoT researcher interested in SLAs in the context of the IoT using

Blockchain
2 IoT, Cloud computing and networking
3 IoT fault tolerance
4 IoT data management and analytics
5 IoT security mechanism using Edge infrastructure, network

security between sensor and Edge and between Edge and Cloud
privacy on low resource devices

6 Interested in designing a scalable data stream processing sys-
tem within the IoT paradigm. His project focuses on automating
computational placement in IoT systems, pushing the computa-
tion as close to the data source as possible, considering a range
of non-functional requirements such as energy and bandwidth

7 Conducting research on IoT data management, mainly focus-
ing on IoT data Google discovery and retrieval, also applying
data stream processing techniques in early walking system
applications

8 Interested in the IoT since he is working on a project that
aims to make a real-time ambulance system. The project also
considers batch processing.

9 Researcher of IoT projects
10 Security of the IoT
11 Research related to IoT and Cloud projects

4.3 Evaluation 131

Experiment results

For each of the predefined goals, a list of questions was prepared (3 questions

for Goal 1 and 11 questions for Goal 2). For each question, there was a checklist

of requirements (see Figure 4.3 as an example). The participants were asked to

check the requirements that, from their experience, they thought it is good that

we considered, and to write down the missing requirements that they thought

we should add.

The column headers of Table 4.6 represent the question number and the

count of the vocabularies that were defined to capture the requirements for the

concept associated with each question5. For example, the second column header

is Q1/10, which means that 10 elements were defined that were related to the

concept (workflow activity). (Figure 4.3 shows question 1, which is related to the

workflow activity concept).

Fig. 4.3 Sample of the questions given to the participants

From the participants’ answers, we calculated the metric for each question

and then calculated the satisfaction percentages for Goal 1 and Goal 2. We

followed the following steps:

1. Step 1: Check the answer to each question, by checking whether the

participant thought that the predefined list of requirements covered his/her

5Refer to Appendix A for the full questionnaire

132 Service level Agreement Specification for IoT Applications

Table 4.6 Number of selected vocabularies for each question

Participant-ID Q1/10 Q2/3 Q3/8 Q4/8 Q5/13 Q6/20 Q7/4 Q8/10 Q9/12 Q10/5 Q11/18 Q12/15 Q13/11 Q14/12
1 6 2 4 4 8 7 1 4 6 2 8 0 3 3
2 9 3 5 6 13 16 3 9 9 5 7 8 5 2
3 10 2 4 8 11 15 4 10 4 4 7 10 6 7
4 9 2 6 8 10 16 4 10 9 4 16 13 6 11
5 8 3 7 8 13 20 4 10 12 5 18 15 11 12
6 6 3 5 5 9 12 4 9 8 0 13 9 8 9
7 10 3 8 8 13 20 4 10 12 5 18 15 11 12
8 10 3 8 8 13 20 4 10 12 5 18 14 11 12
9 7 3 7 6 12 4 4 6 4 5 14 8 7 6

10 6 2 7 7 10 19 4 8 11 4 13 11 10 11
11 10 3 8 6 13 20 4 10 0 5 13 14 8 9

IoT project’s requirements. For example, for the question reflected in Figure

4.3 , we checked whether the participant thought that the predefined list

of workflow activities covered his/her IoT project’s workflow activities. We

counted the NSR that the participants agreed/believed should be considered.

For example, participant 2 selected 9 activities from the predefined list when

he/she answered the first question (Figure 4.3, which asked whether he/she

thought that the predefined list of workflow activities covered his/her IoT

project’s workflow activities). Table 4.6 shows the NSR for each question.

2. Step 2: Count the NMR that the participants suggested regarding the

concepts they were asked about. For example, the second participant

suggested one additional activity that he/she believed should be considered

in the answer to “Could you please list the workflow activities that you

suggest should be considered?” (column 2 of Table 4.7 shows the NMR for

question 1, which is related to workflow activity).

3. Step 3: Calculate the metric: Based on the participants’ answers to each

question, we calculated the corresponding metric for each question follow-

ing equation 1. For example, of 10 predefined lists of activities, column 2 of

Table 4.7 shows how many activities were selected by the 11 participants

and column 3 shows how many additional activities were suggested. Based

on each participant’s answer, we calculated the ratio of the activities miss-

ing from the predefined list following equation 1 in column 4 of Table 4.7 for

each participant. For example, the second participant selected 9 activities

from the predefined list and suggested one additional activity that he/she

believed should be considered. Based on his/her answers, we calculated the

miss ratio for this participant for question 1 as NMR/NSR=1/9. Then, we

4.3 Evaluation 133

calculated the corresponding metric value for question 1 following equation

2: Metric1=0.0554.

Table 4.7 Participants’ responses to question 1 as a first step to calculating the
metric value of question 1 (Q1)

Participant-ID Selected Activities Missing/suggested Miss ratio
for Q1 /10 Activities for Q1 applying equation 4.1

1 6 0 0
2 9 1 0.11
3 10 0 0
4 9 0 0
5 8 0 0
6 6 1 0.16
7 10 1 0.1
8 10 1 0.1
9 7 1 0.14

10 6 0 0
11 10 0 0

4. Step 4: After calculating each question’s metric, for each predefined goal,

we calculated the overall value, which represents the percentage of achiev-

ing the goal. We calculated the average value of all the metrics that repre-

sented the numerical value of the questions related to each goal following

equation 4.3. For example, to calculate the overall value of the percentage

achieved of goal 1, there were three questions. Therefore, we calculated

the average value based on the calculated metric for each question related

to goal 1 (metrics of questions Q1, Q2, Q3). Hence, the dissatisfaction per-

centage for achieving goal 1 was 8.30% (applying equation 4.3), while the

satisfaction percentage for achieving goal 1 was 91.70% (applying equation

4.4). Table 4.8 and Table 4.9 reflect the calculated metrics, the overall

dissatisfaction percentages and the overall satisfaction percentages for

Goals 1 and 2.

134 Service level Agreement Specification for IoT Applications

Table 4.8 Calculated metrics, overall dissatisfaction percentage and overall
satisfaction percentage of goal 1

Participant-ID Q1 Q2 Q3

1 0.00 0.00 0.25
2 0.11 0.00 0.60
3 0.00 0.50 0.00
4 0.00 0.00 0.17
5 0.00 0.00 0.14
6 0.17 0.00 0.00
7 0.10 0.33 0.13
8 0.10 0.00 0.00
9 0.14 0.00 0.00

10 0.00 0.00 0.00
11 0.00 0.00 0.00

Metric of each Question 5.64% 7.58% 11.68%
The overall dissatisfaction percentage of goal1 : 8.30%
The overall satisfaction percentage of goal1 : 91.70%

Table 4.9 Calculated metrics, overall dissatisfaction percentage and overall
satisfaction percentage of goal 2

Participant-ID Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
1 0.25 0.00 0.00 1.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00
2 0.50 0.31 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.50 0.08 0.05 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.05 0.00 0.00 0.00 0.40 0.00 0.07 0.00 0.00
8 0.25 0.00 0.00 0.50 0.00 0.00 0.00 0.06 0.00 0.09 0.00
9 0.67 0.08 0.00 0.25 0.00 0.00 0.00 0.07 0.00 0.14 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.36 0.00 0.00
11 0.00 0.08 0.00 0.25 0.10 0.00 0.00 0.00 0.00 0.00 0.00

Metric of each Question 19.70% 4.95% 0.91% 23.48% 1.92% 0.00% 14.09% 1.15% 3.91% 2.13% 0.00%
The overall dissatisfaction percentage of goal2: 6.57%
The overall satisfaction percentage of goal2: 93.43%

Evaluation Analysis

We encountered several problems when trying to evaluate the proposed SLA

specification, such as the complexity of the domain and the lack of available

guidelines. Therefore, we evaluated the proposed SLA specification by reviewing

it and discussing it with a considerable number of IoT experts. We applied the

GQM approach to determine the generalizability and the expressiveness of the

considered vocabularies within the proposed grammar for an SLA specification

4.3 Evaluation 135

for the IoT. The results indicate a high level of satisfaction for both goal general-

izability and expressiveness.

Figure 4.4 displays the results based on the participants’ satisfaction with

the generalizability of our proposed grammar. For example, the generalizability

of the predefined list of workflow activities and the considered computing layers

is 94.36% and 92.42%, respectively, while the generalizability of the predefined

services that were considered is 88.32%.

Figure 4.5 presents the results of the participants’ satisfaction with the

expressiveness of our proposed grammar. The expressiveness of the considered

vocabularies in terms of capturing user requirements for different concepts is

scored as follows: the percentage values of the expressiveness of the vocabu-

laries for sensing, networking and ingestion services are 80.3%, 95.05% and

99.09%, respectively. It seems that there is a high level of satisfaction with the

activities that were considered for the networking and ingestion services, while

there is a lower level of satisfaction with the vocabularies that were considered to

express user requirements for the sensing service. Some participants suggested

the following vocabularies to capture user requirements for the sensing service:

location of device, data generation rate, type of data generated (temperature,

humidity), and, for IoT devices, processing capabilities (CPU speed, memory size).

Regarding the expressiveness of the vocabularies in terms of capturing the

requirements of sensing, networking and ingestion services, the percentage

values were 76.52%, 98.08% and 100%, respectively. There is a higher level of

satisfaction with the activities that were considered for networking and ingestion

services than those that were considered for the sensing service. Regarding ma-

chine learning, stream processing, batch processing, SQL database, and NoSQL

database services, the percentage values of the expressiveness of the vocabular-

ies used for each are 85.91%, 98.85%, 96.09%, 97.87% and 100%, respectively.

There is a lower level of satisfaction with the vocabularies that were considered

for machine learning. Some participants suggested the following vocabularies to

capture user requirements regarding machine learning: type of machine learning

classification, features for training and prediction for real-time data or batches,

136 Service level Agreement Specification for IoT Applications

and feature extractor.

Table 4.8 and Table 4.9 present the metrics calculated for each question based

on each participant’s answer. They also present the overall percentages for each

goal, showing to what degree, in percentages, we achieved our goals. We are

striving to achieve above 75% for each goal. As depicted in Table 4.8 and Table

4.9, we achieved 91.70% of our goal of providing a general grammar for different

IoT applications and 93.43% of our goal of providing an expressive grammar to

capture user requirements.

Fig. 4.4 Satisfaction ratio and miss ratio for all questions related to goal 1
“Generalizability of the grammar”

Fig. 4.5 Satisfaction ratio and miss ratio for all questions related to goal 2
“Expressiveness of the grammar”

For the missing requirements, the next question was the suggested workflow

activities. As indicated in the chart below (Figure 4.6), just more than half of

the respondents (55%) reported that the mentioned activities were quite suffi-

cient, (27%) of the respondents suggested adding activities about notifications of

unexpected events, (9%) of the respondents suggested adding activities on data

4.3 Evaluation 137

transformation, and (9%) suggested ML for training the module. The majority of

respondents were quite happy with the current workflow activities.

Fig. 4.6 Suggested Workflow Activities

The next question was about the suggestion regarding computing layers. The

results show that the mentioned computing layers were sufficient according to

(82%) of the respondents, while (18%) of them suggested adding network and

communication layers (see Figure 4.7 below). These results indicate that the

computing layers are covered well in this questionnaire.

Fig. 4.7 Suggested Computing Layers

Then there was a question about the suggested services. As indicated in

the figure below (Figure 4.8), just more than half of the participants (55%)

138 Service level Agreement Specification for IoT Applications

had no suggestions for additional services, (18%) of them suggested adding

actuation service, others suggested adding management and configuration (9%),

monitoring service (9%), and messaging service (9%). This means that there is a

need to expand services.

Fig. 4.8 Suggested Services

Then the participants were asked if they had any suggestions regarding

consumer requirements for IoT devices. As is obvious in the figure below (Figure

4.9), (43%) of the respondents had no suggestions, (29%) of them suggested

vocabularies to express the capabilities of devices, (14%) of them suggested the

type and rates of data generation, (7%) required an addition in the form of privacy

policies, and the same percentage required messaging protocols. Therefore, the

listed consumer requirements should be taken into consideration.

4.3 Evaluation 139

Fig. 4.9 Suggested Requirements for IoT devices

The next question was about the list of requirements for Edge computing. As

indicated in the chart below (Figure 4.10), the majority of the participants (64%)

were satisfied with the requirements that already existed in the questionnaire.

However, some participants had their own requirements: (18%) operating system,

(9%) device location and (9%) reliability. Thus, the list of SLO metrics and the

configuration requirements of sensing services need some further additions.

Fig. 4.10 Suggested Requirements for Edge Computing Layer

Then the participants were asked about their suggestions in terms of con-

sumer requirements for Cloud computing. The results show that (82%) of the

respondents had no suggestions, (9%) of them suggested adding the failure rate

140 Service level Agreement Specification for IoT Applications

and probability, and (9%) suggested adding the location of the Cloud datacentre.

The majority were satisfied with the predefined list of vocabulary to express

consumer requirements for Edge computing (See Figure 4.11).

Fig. 4.11 Suggested Requirements for Cloud Computing Layer

Regarding consumer requirements for the sensing service, the results show

that the list of requirements satisfied (45%) of the respondents. However, there

were some additional requirements such as data quality (18%), data reliability

(18%) and hardware and network capability (18%). This means that the list of

consumer requirements for sensing services needs to be expanded (See Figure

4.12).

Fig. 4.12 Suggested Requirements for Sensing Service

4.3 Evaluation 141

The next question was about the consumer requirements of networking ser-

vices. As indicated in the figure below (Figure 4.13), the majority (82%) were

satisfied with the current list, some suggested additions related to networking

configuration (9%) and data confidentiality (9%). This means that the current list

of consumer requirements of networking services is sufficient.

Fig. 4.13 Suggested Requirements for Networking Service

The next question was about consumer requirements for ingestion services.

All of the respondents (100%) were totally satisfied with the current list and

believed that nothing needed to be added.

Then the participants were asked about their suggestions regarding consumer

requirements for machine learning services. As indicated in the chart below

(Figure 4.14), just more than half of the respondents (55%) had nothing to add,

while others suggested adding confusion matrix (9%), training (18%), feature

extractor (9%), and efficiency (9%). As a result, the list of consumer requirements

for machine learning services needs some additions.

142 Service level Agreement Specification for IoT Applications

Fig. 4.14 Suggested Requirements for Machine Learning Service

The next question was about the list of consumer requirements for stream-

processing services. As indicated in the figure below (Figure 4.15), (82%) of

the participants had no suggestions, (9%) suggested adding publish/subscribe

support, and (9%) suggested a data reduction factor/ratio. The majority were

quite satisfied with the list of consumer requirements for stream-processing

services.

Fig. 4.15 Suggested Requirements for Stream-processing Service

After that, the participants were asked to add their suggestions regarding

consumer requirements for batch-processing services. The majority of the re-

spondents (82%) made no suggestions for additions, while others suggested

batch running frequency (9%), and reducing and mapping failures (9%) (see

4.3 Evaluation 143

figure below). The list of consumer requirements for batch-processing services is

therefore quite sufficient (see Figure 4.16).

Fig. 4.16 Suggested Requirements for Batch-processing Service

Then, the participants were asked to add their suggestions regarding con-

sumer requirements for SQL database services. The majority of the respondents

(82%) had nothing to add, but some suggestions were made regarding data

indexing support (9%), and version (9%). The list of consumer requirements for

SQL database services is quite sufficient.

Fig. 4.17 Suggested Requirements for Database Service

The final question was about consumer requirements for NoSQL database

services. All of the respondents (100%) were totally satisfied with the current list

and believed that nothing needed to be added.

144 Service level Agreement Specification for IoT Applications

The participants tended to show dissatisfaction between 20%-50% for many

questions, Figure 4.18.

Fig. 4.18 Distribution of Dissatisfaction in 14 questions among 11 participants

Here, focused on the participants who mentioned missing/suggested activ-

ities, Figure 4.19 and Table 4.10 (Note: N represent number of participants

who have suggested adding more requirements and SD represents Standard

Deviation6). 45.45% of the participants mentioned missing/suggested activities

in Q1, with dissatisfaction = 12.41%. 18% of the participants and 45.45% of the

participants with dissatisfaction =41.66% and 25.69% for Q2 and Q3 respectively.

Overall dissatisfaction of Goal1 reached 33.67%. For Goal two, missing/sug-

gested requirements were obviously assigned to Q4 (45.45% of the participants),

Q5(36.36% of the participants) Q7 (54.55% of the participants), and Q10 (36.36%

of the participants) with dissatisfaction average =44.04%, 13.62%, 43.05%, and

31%, respectively. Overall dissatisfaction of Goal2 reached 19.95%. Based on

the reflected percentage of the overall dissatisfaction for both Goal1 and Goal2,

there is a high level of satisfaction for the presented list of requirements for both

6Standard deviation is a statistic that calculates a data set’s variability relative to its mean and
is measured as the square root of the variance

4.3 Evaluation 145

goals.

The suggested requirements by participants are taken into consideration, by

refining the listed vocabularies as well as adding the suggested ones when it is

possible.

Fig. 4.19 Distribution of participants who mentioned missing/suggested vocabu-
laries in 14 questions

146 Service level Agreement Specification for IoT Applications

Table 4.10 Descriptive statistics for 14 questions for participants who mentioned
missing/suggested requirements

Question
Metric of question
Mean N SD

Q1: workflow activities .1241 5 .0295
Q2: computing layers .4166 2 .1178
Q3: services .2569 5 .1976
Overall dissatisfaction of Goal1 0.3367
Q4: IoT devices .4404 5 .1721
Q5: Edge Computing .1362 4 .1143
Q6: Cloud Computing .0500 2 .0000
Q7: sensing services .4305 6 .2954
Q8: networking services .1055 2 .0078
Q9: ingestion services - –
Q10: machine learning services .3100 5 .1949
Q11: stream processing services .0634 2 .0112
Q12: batch processing services .1434 3 .1935
Q13: SQL database services .1168 2 .0367
Q14: NoSQL database services - - -
Overall dissatisfaction of Goal2 0.1995

4.4 Comparison with Other SLA Languages 147

4.4 Comparison with Other SLA Languages

Due to the limited research efforts related to an SLA specification language

specifically for the IoT, we compared our proposed language with the most com-

monly available service contract languages of Cloud and web services mentioned

above (in the Introduction section). We used the following main criteria. The

selected criteria were related to the scope of our solution and were not in any

way conclusive. Our results are presented in Table 4.11:

• IoT domain: This criterion defines whether or not a language has been

developed for the IoT domain.

• Syntax: This criterion is supported when there is a formal definition of the

syntax, e.g., using BNF.

• Expressiveness: This criterion can be said to be met when the language con-

tains a domain-specific vocabulary. If it does not provide a domain-specific

vocabulary, then the expressiveness criterion is partially supported.

• Ease of use: This criterion can be viewed from the perspectives of develop-

ers and service consumers. From the service consumer perspective, ease of

use is achieved if the user is not required to have much knowledge about

how to create the specification in a machine-readable format. From the

developers’ perspective, ease of use is determined by whether the specifica-

tion is written in a machine-readable format. The ease-of-use criterion is

only partially met if just one of these perspectives has been considered.

• Supports different types of computational resources: This criterion is fully

supported when a language considers the specification requirements of

a range of resources, such as IoT devices, Edge resources, and Cloud

resources, and partially supported when it allows only one category of

required resources to be specified, such as only VMs.

Although many SLA specification languages for various application domains exist,

we believe that in their current formats, they cannot accommodate the unique

characteristics of the Cloud-based IoT domain. As can be observed in our compar-

ison shown in Table 4.11, none of the compared SLA languages provide support

for IoT applications. We attempted in our specification to consider the most

148 Service level Agreement Specification for IoT Applications

common/typical IoT application layers, including data sources, the most common

data analysis programming models, and computational resources (e.g., IoT, Edge

resources, and Cloud resources). Furthermore, there are different application

models that have different stacks of essential interdependent services. For exam-

ple, some applications require a certain type of data analysis programming model,

such as applying data ingestion and stream processing to monitor a patient’s

health remotely. Other applications compute the statistics of a particular vehicle

for a month-long period and require ingestion, stream processing, and batch

processing data analysis programming models. Therefore, our SLA logic follows

the workflow of IoT-based applications to simplify the process for users (e.g., IoT

administrators) to specify their requirements. Our SLA logic enables users to se-

lect the workflow of activities for their IoT-based applications as well as to specify

their requirements for each service and its computational/storage resources (e.g.,

the latency limit of the stream-processing service and the number of VMs). We

developed a GUI-based tool (presented in the next chapter) to enable consumers

to specify their requirements. The tool creates the SLA in a JSON format. By

providing a GUI, we ensure the correctness of the SLA specification syntax. Most

previous efforts provide the SLA template in XML format without the support of

a GUI, which makes the process of creating a detailed and accurate SLA difficult.

Furthermore, XML is not lightweight language.

4.4 Comparison with Other SLA Languages 149

T
a
b

le
4
.1

1
C

o
m

p
a
ri

so
n

o
f

S
L

A
la

n
g

u
a
g

e
s.

B
la

ck
ci

rc
le

s
re

p
re

se
n

t
fe

a
tu

re
s

su
p

p
o
rt

e
d

in
th

e
la

n
g

u
a
g

e
,

e
m

p
ty

ci
rc

le
s

re
p

re
se

n
t

a
p

a
rt

ia
ll

y
su

p
p

o
rt

e
d

fe
a
tu

re
a
n

d
a

h
yp

h
e
n

(-
)

m
e
a
n

s
n

o
t

co
ve

re
d

[2
7

]

C
o
m

p
a
ri

so
n

F
e
a
tu

re
s

W
S

L
A

W
S

-A
g

re
e
m

e
n

t
S

L
A

*
S

L
A

n
g

X
C

L
a
n

g
C

S
L

A
S

L
A

C
iA

g
re

e
S

L
A

-I
o
T

Io
T

D
o
m

a
in

-
-

-
-

-
-

-
-

S
yn

ta
x

E
xp

re
ss

iv
e
n

e
ss

E
a
se

o
f

u
se

S
u

p
p

o
rt

d
if

fe
re

n
t

ty
p

e
o
f

co
m

p
u

ta
ti

o
n

a
l

re
so

u
rc

e
s

150 Service level Agreement Specification for IoT Applications

4.5 Conclusion and Future Work

Defining “SLA offers” and “SLA requests” using standard vocabularies eases the

process of comparing the available options and selecting the most suitable SLA

offer based on consumer requirements. Therefore, we formally propose a syntax

grammar to define an SLA specification language for the IoT paradigm. It is

based on the proposed conceptual model (see Chapter 3).

Furthermore, we carried out a user study with domain experts to evaluate

our proposed SLA specification. We applied the GQM approach to assess the

significance of the vocabularies identified for an SLA specification of an IoT

ecosystem. The participants were researchers whose research interests were

focused on Cloud computing, networking and the IoT. The results demonstrate a

high degree of satisfaction with the generalizability and expressiveness of the

considered domain-specific vocabularies.

There are some limitations, such as the number of participants, that we will

try to expand on in the future. Furthermore, there is the possibility of adding

more vocabularies to capture QoS constraints and configuration requirements

as well as considering more workflow activities. However, we developed a tool

(presented in the next chapter) that allows us to extend vocabularies, workflow

activities and computing layers. In future work, we aim to adopt a semantic-

based approach to SLAs for different purposes by building an ontology for SLA

specification for the IoT, derived from the proposed work. The ontology can

express concepts of knowledge and the relationships between them, which can

then be used for semantic analysis and verification purposes.

Chapter 5

SLA Specification Tool for IoT

Applications

Overview

In this chapter, we demonstrate a toolkit for creating SLA specifications for

IoT applications. The toolkit is used to simplify the process of capturing the

requirements of IoT applications. We demonstrate the toolkit using the RHMS

use-case and then evaluate the toolkit following a goal-oriented approach.

5.1 Introduction

There are a number of different approaches for specifying an SLA, ranging from

employing a natural language or a formal language for the purpose of analysing

SLA properties to utilising XML documents in an effort to standardise SLAs to

increase SLA interoperability between the service consumer and the service

provider [166]. For example, Keller and Ludwig provide an XML framework to

express SLAs for web services (WSLAs), which is considered to be a starting

point, as others have extended their approach [228]. Furthermore, some efforts

in SLA specifications have been made for the Cloud computing paradigm, such as

in CSLA [245] and SLAC [476]. However, SLAC [379] considers only IaaS, while

CSLA [245] consider all three Cloud delivery models (IaaS, PaaS, SaaS).

These proposed works, as far as we know, allow users to type their SLA or

use a predefined template and edit it, but none of them provide a GUI-based

152 SLA Specification Tool for IoT Applications

tool that consumers can use as a wizard to create their SLA clauses. Therefore,

in this chapter, we aim to present a toolkit that allows consumers (e.g., IoT

administrators) to specify their SLA using GUI features. The tool considers the

most common or typical IoT application tiers and services, as captured within

the proposed grammar (presented in the previous chapter) in such a way that

interested users can specify their preferences.

The tool is used to simplify the process of capturing the requirements of

IoT applications and it supports the following: (1) specifying the service-level

objectives (SLOs) of an IoT application at the application level; (2) specifying

the workflow activities of the IoT application; (3) mapping each activity to the

required services and infrastructure resources and specifying the constraints of

the SLOs and other configuration-related metrics of the required services and

infrastructure resources; and (4) creating the composed SLA in JSON format.

In the following, we present the design goals and the architecture of the tool.

The main contributions of the toolkit are as follows:

• New vocabularies: The tool is based on a predefined grammar that consists

of new vocabularies to express the SLA of an IoT application for common

services (ingestion, stream processing, batch processing) as well as the

infrastructure resources (IoT, Edge, Cloud). Providing new vocabularies

allows for fine-grained SLA specifications for IoT applications, especially

because, to the best of our knowledge, this is the first work to consider

different computation layers (IoT, Edge, Cloud) within the SLA specification

language for IoT applications.

• A GUI-based SLA specification tool: The SLA specification tool aims to

provide a GUI that enables consumers to specify their requirements and

then create the SLA in a machine-readable format (JSON format). By

providing a GUI-based specification tool, the correct syntax can be ensured

for the SLA specification, to some extent. Furthermore, the tool relieves

users of the burden of specifying requirements in a machine-readable format

such as JSON or XML, since it creates the SLA in a JSON format based on

the user’s specifications using the GUI (Most previous studies provide an

SLA template in XML format [166][476][245][228]).

5.2 Design Goals 153

• Utilise Microsoft Excel to provide extendibility features for the tool: Work-

flow activity, the attributes related to SLOs and configuration metrics as

well as the value ranges of the attributes are stored using Microsoft Excel.

One of the reasons behind utilising Microsoft Excel is to make the tool

extendable. Users do not need to change the Excel file, but if developers

want to extend the tool, they have the ability to change/update/delete Rows

and/or Columns in the Excel file with no need to change the code. Another

reason to utilise Microsoft Excel, in addition to enhancing the extendibility

feature of the tool, is its popularity and familiarity among the majority of

users. Thus, it is available on most devices, which reduces the burden

of having to download a prerequisite for the tool. Furthermore, it is a

GUI-based software where users do not have to be experts in any related

programming language details.

In the following sections, we present the design goal of the tool in Section

5.2 followed by the system architecture, which is presented in Section 5.3.

Section 5.4 presents an evaluation of the tool from the consumer perspective.

We conclude the chapter in Section 5.5.

5.2 Design Goals

SLA creation is an important and critical step, considering the fact that SLA-based

service discovery, negotiation, monitoring, management and resource allocation

rely on what is specified within the SLA. As a result, we have developed a toolkit

that enables service consumers/providers to specify their QoS requirements and

express them as SLOs, as well as specifying some configuration-related metrics

for each service and infrastructure resource of the system. We consider the

following features to be the design goals of the tool:

• Expressiveness: We aim to provide a rich list of domain-specific vocabularies

to allow fine-grained SLA specifications.

• Generalizability: We aim to consider common components or layers of IoT

architecture (IoT, Edge and Cloud).

• Extendibility: We aim to make the tool extendable to some extent by design-

ing it in a way that allows anyone who is interested to customise/enhance

154 SLA Specification Tool for IoT Applications

the SLA according to his/her application-specific needs to add or delete

activities/metrics without changing the programming code. It is possible to

add/delete/change activities/metrics using an attached Excel file, and these

changes can be reflected dynamically. The Excel file preserves the schema

of the SLA (e.g., workflow activities and their defined attributes).

• Simplicity: Providing a GUI enables users to specify their requirements

without prior knowledge of how to write correct syntax for a machine-

readable language such as JSON or XML. Furthermore, the tool allows users

to specify an SLA in the same data flow as their application by specifying

the workflow activities of their application first and then specifying the

requirements in the same flow of occurrences as the selected activities.

5.3 System Architecture

The abstracted design and architecture of the tool are depicted in Figure 5.1.

The overall architecture comprises three basic layers:

• The GUI layer, which includes the user interface components. The GUI

layer displays a sequence of forms that guide the user through well-defined

steps.

• The programming layer, which encapsulates the programming modules to

serve the GUI layer by providing the required functionalities.

• The data layer, which encapsulates the required data as an input to the tool

or an output of the tool. It includes the following:

– An Excel file as an input, which provides data that describe the SLO

and the configuration metrics related to the services and infrastructure

resources of each activity.

– A JSON file as an output, which represents the SLA specification.

5.3 System Architecture 155

SLOs	At	application	Level	
Form

WorkflowActivitySelection		
Form

HWSWSpecification	form	
(for	each	Activity)

ExcelConverter	Module Mapper	Module JsonSerializer	Module Database	Module

Excel	File SAL	in	JSON	Format

GUI	Layer

Programming	Layer

Data	Layer

Fig. 5.1 The layered architecture of the tool

Figure 5.2 shows the sequence diagram of the tool and reflects the main steps

when generating an SLA.

156 SLA Specification Tool for IoT Applications

Loop

:User(e.g., IoT
Administrator)

:Tool :Excel File

1: Display SLO at
 application level

2: Specify SLO
at application level

:MonogoDB

3: Read workflow activities

4: Display Workflow
 Activities

5: Select the workflow activity

6.1: Read data schema

6.2: Display QoS metrics/
configuration
 requirements of services
 and infrastructure
 resources

[for each selected activity]

6.3: Specify QoS metrics/
configuration
 requirements of services
and
infrastructure resources

7: Generate SLA
 Document
in JSON format

8: Store SLA as a JSON
 object

Fig. 5.2 Sequence diagram of the tool

5.3 System Architecture 157

The following section describes the implementation logic of the tool by listing

the main steps that the user may experience when using the tool to generate the

SLA:

• Step 1 -Specify the SLO at the application level: The tool displays a prede-

fined list of possible SLOs as a checklist, and users can check the SLOs that

they are interested in and specify the priority level (high, low, or medium),

as well as the threshold value of the QoS metric of the SLO (see Figure 5.3).

Fig. 5.3 Step 1: Specify Service-level Objectives at the application level

• Step 2 -Select the workflow activity based on the application scenario

requirement: There is a predefined list of activities that are part of the

workflow of a considerable number of IoT applications (e.g., capture event

of interest; ingest data; analyse large-scale real-time data activity). The tool

displays the predefined activities, and the user can then select the ones

that are included within his/her application workflow activities and connect

them in a way that reflects the data flow of the application. Connecting

the activity preserves the dependencies between activities for future work

related to performance modelling (see Figure 5.4).

158 SLA Specification Tool for IoT Applications

Fig. 5.4 Step 2: Select and connect the application workflow activities step

• Step 3 -Map each selected workflow activity to its required service and

infrastructure resource: After selecting and connecting the workflow activi-

ties, the user can then specify, for each selected activity, the service and the

infrastructure resource that host the service. For example, the “Capture

Event of Interest” activity requires a sensing service that can be deployed

on an IoT device (see Figure 5.5).

Examine	Captured	Event
(heart	rate>	threshold	value)

Fig. 5.5 Step 3: Map each selected workflow activity to its required service and
infrastructure resource step

• Step 4 -Specify the SLO and configuration metrics related to each of the se-

lected activities: The tool reads the SLO and configuration metrics schema

from a predefined Excel file, which contains the schema content for each

activity. The content of the Excel file also determines how the data are

displayed dynamically. Then, users can specify the required level/value of an

SLO and the configuration metrics for each service/resource infrastructure

5.3 System Architecture 159

component that is required to deliver the selected activities (see Figure

5.6).

Fig. 5.6 Step 4: Specify the requirements of each selected activity step

• Step 5 -Generate the SLA document: Based on the user’s specifications in

the previous steps, the SLA will be generated in a JSON format (See Figure

5.7).

160 SLA Specification Tool for IoT Applications

Fig. 5.7 Step 5: Generate the SLA in the JSON format based on previous specifi-
cations

Figure 5.7 provides the basic details for the SLA of the RHMS, covering the

application type and the start and end dates of the agreement. In addition,

at line 5, it lists an SLO constraint at the application level; the snippet

shows only the Availability as a high-priority objective with a required

level greater than 99% per day.

• Step 6 -Store generated SLA using a NoSQL database: Users have the

ability to choose which metrics to specify by checking/unchecking the

metrics, which will result in different schemas for the JSON files being

created due to the heterogeneity of requirements between users. Therefore,

each generated SLA JSON file is stored in a NoSQL database (MonogDB) 1.

The terms used within the JSON are the same terms as those found within the

grammar. The snippet covers some of the terms used within the first line in Table

4.1. Some other terms listed as production rules for the non-terminal < SLA >

(such as < description >) have not been used because they are optional.

The tool simplifies the process by guiding the user through the steps required

to generate an end-to-end SLA and it can also be used to specify the requirements

of different IoT applications. For example, the IoT administrator of the RHMS

1https://www.mongodb.com/

5.3 System Architecture 161

can specify the SLOs of the application, for example, that the response time for

urgent cases should be less than 5 minutes. He/she will also be able to specify

the activities involved, such as capture event of interest (e.g., patients’ data),

examine the captured events (for filtering), analyse real-time data on the fly and

store the results that are of interest.

Figure 5.8 shows the process of mapping activities to the required service

as well as the infrastructure resource for each of the involved activities. It also

depicts an example of an SLO related to each of the required services and the

infrastructure resources that are cooperating to deliver the RHMS.

Capture	Event	of	
Interest(Patients	Data)

Examine	Captured	Event	(Blood	
pressure	>	threshold	value)

Query	Large- scale		real-
time	data

Resource:	IoT(sensor)

Resource:	Edge	(raspberry	pi)

Resource:	Cloud	(VM)

depends	on

Communicate		(e.g.	pull	
mechanism)

Communicate		(e.g.	push	
mechanism)

requires Processing	
Service

HostedOn

requires Sensing	
Service

requires Stream	
Processing	
Service

HostedOn

Store	structured	data(e.g.	
query	analysis	results) Resource:	Cloud	(VM)

depends	on Communicate		(via	internal	
Networking)

requires HostedOnSQL	
database

depends	on

HostedOn

SLO:	e.g.,	Maximize	Data	freshness	level	

SLO:	e.g.,	Minimize	latency

SLO:	e.g.,	Minimize	latency

SLO:	e.g.,	Minimize	response	time	

SLO:	e.g.,	Minimize	battery	life	
Consumption

SLO:	e.g.,	Maximize	throughput

SLO:	e.g.,	Maximize	vCPU	utilization

SLO:	e.g.,	Maximize	vCPU	utilization

1-

SLO	at	application	level	is	“Response	time	to	urgent	cases	is	less	than	5	minutes”

Fig. 5.8 Mapping activities to the required service as well as the infrastructure
resource

Figure 5.9 shows the abstract structure of the main concepts that are consid-

ered within the resulting SLA document, with an example of each concept for

clarification purposes.

162 SLA Specification Tool for IoT Applications

IoT-SLA

SLA-ID;	Title;	SLA	Type;	
Start/End	Date

Party(e.g.,	IoT	administrator;	
Cloud	provider;….)

SLO(at	application	Level	
e.g.,	Response	Time	less	

than	5	minutes)

Workflow	Activity	(e.g.,	
Analyze	large-scale	real	

time	data)
Infrastructure	

resource(e.g.,	Cloud	
resource)

Service	(e.g.,	Stream	
processing	Service)

Configuration	
requirement	(e.g.,	
Number	of	vCPU	per	

VM)

SLO(e.g.,	CPU	utilization	
is	greater	than	80%)

Configuration	
requirement	(e.g.,	
Window	size)

SLO(e.g.,	Latency	less	
than	1	second)

For	each	selected	Activity

Fig. 5.9 The abstract structure of the main concepts that are considered within
the resulting SLA document

5.4 Evaluation

We have evaluated our tool by testing to what extent we achieved the design

goals that we set before we began developing the tool. We aimed mainly to

develop a tool that meets the following goals: expressiveness, which allows for a

fine-grained SLA specification; generalizability, which allows the tool to specify

the requirements of different use cases; simplicity in reducing the effort needed

from the end user to check the correctness of the syntax; and the extendibility of

the tool.

The study was conducted with 14 participants, most of whom were PhD stu-

dents working on topics related to the IoT, such as remote health and smart city

applications. Their research interests included Cloud computing, Edge comput-

ing and networking. To allow the participants to reflect their opinions on the

expressiveness and generalizability of the tool, we asked them to test a use-case

that was related to their research. Moreover, we provided them with two use

cases (RHMS and Flood Monitoring and Prediction System) in case any of the

participants preferred to refer to a predefined use-case. They were also asked to

5.4 Evaluation 163

offer their thoughts on the ease of use of the tool.

We allowed the participants to try the tool. The output is an SLA in JSON for-

mat where they specified their constraints according to their research of interest

use-case study. The participants were also able to discuss, ask for clarification

and give instant suggestions if they had any. At the end, the participants were

asked to fill out a paper-and-pen version of a questionnaire that contained four

questions related to the tool. Furthermore, there was a comment text box to

allow the participants to comment and offer their suggestions, criticisms or any

other comments that they thought might improve the work.

The four questions related to the tool were as follows:

• Overall, how satisfied or dissatisfied are you with our tool?

• To what extent does the tool allow you to express your requirements? (i.e.,

measured based on the fine-grained level of expressiveness that the tool

provides to specify the SLA constraints)

• How satisfied are you with the tool’s ease of use?

• How satisfied are you with the tool’s generalizability? (i.e., measured based

on the level that you are able to specify the requirements of a use-case in

your mind or use the use-case attached to the questionnaire)

5.4.1 Experiment results

The results of the participants’ answers to the questions related to the tool are

depicted in Figure 5.10. More than 60% described their overall satisfaction

as “satisfied”, more than 20% were “very satisfied” and less than 10% were

“neither satisfied nor dissatisfied”. Regarding the expressiveness (expressing user

requirements) of the tool, more than 60% answered “mostly expressed”, and the

rest of the participants responded that their requirements were “fully expressed”.

From the ease-of-use perspective, 50% were “very satisfied”, more than 20%

were “satisfied”, and more than 20% were “neither satisfied nor dissatisfied”.

Regarding the generalizability of the tool, 50% were “very satisfied”, more than

40% were “satisfied” and the rest were “neither satisfied nor dissatisfied”.

164 SLA Specification Tool for IoT Applications

Fig. 5.10 Participants’ responses to the questions related to the tool

5.4.2 Evaluation Analysis

Fourteen (14) participants took part in the experiment. As the answer for each

question was based on a Likert scale, ordinal codes were assigned to the an-

swers. For example, from very satisfied=1 to very dissatisfied=5, and from

fully expressed=1 to does not express them at all=5. Percentages were used to

explore the distribution of answers, while the median was computed to define the

general tendency of the participants. The Wilcoxon test for one sample was used

to compare the median to a hypothesised median value [132]. It was used, in

this study, to examine whether there was significant satisfaction with the tool, its

ease of use, and generality (median<=2), and the requirements of the conceptual

model (median<=2). A p-value of 0.05 was used as the threshold for significant

results.

The results in Table 5.1 indicate that the participants were very satisfied with

the tool (median=1.50), which was very highly significant (p-value<.001). The

participants found that the expressiveness (expressing user requirements) of

the tool seemed to be fully expressed (median=1.50), which was very highly

significant (p-value < 0.001). The participants were satisfied with the ease-of-use

perspective (median = 2.00), which was very highly significant (p-value<.001).

5.4 Evaluation 165

There was satisfaction with the generality of the tool (median=2.00), which was

very highly significant (p-value< 0.001).

Table 5.1 Result of conceptual model using the Wilcoxon test

Median p-value (Wilcoxon
test)

Decision

Overall, how satisfied or dissatisfied
are you with our tool?

2 <.001 Significant
result

To what extent does the tool express
your requirements?

2 <.001 Significant
result

How satisfied are you with the tool’s
ease of use?

1.5 <.001 Significant
result

How satisfied are you with the tool’s
generality?

1.5 <.001 Significant
result

Since the participants were asked about their overall satisfaction and the

generality of the conceptual model and the tool. Figure 5.11 presents a com-

parison between the overall satisfaction with the conceptual model and the tool.

Figure 5.12 presents a comparison between the overall satisfaction with the

generality of the conceptual model and the tool. As can be observed from the

two figures, the participants were more satisfied with the tool, which might be

explained by the fact that the conceptual model requires some understanding

of UML notations while the tool is GUI based and thus provides more clarity

than the conceptual model. However, based on the Wilcoxon test, the difference

between overall satisfaction with the conceptual model and satisfaction with the

tool was not statistically significant (p-value=0.102), and the same result was

seen for overall satisfaction with the generality of the conceptual model and the

tool (p-value=0.257),(Table 5.2).

166 SLA Specification Tool for IoT Applications

Fig. 5.11 Comparison between the overall satisfaction with the conceptual model
and the tool

Fig. 5.12 Comparison that reflects how satisfied the participants were with the
generality of the conceptual model and the tool

5.4 Evaluation 167

Table 5.2 Comparison of attitudes towards the conceptual model and the tool
using the Wilcoxon test

Question p-value
(Wilcoxon
test)

Overall, how satisfied or dissatisfied are you with our concep-
tual model? Vs Overall, how satisfied or dissatisfied are you
with our tool?

0.102

How satisfied are you with the tool’s generality? Vs Overall,
how satisfied or dissatisfied are you with our tool?

0.257

There were a number of comments that are listed below:

• comment related to the listed vocabularies:

– “It is better to add warranty duration as one of the parameters to be

specified for IoT devices”.

– ‘Window size’ configuration metric can be expanded to cover different

types of windows supported in stream processing, such as sliding Vs

tumbling window, event-based Vs time-based window”.

• Comment related to the design of the tool:

– “Could have a hierarchy window, just to reflect which specifications

are being done now”.

Regarding extendibility, we tested it by reviewing the results of a case con-

ducted by a master’s degree student who was interested in integrating security

constraints into the SLA clauses. The security metrics were integrated only by

inserting the related vocabularies using the attached Excel file, with no need to

change any line within the code.

However, regarding the question: "To what extent does the tool allow you

to express your requirements? (i.e., measured based on the fine-grained level

of expressiveness that the tool provides to specify the SLA constraints)", the

answers could be partially affected by subjectivity. Nonetheless, the participants

were asked to base their answer on whether or not the tool allowed them to

168 SLA Specification Tool for IoT Applications

specify the requirements that they were aiming to consider within the use-case

related to their research interest. Even with the possibility of subjectivity, we

considered the result from the point of view of more than one participant and

reflected the feedback of the majority. Thus, as Figure 5.10 shows, there is quite

a high level of satisfaction with the expressiveness of the considered fine-grain

domain-specific vocabularies.

Furthermore, based on the Wilcoxon test, regarding the expressiveness (express-

ing user requirements) of the tool, most of the participants found that their

requirements are fully expressed (median=1.50). This was very highly significant

(p-value < 0.001) (Table 5.1). We also compared this result with the previous

chapter, where the participants reviewed the expressiveness of the considered

vocabularies within the proposed grammar, and indicated a high level of satis-

faction (see Figure 4.5). Thus, we believe there is a level of consistency in the

evaluated expressiveness in the two separate studies.

5.5 Conclusion and Future Work

We have developed a tool that supports the end-to-end specification of QoS re-

quirements within SLAs for IoT applications. The tool is used to simplify the

process of capturing the requirements of IoT applications. We believe that the

tool effectively tackles the aforementioned challenges: 1) The tool provides a

rich set of vocabularies to capture the requirements of each layer of the IoT

architecture (IoT device, Edge layer, Cloud layer) to overcome the heiteroginty.

2) IoT applications have different SLO requirements, which vary from one ap-

plication to another. Additionally, the priority level of one SLO differs from one

application to another. Therefore, the tool allows users to specify SLOs at the

application level. 3) Different IoT applications have different workflow activities

depending on each application use-case scenario. Therefore, to overcome the

varied requirements that arise from the heterogeneity of workflow activity, the

tool allows the users to select their workflow activities first and then specify

the requirements for each selected activity. The output of the tool is an SLA

specification in a machine-readable format (JSON format).

5.5 Conclusion and Future Work 169

We have tested the tool with different use cases, and it allows requirements

to be captured. However, there is a possibility that some use cases will not fit

with this tool. In this case, we believe that the extendibility feature can mitigate

this risk to some extent with no need to change any line of the code. The tool in

this stage works for our purposes; however, as future work, we will enhance the

tool to include more semantic-related conditions. For example, when specifying

the end-to-end response time at the application level, the tool needs to consider

that all specified response times for the involved activities should not exceed the

acceptable end-to-end response time at the application level. Thus, there is a

need to consider the inter-dependency between the activities. When activities

are running in a sequential order, the total response time of all activities should

not exceed the end-to-end response time. On the other hand, when activities

are running in parallel, the activity with the highest response time among them

should be less than the specified end-to-end response time. For further illustra-

tion, consider a case with a combination of parallel workflow activities (p1, p2,

p3) and sequential workflow activities (s1, s2, s3). When an IoT administrator

specifies an end-to-end response time of an IoT application that should be less

than or equal to Y time units, then the tool should ensure that the following

formula is maintained:

i=3

∑
i=0

ResponseTimesi +(max
1≤ j≤3

ResponseTimep j)≤ Y (5.1)

where ResponseTimesi means the specified response time of workflow activity

si where i=1,2,3 and they are activities that can be performed sequentially.

where ResponseTimep j means the specified response time of workflow activity

p j where j=1,2,3 and they are activities that can be performed in parallel.

Chapter 6

Application Scenario Where the

SLA Specification Tool Brings New

Value for SLA Management

Overview

In this chapter, we propose an SLA management framework and present a proof

of concept to reflect a number of SLA management phases in which the SLA

specification plays a part. First, in the background section, we present two

applications that utilize our SLA specification. In the first case, since the SLA

specification provides configuration parameters for fine-grained details, it has

been utilized to create the knowledge base of a context-aware recommendation

system for the configuration of Cloud/Edge-based IoT applications. In the second

case, a Java library has been implemented to translate the generated SLA from

a JSON format to a smart contract. Then, these two applications are utilized

as part of our proposed SLA management framework. The proposed SLA man-

agement framework consists mainly of the following phases: SLA specification,

SLA negotiation, SLA monitoring using Blockchain to deploy SLA-based smart

contracts, SLA enforcement and SLA compensation.

6.1 Introduction

With the spanning of services between IoT devices, the Edge layer and the Cloud

layer, users need some guarantees that their QoS requirements, i.e., "a level of

172
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

quality that is agreed upon as a constraint" [289], will be assured and satisfied.

Therefore, developing an SLA management framework is one of the solutions

that can mitigate the risk of violating SLA terms.

SLA management includes more than one phase of the SLA lifecycle, such as

SLA negotiation, monitoring and enforcement. There are a considerable number

of studies in the literature covering SLA management. In Section 2.2, Table

2.2 provides a list of work mapped under the SLA management sub-category

(48 references). However, all of these SLA management works are related to

the Cloud. For example, Torkashvan et al [464] propose an SLA management

framework for Cloud computing and inter-Cloud environments in particular. This

framework is based on the WSLA implemented by IBM, but it has been altered to

fit Cloud computing.

Zhao et al [525] present a new approach to the SLA-based management of

Cloud-hosted databases. They present an end-to-end framework for managing

Cloud-hosted databases. The framework promotes the adaptive and dynamic

provision of the software application database based on application-defined

constraints to meet the required SLA performance of the applications. The

framework monitors the SLA continuously and, when required, automatically

triggers the necessary corrective actions (database tier scaling out/in). However,

their study considers SLA management only for database tiers. Mavrogeorgi et

al [319] present a Cloud-based SLA management system. Their study provides

an SLA enforcement mechanism based on rules, and these rules are updated in

run-time to proactively detect and manage possible SLA violations.

However, there is a shortfall in the number of available feasible SLA man-

agement frameworks that develop a management mechanism for SLA lifecycle

phases (e.g., definition, negotiation, monitoring and enforcement phases) for

IoT applications. Furthermore, there is a shortfall in the use of Blockchain

technology and combining the SLA specification with the recommender system,

especially in terms of considering the complexity of the multi-layered nature of

IoT applications.

6.2 Background 173

In this chapter, we propose an SLA management framework that consists

mainly of the SLA specification, SLA negotiation, SLA monitoring using Blockchain

to deploy SLA-based smart contracts, SLA enforcement and SLA compensation.

In addition, we add an optional configuration recommendation phase since, as

explained in Chapter 3, some configuration parameters such as sample rates

can affect the data analysis accuracy because they affect the data freshness.

For this reason, defining the SLA parameters and their related configuration

requirements requires expertise. As a result, having a recommender system that

can be considered as a guide for most common configuration parameters for

different infrastructure resources that span layers, provides considerable help

for most contractual parties of IoT-based services.

In Section 6.2, we present two applications that utilize the SLA specification.

In the first case, Section 6.2.2, since the SLA specification provides configuration

parameters on fine-grained details, it has been utilized to create the knowledge

base of a context-aware recommendation system for the configuration of Cloud-

/Edge-based IoT applications. In the second case, presented in Section 6.2.3,

a Java library translates the generated SLA from a JSON format to a smart

contract that can then be deployed on a Blockchain network. Then, these two

applications are utilized as part of our proposed SLA management framework,

which is presented in Section 6.3. After that, Section 6.4 provides a proof of

concept for the proposed SLA management framework. In Section 6.5, we discuss

the proposed SLA management framework and compare it with other related

studies. We conclude this chapter in Section 6.6.

6.2 Background

6.2.1 Hyperledger Fabric

Hyperledger Fabric is an open source application of a Blockchain framework.

It contains a modular architecture that allows Blockchain developers/adminis-

trators to deploy a Blockchain network using multiple consensus protocols and

membership options [210]. Hyperledger Fabric also contains a smart contract

engine capable of performing Java, JavaScript and Go smart contracts. Hyper-

ledger Fabric enables consortium blockchains to be developed and deployed

174
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

by offering a set of functionalities that enables an administrator to generate

different certificates and settings files, which are then used to build a Blockchain

network. In Fabric, administrators can select different database technologies to

store data, such as ’LevelDB’ and ’CouchDB’, due to the plug-and-play architec-

ture of Fabrics. Furthermore, the administrator can define membership policies

as well as the consensus protocol that can be applied.

6.2.2 IoT-CANE (Context-Aware recommendatioN systEm)

Our proposed SLA specification allows the consumer to specify fine-grained

configuration parameters and SLO constraints at the application level, as well

as at each workflow activity level. However, consumers interested in deploying

IoT services, for example small organizations that want to deploy IoT services

and need to submit an SLA request to one or more service providers (network

provider, Cloud provider), need to specify the required configuration parameters

for the required services and/or resources along with the SLO constraints at the

service and/or application level. The task of specifying fine-grained configuration

parameters requires some experience in the IoT, the Cloud and networking. One

of the novelties of the proposed SLA specification is that it considers the fine-

grained details for most common configuration parameters of the most common

workflow activities. Thus, there is potential usage within a recommender tool

for the configuration parameters of an IoT application. Therefore, Li at al [274]

develop the IoT-CANE (Context-Aware recommendatioN systEm), which utilizes

our SLA specification tool to generate the knowledge base 1.

The IoT-CANE solution introduces an end-to-end pipeline, proposed in [274],

for the classification, configuration and recommendation of suitable solutions

in this most complicated ecosystem. For the first time, a ripple-down rules

(RDR) method is used to recommend an IoT-based configuration with a single

conclusion/classification environment. In its processing layer, the IoT-CANE uses

our SLA specification tool to create the base knowledge of the recommender for

different possible configurations, which are used for later selection depending on

the consumer’s requirements. The created knowledge is stored in a configuration

knowledge database.

1IoT-CANE is developed by a PhD researcher at Newcastle University (first author in [274]

6.2 Background 175

Figure 6.1 shows the basic concepts that are considered within the Entity

Relationship (ER) diagram of the recommendation rules. The dotted square

reflects the context knowledge that is captured using the output generated from

the SLA specification tool.

Fig. 6.1 ER diagram of recommendation rules [274]

The IoT-CANE maintains a configuration knowledge base for the IoT resources

and it stores contextual data about the configuration knowledge representation.

The recommendation rules, as shown in Figure 6.1, maintain an association

between the items in the configuration knowledge base. The recommendation

rules consist mainly of two parts: context and conclusion.

• Context: The left side of the ER diagram presents context information

regarding the expected "contexts" data (e.g., sensing service), data source

(e.g., sensors, social media APIs), programming model (e.g., streaming

process, batch processing, SQL, NoSQL) and deployment node (e.g., Edge

resource, Cloud resource). The purpose of the configuration knowledge base

is to capture metadata and prevalent data on classes with similar demands

for implementation and resources. Shared knowledge of the context allows

IoT users to customize and reuse one of the previous configurations.

• Conclusion: The right side of the ER diagram depicts the parts that form

the conclusion of the produced recommendation rules. The produced rec-

ommendation rules suggest configuration knowledge representation, which

can then be deployed using a defined configuration deployment engine (e.g.,

Docker).

176
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

6.2.3 From SLA to Smart Contract Java Library

A Java library 2 converts the generated SLAs for different IoT application use

cases with different SLO constraints to a smart contract (see Figure 6.2).

Generating an SLA in a machine-readable format simplifies the process of

translating the SLA to Smart contracts. We aimed to translate the generated SLA

into a smart contract to explore the use of Blockchain technology for monitoring

IoT applications and recording SLA violations.

SLA	–based	
Smart	

Contract

Using	
SmartContractGenerator

Library
SLA	in	JSON	
Format

SLA	Specification	
Tool

Fig. 6.2 Abstracted generated smart contract from SLA specification steps

Applying the FromSLAToSmartContract library to the SLA can create a list

of rules for each SLO constraint and configuration requirement related to each

workflow activity. There are two main classes in the "FromSLAToSmartContract"

library:

• ChaincodeBuilder class: The rules express the constraints that have been

specified within the SLA and they are used to validate the status of a

monitored application. There is a ChaincodeBuilder class for each workflow

activity and for the SLO parameters that reflect the QoS constraints at

the application level. The ChaincodeBuilder extracts the SLO constraints

and the configuration required for each workflow activity and then builds

three chaincode methods: ∗_update,get_latest_∗update and get_∗ _violations

For each of the SLO and configuration requirements:

– ∗_update: The method is used to reflect the current state of the exam-

ined SLO/requirement.

– get_latest_∗update: The method returns the most recent state reported.

2We refer to this library as "FromSLAToSmartContract" library . The FromSLAToSmartContract
library converts the generated SLA from JSON format to a smart contract. It is developed by
researchers at Newcastle University [85] and it is part of the first author’s master’s dissertation.

6.3 Proposed SLA management Framework 177

– get_∗_violations: The method returns a history of all violations reported

for a specific SLO/configuration requirement.

• ChaincodeGenerator class: The ChaincodeGenerator class serves as the API

to the library. The ChaincodeGenerator class takes advantage of the chain-

code builders described above. After all methods have been produced by

the ChaincodeBuilder, the ChaincodeGenerator generates Java classes and

appends the methods previously generated by the ChaincodeBuilder using

JavaPoet’s 3 features. Finally, the ChaincodeGenerator returns an object

that contains the Java class as a string and the smart contract documenta-

tion. Furthermore, a deployable Hyperledger Fabric smart contract project

is written to the file system, which can be deployed to the Blockchain.

6.3 Proposed SLA management Framework

In this section, we propose an SLA management framework. The framework is

proposed as one possible solution to ensure that SLA violations are monitored,

violations are recorded to demonstrate that our specification tool can play a part

within more than one phase of the proposed framework. The proposed framework

is depicted in Figure 6.3, and it consists mainly of the following phases:

3https://github.com/square/javapoet

178
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

…
SLA-aware	Scheduling

Use-Case	Scenario Workflow	
Activities

Services	&	
Infrastructure	

Resource

SLA	Specification
Tool

IoT-CANE

Establish	SLA
SLA-based	Smart	Contract	
on	Blockchain Network

SLA	Violation	Policies:	
termination;	notification;	

reconfiguration;	
compensation;….

SLA-aware	
Approaches

map-to map-to

Use	configuration	
recommender?

No Yes

Agree?

Yes
Renegotiate

?

NoNo Terminate

Yes

SLA	term/s	
violated?

SLA-aware	Tasks		Placement
SLA-aware	Resource	Provisioning

SLA-aware	Resource	Allocation

No

Yes

Use-case	
M
apping

SLA	
Negotiation

SLA	
M
onitoring

SLA	
Enforcem

ent
SLA

Specification

Fig. 6.3 Proposed SLA management framework

• Use-case mapping phase: This phase consists of the following steps:

– Use-case Scenario: The scenario describes the type of application and

the main cooperative activities/tasks that are required to deliver the

final IoT application.

– Workflow Activities: This step includes one or more of the activities

that a use-case scenario can be mapped to. For example, in the flood

monitoring and prediction (FMP) use case, some possible workflow

activities are data collection, data examination and real-time data

analysis.

– Service and Infrastructure Resource: Each of the cooperative workflow

activities can be associated with a required service and the infrastruc-

ture resource that hosts the service. For example, in FMP, the real-time

analysis activity can be associated with a stream processing service.

• SLA Specification Phase: In the SLA specification, the service provider/s

and consumer/s can specify the QoS constraints, price and actions. In the

proposed SLA management, the SLA specification consists mainly of the

following steps:

6.3 Proposed SLA management Framework 179

– IoT-CANE: This step allows us to enter some context for each service

that is associated with an activity and the infrastructure resource layer

where the service will be hosted. We can then output the configuration

parameters for the service and the infrastructure resource in a JSON

format (a brief explanation of how the IoT-CANE works is presented in

Section, 6.2.2). This optional step depends on whether the consumer

(e.g., the IoT administrator) wants a second opinion about possible

configuration parameters.

– SLA Specification: This step allows us to specify agreement terms,

considering SLO constraints as well as configuration requirements.

However, the outcome of utilizing the IoT-CANE can be used to aid

with specifying configuration requirements as a second opinion.

• SLA Negotiation: SLA issues, such as service quality, price or average re-

sponse time, can be negotiated between a service provider and a consumer.

There can be a gap between the consumer’s expected demands (i.e., service

level) and the level of service that can be provided by the provider. If

this gap exists, the provider and consumer will then compromise to obtain

a mutually agreed-upon level of service. The agreed-upon service level

becomes part of the SLA when the negotiation is successful.

In the proposed SLA management framework, SLA negotiation takes place

before any required/offered services are established. If an agreement is

reached, then the final agreed-upon terms can be established, and the

SLA monitoring and enforcement phases start. If no agreement is reached,

then if renegotiation is possible, the SLA specification phase is repeated;

otherwise, the SLA renegotiation is terminated.

• SLA Monitoring: The expected service level between the consumer and

the provider is included in the SLA contract. Nonetheless, the QoS criteria

that are included in an SLA (such as response time and throughput) are

vulnerable to change; thus, to enforce the agreement, these parameters

must be monitored closely to determine whether the service provided meets

the SLA QoS constraints.

180
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

Smart contracts and distributed ledgers could revolutionize the economy.

Smart contracts, on the one hand, are agreements that are defined in an

executable language to allow trusted transactions. A key feature of such

contracts is that they can be implemented consistently by a network of

distrusted nodes without the intervention of a third party [63, 474]. Smart

contracts are commonly connected with distributed ledger technology, such

as Ethereum, which is utilized for different areas, mainly finance but also

Cloud services. On the other hand, the Blockchain [351, 474], which is an

implementation of the distributed ledger concept, executes transactions

and registers them in a decentralized manner.

Therefore, a potential usage of technology is to monitor the IoT using SLA-

based smart contracts so that the monitoring process can be conducted

transparently by all IoT application participants. This would mitigate the

need for a third party to act as a monitoring service, which may in some cir-

cumstances be biased towards one of the interacting parties. Furthermore,

through its consensus and security mechanisms, Blockchain provides a

platform to ensure that agreed-upon SLA terms and any logged interactions

are secure and unalterable.

Thus, in the proposed SLA management framework, for the SLA monitoring

phase, the generated SLA is translated into a smart contract that can

be deployed on a Blockchain network to automate SLA monitoring. This

process has the following steps:

– Translate the agreed-upon SLA from a machine-readable SLA to a

smart contract using the FromSLAToSmartContract library (a brief

explanation of the FromSLAToSmartContract library is presented in

Section 6.2.3) (see Figure 6.2).

– Add each party that is responsible for delivering a service to the

Blockchain network4 to increase the trust among the parties. The

generated smart contract is deployed on each contractual party’s node,

4A brief explanation of the Blockchain concept is presented in Section 2.1.2.

6.4 Proof of Concept 181

and when the arriving, reported and monitored data violate any one of

the SLA terms, they will be reported.

SLA	–based	
Smart	

Contract

deploy

Blockchain Network

monitor
Recorded	SLA	
Violation

Fig. 6.4 Abstracted SLA monitoring using Blockchain technology

– Monitor the SLA terms and record any SLA violations.

In the SLA monitoring phase, the cooperation between the smart contract

and Blockchain plays a significant role in monitoring the SLA without a

need for a third party in the middle. If there is a violation of one or more of

the SLA terms, then one or more of the agreed-upon SLA violation actions,

such as SLA termination, SLA compensation, sending a notification or

reconfiguring, is applied.

• SLA Enforcement: This phase includes (a) mechanism/s that enforces the

SLA terms to avoid/minimize SLA violations by applying the following and

other possible SLA-aware mechanisms: mechanisms for resource allocation,

resource provisioning, task placement and task scheduling.

• SLA Termination: This is the phase in which the service subscription is

ended for one or more of the following reasons or other reasons: the

negotiation fails to reach an agreement, one of the terms of the SLA that

allows for SLA termination is violated, and the SLA reaches its end date.

6.4 Proof of Concept

In this section we aim to show how, starting with specifying the SLA, considering

both SLO constraints and configuration parameters in machine readable format

can be utilized in different phases of the SLA management framework:

182
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

6.4.1 Use Case Study: Flood Monitoring and Prediction (FMP)

The framework is proposed as one possible solution to ensure that SLA violations

are monitored, violations are recorded and to demonstrate that our SLA specifica-

tion tool can play a part within more than one phase of the proposed framework

(e.g., SLA monitoring). Furthermore, the first step within the proposed frame-

work is "workflow activity mapping", which is followed by generating the SLA

specification using the SLA specification tool (the tool is presented in Chapter

5). The generated SLA is, then, utilised in the other phases of the proposed

framework. Thus, we believe that the framework can be used, to some extent, for

different use-cases, since its phases utilise the SLA specification tool. The tool is

built based on the conceptual model and the proposed grammar, the generality

and expressiveness of which we evaluated in previous chapters. Furthermore,

most of participants considered different use-cases derived from their research

of interests when they evaluated the tool (as discussed before in Chapter 5).

In previous chapters, we considered RHMS as a use-case scenario that we

referenced for illustration purposes. However, in this section, we consider

another use-case scenario, the FMP use-case. In FMP, at the application level, a

simplified SLA might be "If I pay X dollars (e.g., $100) to a Cloud provider-hosted

big data processing platform (see Figure 6.5), the provider must ensure that

events such as road closures and bridge collapses are detected from real-time

streams of social media, mobile data and historical flood modelling within a few

milliseconds and that alerts are sent to the public and emergency responder

teams within Y (e.g., 5) minutes of the detection". While big data analytics

workloads now require guarantees in application-level SLAs, public or private

Cloud providers provide only resource-level SLAs (e.g., Amazon EC2 promises

99.99% availability for its CPU, storage and network resources)5.

5https://aws.amazon.com/compute/sla/

6.4 Proof of Concept 183

SP1	 Smart	
Contract

SP2	 Smart	
Contract

SP3	 Smart	
Contract

Each	Service	
update	its	
status	to	the	
Blockchain

Coordinator:	To	coordinate	with	Blockchain
networks’	nodes	 	for	endorsement

Blockchain
Network

Fig. 6.5 Flood monitoring and prediction (FMP) case study

6.4.2 Implementation

For an organization that is responsible for providing an FMP service, in the

early stages of running the service it is important to consult experts who can

provide advice regarding where to deploy certain services and the possible

configuration parameters that can aid with delivering the right action within the

right time constraint. In other words, this use-case scenario can be mapped to its

required workflow activities, the possible deployment strategy and the related

configuration metrics. Therefore, seeking a recommender system that can be

used as a second opinion to support, enhance and/or guide the expert team’s

decisions is one of the possible solutions. Considering the main phases included

in the proposed SLA management framework, we perform the following steps:

1. Workflow Activity Mapping: Identifying the main workflow activities of FMP

is the first step. FMP requires the collection of real-time data from different

types of resources, such as sensors and gauges that measure rainfall levels

and river water levels, respectively. The newly collected data are then anal-

ysed for any abnormal data patterns (e.g., flood possibility) by comparing

them with historical/stored data.

184
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

2. Mapping each workflow activity to its required service: From step one, each

activity is mapped to its required service; for example, the capture event of

interest is mapped to the sensing service, and the real-time analysis activity

is mapped to the stream processing service.

3. Utilize the IoT-CANE to obtain a recommended configuration parameter for

each required service: Owing to the multi-layered nature of the IoT appli-

cation, specifying the resource configuration to run each of the activities

is a non-trivial task. Thus, we have utilized the IoT-CANE to provide us

with a configuration recommendation based on some context constraints.

Therefore, to identify a suitable configuration requirement, we can specify

some contextual knowledge about each cooperative activity, for example,

stream processing, which can be run on an Edge resource (see Figure 6.6).

Then, the IoT-CANE processes the data by applying a ripple-down rules

(RDR) method to recommend possible configuration parameters.

Fig. 6.6 A screenshot of the IoT-CANE screen to fill in some details of the stream
processing service and recommend the configuration requirements of the service

Thus, for each activity, we ran the IoT-CANE recommender to provide a

recommended configuration in a JSON format. Listing 6.1 reflects a snippet

of the recommended configuration for a stream processing service that is

required to "analyse small-scale real-time activity".

1

2 "slo" : [{

6.4 Proof of Concept 185

3 "qosMetric" : "Availability",

4 "priority" : "high ",

5 "requiredLevel" : "greater than ",

6 "value" : "99 ",

7 "unit" : "% "

8 },{

9 "qosMetric" : "CPU Utilization",

10 "priority" : "high ",

11 "requiredLevel" : "greater than ",

12 "value" : "80 ",

13 "unit" : "% "

14 }],

15 "configurationRequirement" : [{

16 "configurationFeature" : "storage Size",

17 "value" : "99 ",

18 "requiredLevel" : "greater than ",

19 "unit" : "TB "

20 }, {

21 "configurationFeature" : "Storge Type",

22 }

Listing 6.1 A snippet for the recommended configuration for a stream processing

service that is required to "analyse real time activity"

4. Generate SLA: Then, the created configuration is used to aid the process of

specifying an SLA for FMP by running the SLA specification tool, where we

can specify SLOs as well as the configuration requirements for each activity

(consult Chapter 5 for more details regarding how the SLA is generated).

5. Negotiate SLA: A negotiation is conducted between the contractual parties

to agree on the SLA terms. However, at this stage, we assume that the

generated SLA is the one that has been agreed upon.

6. Establish SLA: Assuming the contractual parties have agreed, the SLA is

now activated and established.

7. Create SLA-based Smart Contract: We create an SLA-based smart contract

using the "FromSLAToSmartContract" Java library. Figure 6.7 reflects a

186
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

snippet of the generated SLA using the SLA specification tool and the

corresponding snippet of the generated smart contract after using the

"FromSLAToSmartContract" Java library.

(a) (b)

Fig. 6.7 From SLA in JSON format to SLA-based smart contract

8. Create a Blockchain network: After generating an SLA-based smart contract,

we create a Blockchain network with three parties. To create a Blockchain

network, we follow the "first-network" example provided by [154] to deploy

a Hyperledger Fabric network for a consortium of three organizations.

Each Edge resource provider (SP1), Cloud resource provider (SP2), and

IoT application provider (SP3) represents a node within the Blockchain

network that represents the consortium members. They participate in the

administration of the Blockchain as well as in the validation and agreement.

After specifying the SLA terms and converting it to an SLA-based smart

contract by utilizing the library, they each have the same copy of the smart

contract, and they are each updated on the state of the smart contract as it

is executed, as presented in Figure 6.5.

9. SLA Monitoring: Thus, the created smart contract is deployed on each

node, and each node should reflect its status based on which service it

is responsible for; if there is a violation, then the parties are notified and

the violation recorded. We run the following cases to update the state of a

6.4 Proof of Concept 187

"gateway that is an Edge resource" when performing the "examine capture

EoI" activity based on what has been reported. The updating state has two

cases:

• case 1: "updating without a violation"

(a) We updated one of the gateway’s SLOs, where recorded availability

equals 100%, which equals the specified availability within the SLA.

Latency is still within the required level (less than 5 ms)

(b) To report the data newly acquired through monitoring, we show

the update method using the command in Figure 6.8

Fig. 6.8 Reporting the monitored SLOs of the “examine capture EoI” activity
when no violation is reported

(c) We run the command depicted in Figure 6.9 to check the violation

status, and it returns no violation recorded.

Fig. 6.9 Check the violation status of the monitored data

• case 2: "updating with a violation"

(a) In this case, we updated one of the gateway’s SLOs where recorded

availability equals 80%, which is less than what has been agreed

upon within the SLA,

188
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

To report the data newly acquired through monitoring, we show the

update method using the following command depicted in Figure

6.10:

Fig. 6.10 Reporting the monitored SLOs of the “examine capture EoI” activity
where a violation is reported

(b) We run the command depicted in Figure 6.11 to check the status

of the reported violation.

Fig. 6.11 Check the violation status of the monitored data

Figure 6.12 shows the functionality provided as part of the smart contract

to update some metrics and reflect the violation status.

6.5 Discussion 189

Fig. 6.12 A snippet of functionality provided within the generated smart contract
to update some metrics and reflect the violation status

10. SLA enforcement: This is the phase that ensures that the SLA terms are

respected by providing SLA-aware mechanisms for resource provisioning,

scheduling, management, service placement, etc. SLA enforcement is left

as a future work.

11. SLA Compensation: Whenever there is an SLA violation, then the corre-

sponding SLA compensation should be applied; however, SLA compensation

is left as a future work.

12. SLA termination: Termination typically occurs in one or more of the follow-

ing cases: the negotiation ends with no agreement, there is a violation of

the SLA terms that involves SLA termination or if the contract reaches its

end date/time.

6.5 Discussion

In the previous section, we implemented a prototype in which we followed the

stages of the proposed framework. We first mapped the FMP use-case scenario

to its workflow activities and associated each activity with the required service.

Then, for each service, we ran the IoT-CANE to obtain the recommended con-

figuration parameters, which were then used to aid the process of specifying

the SLA. However, for the SLA negotiation stage, we assumed only that the

specified SLA is one that we can base the agreement on. Then, the generated

SLA was converted to a smart contract using the "FromSLAToSmartContract"

190
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

library. After that, the SLA-based smart contract was created and deployed on a

Blockchain network to allow the monitoring stage to start. The monitoring stage

was performed with mimicked data, and the smart contract recorded all violation

cases.

We test the generated smart contract after deploying it on different nodes

on the Hyperledger Fabric network. We test the chaincode and the network

to show that the generated-deployed smart contract could detect all the SLA

violations. Instead of using a real FMS system, we utilised an emulator, which is

developed by [85], to send transactions to the blockchain networks. The emu-

lator is created with the programming languages NodeJS and JavaScript. The

emulator takes advantage of JavaScript’s asynchronous programming model so

that multiple transactions can be submitted without waiting for responses. Thus,

the simulator will send transactions to the blockchain network in fast succes-

sion. The emulator includes fields configurable by the users to model different

structures of the IoT system with sensors, gateways, real-time analysis services,

etc. For each element of the IoT application, the emulator will send state update

transactions. For instance, if the user configures the emulator to emulate an IoT

application consists of 100 sensors on the IoT device layer, the Fabric network

will receive 100 sensor update-state transactions to emulate the system deployed.

The emulator not only includes fields that allow the user to simulate various

infrastructures; it also includes a ’VIOLATION RATIO’ field. ’VIOLATION RATIO’

field is a number between 0 to 1 which controls the number of elements that

can cause a violation. When an emulator is configured by a user which consists

mainly of 100 sensors in the IoT device layer with a breach ratio of 0.05, for

instance, 5 sensor states with an SLA breach are submitted by iteration.

The emulation logic is provided in a loop such that the user can set up the

emulator to run X iterations. State transactions for each element in the IoT

topology are submitted to the emulator. For instance, if the user has configured

the emulator to consist of 100 sensors, 50 gateway devices, 5 ingestion services,

3 real-time analytics, and 2 storage services, thus SLO/Requirement state update

transactions will be executed for all 160 elements per iteration. The number of

submitted transactions depends on the number of updates on the SLO/Require-

6.5 Discussion 191

ments state.

The use of the previously mentioned emulator allowed the network and gen-

erated smart contract to be evaluated. We mimic different violation cases that

represent data related to the FMP SLA. A breach ratio of 0.05 was used for

each test with at least one element per layer causing a breach. Every test was

performed for three iterations. These tests aimed to verify that the generated-

deployed smart contract could detect all the SLA violations generated by the

emulator and that each submitted state was reported in the ledger. The smart

contract succeeds in reporting and recording the SLA violation using Blockchain

technology (see Figure 6.11). The findings show a 100% success rate in capturing

all the emulated violations related to the FMP use case. Table 6.1 shows the

number of cases with different infrastructures and services.

Table 6.1 Number of Detected Violated Cases

No Sensors No Gateway No Ingestion No Real-time No Storage No Transactions No Detected out of total
Service. Analysis Service. Service. number Violated cases

1 1 1 1 1 17 15/15
2 1 1 1 1 18 17/17
200 50 1 1 1 317 29/29
1000 600 5 5 5 3460 173/173

SLA enforcement and compensation are left as future work.

6.5.1 Comparison with Other SLA Management Frameworks

We have compared our proposed SLA management framework with a number of

studies [411, 278, 378, 474, 257, 464, 72, 466] that were selected because they

are closely related to the proposed framework.

The research presented in [411] introduces a framework to effectively track

and evaluate the SLA parameters and to detect the possibility of SLA violations

occurring [411]. The proposed framework considers the SLA negotiation and

monitoring phases. It also introduces an adaptive resource allocation method to

avoid SLA violations by utilizing the results of SLA violation prediction results.

The negotiation is presented only within the proposed framework. The resource

allocation mechanism is applied as a mechanism to enforce the SLA by avoiding

or at least minimizing SLA violation cases.

192
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

Patel et al. [378] propose a method for managing SLAs in a Cloud computing

environment using the WSLA framework built in a service-oriented architecture

(SOA) for SLA monitoring and enforcement. They use the WSLA’s third-party sup-

port function to perform monitoring and enforcement to overcome trust issues.

SLA specification and negotiation are part of the proposed framework, but they

are outside the scope of this study.

Uriarte et al [474] propose a framework for SLA management by relying on

the rich and complex formalism of an SLA that is converted into a smart contract.

This contract is then managed via the Blockchain. Landi et al [257] propose an

architecture and some protocols for managing SLAs of mobile Cloud networking

services.

Developing an easy-to-deploy and easy-to-use Cloud platform and creating

an effective monitoring tool to monitor SLA violations on the application layer

is not only valuable to consumers but also vital to Cloud providers. Thus, Liu et

al [278] propose an SLA management approach that monitors the SLA to detect

any SLA violation at the application layer.

Torkashvan and Haghighi [464] suggest a Cloud SLA framework called CSLAM,

which has a language for presenting the agreements between the signatory par-

ties. In addition, it has a mechanism for the deployment and monitoring of the

SLA parameters. They claim that CSLAM is an applicable framework, and they

delegate its implementation to future research.

Benedictis et al [72] introduce an SLA management solution that is supported

by a REST API. The implementation that they provide for the proposed REST

API supports the SLA processes of negotiation, renegotiation, monitoring and

applying the associated actions whenever a violation occurs.

Touloupou et al [466] seek to link business requirements with observable

attributes as SLOs between network operators and customers. During SLA tem-

plate generation, they allow network operators to choose between different SLOs

and then automatically formulate an agreement based on those choices. Finally,

6.5 Discussion 193

they provide a monitoring system for detecting any breaches and alerting users.

To compare our proposed SLA management framework with the above-

mentioned related studies, we have considered certain criteria that are related

to some SLA lifecycle phases. The selected criteria are related to the scope of

our solution and are not conclusive:

• Specification: this criterion is considered to be fully covered if the study

considers SLA specification to be a phase within its SLA management

framework and applies it using, for example, a prototype or a real system.

However, if the study considers SLA specification as simply a phase within

its SLA management framework, with no implementation provided, then

the SLA specification can be classified as partially covered.

• Negotiation: this criterion is considered to be fully supported if the study

considers SLA negotiation and implements it using a prototype or within

a real system use-case scenario. If the study just proposes it as a phase

within its SLA management framework, then the criterion can be described

as partially supported.

• Monitoring: this criterion is considered to be fully covered if SLA monitor-

ing is part of the SLA management framework and is implemented. If a

study just proposes SLA monitoring as a phase within its SLA management

framework, then the criterion can be identified as partially covered.

• Enforcement: This criterion is assumed to be fully supported if the research

considers SLA enforcement and applies it using, for example, a prototype

or use-case scenario. If the study simply proposes SLA enforcement as a

process within its SLA management structure, the criterion can be identified

as partially fulfilled.

• Recommender System: If the study considers and implements a recom-

mender system, this criterion is considered to be fully supported. If the

research proposes only a recommender system phase within its framework

with no implementation, then the criterion is partially covered; otherwise,

it is not covered at all.

194
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

• Blockchain for trustworthiness: The criterion is fully covered if the study

considers Blockchain technology and smart contracts and applies them for

management purposes. If the study only proposes Blockchain technology

and smart contracts within its framework, then the criterion is partially

covered; otherwise, it is not covered.

6.5 Discussion 195

T
a
b

le
6
.2

C
o
m

p
a
ri

so
n

o
f

th
e

S
L

A
m

a
n

a
g

e
m

e
n

t
fr

a
m

e
w

o
rk

s.
B

la
ck

ci
rc

le
s

re
p

re
se

n
t

fe
a
tu

re
s

fu
ll

y
su

p
p

o
rt

e
d

in
th

e
fr

a
m

e
w

o
rk

,
e
m

p
ty

ci
rc

le
s

re
p

re
se

n
t

a
p

a
rt

ia
ll

y
su

p
p

o
rt

e
d

fe
a
tu

re
a
n

d
a

h
yp

h
e
n

(-
)

m
e
a
n

s
n

o
t

su
p

p
o
rt

e
d

.

R
e
fe

re
n

c
e

S
p

e
c
ifi

c
a
ti

o
n

N
e
g

o
ti

a
ti

o
n

M
o
n

it
o
ri

n
g

e
n

fo
rc

e
m

e
n

t
B

lo
c
k
c
h

a
in

A
p

p
li

c
a
ti

o
n

a
re

a

[4
1

1
]

-
C

lo
u

d

[2
7

8
]

-
-

-
-

C
lo

u
d

[3
7

8
]

-
C

lo
u

d

[4
7

4
]

C
lo

u
d

[2
5

7
]

-
C

lo
u

d

[4
6

4
]

-
C

lo
u

d

[7
2

]
-

-
-

C
lo

u
d

[4
6

6
]

-
-

-
5

G
fo

r
N

e
tw

o
rk

S
e
rv

ic
e
s

P
ro

p
o
se

d
W

o
rk

Io
T

196
Application Scenario Where the SLA Specification Tool Brings New Value for SLA

Management

Table 6.2 shows a comparison between a number of available SLA manage-

ment frameworks and the proposed framework. Most of the frameworks have

been developed for the Cloud computing paradigm, except [466], which focuses

on G5 for network services. However, our proposed framework is the only one

that focuses on IoT applications. Considering that the integration of Blockchain

technology and smart contracts for trust purposes is still in its early stages,

Uriarte et al [474] utilize the integration of Blockchain technology and smart con-

tracts. However, they monitor the SLA based on their previous SLA specification,

which focused on the Cloud infrastructure tier. Furthermore, the aim of their

work is to enhance trustworthiness and eliminate/minimize the need for a third

party for Cloud services. However, our approach considers an end-to-end SLA for

the IoT and it therefore considers the most common services and infrastructures

resources across layers.

6.6 Conclusion and Future Research

In the background section of this chapter, we present two implementation ap-

plications that utilize the SLA specification tool. In the first case, since the tool

provides fine-grained details of the configuration parameters, it is used to cre-

ate the knowledge base of a Cloud/Edge-based context-aware recommendation

system for IoT configuration purposes. In the second case, it translates the gen-

erated SLA from a JSON format to a smart contract. Then, these two applications

became part of our proposed SLA management framework, which consists mainly

of the following phases: context-aware recommender, SLA specification, SLA

negotiation, SLA-based smart contract for SLA monitoring using Blockchain after

establishment and SLA enforcement.

There are limitations to our proof-of-concept implementation, including SLA

negotiation, and SLA compensation and enforcement, which have not been

applied; therefore, they remain as areas for future research. Furthermore,

the transition from one step to another is done manually, although it can be

done autonomously by developing an agent-based SLA management framework.

Therefore, in future research, one possible avenue is to combine what has been

developed (i.e., the SLA specification tool, context-aware recommender and SLA-

6.6 Conclusion and Future Research 197

based smart contract) and add other artefacts for the missing functionalities that

will facilitate an autonomous SLA management framework.

Chapter 7

SLA-aware Approach for IoT

Workflow Activities Placement

Across Layers

Overview

Previous chapters (Chapter 3, 4 and 5) discuss the SLA specification for the IoT

and Chapter 6 proposes the SLA management framework. The proposed SLA

management framework consists mainly of the following phases: context-aware

recommender, SLA specification, SLA negotiation, SLA-based smart contract

for SLA monitoring using Blockchain after establishment, and SLA enforcement.

In this chapter, we focus on SLA enforcement policies, since the chapter con-

siders the management of resources to reduce economic penalties arising from

potential SLA violations [343]. Therefore, we propose an SLA-aware approach

for IoT workflow activity placement across layers. The decision over whether

activities are assigned to the Edge or the Cloud to enforce the SLA is based on

a number of specified constraints within the SLA, such as constraints associ-

ated with each activity and the configuration parameters. Thus, we define the

problem (Section 7.2.1) then propose a greedy heuristic algorithm to allocate

activities between the available resources across layers while minimising the

execution time (Section 7.2.1). The allocation algorithm considers factors such

as the deadline associated with each activity, location and budget constraint.

We evaluate the proposed work using iFogSim for three use-case studies (7.3).

The results show a reduction in cost, time, and energy consumption compared

200 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

with the Cloud-only placement approach and the Edge-ward placement algorithm.

7.1 Introduction 201

7.1 Introduction

With the increasing number of applications and their time-sensitive nature, Cloud-

based solutions are not enough and they commonly suffer from latency due to

the centralized nature of Cloud-based data centres, which are mostly located

far from the data sources [372, 284]. Therefore, utilizing Edge resources while

benefiting from the Cloud whenever required is essential, especially for time-

sensitive applications and to overcome the problems associated with centralized

control [372, 284]. As a result, strategies for planning and the efficient allocation

of resources that consider multiple SLA parameters are needed [150].

On the one hand, in order to escape expensive penalties, SLA violations should

be avoided, while on the other hand, providers should use resources effectively

in order to reduce service provisioning costs [150]. Thus, it is necessary to

consider SLA-aware approaches that include, but are not limited to, SLA-aware

resource allocation, SLA-aware provisioning, SLA-aware activity/task placement

and SLA-aware scheduling. For example, Cloud service provisioning can be per-

formed based on the specified terms within the SLA, which include non-functional

service conditions defined as QoS, and responsibilities and penalties in the event

of contract breaches [150].

This chapter proposes an SLA-aware approach for workflow activity placement

across Cloud and Edge-computing layers. The approach considers the nature

of the IoT where various nodes generate vast quantities of records, and data

processing solutions consist of a number of activities/tasks that can be executed

at the Edge of the network or on the Cloud. Management at the Edge of the

network may limit the time required to complete responses and return the final

results/analytics to the end users or applications. Additionally, IoT nodes have

a restricted amount of functionality over the contextual information gathered

owing to their restricted computational and resource capacities.

A number of works propose service placement mechanisms. For example,

Tran et al [468] offer a new, multi-layered, IoT-based fog computing architecture.

In particular, they develop a service placement mechanism that optimizes service

decentralization in the fog landscape by using context-aware information such

202 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

as location, response time and service resource consumption. The approach

is being used in an optimal way to increase the efficiency of IoT services in

terms of response time, and energy and cost reduction. However, this study

considers tasks to be independent, which is not the case with IoT applications.

Furthermore, it is not an optimal approach since it applies the constraints match

approach.

Naas et al [348] seek to take advantage of fog nodes’ heterogeneity and loca-

tion to reduce the overall latency of storage and data retrieval in the fog. They

formulate the data placement problem as a generalized assignment problem and

propose two solutions: 1) an exact solution using integer programming; and 2) a

geographically based solution to decrease the solving time. However, their focus

is on storing data at the Edge to ease data retrieval, i.e. related to the database

tier only.

Kolomvatsos and Anagnostopoulo [139] propose a placement approach that

takes into account the power consumption of a system and minimizes delay viola-

tions using a discrete particles swarm optimization (DPSO) algorithm. iFogSim is

used to evaluate the proposed approach. Kolomvatsos and Anagnostopoulo [243]

suggest a smart decision-making system to assign tasks locally, but they consider

only the effect of their algorithm on energy consumption and delay. Furthermore,

this approach allows for task processing to be executed only in sequential order

(there is no parallel execution capability).

In this chapter, we propose a greedy heuristic algorithm to allocate tasks

between the available resources while minimizing the execution time. However,

there are a number of challenges to consider, such as maximizing the utilization of

Edge resources while considering the limitations of their computation capabilities.

Additionally, there is a possibility that some of the tasks will be time sensitive, and

it is therefore crucial that they be allocated and executed immediately. Executing

forthcoming tasks requires proper task allocation and scheduling that satisfies the

requirements of all the tasks while maintaining the SLA. Therefore, we propose

a layer-based algorithm that identifies and minimizes the global bottleneck, i.e.,

minimizing the processing time and the cost as well as maximizing the utilization

7.2 SLA- and context-aware approach for IoT activity placement across the Cloud
and the Edge 203

of resource computation at the Edge layer. The main contributions of this chapter

are summarized as follows:

• We consider a task placement approach based on cooperation between

the Edge and the Cloud that supports service decentralization, leveraging

context-aware information such as the location, and the available comput-

ing and storage capacities of Edge resources. The placement approach

considers the execution time constraint associated with each task and the

budget constraint at the application level. This maximizes the utilization of

Edge resources and minimizes latency, energy consumption and cost.

• We conduct a performance analysis with various case studies using iFogSim1

to reveal the effectiveness of the proposed approach in terms of maximizing

the utilization of fog devices while reducing latency, energy consumption

and network load.

7.2 SLA- and context-aware approach for IoT ac-

tivity placement across the Cloud and the Edge

In this approach, we consider IoT applications, which consist mostly of a set of

activities, some of which require high bandwidth and low computation. They

can be performed on one of the resources at the Edge of the network, while if

an activity requires more computation, it can be offloaded to the Cloud. In a

case where there is more than one activity, the selection of which one to deploy

at the Edge or the Cloud level can be based on different criteria (e.g., cost,

location, processing time or processing capacity). Our aim is to provide a solution

that distributes the workflow activities in a way that respects the consumer’s

requirements and utilizes the computation capabilities across layers while aiming

to avoid any SLA violations.

1iFogSim is an open-source toolkit for modelling and simulating resource management ap-
proaches to the IoT and Edge and fog computing, https://github.com/Cloudslab/iFogSim.

204 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

7.2.1 Problem Definition and Modelling

In IoT applications, task/activity/inter-module 2 placement is the problem of allo-

cating tasks/activities to a set of processors/resources/infrastructure resources
3 that are distributed across layers (Edge and Cloud). The input into the task

placement controller is an activity graph and a processor graph, and the output

is a placement plan that maps each activity to a suitable processor/resource.

Whether the resources are located at the Edge or the Cloud is based on each

task’s/activity’s computation and communication requirements.

The following describes the task placement information and the concepts

related to the proposed scheme.

Task Graph:

A task graph is represented by a directed acyclic graph (DAG), T G = (T,E), where

the set of nodes T = {t1, t2, t3, ..., tn} represents n tasks. Between tasks, there is

a set of edges belonging to E, which represents the data dependency between

nodes. For example, tasks t1 and t2 are connected by e1,2. In other words, between

any ti and t j, there is ei, j belonging to E. Thus, we can define edges and tasks as

follows:

∀(ti ∧ t j ∈ T), ∃ ei, j = (ti, t j) ∈ E

Consider that T represents a task that is defined as T = {Tid, ReqPCapcty,

deadline, region, level}. Tid represents task Id, ReqPCapcty represents requested

processing capacity, deadline represents the deadline constraint of the time

execution of a single task, and region reveals the region/location where this task

is preferably deployed. Finally, level is used to denote how many hops this task

takes from the starting point, which in our case is sensing events.

Each ei, j can be defined as ei, j = (SrcID, DisID, DTR, TRP, TupleLentgth), where

SrcID represents the source task id (ti node), DisID represents the destination task

id (t j node), DTR expresses the data transfer rate between ti and t j, TRP represents

the processing requirement of coming tuples, and TupleLength represents the

total length of the tuple.

2Within the text, we use task, workflow activity and inter-module interchangeably.
3Within the text, we use processor, resource and infrastructure resource interchangeably.

7.2 SLA- and context-aware approach for IoT activity placement across the Cloud
and the Edge 205

Each task has one or more predecessors, unless if it is a start task, and each

task has one or more successors unless if it is a finish task (see Figure 7.1, which

depicts the start and finish tasks). Any task starts only after all the predecessor

tasks have been completed, so the earliest start time of a task is equal to the

maximum finish time of all of its predecessors.

Fig. 7.1 Task dependency example for an IoT application

Processor Graph

Consider the topology presented in Figure 7.2. A processor graph is represented

by a DAG, PG = (P,D), where the set of nodes P = p1, p2, p3, ..., pn represents n

processors. A processor belonging to P can be a Cloud or an Edge resource.

Between processors is a link distance, d, that connects them; for example,

processors p1 and p7 are connected by d1,7, so there is a set of links di, j between

any pi and p j belonging to P and di, j belonging to D. We can define the distance

links and processors as follows:

∀pi ∧ p j ∈ P, ∃ di, j = (pi, p j) ∈ D ; pi AND p j are not lea f nodes

Each processor pi can be defined as pi =(pCapctyi, upLnkLatencyi,downLnkLatencyi,

pmLoadi). pCapctyi is considered to hold the processing capacity of pi, up link

latency is upLnkLatencyi, down link latency is downLnkLatencyi and pmLoadi repre-

sents the current PM load.

206 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

Cloud Resource

GW1 GW2

p1 p2 p3

p7

p9

d 1,7 d 3,7

d 7,9

dev1 dev2 dev4 dev5 dev6dev3

Fig. 7.2 Processor graph

Objectives

The objective is to propose a placement mechanism that aims to maximize the

utilization of Edge resources and minimize the cost and execution time of an IoT

application to adhere to defined SLO constraints at the application level. In this

study, the main information considered for task/workflow activity placement is as

follows:

• Network Topology: available resources and their computation capabilities.

• Location: the location of the initiated requests or consumed services.

• Service Type: data storing and data filtering are services that require

different computation/storage capabilities; therefore, the approximate size

of the data (e.g., million instructions per second (MIPS)) required by an

activity/task is different based on the type of required service.

• Level of Activity: number of hops that separate a task/activity from its

starting point, in our case from the IoT devices that generate the data. It is

essential to denote the dependency between tasks, as this helps to avoid

assigning a task to a resource on a level lower than its predecessor, unless

the predecessor requires higher computation resources. It also allows

parallel processing for tasks that are on the same level.

• Quality of Service: advance knowledge of the constraints on the offered

services plays a role in selecting the type and layer of resource. In our work,

7.2 SLA- and context-aware approach for IoT activity placement across the Cloud
and the Edge 207

we consider minimizing the end-to-end response time by considering the

deadline constraint for each involved task/activity.

To express our objective of maximizing the utilization of Edge resources, each

task ti can be deployed on RCloud (Cloud resource) or on REdge (Edge resource);

however, deploying ti on a Cloud or Edge resource is a binary variable. If ti is

deployed on the Cloud, then 1 is assigned to TiRCloud
and 0 to TiREdge

, and vice versa.

Each task is processed on either Edge or Cloud resources; thus, we try to

maximize the number of tasks that are assigned to Edge resources whenever

appropriate, which we represent mathematically as:

Maximize
i=n

∑
i=0

TiREdge
(7.1)

The processing time of a task ti on a resource p j is calculated as shown in

equation 7.2.

TExec(ti, p j) =
α

ti
p j fti(zi)

p j
+upLnkLatencyp j (7.2)

Here, fti(zi) represents the computation requirement for task ti, zi represents

data input into task ti and α
ti
p j represents the number of current modules running

concurrently with ti on node p j.

The calculation of the CPU requirement for upcoming data/tuples for task ti
is given in equation 7.3, for each Edge has ti as its distention (i.e., the DisID for

Edge e is ti). DTR represents the data transfer rate of Edge e, and TPR represents

the required processing capacity for each tuple transferred by Edge e.

Edgee=y

∑
Edgee=0

DT R×T PR ∀ Edge e has DisID = ti (7.3)

The total cost of running ti over node p j is the sum of the memory cost

memCostTi, the communication cost commCostTi, the storage cost storgCostTi and

the node cost nodeCostTi, as given in equation 7.4. Each of these costs is ex-

plained in equation 7.5-7.8. (Note: memoryCostUnit represents the cost defined

per memory unit; commCostUnit means defined cost per communication unit;

StorageCostUnit represents the cost defined per storage unit; sizeDataIn is the

208 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

size of the coming data; DataToStore is the size of the data to be stored and

NodeCost represents the cost of using a node.)

Cost(Ti) = memCostTi + commCostTi + storgCostTi +nodeCostTi (7.4)

memCostTi =
fti(zi)

pi
∗memoryCostUnit (7.5)

commCostTi = sizeDataIn∗ commCostUnit (7.6)

storgCostTi = DataToStore∗StorageCostUnit (7.7)

nodeCostTi = TiExec ∗NodeCost (7.8)

Proposed Algorithm

Proposing a multi-objective SLA-aware algorithm for placing workflow activities

across layers is essential, subject to the constraints of each involved service/in-

frastructure resource as specified within the SLA. Yet, in this early-stage work,

we only considered the end-to-end execution time and a number of constraints

related to the involved services/infrastructure resources. For example, we con-

sidered the cost and execution time at the application level as well as the time

constraint associated with each required service and the capacity capabilities

of the required infrastructure resource. In the following section, we present

the proposed algorithm for placing inter-modules among the available resources

while considering the following objectives and constraints:

Offline Integer Programming Formulation Here, we aim to minimize the

cost of deploying inter-modules on available resources and the end-to-end re-

sponse time. For the offline version of the inter-module placement problem,

integer programming formulations are derived. These formulations are used

to devise limits on the suggested approach. The main objective is to minimize

the execution time while considering other constraints, such as cost/budget

constraints. Table 7.1 summarizes the notations used in our formulation. Our

main decision variables, denoted as xi j, are defined as follows:

ob j = Minimize
i=n

∑
i=0

Timeti (7.9)

7.2 SLA- and context-aware approach for IoT activity placement across the Cloud
and the Edge 209

subject to

xi j ∈ 0,1,∀i = 0,1, ...,n;∀ j = 0,1, ...,m (7.10a)

i=n

∑
i=0

CostTi <=CostConstraint (7.10b)

i=n

∑
i=0

TiREdge
>

i=n

∑
i=0

TiRCloud
(7.10c)

i=n

∑
i=0,level=l

ti j <= 1 (7.10d)

k=predecessorListSize

∑
k=0,i, j

tk jtier <= ti jtier (7.10e)

Constraint 1 enforces the binary nature of xi j. Constraint 2 ensures that

the cost of the deployment plan will not exceed the cost/budget limit (CostCon-

straint). Constraint 3 ensures that the number of inter-modules assigned to

Edge resources is greater than the number of inter-modules assigned to Cloud

resources, as far as possible. Constraint 4 ensures that no two inter-modules

from the same level are assigned to the same resource. Constraint 5 ensures that

no inter-module ti is assigned to a resource that is located in a tier lower than any

of its predecessors (considering only predecessors of ti that require processing

capacity less than the processing capacity required by ti).

In Algorithm 1, the task and resource graphs are input. Lines 6, 7 and 8

define the associated level of each inter-module, which is calculated based on

the number of hops between the inter-module and the source of the captured

interesting event. Lines 10 to 12 calculate the corresponding execution time

of deploying ti on resource p j and then sorting all resources based on their

execution time. Starting with the shortest execution time, we need to apply the

constraint-checking steps, which are in Lines 14 to 28: these steps check whether

the p j resource has predecessors to ensure that no predecessor of inter-module

ti is assigned to a resource that is allocated to a layer higher than the current

checked p j if it requires more computing capacity than its predecessors.

If there is a resource p j that has one of ti’s predecessors deployed on it, and

no predecessor of ti is deployed on a resource that is located in a layer above the

current p j’s layer, then the associated constraints are checked with inter-module

ti by calling the checkConstraintsConsistencyFunction (Line 22). If there is no

210 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

Table 7.1 Notations for the Offline Integer formulations and symbols used in the
algorithm

Notations Meanings
ti task/activity/intermodules i
p j a resource with processor pj
ei j dependency edge between two tasks

ti and t j
li j Link between two resources Pi and Pj
bwi j bandwidth of link li j
zi j data size transferred

over edge dependency ei j
disi j distance between Pi and Pj
di j Link delay of link li j between Pi and Pj
picapacity Computation capacity of resources Pi
ReqPCapcty Represents requested processing capacity
level Reflects how many hops this task is

far from the starting point
ei, j Edge between ti and t j task nodes
SrcID Represent the source id
DisID Represents the destination id
dataTrans f ereRate Expresses data transfer rate

between ti and t j
TupleProcessingReq Represent processing requirement

of the tuples
TupleLentgth Represents the length of tuples
pCapctyi Holds processing capacity of pi in MIPS
upLnkLatencyi Up Link Latency of pi
pLoadi Current CPU load of pi
TupleLentgth Represents the length of tuples
TiREdge

Task ti is running on Edge resource

TiRCloud
Task ti is running on Cloud resource

TimeConstraintti j Time constraint of running ti
Timeti j Execution Time of running

ti on resource p j
ti jtier Reflects the tier of resource p j that runs ti
predecessorListSize predecessors of ti with ReqPCapcty

less than ti’s
SortedResorces Sort resources based on their

execution time of task ti
in ascending order

7.2 SLA- and context-aware approach for IoT activity placement across the Cloud
and the Edge 211

Algorithm 1: SLA aware algorithm for application module placement
across layers

1 Input: TG=(T,E) ; PG=(P,D)
2 region =-1
3 found= false
4 Output: application modules are mapped to available resources
5 Objectives: Minimize Cost and Minimize Application latency
6 foreach ti in TG do
7 define a deadline d constraint
8 assign a level value to ti

// level for each task reflects how many

// hops between the task and the starting point

9 foreach resource p j in PG do
10 calculate Timeti j

11 add(SortedResorces, p j)// sort resources based on their execution

time of task ti in ascending order

12 end
13 foreach resource p j in SortedResorces do
14 if ti has a predecessor then
15 foreach tk in predecessor list of ti do
16 if tk is already assigned to a PG resource then
17 pl = the PG resource that tk is assigned to
18 if tkReqPCapcty is less than tiReqPCapcty then
19 if pl level is greater than p jlevel then
20 break
21 else
22 call checkConstraintsConsistencyFunction
23 if checkConstraintsConsistencyFunction then
24 assign ti to p j update list of assigned modules of p j

Found= true
25 else
26 continue
27 end
28 end
29 end
30 end
31 if not found then
32 Calculate the Cost of executing ti on Cloud as in Eq. 7.4
33 if TotalCost+=cost of executing ti on a Cloud resource is less than

budget then
34 update TotalCost
35 assign ti to a Cloud resource
36 else
37 Log the Cost exceeds the allowed Budget and break
38 end
39 end

212 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

Algorithm 2: Checking Budget Constraints Consistency after mapping
tasks to resources
1 checkConstraintsConsistencyFunction
2 if region==-1 then
3 if tiregion == p jregion then
4 if that p j does not have tasks from the same level of ti then
5 Calculate the Execution Time of ti on p j by applying Equation 7.2
6 if the requested CPU Less than available CPU then

// Check if the resource can sustain the place module

7 if the time is less than or equal to the associated deadline
with ti then

8 return true
9 else

10 change the region value from -1 to another region not the same
as region of ti return false

11 end
12 else
13 Go To line 4
14 end

resource p j that matches the requirements and considered constraints, then ti is

assigned to a Cloud resource. The checkConstraintsConsistencyFunction checks

that a resource p j can sustain the inter-module within its deadline constraint,

without exceeding the budget, that it is not running other tasks at the same level

as the coming inter-module and that it is within the same region. If searching all

resources within the same region does not satisfy the constraints, then the other

regions are checked; otherwise, false is returned. If false is returned, then the

task is assigned to the Cloud resource, provided that the cost constraint is not

violated.

7.2.2 Time Complexity Analysis

We solved this problem with a context-aware approach. If the inter-module does

not have predecessors, then in the best-case scenario, the first search attempt

returns a resource that matches the requirement for each inter-module; thus,

the time complexity is θ(n), where n represents the number of inter-modules.

However, in the worst-case scenario, when finding a resource that matches

the inter-module constraints and performing it for each inter-module ti, all m

7.3 Evaluation 213

resources in the resource list must be checked. Therefore, the time complexity

is θ(nm), where m represents the number of IoT devices (e.g., mobiles) in the

available resources in PG. Cases where an inter-module ti has predecessors

require more time, in order to avoid assigning an inter-module to a resource in a

layer lower than the predecessor resource’s layer if it requires more computing

capacity than its predecessors. Thus, we perform a checking step that iterates all

of an inter-module’s predecessors. As a result, in the best-case scenario, when

an inter-module has only one predecessor and finds a resource that matches the

inter-module constraints at the first attempt, the time complexity is θ(n)θ(1), and

considering only the upper bound means that the time complexity equals θ(n).

In the worst-case scenario, when an inter-module ti has k predecessors, then

finding a resource that matches the inter-module constraints leads to all available

m resources being checked. In this case, time complexity can be calculated as

θ(nmK), which is the worst-case scenario for time complexity: θ(nm)+θ(nmK);

however, since k, which represents the number of predecessors of an inter-

module, is less than the total number of inter-modules n, the time complexity is

θ(nm).

7.3 Evaluation

To evaluate our proposed algorithm, we ran it using the iFogSim simulator.

iFogSim

The iFogSim simulation toolkit is based on CloudSim [99] platform [306]. CloudSim

is one of the most widely utilized cloud-based simulators [70, 304, 306]. iFogSim

provides a wide scope for modelling a customized Fog computing environment

with such a large number of Fog nodes and IoT devices (e.g. sensors, actuators)

by extending CloudSim classes. However, iFogSim annotates the classes to make

the service and infrastructure resource allocations policies for Fog computation

easily defined for users without any previous knowledge of CloudSim. iFogSim

uses Sense-Process-Actuate and distributed data flow models when simulating

any Fog-computing application scenario. There are a number of simulators for

the IoT; however, we chose iFogSim because it is based on CloudSim, which is

popular among researchers for testing various strategies/algorithms, such as

214 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

[468, 348, 139]. In iFogSim, the measurement of end-to-end latency, network

congestion, energy use, operating costs and QoS satisfaction is supported. Fur-

thermore, in a substantial number of research projects, iFogSim has been used

to mimic resources [459, 306], latency [308, 306], Quality of Experience (QoE)

[309, 306], mobility [80, 306], energy [303, 306], QoS-Aware management of

the Fog computing environment [431, 306] and security[104, 306]. It simulates

IoT applications, where it can enable application modules to be allocated and

scheduled among Fog and Cloud resources. It also provides two case studies to

explain IoT modelling and resource management policies which we utilized to

evaluate our proposed approach.

7.3.1 Use-Case Studies

For evaluation purposes, we consider the following case studies:

Remote Health Monitoring Service (RHMS) Case Study 1

Consider a remote health monitoring service (RHMS) to which patients (e.g.,

elderly patients with Parkinson’s disease) can subscribe in order to be monitored

on a daily basis. Data are collected and filtered, and if there is a pattern of inter-

est or an event that matches a threshold value, then the data can be analysed

on a small scale as they are related to a specific patient. However, in cases that

require a comparison between incoming data and historical data, or in cases

where the same events come from different subscribers, such as when many

patients have signs of fever and many social media users are tweeting about

these widespread signs, then the scenario can be considered as a large-scale

data analysis task that needs high computational power. The most interesting

analysis results are then stored.

In this use case, the workflow activities – data collection, data filtering, small-

scale real-time data analysis, large-scale real-time data analysis and storing

data – are represented as tasks t1, t2, t3, t4, and t5, respectively. There are

sensors attached to patients’ wrists, video cameras for patients and mobile

accelerometers to capture activity patterns. These devices are connected to

smart phones as a gateway, which is then connected to the WiFi gateway. The

7.3 Evaluation 215

WiFi gateway is connected to an Internet service provider, which in turn is

connected to a Cloud data centre 4.

Intelligent Surveillance Case Study 2

The intelligent surveillance application 5 comprises five main processing modules.

1) Motion Detector reads the camera’s raw video stream to detect an object’s

motion. 2) Object Detector extracts objects from the video stream, and if an

object is new compared with previously discovered objects that are currently

active in the area, then object tracking is activated. It also determines the ob-

ject’s coordinates 3) Object Tracker determines the optimum pan-tilt-zoom (PTZ)

configuration based on the last calculated coordinates of the objects currently

being tracked. These PTZ data are regularly transmitted to the PTZ control of

the cameras. 4) PTZ Control is embedded in each smart camera and it changes

the physical camera configurations to suit the optimum PTZ parameters sent by

the tracker module. 5) User Interface is an interface that displays to the user a

segment of the video streams that contain each tracked object. This case study

is one of the case studies mentioned in [186]. We use it because we plan to

compare our results with the Edge-ward module placement algorithm presented

in [186]. For more details of the case study and the algorithm, readers are ad-

vised to refer to [186]. Listing 7.1 shows a snippet of the SLA of the case study 2 6.

1

2 [{

3 "appType" : "Intelligent Surveillance",

4 "startDate" : "Wed Nov 21 00:00:00 GMT 2018",

5 "endDate" : "Thu Nov 21 10:35:46 GMT 2019",

6 "Execution Time" less than "1000 milliseconds"

7 "Cost/Price" less than "1000.0 $ per contract period"

8 "activityName" : "Capture Event of Interest: Motion Detector "

9 "Sample Rate" greater than "3 kHz "

10 "deviceType" : "Sensor "

11 "numberOfDevices": "4 "

4The generated SLA for case study 1 is listed in Appendix B
5Consult [186] for further details, look here [186].
6The generated SLA for case study 2 is listed in Appendix C.

216 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

12 "mobilityOfDevice": "fixed "

13 "communicationTechnology":"WiFi "

14 "cpuCapacity":"1.6 GHz"

15 "memorySize": "1 GB"

16 "activityName" : "Examine Captured EoI: Object Detector",

17 "Network Latency" less than to "2 milliseconds "

18 "Size of data-in" greater than "4 KB "

19 "Link Bandwidth" equal to "6 Kbps "

20 "deviceType": "Gateway "

21 "numberOfDevices": "4 "

22 "mobilityOfDevice":"fixed "

23 "communicationTechnology": "WiFi "

24 "cpuCapacity" "3 GHz"

25 "memorySize": "4 GB"

26 "activityName" : "Analyse large-scale realtime data: Object

Tracker ",

27 "Latency" less than "5 milliseconds "

28 "Memory Size" : " 1 KB "

29 "vCPU Capacity": "2 GHz Xeon "

30 "Hypervisor": "Xen "

31 "OS Type" "Linux Ubuntu "

32 }]

Listing 7.1 A list of some of the considered constraints/ configuration for case

study 2

EEG Beam Tractor Game Case Study 3

The EEG Beam Tractor Game 7 comprises three main processing modules. 1)

The client receives the raw EEG signals, checks for any inconsistencies in the

received signal values and excludes any potentially inconsistent readings. 2) The

Concentration Calculator calculates the brain status and concentration level of

players using the sensed EEG signal values. To update the state of the player,

the client module is informed of the level of calculated concentration. 3) The

Coordinator operates globally to coordinate the game among multiple players

7Consult [186] for further details of the EEG Beam Tractor Game.

7.3 Evaluation 217

who may be active in locations that are geographically separated 8. This case

study is one of the case studies mentioned in [186] because we plan to compare

our results with the Edge-ward module placement algorithm presented in [186].

For more details of the case study and the algorithm, readers are advised to refer

to [186].

7.3.2 Physical network

For the case study, we considered a physical topology with different types of Fog

devices. Table 7.2 and Table 7.3 present the configuration of the topology used.

This configuration is the same for both case studies except for the number of IoT

devices. Case study 1 consists of four areas, and each area has four IoT devices.

Case study 2 consists of two areas, and each area has four IoT devices. Case

study 3 consists of four areas, and each area has six IoT devices.

Table 7.2 Associated latency of network links

Source Destination Latency [ms]
IoT device Smart Phone 1
Smart Phone WiFi Gateway 2
WiFi Gateway ISP Gateway 2
ISP Gateway Cloud Data Centre 100

Table 7.3 Configuration description of infrastructure resources

Device Type CPU [GHz] RAM [GB]
Smart Phone 1.6 1
WiFi Gateway 3 4
ISP Gateway 3 4
Cloud VM 3 4

7.3.3 Performance Evaluation Results

Analysis of Case Study 1

We applied the proposed algorithm to case study 1 and compared the performance

result with placing the inter-modules on the Cloud. Execution time, energy

8The generated SLA for case study 3 is listed in Appendix D.

218 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

consumption, network usage and cost are the metrics that are captured by

simulating the application and applying the proposed approach to place the

inter-modules using iFogSim. The following subsections compare the results of

applying the proposed approach with those of applying the Cloud-only approach.

Execution Time The overall execution time for case study 1 was less for the

proposed approach for task placement than for the Cloud-only approach (Figure

7.3). The latency control loop is reflected in Figure 7.4. "In iFogSim, the developer

can specify the control loops to measure the end-to-end latency" [186].

Cloud Proposed
Execution	Time 5640 1345

0

1000

2000

3000

4000

5000

6000

Ex
ec
ut
io
n	
Ti
m
e	
in
	M

ill
ise

co
nd

s

Fig. 7.3 Time execution of case study 1

7.3 Evaluation 219

Cloud Proposed
Control	Loop 109.725 109.56

109.45

109.5

109.55

109.6

109.65

109.7

109.75
La
te
nc
y	
in
	M

ili
se
co
nd

s

Fig. 7.4 Control loop delay in case study 1

Network Usage As shown in Figure 7.5, there is not much difference in net-

work usage; however, the proposed approach shows slightly more network usage

at the Edge, probably because it allocates most inter-modules to the Edge re-

sources.

Network	on	Cloud Network	on	Edge Network	on	Mobile
Cloud 0.099 163.076 3.1984
Proposed 0.099 173.5073 3.1984

0

20

40

60

80

100

120

140

160

180

200

N
et
w
or
k	
Us
ag
e	
in
	K
ilo

By
te
s

Fig. 7.5 Network usage of case study 1

Energy Consumption In general, the Cloud-only approach, as depicted in

Figure 7.6, showed a higher level of energy consumption on both the Cloud and

220 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

IoT device layers than the proposed approach. In the Edge layer, there was

a slight difference between the two approaches, possibly for the same reason,

which is that the proposed approach allocates more inter-modules to the Edge

than to the Cloud.

Energy	on	Cloud Energy	on	Edge Energy	on	Mobile
Cloud 15.13206392 4.171665 13.62222746
Proposed 13.53368436 4.230683148 13.21738922

0

2

4

6

8

10

12

14

16

En
er
gy
	C
on

su
m
pt
io
n	
in
	M

eg
aj
ou

le
s

Fig. 7.6 Energy consumption of case study 1

Cloud Cost Figure 7.7 depicts the cost of implementing case study 1 when

applying the Cloud-only approach and our proposed approach. The Cloud cost is

higher with the Cloud-only approach, while our approach is five times less costly

than the Cloud-only approach because the proposed approach allocates more

inter-modules to the Edge than to the Cloud.

7.3 Evaluation 221

Cloud Proposed
Cost	on	Cloud 25690.02014 3029.449143

0

5000

10000

15000

20000

25000

30000
Cl
ou

d	
Co

st

Fig. 7.7 Cloud cost of case study 1

Analysis of Case Study 2 and Case Study 3

iFogSim comes with two built-in case studies that apply the Edge-ward inter-

module placement approach proposed in [186]. Therefore, we applied the pro-

posed algorithm to case study 2 and case study 3 and compared the performance

results with those obtained when placing the inter-modules with the Cloud-only

approach, as well as with the Edge-ward inter-module placement approach. The

metrics of execution time, energy consumption, network usage and cost were

captured. The following sections describe the comparison results.

Execution Time The execution time of all three approaches (Cloud-only, Edge-

ward placement and our proposed placement) is presented in Figure 7.8 for both

case studies 2 and 3. In case study 2, the Edge-ward placement approach showed

a high level of execution time, while in case study 3, the Cloud-only placement

had the highest level of execution time. However, in both cases, our proposed

approach had the shortest execution time.

222 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

Cloud Edgewards Proposed Cloud Edgewards Proposed
Execution	Time	of	Case	Study	2	(Intelligent	Surveillance) Execution	Time	of	Case	Study	3	(VRGame)

Execution	Time 2528 2930 868 6147 3541 717

0

1000

2000

3000

4000

5000

6000

7000

Ex
ec
ut
io
n	
Ti
m
e	
in
	S
ec
on

ds

Execution	Time

Fig. 7.8 Time execution of case study 2 and case study 3

Network Usage Network usage is measured for the three tiers: IoT devices

(mobile phones), Edge resources (WiFi gateways) and the Cloud. Network usage

in case study 2 was higher on the Edge than on the Cloud and mobile tiers when

applying the Cloud-only placement approach. It reached 0.099 KB, 326.0964

KB, and 6.3968 KB for the network on the Cloud, the Edge and IoT devices,

respectively. The Edge-ward placement reflected the least network usage among

all the proposed approaches: the Cloud (0 KB), the Edge (16.4832 KB) and IoT

devices (0.3968 KB). The proposed approach showed no network usage on the

Cloud but it showed a high level of network usage on the Edge tier (1038.61192

KB).

Case study 3 shows that there was higher network usage for the Edge than

for the Cloud and IoT devices when applying the Cloud-only placement approach.

It reached 114.87 KB, 151.1156 KB, and 2.1202 KB on the Cloud, Edge and IoT

devices, respectively.

When we applied the Edge-ward placement, it resulted in the lowest network

usage among all the proposed approaches: the Cloud (0 KB), the Edge (2.3976

KB) and IoT devices (2.3952 KB).

When applying the proposed approach, there was no network usage on the

Cloud, but a high level of network usage was recorded for the Edge tier (121.1936

KB), where mobile devices reached 2.3319 KB. The reason for this may be that

7.3 Evaluation 223

tasks were placed on different Edge resources since this approach considers

parallel processing for independent tasks.

Cloud Edgewards Proposed Cloud Edgewards Proposed
Network	Usage	of	Case	Study	2	(Intelligent	Surveillance) Network	Usage	of	Case	Study	3	(VRGame)

Network	on	Cloud 0.099 0 0 114.87 0 0
Network	on	Edge 326.0964 16.4832 1038.61192 151.1156 2.3976 121.1936
Network	on	Mobile 6.3968 0.3232 56.7716 2.1202 2.3952 2.3319

0

200

400

600

800

1000

1200

N
et
w
or
k	
U
sa
ge
	in
	K
ilo
By

te
s

Fig. 7.9 Network usage of case study 2 and case study 3

Energy Consumption Figure 7.10 presents the energy consumption of the

three approaches for both case studies 2 and 3. For case study 2, the Cloud-only

approach resulted in the highest energy consumption on the Cloud tier(14.2812

megajoules); however, on the Edge and mobile tiers, all approaches reflected

quite similar levels of energy consumption, with a slightly lower level for the

proposed approach on the Edge and mobile tiers. On the Cloud, Edge and mobile

tiers, energy consumption was 13.3497 megajoules, 2.5029 megajoules and

6.9441 megajoules, respectively, for the Edge-ward placement approach. On the

Cloud, Edge and mobile tiers, energy consumption was 13.32 megajoules, 2.5639

megajoules and 6.6069 megajoules, respectively, for the proposed placement

approach.

For case study 3, the Cloud-only approach resulted in the highest energy

consumption on the Cloud tier (15.0633 megajoules); however, on the Edge and

mobile tiers, all approaches reflected quite similar levels of energy consumption,

with slightly lower levels for the proposed approach on the Edge and IoT devices.

On the Cloud, Edge, and mobile tiers, energy consumption was 13.32 megajoules,

3.5501 megajoules and 10.5032 megajoules, respectively, for the Edge-ward

placement approach. On the Cloud, Edge and mobile tiers, energy consumption

224 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

was 13.32 megajoules, 3.3373 megajoules and 9.9699 megajoules, respectively,

for the proposed placement approach.

Cloud Edgewards Proposed Cloud Edgewards Proposed
Energy	Consumption	of	Case	Study	2(Intelligent	Surveillance)	 Energy	Consumption	of	Case	Study	3(VRGame)	

Energy	on	Cloud 14.28120236 13.34970988 13.32 15.06330672 13.32 13.32
Energy	on	Edge 2.502999 2.502999 2.563966048 3.337332 3.550122783 3.337332
Energy	on	Mobile 6.68893349 6.945115755 6.606916686 10.4796199 10.50327941 9.969927281

0

2

4

6

8

10

12

14

16

En
er
gy
	C
on

su
m
pt
io
n	
in
	M

eg
aj
ou

le
s

Fig. 7.10 Energy consumption of case study 2 and case study 3

Cloud Cost Figure 7.11 shows the Cloud cost for deploying use cases 2 and

3. Since the proposed approach placed all tasks on the Edge, there was no

Cloud cost in either case study. The Edge-ward placement approach had a lower

cost than the Cloud approach in case study 2. In case study 3, the Edge-ward

approach Cloud cost was null because all inter-modules were placed on the Edge.

Cloud Edgewards Proposed Cloud Edgewards Proposed
Cloud	Cost	Usage	of	Case	Study	2	(Intelligent	Surveillance) Cloud	Cost	of	Case	Study	3	(VRGame)

Cost	on	Cloud 13627.17267 421.2034006 0 24715.23457 0 0

0

5000

10000

15000

20000

25000

30000

Co
st
	o
n	
Cl
ou

d

Fig. 7.11 Cloud cost of case study 2 and case study 3

7.4 Discussion 225

7.4 Discussion

We have applied our heuristic algorithm to decentralize task placement in a

cooperative way between Edge and Cloud resources. We have considered an

RHMS as a case study and compared it with the Cloud-only approach (an ap-

proach in which tasks are placed only on the Cloud). The proposed approach

demonstrates lower execution time, control loop delay, costs, network usage and

energy consumption than the other approaches. Furthermore, we considered

comparing our approach with built-in use cases in iFogSim. Thus, we compared

the results of our algorithm with the Edge-ward placement algorithm applied to

case study 2 and case study 3. In general, our proposed approach shows better

results than the other approaches, as the previous section showed.

In the proposed approach, in case study 1, when there were some inter-

modules that required higher processing capabilities, such as for storing data

and analysing large-scale data, these were placed on the Cloud. This was why

there was a Cloud cost as well as network usage on the Cloud layer. In the

other two case studies (case study 2 and case study 3), all inter-modules were

placed on the Edge layers, which explains the null cost and network usage on the

Cloud layer. However, in case studies 2 and 3, our proposed approach showed a

higher level of network usage on the Edge layer than the Edge-ward placement

approach, which seems to be related to the fact that our approach ensures that

independent tasks are placed on different resources; thus, there is a greater

possibility of more data being transmitted between resources since this approach

considers parallel processing for independent tasks.

7.5 Conclusion and Future Research

Due to the limited computational and resource capabilities of IoT nodes, tasks can

be allocated to Edge or Cloud resources, taking into account a number of factors

such as task constraints, node load and computing capability. We suggested

a heuristic algorithm for allocating tasks among the available resources. The

allocation algorithm takes into account factors such as the related time limits for

each task, location and budget constraints. We utilized iFogSim to evaluate the

226 SLA-aware Approach for IoT Workflow Activities Placement Across Layers

proposed approach for three use cases. The performance analysis demonstrated

that the suggested algorithm minimizes costs, execution time, control loop delay,

networking and Cloud power usage compared to the Cloud-only and Edge-ward

positioning methods.

In general, although the proposed approach showed good results, it is a

greedy approach, which means that a better placement plan may be identified

by considering all available solutions. Furthermore, in this approach, our main

objective is to minimize the execution time, whereas realistically, applications

have multiple objectives in addition to minimizing the execution time, such as

minimizing the cost and maximizing the number of processed requests. In future

research, we will carry out an evaluation of the proposed approach on real

systems. Furthermore, we need to extend the proposed algorithm to apply multi-

objective placement algorithms and to develop algorithms that take advantage of

machine learning approaches, such as applying multi-objective genetic algorithms

in which we consider more than one objective, for example minimizing response

time and maximizing throughput.

Chapter 8

Conclusion and Future Research

Overview

In this chapter, we summarise the research presented in this thesis. We outline

our contributions and then discuss open research problems on the grounds that

they could influence future research.

8.1 Thesis Summary

Many service providers, including Cloud providers, provide a written description

of the terms and conditions of their services. This introduces some drawbacks,

such as confusion and no facility for automating the evaluation of adherence to

SLA terms, searching for facilities or negotiating contract terms. This highlights

the importance of providing SLAs in a machine-readable format. Moreover, the

importance of machine-readable agreements is also demonstrated by the need for

structured assurances that the services delivered comply with the terms agreed,

as Cloud consumers, for example, may outsource their core business functions to

the Cloud.

Many languages have been proposed to describe SLAs in a machine-readable

format in order to simplify their evaluation and negotiation. However, available

SLA frameworks range from over-specific to over-generic. We argue that these

languages cannot cope with the distinctive features of the IoT, such as multi-party

IoT agreements and multi-layer deployment models. In IoT applications, QoS

specifications need to be aggregated from the Cloud, network, and sensing layers’

228 Conclusion and Future Research

perspectives. The key aim of considering QoS across layers is to deliver the

promised IoT functionalities that match the expectations of consumers, as agreed

within the SLA.

Since this research focuses on SLA specifications for the IoT, we conducted

a systematic review to classify most of the IoT SLA-related research. We re-

searched the SLA lifecycle by analysing the literature in order to shed light on

the available SLA-related works. However, due to the limited work on SLAs for

the IoT, previous works, especially Cloud-related works, were also considered

due to the IoT-Cloud interdependence. We mapped 400 papers from various sci-

entific databases. We defined two key categories that most SLA-related research

falls into: SLA-lifecycle work and work related to SLA applications. The results

showed that around two-thirds of papers concentrate on the SLA lifecycle: SLA

specification, SLA negotiation, SLA monitoring, SLA enforcement and SLA man-

agement. The remaining papers focus on SLA applications such as SLA-aware

resource allocation and scheduling. We have tracked the growth in SLA research

and discussed a range of research gaps to be considered in future studies. There

was a shortage of studies relevant to SLAs for the IoT in general and a shortage of

studies that contribute to SLA specifications, in particular. Therefore, in Chapter

2, we presented a reference architecture for the IoT as a first step towards SLA

specification is defining the key concepts considered in our proposed conceptual

model presented in Chapter 3.

An important feature of an SLA language is the possibility of expanding it to

include domain-specific vocabularies. Therefore, a domain SLA language needs

to consider domain-specific support features. Thus, in Chapter 3, we suggested

an IoT conceptual SLA model as well as rich domain-specific vocabularies to

express an SLA of the IoT on an end-to-end basis. The proposed conceptual

model defines key concepts that can play a role in the formulation of SLAs on

an end-to-end basis. Then, we defined some of the most common QoS metrics

and configuration parameters related to each concept. We referred to the RHMS

as a use-case scenario for illustration purposes when we explained some of the

concepts. We believe that the proposed vocabularies can play a significant role

in SLA specifications, particularly with regard to the standardisation of the vo-

cabularies/terminologies used in an SLA. We applied a goal-oriented approach to

8.1 Thesis Summary 229

evaluate the proposed SLA conceptual model. The Wilcoxon test was used, to

examine whether there was a significant satisfaction with the conceptual model’s

generality and coverability. The outcome indicates a high level of satisfaction

regarding the generality and coverability of the considered concepts.

Defining "SLA offers" and "SLA requests" using standard terminology facil-

itates the process of comparing the available choices and choosing the most

appropriate consumer-based SLA bid. Moreover, it is important to provide the

SLA specification in a machine-readable format as a first step towards automat-

ing SLA monitoring and management. However, we believe that current SLA

specification formats are insufficient to accommodate the unique features of the

IoT domain, such as its multi-party multi-layer nature. In addition, most available

SLA specifications are defined in an XML format, whereas we are looking at more

lightweight SLAs for the IoT. Furthermore, available works are defined for other

computing paradigms such as Cloud and web services, while in the IoT, there is a

need to consider cooperated services that are, commonly, spanned across layers.

Thus, with the necessity of delivering a high-quality service considering the strict

constraints at the application level for the IoT, there is also a need to consider

SLAs on an end-to-end basis. Chapter 4 presented a grammar for the syntactic

structure of the end-to-end SLA specification for IoT applications. The structure

of the syntax is derived from the conceptual model proposed in Chapter 3.

We evaluated the proposed grammar using the GQM approach to reflect its

generality and expressiveness. Furthermore, we provided qualitative analysis for

the missing requirements. Based on the percentage of overall dissatisfaction with

both Goal1 and Goal2, we can see that there is a high level of satisfaction with

the presented list of requirements for both goals. The requirements suggested by

the participants are taken into consideration by refining the listed vocabularies

as well as adding the suggested ones wherever possible.

One of the reasons behind proposing a grammar is that it is a way to unify

the SLA specifications, which can then be the first step to define an SLA in a

machine-readable format. Having an SLA in a machine-readable format can play

a significant role in automating SLA monitoring and management and in provid-

ing SLA-aware solutions, such as SLA-aware scheduling, SLA-aware resource

provisioning, SLA enforcement and SLA monitoring. In the literature, some

230 Conclusion and Future Research

works consider the provision of a machine-readable SLA. For example, there are

a number of different works that use XML documents to standardise SLAs in

order to improve the SLA data exchange between the consumer and the provider.

These works, as far as we are aware, allow users to type in or edit SLA templates.

Therefore, in Chapter 5, we presented a toolkit to mitigate human typing errors

when specifying an SLA using GUI features. The tool considers the most common

or typical IoT application tiers and services, as captured within the proposed

grammar (presented in Chapter 4), in such a way that interested users can specify

their preferences. Using the tool, the SLA is generated in a JSON format. We

generated the SLA in a JSON format due to the lightweight nature of JSON and

its readability. We evaluated the tool following a goal-oriented approach, and

the outcome of the evaluation demonstrates a high level of satisfaction with the

simplicity and generalizability of the considered concepts and the tool’s capability

to express the requirements of involved services and infrastructure resources.

Due to the importance of SLA management as one of the solutions that can

mitigate the risk of violating SLA terms, we proposed an SLA management frame-

work. There are a considerable number of studies in the literature covering SLA

management. However, there is a shortfall in the number of available and feasible

SLA management frameworks that develop a management mechanism for SLA

lifecycle phases (e.g., definition, negotiation, monitoring and enforcement) for

IoT applications. Furthermore, there is a shortfall in the utilisation of Blockchain

technology and in works that have combined the SLA specification with the rec-

ommender system, especially in terms of considering the complexity of specifying

requirements with the multi-layered nature of IoT applications. Thus, in Chapter

6, we proposed an SLA management framework which consists mainly of the

SLA specification, SLA negotiation, SLA monitoring using Blockchain to deploy

SLA-based smart contracts, SLA enforcement and SLA compensation. In addition,

we added an optional configuration recommendation phase since, as explained in

Chapter 3, some configuration parameters such as sample rates can affect the

data analysis accuracy because they affect the data freshness.

Thus, having a recommender system combined with the SLA specification phase

provides considerable help for most contractual parties of IoT-based services. It

can be utilised as a guide for most common configuration parameters for different

infrastructure resources across layers. We provided a proof of concept for the

8.1 Thesis Summary 231

proposed SLA management framework. The main purpose of the proof of concept

is to reflect how providing SLA specifications in a machine-readable format can

be useful. It is not only important for the SLA specification phase, but can be

utilised in more than one phase of SLA management. We discussed the proposed

SLA management framework and compared it with other related studies.

In Chapter 7, we discussed the importance of using Edge resources to resolve

issues relating to centralised control while benefiting from the Cloud in order to

adhere the SLA. As a result, strategies are required to prepare and efficiently

distribute resources, in a manner that takes into account SLA parameters. SLA

violations should be avoided in order to prevent costly fines, and providers should

use resources wisely in order to minimise service provisioning costs. SLA-aware

techniques include, but are not limited to, SLA-aware resources allocation, SLA-

aware resource provisioning, SLA-aware activity/task placement and SLA-aware

scheduling. Related to SLA management, we believe that one of the possible

ways to enforce/respect the SLA is to develop SLA-aware solutions such as

SLA-aware scheduling and resource provisioning. Therefore, we proposed the

SLA-aware workflow activity placement algorithm for IoT applications. For the

proposed algorithm, we considered end-to-end execution time as the main objec-

tive while considering other constraints, such as cost and each activity deadline

constraint, to aid the process of decentralising IoT activities among Edge and

Cloud resources. The results show improved cost, time, and energy consumption

compared with the Cloud-only placement approach and the Edge-ward placement

algorithm.

8.1.1 Limitations

1. We have tried to generalise our study, but we believe that it is still necessary

to identify more domain-specific vocabularies related to other workflow

activities. However, the toolkit is extendable to a certain extent in that it

enables interested users to add, edit and remove vocabulary terms related

to services/infrastructure resources as well as to add, edit and/or remove

services, infrastructure resources and workflow activities using the Excel

file attached to the toolkit.

232 Conclusion and Future Research

2. There is a need to consider the correlation between configuration parame-

ters. We have specified some of the most common configuration parameters

and have mentioned that there is a dependency between them, but we still

need to analyse their dependency using benchmarking approaches.

3. We have considered price as a concept with parameters to specify the

related constraints; however, there is a need to model the (price) concept in

more detail and to consider different vocabularies that can be used to reflect

the cost dimension for each involved service and/or infrastructure resource.

For example, in the networking service, one of the cost dimensions could

be link bandwidth; in stream processing, it could be data payload size; and

for a Cloud VM, it could be the number of vCPUs. Furthermore, there is a

need to model SLA-based compensation in the case of SLA violations from

each contractual party’s perspective.

4. There is still a need to consider other SLO constraints within the proposed

SLA-aware algorithm, since we have considered only deadline constraints,

while there are other constraints such as the throughput of requests re-

ceived per time unit.

8.2 Future Research

Regarding future research, our proposed SLA management framework for IoT

ecosystems is still in an early stage; therefore, we can consider the following:

8.2.1 SLA negotiation protocol to enhance consumer expe-

rience when selecting a service provider

SLA negotiation is the second phase in our proposed SLA management framework.

In the current system, we assume that all contractual parties have agreed upon

the specified terms. Therefore, in future research, we will investigate applying an

SLA-based negotiation protocol to enhance consumer experience when selecting

a service provider and allocating services and resources.

8.2 Future Research 233

One possible protocol for SLA-based negotiation is the Contract Net protocol1.

The Contract Net protocol [433] provides a structured high-level interaction

between nodes that cooperate to deliver a task. It focuses on how negotiation

can be used as a mechanism for interaction at different levels of complexity. The

uses of Contract Net vary [482] and it has been utilised for the negotiation of

SLAs for grid resource management and for utility computing [482].

The study in [401] presents an SLA coordination mechanism based on the

market and an established Contract Net protocol. Ranjan et al [401] apply the

Contract Net protocol because it allows the owners of the resource to have

greater control over how resources are allocated compared to traditional mech-

anisms and because it creates super-schedulers who are able to bid for SLA

contracts through Contract Net, with a focus on ensuring that the task is com-

pleted within the specified time frame.

According to [187], with regard to Cloud services, in order to meet the re-

quirements of consumers, it is essential that there is sufficient collaboration

between brokers and service providers. The customers’ requirements should

be mapped against the resources available on the Cloud, and these resources

should be accessed automatically through web services. However, this type of

automated service faces challenges from distributed and constantly changing

Cloud-computing environments. These challenges include dynamically contract-

ing service providers, whose service fees are determined by supply and demand,

and having to cope with incomplete data regarding Cloud resources, such as

providers and locations. The research in [187] aims to solve these challenges by

employing an agent-based Cloud service composition approach. In this approach,

the Cloud resources and participants are implemented and supported by agents

who maintain a three-layered self-organising multi-agent system. This system

supports a Cloud service composition framework and an experimental test bed.

Networks of acquaintances and the Contract Net protocol are employed by the

agents to develop and adapt Cloud service compositions.

1“In Contract Net, Agents acting as managers announce tasks on Contract Net, and other
agents who are contractors assess these announcements; if the task interests them, they may bid
for it. The outcome of a bid can be only total rejection or acceptance, so Contract Net is suited to
multilateral processes such as auctions. .”[482]

234 Conclusion and Future Research

8.2.2 Build cross-layer multi-provider SLA-based monitor-

ing systems for the IoT

SLA monitoring is essential to ensure that the service is delivered according

to a specified quality level. Therefore, many studies on SLA/QoS monitoring

have been conducted [412, 228, 184, 116], (these references have been covered

in Chapter 2). Studies such as [228, 38, 412] perform SLA monitoring in web

services and at the grid and Cloud paradigms, while [184] implements a dis-

tributed monitoring system for network resources. Additionally, [116] provides

monitoring as a service and supports its monitoring system by using map rules

to map low-level metrics to high-level SLA requirements. However, it is applied

to the data infrastructure in the Cloud. From the IoT perspective, there is still a

need for end-to-end SLA monitoring; therefore, as future work, we will focus on

that need.

From an IoT perspective, it is still necessary to fulfil the need to have end-

to-end SLA monitoring; therefore, as future research, we will investigate the

following: How can we build cross-layer multi-provider SLA-based monitoring

systems for the IoT that support the end-to-end SLA adherence process of IoT

applications? Answering this question is important because it will aid service

providers in operating their services at an adequate level, which will then in-

crease consumers’ trust and help to avoid SLA violations. A monitoring service is

used to gather data that represent the required metrics. These metrics can be

used to evaluate to what extent service consumers and providers comply with the

specified QoS constraints. If it is shown that the conditions of the contract have

not been met, then corrective action can be taken [487]. This QoS monitoring

service enables organisations to ascertain the cause of any performance issue

they are experiencing, whether it be the application design, the infrastructure of

the network, or the Cloud service provider [408].

Furthermore, investigating the integration of Blockchain-based solutions for

SLA compensation is one of the future research avenues. SLAs contain service

information, and considering a "penalty" as one of the main aspects is crucial

because the consumer must be compensated accordingly if the service provider

does not deliver what has been agreed upon. However, the current compensation

8.2 Future Research 235

method is time consuming and complicated. Therefore, utilising Blockchain for

SLA-based monitoring and compensation could be an enormous asset. An effort to

address this problem is underway. For example, an approach based on Blockchain

and smart contracts is suggested by [55] to automate the compensation process

while allowing dynamic payments over the lifecycle of the SLA.

References

[1] Aazam, M., St-Hilaire, M., Lung, C.-H., and Lambadaris, Ioannis, P. (2016).
PRE-Fog: IoT Trace Based Probabilistic Resource Estimation at Fog. in In
Consumer Communications and Networking Conference (CCNC),13th IEEE
Annual.

[2] Abdo, J. B., Demerjian, J., Chaouchi, H., and Atechian, T. (2015). Enhanced
Revenue Optimizing SLA-Based Admission Control for IaaS Cloud Networks.
In 2015 3rd International Conference on Future Internet of Things and Cloud,
pages 225–230.

[3] Abdullah, R. (2013). Ontological Services Level Agreement (SLA) Model and
Its Application in Cloud Computing Environment. Conference on Software
Engineering Parallel and Distributed Systems (SEPADS 13).

[4] Abrahão, S. and Insfran, E. (2017). Models@ Runtime for Monitoring Cloud
Services in Google App Engine. In 2017 IEEE World Congress on Services
(SERVICES), pages 30–35. IEEE.

[5] Abulkhair, M. F., Alkayal, E. S., and Jennings, N. R. (2017). Automated
Negotiation Using Parallel Particle Swarm Optimization for Cloud Computing
Applications. In 2017 International Conference on Computer and Applications
(ICCA), pages 26–35. IEEE.

[6] Achtaich, A., Roudies, O., Souissi, N., Salinesi, C., and Mazo, R. (2019).
Evaluation of the State-Constraint Transition Modelling Language: A Goal
Question Metric Approach. In Proceedings of the 23rd International Systems
and Software Product Line Conference - Volume B, SPLC ’19, page 106–113,
New York, NY, USA. Association for Computing Machinery.

[7] Aghera, P., Chaudhary, S., and Kumar, V. (2012). An Approach to Build Multi-
Tenant SaaS Application with Monitoring and SLA. In Proceedings of the
2012 International Conference on Communication Systems and Network Tech-
nologies, CSNT ’12, pages 658–661, Washington, DC, USA. IEEE Computer
Society.

[8] Ahuja, R., De, A., and Gabrani, G. (2011). SLA Based Scheduler for Cloud
for Storage Computational Services. In 2011 International Conference on
Computational Science and Its Applications, pages 258–262.

238 References

[9] Ait-Idir, M. and Agoulmine, N. (2016). Enhancing Cloud Capabilities for
SLA Enforcement of Cloud Scheduled Applications. In Proceedings of the 9th
International Conference on Utility and Cloud Computing, UCC ’16, pages
298–303, New York, NY, USA. ACM.

[10] Ait-Idir, M., Cherkaoui, E. H., Rachkidi, E., Chendeb, N., and Agoulmine,
N. (2014). MOSt-CB: SLA Enforcement and Smart VNE (Virtual Network
Embedding) in a Multi Cloud Providers Environment. In 2014 IEEE Globecom
Workshops (GC Wkshps), pages 86–92. IEEE.

[11] Akbar, M., Sukmana, H. T., and Khairani, D. (2014). Models and Software
Measurement Using Goal/Question/Metric Method and CMS Matrix Parameter
(Case Study Discussion Forum). In 2014 International Conference on Cyber
and IT Service Management (CITSM), pages 34–38.

[12] Al Etawi, N. A. (2018). A Comparison between Cluster, Grid, and Cloud
Computing. International Journal of Computer Applications, 179(32):37–42.

[13] Al Falasi, A. and Serhani, M. A. (2016). SLA Specification and Negotiation
Model for a Network of Federated Clouds: CloudLend. In 2016 Intl IEEE
Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted
Computing, Scalable Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress (UIC/ATC/Scal-
Com/CBDCom/IoP/SmartWorld), pages 772–779. IEEE.

[14] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M.
(2015). Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications. IEEE Communications Surveys Tutorials, 17(4):2347–2376.

[15] Al-Ghuwairi, A.-R., Khalaf, M. N., Al-Yasen, L., Salah, Z., Alsarhan, A.,
and Baarah, A. H. (2016). A Dynamic Model for Automatic Updating Cloud
Computing SLA (DSLA). In Proceedings of the International Conference on
Internet of Things and Cloud Computing, ICC ’16, pages 57:1–57:7, New York,
NY, USA. ACM.

[16] Al-Kiswany, S., , H., Liu, Z., and Sankaranarayanan, J. (2013). Cost Explo-
ration of Data Sharings in the Cloud. In Proceedings of the 16th International
Conference on Extending Database Technology, pages 601–612, New York, NY,
USA. ACM.

[17] Al Muktadir, A. H., Jibiki, M., Martinez-Julia, P., and Kafle, V. P. (2018).
Resource Negotiation Game for Cloud Networks with Limited Resources. In
2018 IEEE 7th International Conference on Cloud Networking (CloudNet),
pages 1–4. IEEE.

[18] Al-Shammari, S. and Al-Yasiri, A. (2015). MonSLAR: A Middleware for
Monitoring SLA for Restful Services in Cloud Computing. In 2015 IEEE
9th International Symposium on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Environments (MESOCA), pages 46–50. IEEE.

References 239

[19] Al-Shara, Z., Alvares, F., Bruneliere, H., Lejeune, J., Prud’Homme, C., and
Ledoux, T. (2018). Come4acloud: An End-to-End Framework for Autonomic
Cloud Systems. Future Generation Computer Systems, 86:339–354.

[20] Alboghdady, S., Winter, S., Taha, A., Zhang, H., and Suri, N. (2017). C’Mon:
Monitoring the Compliance of Cloud Services to Contracted Properties. In
Proceedings of the 12th International Conference on Availability, Reliability
and Security, ARES ’17, pages 36:1–36:6, New York, NY, USA. ACM.

[21] Alhamad, M., Dillon, T., and Chang, E. (2011). A Survey on SLA and
Performance Measurement in Cloud Computing. In Meersman, R., Dillon, T.,
Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt,
D. C., White, J., Hauswirth, M., Hitzler, P., and Mohania, M., editors, On the
Move to Meaningful Internet Systems: OTM 2011, pages 469–477, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[22] Alhamad, M., Dillon, T., and Chang, E. (2011). Service Level Agreement for
Distributed Services: A Review. In 2011 IEEE Ninth International Conference
on Dependable, Autonomic and Secure Computing, pages 1051–1054.

[23] Alhamazani, K., Wang, L., Rabhi, F., Mitra, K., and Ranjan, R. (2012). Cloud
Monitoring for Optimizing the QoS of Hosted Applications. In Proceedings of
the 2012 IEEE 4th International Conference on Cloud Computing Technology
and Science (CloudCom), CLOUDCOM ’12, pages 765–770, Washington, DC,
USA. IEEE Computer Society.

[24] Alkandari, F. and Paige, R. F. (2012). Modelling and Comparing Cloud
Computing Service Level Agreements. In Proceedings of the 1st International
Workshop on Model-Driven Engineering for High Performance and CLoud
Computing, MDHPCL ’12, pages 3:1–3:6, New York, NY, USA. ACM.

[25] Alodib, M. (2014). Towards a Monitoring Framework for Cloud Services.
In Proceedings of the 2014 International Conference on Computational Sci-
ence and Computational Intelligence - Volume 02, CSCI ’14, pages 146–151,
Washington, DC, USA. IEEE Computer Society.

[26] Alodib, M. (2016). QoS-Aware Approach to Monitor Violations of SLAs in
the IoT. Journal of Innovation in Digital Ecosystems, 3(2):197–207.

[27] Alqahtani, A., Li, Y., Patel, P., Solaiman, E., and Ranjan, R. (2018). End-
to-End Service Level Agreement Specification for IoT Applications. In 2018
International Conference on High Performance Computing Simulation (HPCS),
pages 926–935 .

[28] Alqahtani, A., Solaiman, E., Buyya, R., and Ranjan, Rajiv, P. (2016). End-to-
End QoS Specification and Monitoring in the Internet of Things. Newsletter,
IEEE Technical Committee on Cybernetics for Cyber-Physical Systems, 1(2).

[29] Alrokayan, M., Vahid Dastjerdi, A., and Buyya, R. (2014). SLA-Aware Provi-
sioning and Scheduling of Cloud Resources for Big Data Analytics. In 2014
IEEE International Conference on Cloud Computing in Emerging Markets
(CCEM), pages 1–8.

240 References

[30] Alsaffar, A. A., Pham, H. P., Hong, C.-S., Huh, E.-N., and Aazam, M. (2016).
An Architecture of IoT Service Delegation and Resource Allocation Based on
Collaboration between Fog and Cloud Computing. Mobile Information Systems,
2016.

[31] Alsrheed, F., El Rhalibi, A., Randles, M., and Merabti, M. (2014). Intelligent
Agents for Automated Cloud Computing Negotiation. In 2014 international
conference on Multimedia Computing and Systems (ICMCS), pages 1169–1174.
IEEE.

[32] Alzahrani, E. J., Tari, Z., Zeephongsekul, P., Lee, Y. C., Alsadie, D., and
Zomaya, A. Y. (2016). SLA-Aware Resource Scaling for Energy Efficiency. In
2016 IEEE 18th International Conference on High Performance Computing and
Communications; IEEE 14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pages 852–859.

[33] Alzubaidi, A., Solaiman, E., Patel, P., and Mitra, K. (2019). Blockchain-Based
SLA Management in the Context of IoT. IT Professional.

[34] Amato, A., Di Martino, B., and Venticinque, S. (2012). Evaluation and
Brokering of Service Level Agreements for Negotiation of Cloud Infrastruc-
tures. In 2012 International Conference for Internet Technology and Secured
Transactions, pages 144–149. IEEE.

[35] Amyot, D., Shamsaei, A., Kealey, J., Tremblay, E., Miga, A., Mussbacher,
G., Alhaj, M., Tawhid, R., Braun, E., and Cartwright, N. (2012). Towards
Advanced Goal Model Analysis with JUCMNav. In Castano, S., Vassiliadis, P.,
Lakshmanan, L. V., and Lee, M. L., editors, Advances in Conceptual Modeling,
pages 201–210, Berlin, Heidelberg. Springer Berlin Heidelberg.

[36] Anastasi, G. F., Coppola, M., Dazzi, P., and Distefano, M. (2016). QoS
Guarantees for Network Bandwidth in Private Clouds. Procedia Computer
Science, 97:4–13.

[37] Andreolini, M., Colajanni, M., and Pietri, M. (2012). A Scalable Architecture
for Real-Time Monitoring of Large Information Systems. In Proceedings of
the 2012 Second Symposium on Network Cloud Computing and Applications,
NCCA ’12, pages 143–150, Washington, DC, USA. IEEE Computer Society.

[38] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata,
T., Pruyne, J., Rofrano, J., Tuecke, S., and Xu, M, P. (2007). Web Services
Agreement Specification (WS-Agreement). InOpen Grid Forum, 128(1):216.

[39] Antonescu, A., Gomes, A., Robinson, P., and Braun, T. (2013a). SLA-Driven
Predictive Orchestration for Distributed Cloud-Based Mobile Services. In 2013
IEEE International Conference on Communications Workshops (ICC), pages
738–743.

References 241

[40] Antonescu, A., Oprescu, A., Demchenko, Y., d. Laat, C., and Braun, T. (2013b).
Dynamic Optimization of SLA-Based Services Scaling Rules. In 2013 IEEE
5th International Conference on Cloud Computing Technology and Science,
volume 1, pages 282–289.

[41] Antonescu, A.-F. and Braun, T. (2014). Improving Management of Distributed
Services Using Correlations and Predictions in SLA-Driven Cloud Computing
Systems. In 2014 IEEE Network Operations and Management Symposium
(NOMS), pages 1–8. IEEE.

[42] Antonescu, A.-F. and Braun, T. (2016). Simulation of SLA-Based VM-Scaling
Algorithms for Cloud-Distributed Applications. Future Generation Computer
Systems, 54:260 – 273.

[43] Antonescu, A.-F., Robinson, P., and Braun, T. (2013). Dynamic SLA Manage-
ment with Forecasting Using Multi-Objective Optimization. In 2013 IFIP/IEEE
International Symposium on Integrated Network Management (IM 2013),
pages 457–463. IEEE.

[44] Apat, H. K., Sahoo, B., and Maiti, P. (2018). Service Placement in Fog
Computing Environment. In 2018 International Conference on Information
Technology (ICIT), pages 272–277.

[45] Arianyan, E., Taheri, H., and Khoshdel, V. (2017). Novel Fuzzy Multi Ob-
jective DVFS-Aware Consolidation Heuristics for Energy and SLA Efficient
Resource Management in Cloud Data Centers. Journal of Network and Com-
puter Applications, 78:43 – 61.

[46] Ashouraei, M., Khezr, S. N., Benlamri, R., and Navimipour, N. J. (2018).
A New SLA-Aware Load Balancing Method in the Cloud Using an Improved
Parallel Task Scheduling Algorithm. In 2018 IEEE 6th International Conference
on Future Internet of Things and Cloud (FiCloud), pages 71–76.

[47] Asin, A. and Gascon, D. (2012). 50 Sensor Applications for a Smarter World.
Libelium Comunicaciones Distribuidas, Tech. Rep.

[48] Aslanpour, M. S. and Dashti, S. E. (2016). SLA-Aware Resource Allocation
for Application Service Providers in the Cloud. In 2016 Second International
Conference on Web Research (ICWR), pages 31–42.

[49] Atzori, L., Iera, A., and Morabito, G. (2010). The Internet of Things: A
Survey. Computer Networks, 54(15):2787 – 2805.

[50] Aversa, R., Panza, N., and Tasquier, L. (2015). An Agent-Based Platform for
Cloud Applications Performance Monitoring. In Proceedings of the 2015 Ninth
International Conference on Complex, Intelligent, and Software Intensive
Systems, CISIS ’15, pages 535–540, Washington, DC, USA. IEEE Computer
Society.

242 References

[51] Aversa, R. and Tasquier, L. (2016). Design of an Agent Based Monitoring
Framework for Federated Clouds. In 2016 30th International Conference
on Advanced Information Networking and Applications Workshops (WAINA),
pages 115–120. IEEE.

[52] Aversa, R., Tasquier, L., and Venticinque, S. (2013). Agents Based Monitoring
of Heterogeneous Cloud Infrastructures. In Proceedings of the 2013 IEEE
10th International Conference on Ubiquitous Intelligence & Computing and
2013 IEEE 10th International Conference on Autonomic & Trusted Computing,
UIC-ATC ’13, pages 527–532, Washington, DC, USA. IEEE Computer Society.

[53] AWS, A. W. S. (2019). Amazon Kinesis Data Firehose FAQs. https://aws.
amazon.com/kinesis/data-firehose/faqs/. (Accessed on 07/03/2019).

[54] Badidi, E. (2013). A Cloud Service Broker for SLA-Based SaaS Provisioning.
In International Conference on Information Society (i-Society 2013), pages
61–66.

[55] Bahga, A. and Madisetti, V. K. (2016). Blockchain Platform for Industrial In-
ternet of Things. Journal of Software Engineering and Applications, 9(10):533.

[56] Bai, X., Li, M., Huang, X., Tsai, W.-T., and Gao, J. (2013). Vee@Cloud:
The Virtual Test Lab on the Cloud. In Proceedings of the 8th International
Workshop on Automation of Software Test, AST ’13, pages 15–18, Piscataway,
NJ, USA. IEEE Press.

[57] Baig, R., Khan, W. A., Haq, I. U., and Khan, I. M. (2017). Agent-Based SLA
Negotiation Protocol for Cloud Computing. In 2017 International Conference
on Cloud Computing Research and Innovation (ICCCRI), pages 33–37. IEEE.

[58] Bakraouy, Z., Baina, A., and Bellafkih, M. (2018). Autonomous SLAs Nego-
tiation Based on Agreement-Broker: Services Availability. In 2018 IEEE 5th
International Congress on Information Science and Technology (CiSt), pages
48–53. IEEE.

[59] Balagoni, Y. and Rao, R. R. (2016). A Cost-Effective SLA-Aware Scheduling
for Hybrid Cloud Environment. In 2016 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC), pages 1–7.

[60] Banaie, F., Misic, J., Misic, V. B., Yaghmaee, M. H., and Hosseini, S. A. (2018).
Performance Analysis of Multithreaded IoT Gateway. IEEE Internet of Things
Journal.

[61] Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R. E., and
Sturman, D. C. (1999). An Efficient Multicast Protocol for Content-Based
Publish-Subscribe Systems. In Proceedings. 19th IEEE International Confer-
ence on Distributed Computing Systems (Cat. No. 99CB37003), pages 262–272.
IEEE.

https://aws.amazon.com/kinesis/data-firehose/faqs/
https://aws.amazon.com/kinesis/data-firehose/faqs/

References 243

[62] Bar, P., Benfredj, R., Marks, J., Ulevinov, D., Wozniak, B., Casale, G., and
Knottenbelt, W. J. (2013). Towards a Monitoring Feedback Loop for Cloud
Applications. In Proceedings of the 2013 International Workshop on Multi-
cloud Applications and Federated Clouds, MultiCloud ’13, pages 43–44, New
York, NY, USA. ACM.

[63] Bartoletti, M. and Pompianu, L. (2017). An Empirical Analysis of Smart
Contracts: Platforms, Applications, and Design Patterns. In Brenner, M.,
Rohloff, K., Bonneau, J., Miller, A., Ryan, P. Y., Teague, V., Bracciali, A., Sala,
M., Pintore, F., and Jakobsson, M., editors, Financial Cryptography and Data
Security, pages 494–509, Cham. Springer International Publishing.

[64] Basili, V. (1992). Software Modeling and Measurement: The Goal/Ques-
tion/Metric Paradigm. University of Maryland. Technical report, CS-TR-2956,
UMIACS-TR-92-96.

[65] Basili, V. R. and Rombach, H. D. (1988). The TAME Project: Towards
Improvement-Oriented Software Environments. IEEE Transactions on Soft-
ware Engineering, 14(6):758–773.

[66] Basili, V. R. and Selby, R. W. (1984). Data Collection and Analysis in Soft-
ware Research and Management. Proceedings of the American Statistical
Association and Biomeasure Society, pages 13–16.

[67] Basili, V. R. and Weiss, D. M. (1984). A Methodology for Collecting Valid
Software Engineering Data. IEEE Transactions on Software Engineering,
SE-10(6):728–738.

[68] Belk, M., Papatheocharous, E., Germanakos, P., and Samaras, G. (2012).
Investigating the Relation between Users’ Cognitive Style and Web Navigation
Behavior with K-Means Clustering. In Castano, S., Vassiliadis, P., Lakshmanan,
L. V., and Lee, M. L., editors, Advances in Conceptual Modeling, pages 337–346,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[69] Ben Jemaa, F., Pujolle, G., and Pariente, M. (2016). QoS-Aware VNF Place-
ment Optimization in Edge-Central Carrier Cloud Architecture. In 2016 IEEE
Global Communications Conference (GLOBECOM), pages 1–7.

[70] Benali, R., Teyeb, H., Balma, A., Tata, S., and Ben Hadj-Alouane, N. (2016).
Evaluation of Traffic-Aware VM Placement Policies in Distributed Cloud Using
CloudSim. In 2016 IEEE 25th International Conference on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WETICE), pages 95–100.

[71] Bendriss, J., Yahia, I. G. B., Riggio, R., and Zeghlache, D. (2018). A Deep
Learning Based SLA Management for NFV-Based Services. In 2018 21st
Conference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN), pages 1–3. IEEE.

[72] Benedictis, A. d., Rak, M., Turtur, M., and Villano, U. (2015). REST-Based
SLA Management for Cloud Applications. In Proceedings of the 2015 IEEE
24th International Conference on Enabling Technologies: Infrastructure for

244 References

Collaborative Enterprises, WETICE ’15, pages 93–98, Washington, DC, USA.
IEEE Computer Society.

[73] Bermudez, I., Traverso, S., Munafò, M., and Mellia, M. (2014). A Distributed
Architecture for the Monitoring of Clouds and CDNs: Applications to Amazon
AWS. IEEE Transactions on Network and Service Management, 11(4):516–529.

[74] Bertolino, A., Calabrò, A., and De Angelis, G. (2013). Adaptive SLA Monitor-
ing of Service Choreographies Enacted on the Cloud. In 2013 IEEE 7th Inter-
national Symposium on the Maintenance and Evolution of Service-Oriented
and Cloud-Based Systems, pages 92–101. IEEE.

[75] Bhargava, B., Angin, P., Ranchal, R., and Lingayat, S. (2015). A Distributed
Monitoring and Reconfiguration Approach for Adaptive Network Computing.
In Proceedings of the 2015 IEEE 34th Symposium on Reliable Distributed
Systems Workshop (SRDSW), SRDSW ’15, pages 31–35, Washington, DC, USA.
IEEE Computer Society.

[76] Bhuyan, B., Sarma, H. K. D., Sarma, N., Kar, A., and Mall, R. (2010). Quality
of Service (QoS) Provisions in Wireless Sensor Networks and Related Chal-
lenges. Wireless Sensor Network, 2(11):861.

[77] Bianco, P., Lewis, G., and Merson, Paulo, P. (2008). Service Level Agreements
in Service-Oriented Architecture Environments. Technical Report CMU/SEI-
2008-TN-021, Carnegie Mellon.

[78] Binu, V. and Gangadhar, N. (2014). A Cloud Computing Service Level
Agreement Framework with Negotiation and Secure Monitoring. In 2014 IEEE
International Conference on Cloud Computing in Emerging Markets (CCEM),
pages 1–8. IEEE.

[79] Biswas, M. I., Parr, G., McClean, S., Morrow, P., and Scotney, B. (2014).
SLA-Based Scheduling of Applications for Geographically Secluded Clouds. In
2014 International Conference and Workshop on the Network of the Future
(NOF), volume Workshop, pages 1–8.

[80] Bittencourt, L. F., Diaz-Montes, J., Buyya, R., Rana, O. F., and Parashar, M.
(2017). Mobility-aware Application Scheduling in Fog Computing. IEEE Cloud
Computing, 4(2):26–35.

[81] Bochicchio, M. A., Longo, A., and Secco, A. (2013). An Online Laboratory
for SLA Management. In 2013 IEEE Global Engineering Education Conference
(EDUCON), pages 1130–1136. IEEE.

[82] Boehm, B. W., Brown, J. R., and Lipow, M. (1976). Quantitative Evaluation
of Software Quality. In Proceedings of the 2Nd International Conference on
Software Engineering, ICSE ’76, pages 592–605, Los Alamitos, CA, USA. IEEE
Computer Society Press.

References 245

[83] Boloor, K., Chirkova, R., Viniotis, Y., and Salo, T. (2010). Dynamic Request
Allocation and Scheduling for Context Aware Applications Subject to a Per-
centile Response Time SLA in a Distributed Cloud. In 2010 IEEE Second
International Conference on Cloud Computing Technology and Science, pages
464–472.

[84] Boniface, M., Nasser, B., Papay, J., Phillips, S. C., Servin, A., Yang, X., Zlatev,
Z., Gogouvitis, S. V., Katsaros, G., Konstanteli, K., Kousiouris, G., Menychtas,
A., and Kyriazis, D. (2010). Platform-as-a-Service Architecture for Real-Time
Quality of Service Management in Clouds. In Proceedings of the 2010 Fifth
International Conference on Internet and Web Applications and Services, ICIW
’10, pages 155–160, Washington, DC, USA. IEEE Computer Society.

[85] Booth, A., Alqahtani, A., and Solaiman, E. (2020). IoT Monitoring with
Blockchain: Generating Smart Contracts from Service Level Agreements. In
Managing Internet of Things Applications Across Edge and Cloud Datacenters.
IET.

[86] Borges, H. P., de Souza, J. N., Schulze, B., and Mury, A. R. (2014). Automatic
Services Instantiation Based on a Process Specification. J. Netw. Comput.
Appl., 39(C):1–16.

[87] Borgetto, D., Maurer, M., Da-Costa, G., Pierson, J., and Brandic, I. (2012).
Energy-Efficient and SLA-Aware Management of IaaS Clouds. In 2012 Third
International Conference on Future Systems: Where Energy, Computing and
Communication Meet (e-Energy), pages 1–10.

[88] Borgetto, D., Maurer, M., Da-Costa, G., Pierson, J.-M., and Brandic, I. (2012).
Energy-Efficient and SLA-Aware Management of IaaS Clouds. In Proceedings
of the 3rd International Conference on Future Energy Systems: Where Energy,
Computing and Communication Meet, e-Energy ’12, pages 25:1–25:10, New
York, NY, USA. ACM.

[89] Bouchenak, S. (2010). Automated Control for SLA-Aware Elastic Clouds.
In Proceedings of the Fifth International Workshop on Feedback Control
Implementation and Design in Computing Systems and Networks, pages 27–
28.

[90] Brandic, I., Music, D., and Dustdar, S. (2009). Service Mediation and
Negotiation Bootstrapping As First Achievements Towards Self-Adaptable
Grid and Cloud Services. In Proceedings of the 6th International Conference
Industry Session on Grids Meets Autonomic Computing, GMAC ’09, pages 1–8,
New York, NY, USA. ACM.

[91] Brandic, I., Music, D., Dustdar, S., Venugopal, S., and Buyya, R. (2008).
Advanced QoS Methods for Grid Workflows Based on Meta-Negotiations and
SLA-Mappings. In 2008 Third Workshop on Workflows in Support of Large-
Scale Science, pages 1–10. IEEE.

[92] Breitgand, D., Dubitzky, Z., Epstein, A., Glikson, A., and Shapira, I. (2012).
SLA-Aware Resource Over-Commit in an IaaS Cloud. In 2012 8th international

246 References

conference on network and service management (cnsm) and 2012 workshop
on systems virtualiztion management (svm), pages 73–81.

[93] Breitgand, D. and Epstein, A. (2011). SLA-Aware Placement of Multi-Virtual
Machine Elastic Services in Compute Clouds. In 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011) and Workshops,
pages 161–168.

[94] Brogi, A., Forti, S., Guerrero, C., and Lera, I. (2019). Meet Genetic Algo-
rithms in Monte Carlo: Optimised Placement of Multi-Service Applications in
the Fog. In 2019 IEEE International Conference on Edge Computing (EDGE),
pages 13–17.

[95] Buyya, R. (2009). Market-Oriented Cloud Computing: Vision, Hype, and
Reality of Delivering Computing as the 5th Utility. In 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pages 1–1.

[96] Buyya, R. and Dastjerdi, A. V. (2016). Internet of Things: Principles and
Paradigms. Elsevier.

[97] Calbimonte, J.-P., Riahi, M., Kefalakis, N., Soldatos, J., and Zaslavsky, A.
(2014). Utility Metrics Specifications. OpenIoT Deliverable D422. Technical
report, Infoscience, the École Polytechnique Fédérale de Lausanne (EPFL).

[98] Caldiera, V. R. B. G. and Rombach, H. D. (1994). The Goal Question Metric
Approach. Encyclopedia of software engineering, pages 528–532.

[99] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., and Buyya, R.
(2011). CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Software:
Practice and experience, 41(1):23–50.

[100] Cao, Z. and Dong, S. (2012). Dynamic VM Consolidation for Energy-Aware
and SLA Violation Reduction in Cloud Computing. In 2012 13th Interna-
tional Conference on Parallel and Distributed Computing, Applications and
Technologies, pages 363–369.

[101] Cardellini, V., Casalicchio, E., Lo Presti, F., and Silvestri, L. (2011). SLA-
Aware Resource Management for Application Service Providers in the Cloud.
In 2011 First International Symposium on Network Cloud Computing and
Applications, pages 20–27.

[102] Casola, V., Benedictis, A. D., and Rak, M. (2015). Security Monitoring in the
Cloud: An SLA-Based Approach. In Proceedings of the 2015 10th International
Conference on Availability, Reliability and Security, ARES ’15, pages 749–755,
Washington, DC, USA. IEEE Computer Society.

[103] Cedillo, P., Jimenez-Gomez, J., Abrahao, S., and Insfran, E. (2015). Towards
a Monitoring Middleware for Cloud Services. In Proceedings of the 2015 IEEE
International Conference on Services Computing, SCC ’15, pages 451–458,
Washington, DC, USA. IEEE Computer Society.

References 247

[104] Chai, A., Bazm, M., Camarasu-Pop, S., Glatard, T., Benoit-Cattin, H., and
Suter, F. (2017). Modeling Distributed Platforms from Application Traces
for Realistic File Transfer Simulation. In 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages 54–63.

[105] Chang, C., Lai, K., and Yang, C. (2013). Auction-Based Resource Provi-
sioning with SLA Consideration on Multi-Cloud Systems. In 2013 IEEE 37th
Annual Computer Software and Applications Conference Workshops, pages
445–450.

[106] Chaqfeh, M. A. and Mohamed, N. (2012). Challenges in Middleware
Solutions for the Internet of Things. In 2012 International Conference on
Collaboration Technologies and Systems (CTS), pages 21–26.

[107] Chen, J., Tsai, C., Lu, S., Luc, S., and Abedin, F. (2015). Resource Reallo-
cation Based on SLA Requirement in Cloud Environment. In 2015 IEEE 12th
International Conference on e-Business Engineering, pages 377–381.

[108] Chen, M., Mao, S., and Liu, Y. (2014). Big Data: A Survey. Mobile Networks
and Applications, 19(2):171–209.

[109] Cheng, S., Cao, C., Yu, P., and Ma, X. (2016). SLA-Aware and Green
Resource Management of IaaS Clouds. In 2016 IEEE 18th International
Conference on High Performance Computing and Communications; IEEE 14th
International Conference on Smart City; IEEE 2nd International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), pages 457–464.

[110] Chhetri, M. B., Vo, Q. B., and Kowalczyk, R. (2014). Adaptive AutoSLAM -
Policy-Based Orchestration of SLA Establishment. In 2014 IEEE International
Conference on Services Computing, pages 472–479.

[111] Chhetri, M. B., Vo, Q. B., and Kowalczyk, R. (2016). CL-SLAM: Cross-Layer
SLA Monitoring Framework for Cloud Service-Based Applications. In Proceed-
ings of the 9th International Conference on Utility and Cloud Computing, UCC
’16, pages 30–36, New York, NY, USA. ACM.

[112] Chi, Y., Moon, H. J., and Hacigümüş, H. (2011). ICBS: Incremental Cost-
Based Scheduling Under Piecewise Linear SLAs. Proc. VLDB Endow., 4(9):563–
574.

[113] Chituc, C.-M. (2015). Towards a Methodology for Trade-off Analysis in
a Multi-Cloud Environment Considering Monitored QoS Metrics and Eco-
nomic Performance Assessment Results. In Proceedings of the 2015 IEEE
7th International Conference on Cloud Computing Technology and Science
(CloudCom), CLOUDCOM ’15, pages 479–482, Washington, DC, USA. IEEE
Computer Society.

[114] Chokhani, P. and Somani, G. (2013). Dynamic Resource Allocation Us-
ing Auto-Negotiation in Haizea. In 2013 Sixth International Conference on
Contemporary Computing (IC3), pages 232–238. IEEE.

248 References

[115] Chung-Cheng Li and Kuochen Wang (2014). An SLA-Aware Load Balancing
Scheme for Cloud Datacenters. In The International Conference on Information
Networking 2014 (ICOIN2014), pages 58–63.

[116] Cicotti, G., D’Antonio, S., Cristaldi, R., and Sergio, A. (2013). How to
Monitor QoS in Cloud Infrastructures: The QoSMONaaS Approach. In Fortino,
G., Badica, C., Malgeri, M., and Unland, R., editors, Intelligent Distributed
Computing VI, pages 253–262, Berlin, Heidelberg. Springer Berlin Heidelberg.

[117] Cirani, S., Ferrari, G., Iotti, N., and Picone, M. (2015). The iot hub: A fog
node for seamless management of heterogeneous connected smart objects. In
2015 12th Annual IEEE International Conference on Sensing, Communication,
and Networking-Workshops (SECON Workshops), pages 1–6. IEEE.

[118] Cloud, H. (2011). The NIST Definition of Cloud Computing. National
Institute of Science and Technology, Special Publication, 800, 145.

[119] Comuzzi, M. and Pernici, B. (2009). A Framework for QoS-Based Web
Service Contracting. ACM Transactions on the Web (TWEB), 3(3):10.

[120] Copil, G., Moldovan, D., Salomie, I., Cioara, T., Anghel, I., and Borza, D.
(2012). Cloud SLA Negotiation for Energy Saving—a Particle Swarm Opti-
mization Approach. In 2012 IEEE 8th International Conference on Intelligent
Computer Communication and Processing, pages 289–296. IEEE.

[121] Council, C. S. C. (2011). Practical Guide to Cloud Service Agreements
Version 2.0. Technical Report Supplement C, The Object Management Group
(OMG).

[122] Crecana, C.-C. and Pop, F. (2018). Monitoring-Based Auto-Scalability
Across Hybrid Clouds. In Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC ’18, pages 1087–1094, New York, NY, USA. ACM.

[123] da Cunha Rodrigues, G., Calheiros, R. N., dos Santos, G. L., Guimaraes,
V. T., Granville, L. Z., Tarouco, L., and Buyya, R. (2018). Unfolding the Mutual
Relation between Timeliness and Scalability in Cloud Monitoring. In 2018 IEEE
Symposium on Computers and Communications (ISCC), pages 00772–00778.
IEEE.

[124] da Silva, T. L. C., Nascimento, M. A., Macêdo, J. A. F., Sousa, F. R. C., and
Machado, J. C. (2012). Towards Non-Intrusive Elastic Query Processing in the
Cloud. In Proceedings of the Fourth International Workshop on Cloud Data
Management, CloudDB ’12, pages 9–16, New York, NY, USA. ACM.

[125] D’Angelo, G., Ferretti, S., and Marzolla, M. (2018). A Blockchain-Based
Flight Data Recorder for Cloud Accountability. In Proceedings of the 1st
Workshop on Cryptocurrencies and Blockchains for Distributed Systems, Cry-
Block’18, pages 93–98, New York, NY, USA. ACM.

References 249

[126] Daniel, D. and Lovesum, S. J. (2011). A Novel Approach for Scheduling Ser-
vice Request in Cloud with Trust Monitor. In 2011 International Conference on
Signal Processing, Communication, Computing and Networking Technologies,
pages 509–513. IEEE.

[127] Darweesh, S. A., Ebrahim, G. A., and Bedour, H. M. S. (2019). Evaluating
Multi-Agent System Security Using Goal/Question/Metric Approach and Fuzzy
Logic. In 2019 IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM), pages 1–6.

[128] Das, K. and Behera, R. N. (2017). A Survey on Machine Learning: Concept,
Algorithms and Applications. International Journal of Innovative Research in
Computer and Communication Engineering, 5(2):1301–1309.

[129] Dastjerdi, A. V. and Buyya, R. (2012). An Autonomous Reliability-Aware
Negotiation Strategy for Cloud Computing Environments. In Proceedings of
the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (Ccgrid 2012), CCGRID ’12, pages 284–291, Washington, DC, USA.
IEEE Computer Society.

[130] Dastjerdi, A. V. and Buyya, R. (2015). An Autonomous Time-Dependent
SLA Negotiation Strategy for Cloud Computing. The Computer Journal,
58(11):3202–3216.

[131] Dementyev, A., Hodges, S., Taylor, S., and Smith, J. (2013). Power Con-
sumption Analysis of Bluetooth Low Energy, ZigBee and ANT Sensor Nodes
in a Cyclic Sleep Scenario. In 2013 IEEE International Wireless Symposium
(IWS), pages 1–4.

[132] Derrick, B. and White, P. (2017). Comparing two samples from an individual
Likert question. International Journal of Mathematics and Statistics, 18.

[133] Dey, S. (2018). A Secure Fair Queuing and SLA Based Slotted Round Robin
Load Balancing Approach for Cloud Data Centers. In 2018 3rd International
Conference on Communication and Electronics Systems (ICCES), pages 382–
387.

[134] Dhingra, M., Lakshmi, J., and Nandy, S. K. (2012). Resource Usage Mon-
itoring in Clouds. In Proceedings of the 2012 ACM/IEEE 13th International
Conference on Grid Computing, GRID ’12, pages 184–191, Washington, DC,
USA. IEEE Computer Society.

[135] Díaz, M., Martín, C., and Rubio, B. (2016). State-of-the-Art, Challenges,
and Open Issues in the Integration of Internet of Things and Cloud Computing.
Journal of Network and Computer Applications, 67:99–117.

[136] Ding, J. and Zhao, Z. (2012). Towards Autonomic SLA Management: A
Review. In 2012 International Conference on Systems and Informatics (IC-
SAI2012), pages 2552–2555. IEEE.

250 References

[137] Dingle, N. J., Knottenbelt, W. J., and Wang, L. (2008). Service Level Agree-
ment Specification, Compliance Prediction and Monitoring with Performance
Trees. In 22nd Annual European Simulation and Modelling Conference (ESM
2008), pages 137–14.

[138] Distefano, S., Puliafito, A., Rak, M., Venticinque, S., Villano, U., Cuomo, A.,
Di Modica, G., and Tomarchio, O. (2011). QoS Management in Cloud@Home
Infrastructures. In Proceedings of the 2011 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery, CYBERC ’11, pages
190–197, Washington, DC, USA. IEEE Computer Society.

[139] Djemai, T., Stolf, P., Monteil, T., and Pierson, J. (2019). A Discrete Particle
Swarm Optimization Approach for Energy-Efficient IoT Services Placement
Over Fog Infrastructures. In 2019 18th International Symposium on Parallel
and Distributed Computing (ISPDC), pages 32–40.

[140] Dsouza, C., Ahn, G.-J., and Taguinod, Marthony, P. (2014). Policy-Driven
Security Management for Fog Computing: Preliminary Framework and a Case
Study. in on IEEE 15th International Conference In Information Reuse and
Integration (IRI).

[141] Duan, R., Chen, X., and Xing, T. (2011). A QoS Architecture for IoT. In
2011 International Conference on Internet of Things and 4th International
Conference on Cyber, Physical and Social Computing, pages 717–720.

[142] Edu-yaw, T. and Kuada, E. (2018). Service Level Agreement Negotiation
and Monitoring System in Cloud Computing. In 2018 IEEE 7th International
Conference on Adaptive Science & Technology (ICAST), pages 1–8. IEEE.

[143] El Kafhali, S. and Salah, K. (2017). Efficient and Dynamic Scaling of Fog
Nodes for IoT Devices. The Journal of Supercomputing, 73(12):5261–5284.

[144] El Kafhali, S. and Salah, K. (2018). Performance Modelling and Analysis
of Internet of Things Enabled Healthcare Monitoring Systems. IET Networks,
8(1):48–58.

[145] El-Matary, D., El-Attar, N., Awad, W., and Hanafy, I. (2019). Automated
Negotiation Framework Based on Intelligent Agents for Cloud Computing. In
2019 International Conference on Innovative Trends in Computer Engineering
(ITCE), pages 156–161. IEEE.

[146] El-Sayed, H., Sankar, S., Prasad, M., Puthal, D., Gupta, A., Mohanty, M.,
and Lin, C. (2018). Edge of Things: The Big Picture on the Integration of Edge,
IoT and the Cloud in a Distributed Computing Environment. IEEE Access,
6:1706–1717.

[147] Eldawy, A. and Mokbel, M. F. (2015). Spatialhadoop: A Mapreduce Frame-
work for Spatial Data. In 2015 IEEE 31st international conference on Data
Engineering, pages 1352–1363. IEEE.

References 251

[148] Elhadi, S., Marzak, A., Sael, N., and Merzouk, S. (2018). Comparative
Study of IoT Protocols. Smart Application and Data Analysis for Smart Cities
(SADASC’18).

[149] Elliott, K., Massacci, F., Ngo, C.-N., and Williams, J. M. (2016). Unruly Inno-
vation: Distributed Ledgers, Blockchains and the Protection of Transactional
Rents. Blockchains and the Protection of Transactional Rents (December 22,
2016).

[150] Emeakaroha, V. C., Brandic, I., Maurer, M., and Breskovic, I. (2011). SLA-
Aware Application Deployment and Resource Allocation in Clouds. In 2011
IEEE 35th Annual Computer Software and Applications Conference Workshops,
pages 298–303.

[151] Emeakaroha, V. C., Brandic, I., Maurer, M., and Dustdar, S. (2010). Low
Level Metrics to High Level SLAs - LoM2HiS Framework: Bridging the Gap
between Monitored Metrics and SLA Parameters in Cloud Environments. In
2010 International Conference on High Performance Computing Simulation,
pages 48–54.

[152] Emeakaroha, V. C., Ferreto, T. C., Netto, M. A. S., Brandic, I., and De Rose,
C. A. F. (2012). CASViD: Application Level Monitoring for SLA Violation De-
tection in Clouds. In Proceedings of the 2012 IEEE 36th Annual Computer
Software and Applications Conference, COMPSAC ’12, pages 499–508, Wash-
ington, DC, USA. IEEE Computer Society.

[153] Engel, R., Rajamoni, S., Chen, B., Ludwig, H., and Keller, A. (2018). YSLA:
Reusable and Configurable SLAs for Large-Scale SLA Management. In 2018
IEEE 4th International Conference on Collaboration and Internet Computing
(CIC), pages 317–325. IEEE.

[154] Fabric., H. (2019). Building Your First Network — Hyperledger-Fabricdocs
Master Documentation. https://hyperledger-fabric.readthedocs.io/en/release-1.
4/build_network.html. (Accessed on 09/29/2019).

[155] Falasi, A. A., Serhani, M. A., and Dssouli, R. (2013). A Model for Multi-
Levels SLA Monitoring in Federated Cloud Environment. In Proceedings of
the 2013 IEEE 10th International Conference on Ubiquitous Intelligence &
Computing and 2013 IEEE 10th International Conference on Autonomic &
Trusted Computing, UIC-ATC ’13, pages 363–370, Washington, DC, USA. IEEE
Computer Society.

[156] Faniyi, F. and Bahsoon, R. (2011). Engineering Proprioception in SLA
Management for Cloud Architectures. In Proceedings of the 2011 Ninth
Working IEEE/IFIP Conference on Software Architecture, WICSA ’11, pages
336–340, Washington, DC, USA. IEEE Computer Society.

[157] Faniyi, F. and Bahsoon, R. (2012). Self-Managing SLA Compliance in
Cloud Architectures: A Market-Based Approach. In Proceedings of the 3rd
International ACM SIGSOFT Symposium on Architecting Critical Systems,
ISARCS ’12, pages 61–70, New York, NY, USA. ACM.

https://hyperledger-fabric.readthedocs.io/en/release-1.4/build_network.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/build_network.html

252 References

[158] Faniyi, F. and Bahsoon, R. (2015). A Systematic Review of Service Level
Management in the Cloud. ACM Comput. Surv., 48(3):43:1–43:27.

[159] Farokhi, S. (2014). Towards an SLA-Based Service Allocation in Multi-
Cloud Environments. In 2014 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pages 591–594.

[160] Flammini, A. and Sisinni, E. (2014). Wireless Sensor Networking in the
Internet of Things and Cloud Computing Era. Procedia Engineering, 87:672 –
679.

[161] Foster, H. and Spanoudakis, G. (2011a). Advanced Service Monitoring
Configurations with SLA Decomposition and Selection. In Proceedings of the
2011 ACM Symposium on Applied Computing, pages 1582–1589. ACM.

[162] Foster, H. and Spanoudakis, G. (2011b). SMaRT: A Workbench for Re-
porting the Monitorability of Services from SLAs. In Proceedings of the 3rd
International Workshop on Principles of Engineering Service-Oriented Systems,
pages 36–42. ACM.

[163] Freitas, A. L., Parlavantzas, N., and Pazat, J.-L. (2010). A QoS Assurance
Framework for Distributed Infrastructures. In Proceedings of the 3rd Inter-
national Workshop on Monitoring, Adaptation and Beyond, MONA ’10, pages
1–8, New York, NY, USA. ACM.

[164] Furtado, T., Francesquini, E., Lago, N., and Kon, F. (2014). A Middleware
for Reflective Web Service Choreographies on the Cloud. In Proceedings of
the 13th Workshop on Adaptive and Reflective Middleware, ARM ’14, pages
9:1–9:6, New York, NY, USA. ACM.

[165] Gaillard, G., Barthel, D., Theoleyre, F., and Valois, F. (2014). SLA Specifica-
tion for IoT Operation-The WSN-SLA Framework. PhD thesis, INRIA.

[166] Galati, A., Djemame, K., Fletcher, M., Jessop, M., Weeks, M., and McAvoy,
J. (2014). A WS-Agreement Based SLA Implementation for the CMAC Platform.
In Altmann, J., Vanmechelen, K., and Rana, O. F., editors, Economics of Grids,
Clouds, Systems, and Services, pages 159–171, Cham. Springer International
Publishing.

[167] Gámez Díaz, A., Fernández Montes, P., and Ruiz Cortés, A. (2018). Fos-
tering SLA-Driven API Specifications. JCIS 2018: XIV Jornadas de Ciencia e
Ingeniería de Servicios (2018),.

[168] Gantz, J. and Reinsel, D. (2012). The Digital Universe in 2020: Big Data,
Bigger Digital Shadows, and Biggest Growth in the Far East. IDC iView: IDC
Analyze the future, 2007(2012):1–16.

[169] García García, A., Blanquer Espert, I., and Hernández García, V. (2014).
SLA-Driven Dynamic Cloud Resource Management. Future Gener. Comput.
Syst., 31:1–11.

References 253

[170] Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T.,
Iamnitchi, A., Barcellos, M., Felber, P., and Riviere, E. (2015). Edge-Centric
Computing: Vision and Challenges. SIGCOMM Comput. Commun. Rev.,
45(5):37–42.

[171] Garg, S. K., Toosi, A. N., Gopalaiyengar, S. K., and Buyya, R. (2014). SLA-
Based Virtual Machine Management for Heterogeneous Workloads in a Cloud
Datacenter. Journal of Network and Computer Applications, 45:108 – 120.

[172] Ghosh, N. and Ghosh, S. K. (2012). An Approach to Identify and Monitor
SLA Parameters for Storage-as-a-Service Cloud Delivery Model. In 2012 IEEE
Globecom Workshops, pages 724–729. IEEE.

[173] Ghumman, W. A. and Schill, A. (2017). Continuous and Distributed Mon-
itoring of Cloud SLAs Using S3LACC. In 2017 IEEE Symposium on Service-
Oriented System Engineering (SOSE), pages 114–119. IEEE.

[174] Ghumman, W. A., Schill, A., and Lässig, J. (2016). The Flip-Flop SLA
Negotiation Strategy Using Concession Extrapolation and 3D Utility Function.
In 2016 IEEE 2nd International Conference on Collaboration and Internet
Computing (CIC), pages 159–168. IEEE.

[175] Gomes, R. L., Bittencourt, L. F., and Madeira, E. R. (2012). A Generic
SLA Negotiation Protocol for Virtualized Environments. In 2012 18th IEEE
International Conference on Networks (ICON), pages 7–12. IEEE.

[176] Gope, P. and Hwang, T. (2015). BSN-Care: A Secure IoT-Based Mod-
ern Healthcare System Using Body Sensor Network. IEEE sensors journal,
16(5):1368–1376.

[177] Goudarzi, H. and Pedram, M. (2011). Multi-Dimensional SLA-Based Re-
source Allocation for Multi-Tier Cloud Computing Systems. In 2011 IEEE 4th
International Conference on Cloud Computing, pages 324–331.

[178] Goudarzi, H. and Pedram, M. (2016). Hierarchical SLA-Driven Resource
Management for Peak Power-Aware and Energy-Efficient Operation of a Cloud
Datacenter. IEEE Transactions on Cloud Computing, 4(2):222–236.

[179] Grady, R. B. and Caswell, D. L. (1987). Software Metrics: Establishing a
Company-Wide Program. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[180] Grati, R., Boukadi, K., and Ben-Abdallah, H. (2014). A Framework for IaaS-
to-SaaS monitoring of BPEL Processes in the Cloud: Design and Evaluation.
In 2014 IEEE/ACS 11th International Conference on Computer Systems and
Applications (AICCSA), pages 557–564. IEEE.

[181] Groléat, T. and Pouyllau, H. (2011). Distributed Inter-Domain SLA Ne-
gotiation Using Reinforcement Learning. In 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011) and Workshops,
pages 33–40. IEEE.

254 References

[182] Groleat, T. and Pouyllau, H. (2012). Distributed Learning Algorithms for
Inter-NSP SLA Negotiation Management. IEEE Transactions on Network and
Service Management, 9(4):433–445.

[183] Gu, L., Zeng, D., Guo, S., Barnawi, A., and Xiang, Yong, P. (2015). Cost-
Efficient Resource Management in Fog Computing Supported Medical CPS. in
IEEE Transactions on Emerging Topics in Computing.

[184] Gunter, D., Tierney, B., Crowley, B., Holding, M., and Lee, J. (2000). NetLog-
ger: A Toolkit for Distributed System Performance Analysis. In Proceedings 8th
International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (Cat. No.PR00728), pages 267–273.

[185] Guo, C., Yuan, L., Xiang, D., Dang, Y., Huang, R., Maltz, D., Liu, Z., Wang,
V., Pang, B., Chen, H., Lin, Z.-W., and Kurien, V. (2015). Pingmesh: A Large-
Scale System for Data Center Network Latency Measurement and Analysis. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 139–152, New York, NY, USA. ACM.

[186] Gupta, H., Dastjerdi, A. V., Ghosh, S. K., and Buyya, R. (2017). IFogSim:
A Toolkit for Modeling and Simulation of Resource Management Techniques
in the Internet of Things, Edge and Fog Computing Environments. Software:
Practice and Experience, 47(9):1275–1296.

[187] Gutierrez-Garcia, J. O. and Sim, K. M. (2010). Self-Organizing Agents for
Service Composition in Cloud Computing. In 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, pages 59–66.

[188] Hail, M. A. M., Amadeo, M., Molinaro, A., and Fischer, S. (2015). On the
Performance of Caching and Forwarding in Information-Centric Networking
for the IoT. In International Conference on Wired/Wireless Internet Communi-
cation, pages 313–326. Springer.

[189] Haiteng, Z., Zhiqing, S., Hong, Z., and Jie, Z. (2012). Establishing Service
Level Agreement Requirement Based on Monitoring. In Proceedings of the
2012 Second International Conference on Cloud and Green Computing, CGC
’12, pages 472–476, Washington, DC, USA. IEEE Computer Society.

[190] Halabi, T. and Bellaiche, M. (2018). A Broker-Based Framework for Stan-
dardization and Management of Cloud Security-SLAs. Computers & Security,
75:59–71.

[191] Halili, M. K. and Çiço, B. (2018). Towards Custom Tailored SLA in IaaS
Environment through Negotiation Model: An Overview. In 2018 7th Mediter-
ranean Conference on Embedded Computing (MECO), pages 1–4. IEEE.

[192] Hammadi, A., Hussain, O. K., Dillon, T., and Hussain, F. K. (2013). A
Framework for SLA Management in Cloud Computing for Informed Decision
Making. Cluster Computing, 16(4):961–977.

References 255

[193] Hani, A. F. M., Paputungan, I. V., H, M. F., and A, V. S. (2017). Manifold
Learning in SLA Violation Detection and Prediction for Cloud-Based System.
In Proceedings of the Second International Conference on Internet of Things,
Data and Cloud Computing, ICC ’17, pages 183:1–183:5, New York, NY, USA.
ACM.

[194] Hani, A. F. M., Paputungan, I. V., and Hassan, M. F. (2015). Renegotiation
in Service Level Agreement Management for a Cloud-Based System. ACM
Comput. Surv., 47(3):51:1–51:21.

[195] Harel, D., Pnueli, A., Schmidt, J. P., and Sherman, R. (1987). On the Formal
Semantics of Statecharts (Extended Abstract). In Proceedings of the Second
Annual IEEE Symposium on Logic in Computer Science (LICS 1987), pages
54–64. IEEE Computer Society Press.

[196] Hasan, M. S., Kouki, Y., Ledoux, T., and Pazat, J.-L. (2015). Exploiting
Renewable Sources: When Green SLA Becomes A Possible Reality in Cloud
Computing. IEEE Transactions on Cloud Computing, 5(2):249–262.

[197] Hashmi, K., Najmi, E., Malik, Z., Medjahed, B., Alhosban, A., and Rezgui, A.
(2014). Automated Negotiation Using Semantic Rules. In Proceedings of the
2014 IEEE International Conference on Services Computing, SCC ’14, pages
536–543, Washington, DC, USA. IEEE Computer Society.

[198] Hayat, R., Sabir, E., Badidi, E., and ElKoutbi, M. (2017). A Signaling
Game-Based Approach for Data-as-a-Service Provisioning in IoT-Cloud. Future
Generation Computer Systems.

[199] Hazarika, B., Singh, T. J., and Al Saedy, H. (2015). Window Based State
Monitoring in Cloud Datacenter Using VM Concept. Procedia Computer
Science, 70:618–624.

[200] He, H., Ma, Z., Chen, H., and Shao, W. (2013). Towards an SLA-Driven
Cache Adjustment Approach for Applications on PaaS. In Proceedings of
the 5th Asia-Pacific Symposium on Internetware, Internetware ’13, pages
11:1–11:10, New York, NY, USA. ACM.

[201] He, H., Ma, Z., Chen, H., Yeh, C. Y., and Shao, W. (2014). An Aspect-
Oriented Approach to SLA-Driven Monitoring Multi-tenant Cloud Application.
In Proceedings of the 2014 IEEE International Conference on Cloud Computing,
CLOUD ’14, pages 857–864, Washington, DC, USA. IEEE Computer Society.

[202] He, X., Ren, Z., Shi, C., and Fang, J. (2016). A Novel Load Balancing
Strategy of Software-Defined Cloud/Fog Networking in the Internet of Vehicles.
China Communications, 13(Supplement2):140–149.

[203] Hlaing, H. H., Kanemitsu, H., Nakajima, T., and Nakazato, H. (2019). On the
Optimal Number of Computational Resources in MapReduce. In International
Conference on Cloud Computing, pages 240–252. Springer.

256 References

[204] Holloway, M., Schuller, D., and Steinmetz, R. (2015). Customized Cloud Ser-
vice Quality: Approaching Pareto-Efficient Outcomes in Concurrent Multiple-
Issue Negotiations. In Proceedings of the 8th International Conference on
Utility and Cloud Computing, UCC ’15, pages 256–260, Piscataway, NJ, USA.
IEEE Press.

[205] Huang, C.-J., Guan, C.-T., Chen, H.-M., Wang, Y.-W., Chang, S.-C., Li, C.-Y.,
and Weng, C.-H. (2013). An Adaptive Resource Management Scheme in Cloud
Computing. Engineering Applications of Artificial Intelligence, 26(1):382–389.

[206] Hughes, A., Park, A., Kietzmann, J., and Archer-Brown, C. (2019). Beyond
Bitcoin: What blockchain and Distributed Ledger Technologies Mean for Firms.
Business Horizons, 62.

[207] Hung, P. C., Li, H., and Jeng, J.-J. (2004). WS-Negotiation: An Overview of
Research Issues. In 37th Annual Hawaii International Conference on System
Sciences, 2004. Proceedings of the, pages 10–pp. IEEE.

[208] Hussain, W., Hussain, F. K., Hussain, O. K., Damiani, E., and Chang, E.
(2017). Formulating and Managing Viable SLAs in Cloud Computing from
a Small to Medium Service Provider’s Viewpoint: A State-of-the-Art Review.
Information Systems, 71:240–259.

[209] Hussain, W., Hussain, F. K., Saberi, M., Hussain, O. K., and Chang, E.
(2018). Comparing Time Series with Machine Learning-Based Prediction
Approaches for Violation Management in Cloud SLAs. Future Generation
Computer Systems, 89:464–477.

[210] Hyperledger (2018). Hyperledger Fabric – Hyperledger. https://www.
hyperledger.org/projects/fabric. (Accessed on 09/11/2019).

[211] Ibrahim, A. A. Z. A. (2018). PRESEnCE: A Framework for Monitoring,
Modelling and Evaluating the Performance of Cloud SaaS Web Services. In
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), pages 83–86. IEEE.

[212] Intharawijitr, K., Iida, K., and Koga, Hiroyuki, P. (2016). Analysis of Fog
Model Considering Computing and Communication Latency in 5G Cellular
Networks I. in In: 2016 IEEE International Conference on Pervasive Computing
and Communication Workshops (PerCom Workshops).

[213] Jacob, B., Brown, M., Fukui, K., Trivedi, N., et al. (2005). Introduction to
Grid Computing. IBM redbooks, pages 3–6.

[214] Jayaraman, P. P., Mitra, K., Saguna, S., Shah, T., Georgakopoulos, D., and
Ranjan, Rajiv, P. (2015). Orchestrating Quality of Service in the Cloud of Things
Ecosystem. In 2015 IEEE International Symposium on Nanoelectronic and
Information Systems, pages 185–190.

https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric

References 257

[215] Jayathilaka, H., Krintz, C., and Wolski, R. (2015). Response Time Service
Level Agreements for Cloud-Hosted Web Applications. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages 315–328, New
York, NY, USA. ACM.

[216] Jie, Y., Tang, X., Choo, K.-K. R., Su, S., Li, M., and Guo, C. (2018). Online
Task Scheduling for Edge Computing Based on Repeated Stackelberg Game.
Journal of Parallel and Distributed Computing, 122:159 – 172.

[217] Kaaniche, N., Mohamed, M., Laurent, M., and Ludwig, H. (2017). Security
SLA Based Monitoring in Clouds. In 2017 IEEE International Conference on
Edge Computing (EDGE), pages 90–97.

[218] Kafka, A. (2017). Apache Kafka. https://kafka.apache.org/documentation/
#gettingStarted. (Accessed on 07/03/2019).

[219] Kai, L., Weiqin, T., Liping, Z., and Chao, H. (2013). SCM: A Design and
Implementation of Monitoring System for CloudStack. In Proceedings of the
2013 International Conference on Cloud and Service Computing, CSC ’13,
pages 146–151, Washington, DC, USA. IEEE Computer Society.

[220] Kapassa, E., Touloupou, M., Mavrogiorgou, A., and Kyriazis, D. (2018). 5G
& SLAs: Automated Proposition and Management of Agreements Towards QoS
Enforcement. In 2018 21st Conference on Innovation in Clouds, Internet and
Networks and Workshops (ICIN), pages 1–5. IEEE.

[221] Karpagavalli, K. and Saravannan, K. (2017). Strategy Tree and Fuzzy
Based Cloud SLA Change Management. In 2017 4th International Conference
on Advanced Computing and Communication Systems (ICACCS), pages 1–6.
IEEE.

[222] Kassa, D. F. and Nahrstedt, K. (2013). SCDA: SLA-Aware Cloud Datacenter
Architecture for Efficient Content Storage and Retrieval. In Proceedings of the
22Nd International Symposium on High-performance Parallel and Distributed
Computing, HPDC ’13, pages 121–122, New York, NY, USA. ACM.

[223] Katsalis, K., Papaioannou, T. G., Nikaein, N., and Tassiulas, L. (2016).
SLA-Driven VM Scheduling in Mobile Edge Computing. In 2016 IEEE 9th
International Conference on Cloud Computing (CLOUD), pages 750–757.

[224] Kaur, K., Dhand, T., Kumar, N., and Zeadally, S. (2017). Container-as-a-
Service at the Edge: Trade-Off between Energy Efficiency and Service Avail-
ability at Fog Nano Data Centers. IEEE Wireless Communications, 24(3):48–56.

[225] Kaur, K., Garg, S., Aujla, G. S., Kumar, N., Rodrigues, J. J., and Guizani,
M. (2018). Edge Computing in the Industrial Internet of Things Environment:
Software-Defined-Networks-Based Edge-Cloud Interplay. IEEE Communica-
tions Magazine, 56:44–51.

[226] Kaur, K. and Rai, A. K. (2014). A comparative analysis: Grid, cluster and
cloud computing. International Journal of Advanced Research in Computer
and Communication Engineering, 3(3):5730–5734.

https://kafka.apache.org/documentation/#gettingStarted
https://kafka.apache.org/documentation/#gettingStarted

258 References

[227] Kearney, K. T., Torelli, F., and Kotsokalis, C. (2010). SLA* An Abstract
Syntax for Service Level Agreements. In 2010 11th IEEE/ACM International
Conference on Grid Computing, pages 217–224.

[228] Keller, A. and Ludwig, H. (2003). The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services. Journal of Network
and Systems Management, 11(1):57–81.

[229] Kertesz, A., Kecskemeti, G., and Brandic, I. (2009). An SLA-Based Resource
Virtualization Approach for On-demand Service Provision. In Proceedings of
the 3rd International Workshop on Virtualization Technologies in Distributed
Computing, VTDC ’09, page 27–34, New York, NY, USA. Association for Com-
puting Machinery.

[230] Kertesz, A., Kecskemeti, G., and Brandic, I. (2011). Autonomic SLA-Aware
Service Virtualization for Distributed Systems. In 2011 19th International
Euromicro Conference on Parallel, Distributed and Network-Based Processing,
pages 503–510.

[231] Kertesz, A., Kecskemeti, G., and Brandic, I. (2014). An Interoperable
and Self-Adaptive Approach for SLA-Based Service Virtualization in Hetero-
geneous Cloud Environments. Future Generation Computer Systems, 32:54
– 68. Special Section: The Management of Cloud Systems, Special Section:
Cyber-Physical Society and Special Section: Special Issue on Exploiting Se-
mantic Technologies with Particularization on Linked Data over Grid and Cloud
Architectures.

[232] Kesavaraja, D. and Shenbagavalli, A. (2018). QoE Enhancement in Cloud
Virtual Machine Allocation Using Eagle Strategy of Hybrid Krill Herd Opti-
mization. Journal of Parallel and Distributed Computing, 118:267–279.

[233] Khalil, A., Mbarek, N., and Togni, O. (2017). Service Level Guarantee
Framework for IoT Environments: Full Paper. In Proceedings of the 1st
International Conference on Internet of Things and Machine Learning, IML
’17, pages 50:1–50:8, New York, NY, USA. ACM.

[234] Khan, H. M., Chan, G.-Y., and Chua, F.-F. (2016). An Adaptive Monitoring
Framework for Ensuring Accountability and Quality of Services in Cloud Com-
puting. In Proceedings of the 2016 International Conference on Information
Networking (ICOIN), ICOIN ’16, pages 249–253, Washington, DC, USA. IEEE
Computer Society.

[235] Khan, R., Khan, S. U., Zaheer, R., and Khan, S. (2012). Future Internet:
The Internet of Things Architecture, Possible Applications and Key Challenges.
In 2012 10th International Conference on Frontiers of Information Technology,
pages 257–260.

[236] Khare, S., Sun, H., Zhang, K., Gascon-Samson, J., Gokhale, A., Koutsoukos,
X., and Abdelaziz, H. (2018). Scalable Edge Computing for Low Latency
Data Dissemination in Topic-Based Publish/Subscribe. In 2018 IEEE/ACM
Symposium on Edge Computing (SEC), pages 214–227.

References 259

[237] Kim, E. C., Song, J. G., and Hong, C. S. (2000). An Integrated CNM Archi-
tecture for Multi-Layer Networks with Simple SLA Monitoring and Reporting
Mechanism. In Network Operations and Management Symposium, 2000.
NOMS 2000. 2000 IEEE/IFIP, pages 993–994.

[238] Klingert, S., Schulze, T., and Bunse, C. (2011). GreenSLAs for the Energy-
Efficient Management of Data Centres. In Proceedings of the 2Nd International
Conference on Energy-Efficient Computing and Networking, e-Energy ’11,
pages 21–30, New York, NY, USA. ACM.

[239] Kochovski, P., Sakellariou, R., Bajec, M., Drobintsev, P., and Stankovski,
V. (2019). An Architecture and Stochastic Method for Database Container
Placement in the Edge-Fog-Cloud Continuum. In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 396–405.

[240] KOGURE, M. (1983). Quality Function Deployment and CWQC in Japan.
Quality Progress, pages 26–32.

[241] Kohne, A., Krüger, M., Pfahlberg, M., Spinczyk, O., and Nagel, L. (2017).
Financial Evaluation of SLA-Based VM Scheduling Strategies for Cloud Fed-
erations. In Proceedings of the 4th Workshop on CrossCloud Infrastructures
& Platforms, Crosscloud’17, New York, NY, USA. Association for Computing
Machinery.

[242] Kohne, A., Pasternak, D., Nagel, L., and Spinczyk, O. (2016). Evaluation of
SLA-Based Decision Strategies for VM Scheduling in Cloud Data Centers. In
Proceedings of the 3rd Workshop on CrossCloud Infrastructures & Platforms,
CrossCloud ’16, New York, NY, USA. Association for Computing Machinery.

[243] Kolomvatsos, K. and Anagnostopoulos, C. (2019). Multi-Criteria Optimal
Task Allocation at the Edge. Future Generation Computer Systems, 93:358 –
372.

[244] Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F., and Barnaghi, P.
(2014). A Knowledge-Based Approach for Real-Time IoT Data Stream Anno-
tation and Processing. In 2014 IEEE International Conference on Internet of
Things (iThings), and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom), pages 215–222.

[245] Kouki, Y., d. Oliveira, F. A., Dupont, S., and Ledoux, T. (2014). A Language
Support for Cloud Elasticity Management. In 2014 14th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, pages 206–215.

[246] Kouki, Y., De Oliveira, F. A., Dupont, S., and Ledoux, T. (2014). A Language
Support for Cloud Elasticity Management. In 2014 14th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, pages 206–215.
IEEE.

[247] Kousiouris, G., Aisopos, F., Psychas, A., Varvarigou, T., Domaschka, J., Baur,
D., Griesinger, F., Nikolov, V., Lyberopoulos, G., Theodoropoulou, E., et al.

260 References

(2017). A Toolkit Based Architecture for Optimizing Cloud Management, Per-
formance Evaluation and Provider Selection Processes. In 2017 International
Conference on High Performance Computing & Simulation (HPCS), pages
224–232. IEEE.

[248] Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benrernou,
S., Brandic, I., Kertész, A., Parkin, M., and Carro, Manue, P. (2013). A Survey
on Service Quality Description. ACM Computing Surveys (CSUR), 46(1):1.

[249] Kuebert, R., Gallizo, G., Oberle, K., and Oliveros, E. (2010). Enhancing the
SLA Framework of a Virtualized Service Platform by Dynamic Re-negotiation.
In eChallenges e-2010 Conference, pages 1–8. IEEE.

[250] Kueh, P. J. and Mashaly, M. E. (2017). Load Balancing in Distributed
Cloud Data Center Configurations: Performance and Energy-Efficiency. In
Proceedings of the Eighth International Conference on Future Energy Systems,
e-Energy ’17, pages 296–301, New York, NY, USA. ACM.

[251] Kumar, P., Singh, P., Chopra, S., Sarna, J. S., and Rawat, K. (2017). Inspec-
tion of Cloud Computing Monitoring Tools. In 2017 International Conference
on Infocom Technologies and Unmanned Systems (Trends and Future Direc-
tions)(ICTUS), pages 361–365. IEEE.

[252] Kyriazis, D. (2013). Cloud Computing Service Level Agreements-
Exploitation of Research Results. European Commission Directorate General
Communications Networks Content and Technology Unit, Tech. Rep, 5:29.

[253] Labidi, T., Mtibaa, A., Gaaloul, W., and Gargouri, F. (2017). Ontology-Based
SLA Negotiation and Re-negotiation for Cloud Computing. In 2017 IEEE
26th International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), pages 36–41. IEEE.

[254] Labidi, T., Mtibaa, A., Gaaloul, W., Tata, S., and Gargouri, F. (2017). Cloud
SLA Modeling and Monitoring. In 2017 IEEE International Conference on
Services Computing (SCC), pages 338–345.

[255] Labidi, T., Mtibaa, A., and Gargouri, F. (2018). Cloud SLA Terms Analysis
Based On Ontology. Procedia Computer Science, 126:292–301.

[256] Lamanna, D. D., Skene, J., and Emmerich, W. (2003). Slang: A Language for
Defining Service Level Agreements. In NINTH IEEE WORKSHOP ON FUTURE
TRENDS OF DISTRIBUTED COMPUTING SYSTEMS, PROCEEDINGS, pages
100–106. IEEE COMPUTER SOC.

[257] Landi, G., Neves, P. M., Edmonds, A., Metsch, T., Mueller, J., and Crosta, P. S.
(2014). SLA Management and Service Composition of Virtualized Applications
in Mobile Networking Environments. In 2014 IEEE Network Operations and
Management Symposium (NOMS), pages 1–8. IEEE.

References 261

[258] Larsson, L., Henriksson, D., and Elmroth, E. (2011). Scheduling and Moni-
toring of Internally Structured Services in Cloud Federations. In Proceedings
of the 2011 IEEE Symposium on Computers and Communications, ISCC ’11,
pages 173–178, Washington, DC, USA. IEEE Computer Society.

[259] Lauslahti, K., Mattila, J., and Seppälä, T. (2017). Smart Contracts – How
Will Blockchain Technology Affect Contractual Practices? ETLA Reports 68,
The Research Institute of the Finnish Economy.

[260] Lee, B.-H., Song, T. G., and Kim, D.-H. (2016). Block Storage Scheduling
Based on SLA in Cloud Storage Systems. In Proceedings of the Sixth Interna-
tional Conference on Emerging Databases: Technologies, Applications, and
Theory, EDB ’16, page 72–76, New York, NY, USA. Association for Computing
Machinery.

[261] Leitner, P., Hummer, W., Satzger, B., Inzinger, C., and Dustdar, S. (2012).
Cost-Efficient and Application SLA-Aware Client Side Request Scheduling in an
Infrastructure-as-a-Service Cloud. In 2012 IEEE Fifth International Conference
on Cloud Computing, pages 213–220.

[262] Lemos, A. L., Daniel, F., and Benatallah, B. (2015). Web Service Composi-
tion: A Survey of Techniques and Tools. ACM Comput. Surv., 48(3):33:1–33:41.

[263] Lera, I., Guerrero, C., and Juiz, C. (2019). Availability-Aware Service
Placement Policy in Fog Computing Based on Graph Partitions. IEEE Internet
of Things Journal, 6(2):3641–3651.

[264] Li, B. and Yu, J. (2011). Research and Application on the Smart Home Based
on Component Technologies and Internet of Things. Procedia Engineering,
15(Supplement C):2087 – 2092. CEIS 2011.

[265] Li, F. (2019). Service Negotiation in a Dynamic IoT Environment. In Liu, X.,
Mrissa, M., Zhang, L., Benslimane, D., Ghose, A., Wang, Z., Bucchiarone, A.,
Zhang, W., Zou, Y., and Yu, Q., editors, Service-Oriented Computing – ICSOC
2018 Workshops, pages 379–386, Cham. Springer International Publishing.

[266] Li, F. and Clarke, S. (2019). A Context-Based Strategy for SLA Negotiation
in the IoT Environment. In 2019 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops), pages 208–
213. IEEE.

[267] Li, F., Palade, A., and Clarke, S. (2019). A Model for Distributed Service
Level Agreement Negotiation in Internet of Things. In Yangui, S., Bouassida Ro-
driguez, I., Drira, K., and Tari, Z., editors, Service-Oriented Computing, pages
71–85, Cham. Springer International Publishing.

[268] Li, G., Pourraz, F., and Moreaux, P. (2014). PSLA: A PaaS Level SLA De-
scription Language. In Proceedings of the 2014 IEEE International Conference
on Cloud Engineering, IC2E ’14, pages 452–457, Washington, DC, USA. IEEE
Computer Society.

262 References

[269] Li, H., Gao, X., and Di, Y. (2015a). SLA-Aware Resource Reservation
Management in Cloud Workflows. In The 27th Chinese Control and Decision
Conference (2015 CCDC), pages 4226–4231.

[270] Li, J., Wang, Y., Lin, X., Nazarian, S., and Pedram, M. (2016). Negotiation-
Based Resource Provisioning and Task Scheduling Algorithm for Cloud Sys-
tems. In 2016 17th International Symposium on Quality Electronic Design
(ISQED), pages 338–343. IEEE.

[271] Li, L., Dong, J., Zuo, D., and Liu, J. (2018). SLA-Aware and Energy-Efficient
VM Consolidation in Cloud Data Centers Using Host States Naive Bayesian Pre-
diction Model. In 2018 IEEE Intl Conf on Parallel Distributed Processing with
Applications, Ubiquitous Computing Communications, Big Data Cloud Comput-
ing, Social Computing Networking, Sustainable Computing Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), pages 80–87.

[272] Li, L., Dong, J., Zuo, D., and Wu, J. (2019). SLA-Aware and Energy-Efficient
VM Consolidation in Cloud Data Centers Using Robust Linear Regression
Prediction Model. IEEE Access, 7:9490–9500.

[273] Li, P., Ju, L., Jia, Z., and Sun, Z. (2015b). SLA-Aware Energy-Efficient
Scheduling Scheme for Hadoop YARN. In 2015 IEEE 17th International Con-
ference on High Performance Computing and Communications, 2015 IEEE 7th
International Symposium on Cyberspace Safety and Security, and 2015 IEEE
12th International Conference on Embedded Software and Systems, pages
623–628.

[274] Li, Y., Alqahtani, A., Solaiman, E., Perera, C., Jayaraman, P. P., Buyya,
R., Morgan, G., and Ranjan, R. (2019). IoT-CANE: A Unified Knowledge
Management System for Data-Centric Internet of Things Application Systems.
Journal of Parallel and Distributed Computing, 131:161 – 172.

[275] Liccardo, L., Rak, M., Di Modica, G., and Tomarchio, O. (2012). Ontology-
Based Negotiation of Security Requirements in Cloud. In 2012 Fourth Inter-
national Conference on Computational Aspects of Social Networks (CASoN),
pages 192–197. IEEE.

[276] Lim, N., Majumdar, S., and Ashwood-Smith, P. (2014). A Constraint
Programming-Based Resource Management Technique for Processing MapRe-
duce Jobs with SLAs on Clouds. In 2014 43rd International Conference on
Parallel Processing, pages 411–421.

[277] Lin, Y. and Shen, H. (2017). CloudFog: Leveraging Fog to Extend Cloud
Gaming for Thin-Client MMOG with High Quality of Service. IEEE Transactions
on Parallel and Distributed Systems, 28(2):431–445.

[278] Liu, D., Kanabar, U., and Lung, C.-H. (2013). A Light Weight SLA Man-
agement Infrastructure for Cloud Computing. In 2013 26th IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), pages 1–4.
IEEE.

References 263

[279] Liu, L., Chang, Z., Guo, X., Mao, S., and Ristaniemi, T. (2018). Multiobjec-
tive Optimization for Computation Offloading in Fog Computing. IEEE Internet
of Things Journal, 5(1):283–294.

[280] Liu, X., Wang, Q., Sha, L., and He, Wenbo, P. (2003). Optimal QoS Sampling
Frequency Assignment for Real-Time Wireless Sensor Networks. in In RTSS.

[281] Liu, X. and Xu, F. (2013). Cloud Service Monitoring System Based on
SLA. In Proceedings of the 2013 12th International Symposium on Distributed
Computing and Applications to Business, Engineering & Science, DCABES ’13,
pages 137–141, Washington, DC, USA. IEEE Computer Society.

[282] Longo, A., Zappatore, M., and Bochicchio, M. A. (2015a). Service and
Contract Composition: A Model and a Tool. In 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pages 1434–1440. IEEE.

[283] Longo, A., Zappatore, M., and Bochicchio, M. A. (2015b). Service Level
Aware - Contract Management. In Proceedings of the 2015 IEEE International
Conference on Services Computing, SCC ’15, pages 499–506, Washington, DC,
USA. IEEE Computer Society.

[284] López, P. G., Montresor, A., Epema, D. H. J., Datta, A., Higashino, T.,
Iamnitchi, A., Barcellos, M. P., Felber, P., and Rivière, E. (2015). Edge-Centric
Computing: Vision and Challenges. Computer Communication Review, 45:37–
42.

[285] Lu, C.-T., Chang, C.-W., and Li, J.-S. (2015). VM Scaling Based on Hurst
Exponent and Markov Transition with Empirical Cloud Data. J. Syst. Softw.,
99(C):199–207.

[286] Lu, K., Roblitz, T., Yahyapour, R., Yaqub, E., and Kotsokalis, C. (2011).
QoS-Aware SLA-Based Advanced Reservation of Infrastructure as a Service.
In 2011 IEEE Third International Conference on Cloud Computing Technology
and Science, pages 288–295.

[287] Lu, K., Yahyapour, R., Wieder, P., Yaqub, E., Abdullah, M., Schloer, B.,
and Kotsokalis, C. (2016). Fault-Tolerant Service Level Agreement Lifecycle
Management in Clouds Using Actor System. Future Gener. Comput. Syst.,
54(C):247–259.

[288] Lu Tan and Neng Wang (2010). Future Internet: The Internet of Things.
In 2010 3rd International Conference on Advanced Computer Theory and
Engineering(ICACTE), volume 5, pages V5–376–V5–380.

[289] Ludwig, H. (2003). Web Services QoS: External SLAs and Internal Policies
or: How Do We Deliver What We Promise? In Fourth International Conference
on Web Information Systems Engineering Workshops, 2003. Proceedings.,
pages 115–120.

264 References

[290] Ludwig, H., Keller, A., Dan, A., and King, R. (2002). A Service Level
Agreement Language for Dynamic Electronic Services. In Proceedings Fourth
IEEE International Workshop on Advanced Issues of E-Commerce and Web-
Based Information Systems (WECWIS 2002), pages 25–32.

[291] Maarouf, A., El Hamlaoui, M., Marzouk, A., and Haqiq, A. (2015a). Combin-
ing Multi-Agent Systems and MDE Approach for Monitoring SLA Violations in
the Cloud Computing. In 2015 International Conference on Cloud Technologies
and Applications (CloudTech), pages 1–6. IEEE.

[292] Maarouf, A., Marzouk, A., and Haqiq, A. (2015b). A Review of SLA Spec-
ification Languages in the Cloud Computing. In 2015 10th International
Conference on Intelligent Systems: Theories and Applications (SITA), pages
1–6. IEEE.

[293] Maarouf, A., Marzouk, A., and Haqiq, A. (2015). A review of sla specifica-
tion languages in the cloud computing. In 2015 10th International Conference
on Intelligent Systems: Theories and Applications (SITA), pages 1–6.

[294] Maarouf, A., Marzouk, A., Haqiq, A., and El Hamlaoui, M. (2014). Towards
a MDE Approach for the Establishment of a Contract Service Level Monitoring
by Third Party in the Cloud Computing. In Proceedings of the 2014 Tenth
International Conference on Signal-Image Technology and Internet-Based
Systems, SITIS ’14, pages 715–720, Washington, DC, USA. IEEE Computer
Society.

[295] Mach, W. (2017). A Simulation Environment for WS-Agreement Negotiation
Compliant Strategies. In Proceedings of the 19th International Conference on
Information Integration and Web-based Applications & Services, iiWAS ’17,
pages 462–471, New York, NY, USA. ACM.

[296] Mach, W. and Schikuta, E. (2012). A Generic Negotiation and Re-
negotiation Framework for Consumer-Provider Contracting of Web Services. In
Proceedings of the 14th International Conference on Information Integration
and Web-based Applications & Services, pages 348–351. ACM.

[297] Macias, M. and Guitart, J. (2010). Using Resource-Level Information into
Nonadditive Negotiation Models for Cloud Market Environments. In 2010
IEEE Network Operations and Management Symposium-NOMS 2010, pages
325–332. IEEE.

[298] Macías, M. and Guitart, J. (2011). A Genetic Model for Pricing in Cloud
Computing Markets. In Proceedings of the 2011 ACM Symposium on Applied
Computing, SAC ’11, pages 113–118, New York, NY, USA. ACM.

[299] Macias, M. and Guitart, J. (2012). Client Classification Policies for SLA
Enforcement in Shared Cloud Datacenters. In Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(Ccgrid 2012), CCGRID ’12, pages 156–163, Washington, DC, USA. IEEE
Computer Society.

References 265

[300] Macías, M. and Guitart, J. (2014). SLA Negotiation and Enforcement
Policies for Revenue Maximization and Client Classification in Cloud Providers.
Future Gener. Comput. Syst., 41(C):19–31.

[301] Macías, M. and Guitart, J. (2016). Analysis of a Trust Model for SLA
Negotiation and Enforcement in Cloud Markets. Future Gener. Comput. Syst.,
55(C):460–472.

[302] Madheswari, A. N. et al. (2013). Performance Optimized Routing for SLA
Enforcement in Cloud Computing. In 2013 International Conference on Green
Computing, Communication and Conservation of Energy (ICGCE), pages 689–
693. IEEE.

[303] Mahmoud, M. M., Rodrigues, J. J., Saleem, K., Al-Muhtadi, J., Kumar, N.,
and Korotaev, V. (2018). Towards Energy-aware Fog-enabled Cloud of Things
for Healthcare. Computers & Electrical Engineering, 67:58 – 69.

[304] Mahmud, M. R., Afrin, M., Razzaque, M. A., Hassan, M. M., Alelaiwi, A.,
and Alrubaian, M. (2016a). Maximizing Quality of Experience through Context-
aware Mobile Application Scheduling in Cloudlet Infrastructure. Software:
Practice and Experience, 46(11):1525–1545.

[305] Mahmud, R. and Buyya, R. (2016). Fog Computing: A Taxonomy, Survey
and Future Directions. CoRR, abs/1611.05539.

[306] Mahmud, R. and Buyya, R. (2019). Modelling and Simulation of Fog
and Edge Computing Environments using iFogSim Toolkit. Fog and edge
computing: Principles and paradigms, pages 1–35.

[307] Mahmud, R., Kotagiri, R., and Buyya, Rajkumar, P. (2016b). Fog Computing:
A Taxonomy, Survey and Future Directions. arXiv preprint arXiv:1611.05539.

[308] Mahmud, R., Ramamohanarao, K., and Buyya, R. (2018). Latency-Aware
Application Module Management for Fog Computing Environments. ACM
Trans. Internet Technol., 19(1).

[309] Mahmud, R., Srirama, S. N., Ramamohanarao, K., and Buyya, R. (2019).
Quality of Experience (QoE)-aware Placement of Applications in Fog computing
Environments. Journal of Parallel and Distributed Computing, 132:190 – 203.

[310] Mahmud, R., Srirama, S. N., Ramamohanarao, K., and Buyya, R. (2020).
Profit-Aware Application Placement for Integrated Fog Cloud Computing Envi-
ronments. Journal of Parallel and Distributed Computing, 135:177 – 190.

[311] Maiti, P., Shukla, J., Sahoo, B., and Turuk, A. K. (2018). QoS-Aware Fog
Nodes Placement. In 2018 4th International Conference on Recent Advances
in Information Technology (RAIT), pages 1–6.

[312] Maity, S. and Chaudhuri, A. (2014). Optimal Negotiation of SLA in Fed-
erated Cloud Using Multiobjective Genetic Algorithms. In 2014 IEEE 3rd
International Conference on Cloud Networking (CloudNet), pages 269–271.
IEEE.

266 References

[313] Maiyza, A. I., Hassan, H. A., Sheta, W. M., Sadek, N. M., and Mokhtar,
M. A. (2017). End-User’s SLA-Aware Consolidation in Cloud Data Centers. In
2017 IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT), pages 196–204.

[314] Mancill, T. (2018). Best Practices for Apache Kafka. https://blog.newrelic.
com/engineering/kafka-best-practices/. (Accessed on 07/03/2019).

[315] Martinho, R. and Domingos, D. (2014). Quality of Information and Access
Cost of IoT Resources in BPMN Processes. Procedia Technology, 16:737–744.

[316] Marz, N. and Warren, J. (2015). Big Data: Principles and Best Practices of
Scalable Realtime Data Systems. Manning Publications Co., Greenwich, CT,
USA, 1st edition.

[317] Mashhadi Moghaddam, S., Fotuhi Piraghaj, S., O’Sullivan, M., Walker, C.,
and Unsworth, C. (2018). Energy-Efficient and SLA-Aware Virtual Machine
Selection Algorithm for Dynamic Resource Allocation in Cloud Data Centers. In
2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing
(UCC), pages 103–113.

[318] Maurer, M., Brandic, I., and Sakellariou, R. (2013). Adaptive Resource
Configuration for Cloud Infrastructure Management. Future Gener. Comput.
Syst., 29(2):472–487.

[319] Mavrogeorgi, N., Gogouvitis, S., Voulodimos, A., Kiriazis, D., Varvarigou,
T., Shulman-Peleg, A., and Kolodner, E. K. (2013). Dynamic Rule Based SLA
Management in Clouds. In Proceedings of the 2013 IEEE Sixth International
Conference on Cloud Computing, CLOUD ’13, pages 964–965, Washington,
DC, USA. IEEE Computer Society.

[320] McCall, J. A., Richards, P. K., and Walters, G. F. (1977). Factors in Software
Quality. Technical report, GENERAL ELECTRIC CO SUNNYVALE CA.

[321] Mechalikh, C., Taktak, H., and Moussa, F. (2019). A Scalable and Adaptive
Tasks Orchestration Platform for IoT. In 2019 15th International Wireless
Communications Mobile Computing Conference (IWCMC), pages 1557–1563.

[322] Mehrotra, R., Srivastava, S., Banicescu, I., and Abdelwahed, S. (2016).
Towards an Autonomic Performance Management Approach for a Cloud Broker
Environment Using a Decomposition-Coordination Based Methodology. Future
Gener. Comput. Syst., 54(C):195–205.

[323] Mell, P. and Grance, T. (2011). The NIST Definition of Cloud Computing
(Draft). NIST Special Publication, 800:145.

[324] Messina, F., Pappalardo, G., Santoro, C., Rosaci, D., and Sarné, G. M. L.
(2014). An Agent Based Negotiation Protocol for Cloud Service Level Agree-
ments. In Proceedings of the 2014 IEEE 23rd International WETICE Confer-
ence, WETICE ’14, pages 161–166, Washington, DC, USA. IEEE Computer
Society.

https://blog.newrelic.com/engineering/kafka-best-practices/
https://blog.newrelic.com/engineering/kafka-best-practices/

References 267

[325] Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du (2010).
Research on the Architecture of Internet of Things. In 2010 3rd Interna-
tional Conference on Advanced Computer Theory and Engineering(ICACTE),
volume 5, pages V5–484–V5–487.

[326] Michael, N., Ramannavar, N., Shen, Y., Patil, S., and Sung, J.-L. (2017).
CloudPerf: A Performance Test Framework for Distributed and Dynamic Multi-
Tenant Environments. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering, ICPE ’17, pages 189–200, New York,
NY, USA. ACM.

[327] Microsystems, S. (2002). Service Level Agreement in the Data Center. http:
//www.dei.unipd.it/~rumor/slide_2006/{SLA}.pdf. (Accessed on 06/05/2019).

[328] Mingozzi, E., Tanganelli, G., and Vallati, C. (2014). A Framework for
QoS Negotiation in Things-as-a-Service Oriented Architectures. In 2014 4th
International Conference on Wireless Communications, Vehicular Technology,
Information Theory and Aerospace & Electronic Systems (VITAE), pages 1–5.
IEEE.

[329] Minh, Q. T., Nguyen, D. T., Van Le, A., Nguyen, H. D., and Truong, A.
(2017). Toward Service Placement on Fog Computing Landscape. In 2017
4th NAFOSTED Conference on Information and Computer Science, pages
291–296.

[330] Mirobi, G. J. and Arockiam, L. (2015). Service Level Management in Cloud
Computing. In 2015 International Conference on Control, Instrumentation,
Communication and Computational Technologies (ICCICCT), pages 376–387.
IEEE.

[331] Mittal, S., Gupta, A., Joshi, K. P., Pearce, C., and Joshi, A. (2017). A Question
and Answering System for Management of Cloud Service Level Agreements.
In 2017 IEEE 10th International Conference on Cloud Computing (CLOUD),
pages 684–687. IEEE.

[332] Mittal, S., Joshi, K. P., Pearce, C., and Joshi, A. (2015). Parallelizing Natural
Language Techniques for Knowledge Extraction from Cloud Service Level
Agreements. In Proceedings of the 2015 IEEE International Conference on
Big Data (Big Data), BIG DATA ’15, pages 2831–2833, Washington, DC, USA.
IEEE Computer Society.

[333] Mittal, S., Joshi, K. P., Pearce, C., and Joshi, A. (2016). Automatic Ex-
traction of Metrics from SLAs for Cloud Service Management. In 2016 IEEE
International Conference on Cloud Engineering (IC2E), pages 139–142. IEEE.

[334] Mohamed, M., Anya, O., Sakairi, T., Tata, S., Mandagere, N., and Ludwig,
H. (2016a). The rSLA Framework: Monitoring and Enforcement of Service
Level Agreements for Cloud Services. In 2016 IEEE International Conference
on Services Computing (SCC), pages 625–632. IEEE.

http://www.dei.unipd.it/~rumor/slide_2006/{SLA}.pdf
http://www.dei.unipd.it/~rumor/slide_2006/{SLA}.pdf

268 References

[335] Mohamed, M., Belaïd, D., and Tata, S. (2013). Monitoring and Reconfig-
uration for OCCI Resources. In Proceedings of the 2013 IEEE International
Conference on Cloud Computing Technology and Science - Volume 01, CLOUD-
COM ’13, pages 539–546, Washington, DC, USA. IEEE Computer Society.

[336] Mohamed, M., Belaïd, D., and Tata, S. (2016b). Extending OCCI for
Autonomic Management in the Cloud. J. Syst. Softw., 122(C):416–429.

[337] Molina-Jimenez, C., Shrivastava, S., Crowcroft, J., and Gevros, P. (2004).
On the Monitoring of Contractual Service Level Agreements. In Proceedings
of the First IEEE International Workshop on Electronic Contracting, WEC ’04,
pages 1–8, Washington, DC, USA. IEEE Computer Society.

[338] Moon, H. J., Chi, Y., and Hacigümüs, H. (2010). SLA-Aware Profit Optimiza-
tion in Cloud Services via Resource Scheduling. In 2010 6th World Congress
on Services, pages 152–153.

[339] Morar, G. A., Ilea, A., Butoi, A., and Silaghi, G. C. (2012). Agent-Based
Cloud Resources Negotiation. In 2012 IEEE 8th International Conference on
Intelligent Computer Communication and Processing, pages 297–300.

[340] Motta, G., You, L., Sfondrini, N., Sacco, D., and Ma, T. (2014). Service
Level Management (SLM) in Cloud Computing - Third Party SLM Framework.
Proceedings of the Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, WETICE, pages 353–358.

[341] Moustafa, S., Elgazzar, K., Martin, P., and Elsayed, M. (2015). SLAM: SLA
Monitoring Framework for Federated Cloud Services. In Proceedings of the
8th International Conference on Utility and Cloud Computing, UCC ’15, pages
506–511, Piscataway, NJ, USA. IEEE Press.

[342] Mubeen, S., Asadollah, S. A., Papadopoulos, A. V., Ashjaei, M., Pei-Breivold,
H., and Behnam, M. (2017). Management of Service Level Agreements for
Cloud Services in IoT: A Systematic Mapping Study. IEEE Access, 6:30184–
30207.

[343] Mubeen, S., Asadollah, S. A., Papadopoulos, A. V., Ashjaei, M., Pei-Breivold,
H., and Behnam, M. (2018). Management of Service Level Agreements for
Cloud Services in IoT: A Systematic Mapping Study. IEEE Access, 6:30184–
30207.

[344] Muller, C., Fernandez, A. M. G., Fernandez, P., Martin-Diaz, O., Resinas,
M., and Ruiz-Cortes, A. (2018). Automated Validation of Compensable SLAs.
IEEE Transactions on Services Computing.

[345] Munteanu, V. I., Fortis, T., and Negru, V. (2013). An Evolutionary Approach
for SLA-Based Cloud Resource Provisioning. In 2013 IEEE 27th International
Conference on Advanced Information Networking and Applications (AINA),
pages 506–513.

References 269

[346] Mustafa, S., Bilal, K., Malik, S. U. R., and Madani, S. A. (2018). SLA-Aware
Energy Efficient Resource Management for Cloud Environments. IEEE Access,
6:15004–15020.

[347] Müller, C., Resinas, M., and Ruiz-Cortés, A. (2014). Automated Analysis
of Conflicts in WS-Agreement. IEEE Transactions on Services Computing,
7(4):530–544.

[348] Naas, M. I., Boukhobza, J., Raipin Parvedy, P., and Lemarchand, L. (2018).
An Extension to IFogSim to Enable the Design of Data Placement Strategies. In
2018 IEEE 2nd International Conference on Fog and Edge Computing (ICFEC),
pages 1–8.

[349] Nae, V., Prodan, R., and Iosup, A. (2013). SLA-Based Operation of Massively
Multiplayer Online Games in Competition-Based Environments. In Proceed-
ings of the International C* Conference on Computer Science and Software
Engineering, C3S2E ’13, pages 104–112, New York, NY, USA. ACM.

[350] Nagin, K., Kassis, A., Lorenz, D., Barabash, K., and Raichstein, E. (2019).
Estimating Client QoE from Measured Network QoS. In Proceedings of the
12th ACM International Conference on Systems and Storage, SYSTOR ’19,
pages 188–188, New York, NY, USA. ACM.

[351] Nakamoto, S. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System.
Cryptography Mailing list at https://metzdowd.com.

[352] Nakamura, Y., Mizumoto, T., Suwa, H., Arakawa, Y., Yamaguchi, H., and
Yasumoto, K. (2018). Design and Evaluation of In-Situ Resource Provisioning
Method for Regional IoT Services. In 2018 IEEE/ACM 26th International
Symposium on Quality of Service (IWQoS), pages 1–2.

[353] Nandi, B. B., Banerjee, A., Ghosh, S. C., and Banerjee, N. (2013). Dynamic
SLA Based Elastic Cloud Service Management: A SaaS Perspective. In 2013
IFIP/IEEE International Symposium on Integrated Network Management (IM
2013), pages 60–67.

[354] Nawaz, F., Hussain, O., Hussain, F. K., Janjua, N. K., Saberi, M., and
Chang, E. (2019). Proactive Management of SLA Violations by Capturing
Relevant External Events in a Cloud of Things Environment. Future Generation
Computer Systems, 95:26–44.

[355] Nawaz, F., Hussain, O. K., Janjua, N., and Chang, E. (2017). A Proactive
Event-Driven Approach for Dynamic QoS Compliance in Cloud of Things. In
Proceedings of the International Conference on Web Intelligence, WI ’17,
pages 971–975, New York, NY, USA. ACM.

[356] Nawaz, F., Janjua, N. K., Hussain, O. K., Hussain, F. K., Chang, E., and
Saberi, M. (2018). Event-Driven Approach for Predictive and Proactive Man-
agement of SLA Violations in the Cloud of Things. Future Generation Computer
Systems, 84:78–97.

270 References

[357] Nemati, H., Singhvi, A., Kara, N., and Barachi, M. E. (2014). Adaptive
SLA-Based Elasticity Management Algorithms for a Virtualized IP Multimedia
Subsystem. In 2014 IEEE Globecom Workshops (GC Wkshps), pages 7–11.

[358] Nepal, S. and Zic, J. (2008). A Conflict Neighbouring Negotiation Algorithm
for Resource Services in Dynamic Collaborations. In Proceedings of the 2008
IEEE International Conference on Services Computing - Volume 2, SCC ’08,
pages 283–290, Washington, DC, USA. IEEE Computer Society.

[359] Neto, E. C. P., Callou, G., and Aires, F. (2017). An Algorithm to Optimise the
Load Distribution of Fog Environments. In 2017 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pages 1292–1297.

[360] Nguyen, M. and Nguyen, G. (2017). A Proactive Cloud Scaling Model
Based on Fuzzy Time Series and SLA Awareness. Procedia Computer Science
(International Conference on Computational Science ICCS 2017), 108:365–374.

[361] Nikolow, D., Słota, R., Polak, S., Mitera, D., Pogoda, M., Winiarczyk, P., and
Kitowski, J. (2013). Model of QoS Management in a Distributed Data Sharing
and Archiving System. Procedia Computer Science, 18:100–109.

[362] Nirmala, S. J., Maulik, S., and Bhanu, S. M. S. (2013). SLA Achievement
by Negotiation in a Cloud. In Proceedings of the 6th ACM India Computing
Convention, Compute ’13, pages 18:1–18:4, New York, NY, USA. ACM.

[363] Nisar, S. and Bahsoon, R. (2013). An Economics-Driven Approach for Auto-
mated SLA Negotiation for Cloud Services Adoption: Aspoc2. In Proceedings
of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud
Computing, UCC ’13, pages 243–246, Washington, DC, USA. IEEE Computer
Society.

[364] Nuseibeh, B. and Easterbrook, S. (2000). Requirements Engineering:
A Roadmap. In Proceedings of the Conference on the Future of Software
Engineering, pages 35–46.

[365] Oberortner, E., Sobernig, S., Zdun, U., and Dustdar, S. (2012). Monitoring
Performance-Related QoS Properties in Service-Oriented Systems: A Pattern-
Based Architectural Decision Model. In Proceedings of the 16th European
Conference on Pattern Languages of Programs, page 13. ACM.

[366] Ogino, T., Kitagami, S., Suganuma, T., and Shiratori, N. (2018). A Multi-
Agent Based Flexible IoT Edge Computing Architecture Harmonizing Its Con-
trol with Cloud Computing. International Journal of Networking and Comput-
ing, 8(2):218–239.

[367] Oliveira, A. C., Chagas, H., Spohn, M., Gomes, R., and Duarte, B. J. (2014).
Efficient Network Service Level Agreement Monitoring for Cloud Computing
Systems. In 2014 IEEE Symposium on Computers and Communications (ISCC),
pages 1–6. IEEE.

References 271

[368] Omezzine, A., Saoud, N. B. B., Tazi, S., and Cooperman, G. (2016). Negotia-
tion Based Scheduling for an Efficient Saas Provisioning in the Cloud. In 2016
IEEE 4th International Conference on Future Internet of Things and Cloud
(FiCloud), pages 33–40. IEEE.

[369] Omezzine, A., Tazi, S., Bellamine, N., Saoud, B., Drira, K., and Cooperman,
G. (2015). Towards a Dynamic Multi-Level Negotiation Framework in Cloud
Computing. In 2015 International Conference on Cloud Technologies and
Applications (CloudTech), pages 1–8. IEEE.

[370] Oueis, J., Strinati, Emilio, C., Sardellitti, S., and Barbarossa, Sergio, P.
(2015). Small Cell Clustering for Efficient Distributed Fog Computing: A
Multi-User Case. in In: Vehicular Technology Conference (VTC Fall).

[371] Paletta, M. and Herrero, P. (2009). A MAS-Based Negotiation Mechanism
to Deal with Service Collaboration in Cloud Computing. In Proceedings of the
2009 International Conference on Intelligent Networking and Collaborative
Systems, INCOS ’09, pages 147–153, Washington, DC, USA. IEEE Computer
Society.

[372] Pan, J. and McElhannon, J. (2018). Future Edge Cloud and Edge Computing
for Internet of Things Applications. IEEE Internet of Things Journal, 5(1):439–
449.

[373] Pan, L. (2011). Towards a Ramework for Automated Service Negotiation in
Cloud Computing. In 2011 IEEE International Conference on Cloud Computing
and Intelligence Systems, pages 364–367. IEEE.

[374] Papadakis-Vlachopapadopoulos, K., González, R. S., Dimolitsas, I., De-
chouniotis, D., Ferrer, A. J., and Papavassiliou, S. (2019). Collaborative SLA
and Reputation-Based Trust Management in Cloud Federations. Future Gener-
ation Computer Systems.

[375] Papadopoulos, A., Asadollah, S. A., Ashjaei, M., Mubeen, S., Pei-Breivold,
H., and Behnam, M. (2017). SLAs for Industrial IoT: Mind the Gap. In The
4th International Symposium on Inter-cloud and IoT (ICI 2017), pages 75–78.
IEEE.

[376] Papazoglou, M. P. and van den Heuvel, W.-J. (2011). Blueprinting the cloud.
IEEE Internet Computing, 15(6):74–79.

[377] Patel, J., Jindal, V., Yen, I.-L., Bastani, F., Xu, J., and Garraghan, P. (2015).
Workload Estimation for Improving Resource Management Decisions in the
Cloud. In 2015 IEEE Twelfth International Symposium on Autonomous Decen-
tralized Systems, pages 25–32. IEEE.

[378] Patel, P., Ranabahu, A. H., and Sheth, A. P. (2009). Service Level Agreement
in Cloud Computing. Cloud Workshops at OOPSLA09.

[379] Patel, S., Park, H., Bonato, P., Chan, L., and Rodgers, M. (2012). A Review
of Wearable Sensors and Systems with Application in Rehabilitation. Journal
of NeuroEngineering and Rehabilitation, 9(1):21.

272 References

[380] Pavlik, J., Sobeslav, V., and Horalek, J. (2014). Statistics and Analysis of
Service Availability in Cloud Computing. In Proceedings of the 18th Inter-
national Database Engineering & Applications Symposium, IDEAS ’14,
pages 310–313, New York, NY, USA. ACM.

[381] Peng, G., Zhao, J., Li, M., Hou, B., and Zhang, H. (2015). A SLA-Based
Scheduling Approach for Multi-Tenant Cloud Simulation. In 2015 IEEE 19th
International Conference on Computer Supported Cooperative Work in Design
(CSCWD), pages 600–605.

[382] Perumal, V., Thangavel, J., Ramasamy, S., and Harish, S. (2013). Dynamic
Trust Establishment and Amended Window Based Monitoring in Cloud. In
Proceedings of the 2013 International Symposium on Electronic System Design,
ISED ’13, pages 162–166, Washington, DC, USA. IEEE Computer Society.

[383] Petcu, D. (2014). A Taxonomy for SLA-Based Monitoring of Cloud Security.
In Proceedings of the 2014 IEEE 38th Annual Computer Software and Applica-
tions Conference, COMPSAC ’14, pages 640–641, Washington, DC, USA. IEEE
Computer Society.

[384] Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic
Mapping Studies in Software Engineering. In Proceedings of the 12th Inter-
national Conference on Evaluation and Assessment in Software Engineering,
EASE’08, pages 68–77, Swindon, UK. BCS Learning & Development Ltd.

[385] Pirbhulal, S., Zhang, H., E Alahi, M., Ghayvat, H., Mukhopadhyay, S.,
Zhang, Y.-T., and Wu, W. (2017). A Novel Secure IoT-Based Smart Home
Automation System Using a Wireless Sensor Network. Sensors, 17(1):69.

[386] Pires, P. F., Delicato, F. C., Cóbe, R., Batista, T., Davis, J. G., and Song,
J. H. (2011). Integrating Ontologies, Model Driven, and CNL in a Multi-
Viewed Approach for Requirements Engineering. Requirements Engineering,
16(2):133–160.

[387] Pittl, B., Mach, W., and Schikuta, E. (2016a). A Classification of Au-
tonomous Bilateral Cloud SLA Negotiation Strategies. In Proceedings of the
18th International Conference on Information Integration and Web-based
Applications and Services, iiWAS ’16, pages 379–388, New York, NY, USA.
ACM.

[388] Pittl, B., Mach, W., and Schikuta, E. (2016b). An Implementation of the WS-
Agreement Negotiation Standard in CloudSim. In 2016 IEEE 20th International
Enterprise Distributed Object Computing Workshop (EDOCW), pages 1–4.
IEEE.

[389] Pittl, B., Mach, W., and Schikuta, E. (2016c). Bazaar-Extension: A Cloudsim
Extension for Simulating Negotiation Based Resource Allocations. In 2016
IEEE International Conference on Services Computing (SCC), pages 427–434.
IEEE.

References 273

[390] Qazi, F., Jhumka, A., and Ezhilchelvan, P. (2017). Towards Automated
Enforcement of Cloud SLA. In Companion Proceedings of the10th International
Conference on Utility and Cloud Computing, UCC ’17 Companion, pages 151–
156, New York, NY, USA. ACM.

[391] Quevedo, J., Corujo, D., and Aguiar, R. (2014). Consumer Driven Infor-
mation Freshness Approach for Content Centric Networking. In 2014 IEEE
conference on computer communications workshops (INFOCOM WKSHPS),
pages 482–487. IEEE.

[392] Radha, K., Rao, B., Babu, S., Rao, K., Reddy, V., and Saikiran, P. (2015).
Service Level Agreements in Cloud Computing and Big Data. International
Journal of Electrical and Computer Engineering, 5(1):158.

[393] Radziwill, N. (2018). Blockchain Revolution: How the Technology Behind
Bitcoin is Changing Money, Business, and the World. The Quality Management
Journal, 25(1):64–65.

[394] Rafique, A., Van Landuyt, D., Reniers, V., and Joosen, W. (2017). Towards an
Adaptive Middleware for Efficient Multi-Cloud Data Storage. In Proceedings of
the 4th Workshop on CrossCloud Infrastructures & Platforms, Crosscloud’17,
pages 4:1–4:6, New York, NY, USA. ACM.

[395] Rahim, M. A., Haq, I. U., Durad, H., and Schikuta, E. (2015). Generalized
SLA Enforcement Framework Using Feedback Control System. In 2015 12th
International Conference on High-capacity Optical Networks and Enabling/E-
merging Technologies (HONET), pages 1–6. IEEE.

[396] Rahmani, A., Thanigaivelan, N., Gia, T., Granados, J., Negash, B., Liljeberg,
P., and Tenhunen, H, P. (2015). Smart E-Health Gateway: Bringing Intelligence
to Internet-of-Things Based Ubiquitous Healthcare Systems. in 2015 12th
Annual IEEE Consumer Communications and Networking Conference (CCNC).

[397] Rak, M., Venticinque, S., Máhr, T., Echevarria, G., and Esnal, G. (2011).
Cloud Application Monitoring: The mOSAIC Approach. In Proceedings of the
2011 IEEE Third International Conference on Cloud Computing Technology
and Science, CLOUDCOM ’11, pages 758–763, Washington, DC, USA. IEEE
Computer Society.

[398] Ranaldo, N. and Zimeo, E. (2013). Capacity-Aware Utility Function for
SLA Negotiation of Cloud Services. In Proceedings of the 2013 IEEE/ACM
6th International Conference on Utility and Cloud Computing, UCC ’13, pages
292–296, Washington, DC, USA. IEEE Computer Society.

[399] Ranjan, R. (2014). Streaming Big Data Processing in Datacenter Clouds.
IEEE Cloud Computing, 1(1):78–83.

[400] Ranjan, R. and Benatallah, B. (2012). Programming Cloud Resource Or-
chestration Framework: Operations and Research Challenges. arXiv preprint
arXiv:1204.2204.

274 References

[401] Ranjan, R., Harwood, A., and Buyya, R. (2006). SLA-Based Coordinated
Superscheduling Scheme for Computational Grids. In 2006 IEEE International
Conference on Cluster Computing, pages 1–8.

[402] Ranjbari, M. and Torkestani, J. A. (2018). A Learning Automata-Based
Algorithm for Energy and SLA Efficient Consolidation of Virtual Machines in
Cloud Data Centers. Journal of Parallel and Distributed Computing, 113:55 –
62.

[403] Ray, B. K., Khatua, S., and Roy, S. (2014). Negotiation Based Service
Brokering Using Game Theory. In 2014 Applications and Innovations in Mobile
Computing (AIMoC), pages 1–8. IEEE.

[404] Razaque, A. and Rizvi, S. S. (2016). Triangular Data Privacy-Preserving
Model for Authenticating All Key Stakeholders in a Cloud Environment. Com-
puters & Security, 62:328–347.

[405] Rios, E., Mallouli, W., Rak, M., Casola, V., and Ortiz, A. M. (2016). SLA-
Driven Monitoring of Multi-Cloud Application Components Using the MUSA
Framework. In 2016 IEEE 36th International Conference on Distributed
Computing Systems Workshops (ICDCSW), pages 55–60. IEEE.

[406] Rizvi, S., Roddy, H., Gualdoni, J., and Myzyri, I. (2017). Three-Step Ap-
proach to QoS Maintenance in Cloud Computing Using a Third-Party Auditor.
Procedia Comput. Sci., 114(C):83–92.

[407] Rodrigues, C., Lima, S. R., Álvarez Sabucedo, L. M., and Carvalho, P.
(2012). An Ontology for Managing Network Services Quality. Expert Syst.
Appl., 39(9):7938–7946.

[408] Romano, L., De Mari, D., Jerzak, Z., and Fetzer, C. (2011). A Novel Ap-
proach to QoS Monitoring in the Cloud. In 2011 First International Conference
on Data Compression, Communications and Processing, pages 45–51.

[409] Rossi, F., Xavier, M., De Rose, C., Neves Calheiros, R., and Buyya, R. (2016).
E-Eco: Performance-Aware Energy-Efficient Cloud Data Center Orchestration.
Journal of Network and Computer Applications, 78.

[410] Roxburgh, D., Spaven, D., and Gallen, C. (2011). Monitoring as an SLA-
Oriented Consumable Service for SaaS Assurance: A Prototype. In 12th
IFIP/IEEE International Symposium on Integrated Network Management (IM
2011) and Workshops, pages 925–939. IEEE.

[411] S, A. and K, C. (2015). Monitoring and Management of Service Level
Agreements in Cloud Computing. In Proceedings of the 2015 International
Conference on Cloud and Autonomic Computing, ICCAC ’15, pages 204–207,
Washington, DC, USA. IEEE Computer Society.

[412] Sahai, A., Graupner, S., Machiraju, V., and van Moorsel, A. (2003). Specify-
ing and Monitoring Guarantees in Commercial Grids through SLA. In CCGrid
2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2003. Proceedings., pages 292–299.

References 275

[413] Sakr, S. and Liu, A. (2012). SLA-Based and Consumer-Centric Dynamic
Provisioning for Cloud Databases. In 2012 IEEE Fifth International Conference
on Cloud Computing, pages 360–367.

[414] Saleh, O., Gropengieβer, F., Betz, H., Mandarawi, W., and Sattler, K.-U.
(2013). Monitoring and Autoscaling IaaS Clouds: A Case for Complex Event
Processing on Data Streams. In Proceedings of the 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing, pages 387–392.
IEEE Computer Society.

[415] Sampaio, A. M. and Barbosa, J. G. (2016). Chapter Three - Energy-Efficient
and SLA-Based Resource Management in Cloud Data Centers. In Hurson, A. R.
and Sarbazi-Azad, H., editors, Energy Efficiency in Data Centers and Clouds,
volume 100 of Advances in Computers, pages 103 – 159. Elsevier.

[416] Sampaio, A. M., Barbosa, J. G., and Prodan, R. (2015). PIASA: A Power
and Interference Aware Resource Management Strategy for Heterogeneous
Workloads in Cloud Data Centers. Simulation Modelling Practice and Theory,
57:142–160.

[417] Sauvanaud, C., Kaâniche, M., Kanoun, K., Lazri, K., and Silvestre, G.
D. S. (2018). Anomaly Detection and Diagnosis for Cloud Services: Practical
Experiments and Lessons Learned. Journal of Systems and Software, 139:84–
106.

[418] Scheid, E. J., Rodrigues, B. B., Granville, L. Z., and Stiller, B. (2019).
Enabling Dynamic SLA Compensation Using Blockchain-Based Smart Con-
tracts. In 2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pages 53–61. IEEE.

[419] Schoonjans, A., Van Landuyt, D., Lagaisse, B., and Joosen, W. (2015). On
the Suitability of Black-Box Performance Monitoring for SLA-Driven Cloud
Provisioning Scenarios. In Proceedings of the 14th International Workshop on
Adaptive and Reflective Middleware, ARM 2015, pages 6:1–6:6, New York, NY,
USA. ACM.

[420] Schulz, F., Michalk, W., Hedwig, M., McCallister, M., Momm, C., Caton,
S., Haas, C., Rolli, D., and Tavas, M. (2012). Service Level Management
for Service Value Networks. In Proceedings of the 2012 IEEE 36th Annual
Computer Software and Applications Conference Workshops, COMPSACW ’12,
pages 51–56, Washington, DC, USA. IEEE Computer Society.

[421] Serrano, D., Bouchenak, S., Kouki, Y., de Oliveira Jr., F. A., Ledoux, T.,
Lejeune, J., Sopena, J., Arantes, L., and Sens, P. (2016). SLA Guarantees for
Cloud Services. Future Gener. Comput. Syst., 54(C):233–246.

[422] Serrano, D., Bouchenak, S., Kouki, Y., Ledoux, T., Lejeune, J., Sopena, J.,
Arantes, L., and Sens, P. (2013a). Towards QoS-Oriented SLA Guarantees for
Online Cloud Services. In 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, pages 50–57. IEEE.

276 References

[423] Serrano, M., Le-Phuoc, D., Zaremba, M., Galis, A., Bhiri, S., and Hauswirth,
M. (2013b). Resource Optimisation in IoT Cloud Systems by Using Matchmak-
ing and Self-Management Principles. In Galis, A. and Gavras, A., editors, The
Future Internet, pages 127–140, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

[424] Shah, S. Y., Yuan, Z., Lu, S., and Zerfos, P. (2017). Dependency Analysis
of Cloud Applications for Performance Monitoring Using Recurrent Neural
Networks. In 2017 IEEE International Conference on Big Data (Big Data),
pages 1534–1543. IEEE.

[425] Shahrivari, S. (2014). Beyond Batch Processing: Towards Real-Time and
Streaming Big Data. Computers, 3(4):117–129.

[426] Shih, Y., Wang, C., and Pang, A. (2019). Fog Computing Service Provision
Using Bargaining Solutions. IEEE Transactions on Services Computing, pages
1–1.

[427] Shojaiemehr, B., Rahmani, A. M., and Qader, N. N. (2019). A Three-Phase
Process for SLA Negotiation of Composite Cloud Services. Computer Standards
& Interfaces, 64:85–95.

[428] Singh, A. and Viniotis, Y. (2016). An SLA-Based Resource Allocation for IoT
Applications in Cloud Environments. In 2016 Cloudification of the Internet of
Things (CIoT), pages 1–6.

[429] Singh, S., Chana, I., and Buyya, R. (2017). STAR: SLA-Aware Autonomic
Management of Cloud Resources. IEEE Transactions on Cloud Computing,
pages 1–1.

[430] Sipser, M. (1996). Introduction to the Theory of Computation. ACM Sigact
News, 27(1):99–100.

[431] Skarlat, O., Nardelli, M., Schulte, S., and Dustdar, S. (2017). Towards
QoS-Aware Fog Service Placement. In 2017 IEEE 1st International Conference
on Fog and Edge Computing (ICFEC), pages 89–96.

[432] Skene, J. (2007). Language Support for Service-Level Agreements for
Application-Service Provision. PhD thesis, University of London.

[433] Smith, R. G. (1980). The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver. IEEE Transactions on Computers,
C-29(12):1104–1113.

[434] Solaiman, E., Sfyrakis, I., and Molina-Jimenez, C. (2016). A State Aware
Model and Architecture for the Monitoring and Enforcement of Electronic
Contracts. In 2016 IEEE 18th Conference on Business Informatics (CBI),
volume 1, pages 55–63. IEEE.

References 277

[435] Son, S., Choi, H.-H., Oh, B. T., Kim, S. W., and Kim, B. S. (2017). Cloud
SLA Relationships in Multi-Cloud Environment: Models and Practices. In
Proceedings of the 8th International Conference on Computer Modeling and
Simulation, ICCMS ’17, pages 1–6, New York, NY, USA. ACM.

[436] Son, S. and Jun, S. C. (2013). Negotiation-Based Flexible SLA Establish-
ment with SLA-Driven Resource Allocation in Cloud Computing. In 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
pages 168–171. IEEE.

[437] Son, S. and Jun, S. C. (2013). Negotiation-Based Flexible SLA Establish-
ment with SLA-Driven Resource Allocation in Cloud Computing. In 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
pages 168–171.

[438] Son, S., Kang, D.-J., and Kim, J.-M. (2014). Design Considerations to
Realize Automated SLA Negotiations in a Multi-Cloud Brokerage System. In
10th IEEE International Conference on Collaborative Computing: Networking,
Applications and Worksharing, pages 466–468. IEEE.

[439] Son, S. and Sim, K. M. (2012). A Price- and-Time-Slot-Negotiation Mecha-
nism for Cloud Service Reservations. Trans. Sys. Man Cyber. Part B, 42(3):713–
728.

[440] Soper, D. S., Demirkan, H., and Goul, M. (2016). Identifying Relevant
Socio-Theoretic Foundations for Supporting Multi-Issue IT Cloudsourcing
Negotiations. IEEE Access, 4:8670–8685.

[441] Souza, A. A. D. P. and Netto, M. A. S. (2015). Using Application Data for
SLA-Aware Auto-Scaling in Cloud Environments. In 2015 IEEE 23rd Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pages 252–255.

[442] Souza, V. B., Masip-Bruin, X., Marin-Tordera, E., Ramirez, W., and Sanchez,
S. (2016). Towards Distributed Service Allocation in Fog-to-Cloud (F2C) Sce-
narios. In 2016 IEEE Global Communications Conference (GLOBECOM), pages
1–6.

[443] Spillner, J. and Schill, A. (2009). Dynamic SLA Template Adjustments Based
on Service Property Monitoring. In Proceedings of the 2009 IEEE International
Conference on Cloud Computing, CLOUD ’09, pages 183–189, Washington,
DC, USA. IEEE Computer Society.

[444] Sprenkels, R. and Pras, A. (2001). Service Level Agreements. Internet NG
D, 2:7.

[445] Stamatakis, D. and Papaemmanouil, O. (2014). SLA-Driven Workload
Management for Cloud Databases. 2014 IEEE 30th International Conference
on Data Engineering Workshops, pages 178–181.

278 References

[446] Stamou, K. (2014). Systematic SLA Data Management. In Proceedings of
the 23rd International Conference on World Wide Web, WWW ’14 Companion,
pages 63–68, New York, NY, USA. ACM.

[447] Stamou, K., Kantere, V., and Morin, J.-H. (2013a). SLA Data Management
Criteria. In 2013 IEEE International Conference on Big Data, pages 34–42.
IEEE.

[448] Stamou, K., Kantere, V., Morin, J.-H., and Georgiou, M. (2013b). A SLA
Graph Model for Data Services. In Proceedings of the Fifth International
Workshop on Cloud Data Management, CloudDB ’13, pages 27–34, New York,
NY, USA. ACM.

[449] Stamou, K., Kantere, V., Morin, J.-H., and Georgiou, M. (2014). SLA Infor-
mation Management through Dependency Digraphs: The Case of Cloud Data
Services. In Proceedings of the 2014 47th Hawaii International Conference on
System Sciences, HICSS ’14, pages 5038–5047, Washington, DC, USA. IEEE
Computer Society.

[450] Stanik, A., Koerner, M., and Kao, O. (2015). Service-Level Agreement
Aggregation for Quality of Service-Aware Federated Cloud Networking. IET
Networks, 4(5):264–269.

[451] Stanik, A., Koerner, M., and Lymberopoulos, L. (2014). SLA-Driven Feder-
ated Cloud Networking: Quality of Service for Cloud-Based Software Defined
Networks. Procedia Computer Science, 34:655–660.

[452] Stavrinides, G. L. and Karatza, H. D. (2019). A Hybrid Approach to Schedul-
ing Real-Time IoT Workflows in Fog and Cloud Environments. Multimedia
Tools and Applications, 78(17):24639–24655.

[453] Su, W., Hu, J., Lin, C., and Shen, S. (2015). SLA-Aware Tenant Place-
ment and Dynamic Resource Provision in SaaS. In 2015 IEEE International
Conference on Web Services, pages 615–622.

[454] Sudan, K., Srinivasan, S., Balasubramonian, R., and Iyer, R. (2012). Opti-
mizing Datacenter Power with Memory System Levers for Guaranteed Quality-
of-Service. In Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, PACT ’12, pages 117–126, New
York, NY, USA. ACM.

[455] Sun, L., Singh, J., and Hussain, O. K. (2012). Service Level Agreement (SLA)
Assurance for Cloud Services: A Survey from a Transactional Risk Perspective.
In Proceedings of the 10th International Conference on Advances in Mobile
Computing & Multimedia, MoMM ’12, pages 263–266, New York, NY,
USA. ACM.

[456] Syed, H. J., Gani, A., Ahmad, R. W., Khan, M. K., and Ahmed, A. I. A. (2017).
Cloud Monitoring: A Review, Taxonomy, and Open Research Issues. Journal of
Network and Computer Applications, 98:11–26.

References 279

[457] Tan, W., Sun, Y., Li, L., and Tang, A. (2014). Multivariate Quality Control
Chart for Monitoring SLA of Workflow Applications. In Proceedings of the
2014 IEEE 18th International Conference on Computer Supported Cooperative
Work in Design (CSCWD), pages 667–671. IEEE.

[458] Taneja, M. and Davy, A. (2016). Poster Abstract: Resource Aware Place-
ment of Data Stream Analytics Operators on Fog Infrastructure for Internet
of Things Applications. In 2016 IEEE/ACM Symposium on Edge Computing
(SEC), pages 113–114.

[459] Taneja, M. and Davy, A. (2017). Resource Aware Placement of IoT Ap-
plication Modules in Fog-Cloud Computing Paradigm. In 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), pages
1222–1228.

[460] Tata, S., Mohamed, M., Sakairi, T., Mandagere, N., Anya, O., and Ludwig,
H. (2016). rSLA: A Service Level Agreement Language for Cloud Services. In
2016 IEEE 9th International Conference on Cloud Computing (CLOUD), pages
415–422. IEEE.

[461] Teshome, A., Rilling, L., and Morin, C. (2016). Including Security Moni-
toring in Cloud Service Level Agreements. In 2016 IEEE 35th Symposium on
Reliable Distributed Systems (SRDS), pages 209–210. IEEE.

[462] Teshome, A., Rilling, L., and Morin, C. (2018). Verification for Security Mon-
itoring SLAs in IaaS Clouds: The Example of a Network IDS. In NOMS 2018-
2018 IEEE/IFIP Network Operations and Management Symposium, pages 1–7.
IEEE.

[463] Theilmann, W., Lambea, J., Brosch, F., Guinea, S., Chronz, P., Torelli, F.,
Kennedy, J., Nolan, M., Zacco, G., Spanoudakis, G., and Stopar, M, P. (2011).
Service Level Agreements in Cloud Computing and Big Data. SLA@ SOI Final
Report.

[464] Torkashvan, M. and Haghighi, H. (2012). CSLAM: A Framework for Cloud
Service Level Agreement Management Based on WSLA. In 6th International
Symposium on Telecommunications (IST), pages 577–585. IEEE.

[465] Toueir, A., Broisin, J., and Sibilla, M. (2013). A Goal-Oriented Approach for
Adaptive SLA Monitoring: A Cloud Provider Case Study. In 2nd IEEE Latin
American Conference on Cloud Computing and Communications, pages 53–58.
IEEE.

[466] Touloupou, M., Kapassa, E., Symvoulidis, C., Stavrianos, P., and Kyriazis, D.
(2019). An Integrated SLA Management Framework in a 5G Environment. In
2019 22nd Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN), pages 233–235.

[467] Tran, D., Tran, N., Nguyen, G., and Nguyen, B. M. (2017). A Proactive
Cloud Scaling Model Based on Fuzzy Time Series and SLA Awareness. Procedia
Computer Science, 108:365–374.

280 References

[468] Tran, M. Q., Tai Nguyen, D., Le, V. A., Nguyen, H., and Pham, T. V. (2019).
Task Placement on Fog Computing Made Efficient for IoT Application Provision.
Wireless Communications and Mobile Computing, 2019:1–17.

[469] Trapero, R., Modic, J., Stopar, M., Taha, A., and Suri, N. (2017). A Novel Ap-
proach to Manage Cloud Security SLA Incidents. Future Generation Computer
Systems, 72:193–205.

[470] Ullah, K. W. and Ahmed, A. S. (2014). Demo Paper: Automatic Provisioning,
Deploy and Monitoring of Virtual Machines Based on Security Service Level
Agreement in the Cloud. In 2014 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pages 536–537. IEEE.

[471] Unger, T., Leymann, F., Mauchart, S., and Scheibler, T. (2008). Aggregation
of Service Level Agreements in the Context of Business Processes. In 2008
12th International IEEE Enterprise Distributed Object Computing Conference,
pages 43–52.

[472] Uriarte, R. B. (2015). Supporting Autonomic Management of Clouds:
Service-Level-Agreement, Cloud Monitoring and Similarity Learning. PhD
thesis, IMT Institute for Advanced Studies Lucca, Italy.

[473] Uriarte, R. B., De Nicola, R., and Kritikos, K. (2018). Towards Distributed
SLA Management with Smart Contracts and Blockchain. In 2018 IEEE Inter-
national Conference on Cloud Computing Technology and Science (CloudCom),
pages 266–271. IEEE.

[474] Uriarte, R. B., de Nicola, R., and Kritikos, K. (2018). Towards Distributed
SLA Management with Smart Contracts and Blockchain. In 2018 IEEE Inter-
national Conference on Cloud Computing Technology and Science (CloudCom),
pages 266–271.

[475] Uriarte, R. B., De Nicola, R., Scoca, V., and Tiezzi, F. (2019). Defining and
Guaranteeing Dynamic Service Levels in Clouds. Future Generation Computer
Systems, 99:27–40.

[476] Uriarte, R. B., Tiezzi, F., and Nicola, R. D. (2014). SLAC: A Formal Service-
Level-Agreement Language for Cloud Computing. In 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing, pages 419–426.

[477] Vakilinia, S., Truchan, C., Kempf, J., and Elbiaze, H. (2018). Automated
Enforcement of SLA for Cloud Services. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), pages 49–56. IEEE.

[478] Van, H. N., Tran, F. D., and Menaud, J. (2009). SLA-Aware Virtual Resource
Management for Cloud Infrastructures. In 2009 Ninth IEEE International
Conference on Computer and Information Technology, volume 1, pages 357–
362.

[479] van Solingen, D. R. and Berghout, E. W. (1999). The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement of Software Development.
McGraw-Hill.

References 281

[480] Vanlightly, J. (2017). RabbitMQ vs Kafka Part 4 - Message Delivery Seman-
tics and Guarantees — Jack Vanlightly. https://jack-vanlightly.com/blog/2017/
12/15/rabbitmq-vs-kafka-part-4-message-delivery-semantics-and-guarantees.
(Accessed on 07/04/2019).

[481] Vasisht, D., Kapetanovic, Z., Won, J., Jin, X., Chandra, R., Sinha, S., Kapoor,
A., Sudarshan, M., and Stratman, S. (2017). Farmbeats: An IoT Platform
for data-Driven Agriculture. In 14th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 17), pages 515–529.

[482] Venugopal, S., Chu, X., and Buyya, R. (2008). A Negotiation Mechanism
for Advance Resource Reservations Using the Alternate Offers Protocol. In
2008 16th Interntional Workshop on Quality of Service, pages 40–49.

[483] Verma, A., Mansuri, A. H., and Jain, N. (2016). Big Data Management
Processing with Hadoop MapReduce and Spark Technology: A Comparison. In
2016 Symposium on Colossal Data Analysis and Networking (CDAN), pages
1–4. IEEE.

[484] Villalpando, L. E. B., April, A., and Abran, A. (2016). Cloudmeasure: A
Platform for Performance Analysis of Cloud Computing Systems. In 2016 IEEE
9th International Conference on Cloud Computing (CLOUD), pages 975–979.
IEEE.

[485] Villegas, N. M., Müller, H. A., and Tamura, G. (2011). Optimizing Run-Time
SOA Governance through Context-Driven SLAs and Dynamic Monitoring. In
2011 International Workshop on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems, pages 1–10. IEEE.

[486] Voith, T., Oberle, K., Stein, M., Oliveros, E., Gallizo, G., and Kubert, R.
(2010). A Path Supervision Framework A Key for Service Monitoring in Infras-
tructure as a Service (IaaS) Platforms. In 2010 36th EUROMICRO Conference
on Software Engineering and Advanced Applications, pages 127–130.

[487] Wang, C., Wang, G., Wang, H., Chen, A., and Santiago, R. (2006). Quality
of Service (QoS) Contract Specification, Establishment, and Monitoring for
Service Level Management. In 2006 10th IEEE International Enterprise
Distributed Object Computing Conference Workshops (EDOCW’06), pages
49–49.

[488] Wang, M., Jayaraman, P. P., Solaiman, E., Chen, L. Y., Li, Z., Jun, S.,
Georgakopoulos, D., and Ranjan, R. (2018). A Multi-Layered Performance
Analysis for Cloud-Based Topic Detection and Tracking in Big Data Applications.
Future Generation Computer Systems, 87:580–590.

[489] Wang, M., Ranjan, R., Jayaraman, P. P., Strazdins, P., Burnap, P., Rana,
O., and Georgakopulos, D. (2015). A Case for Understanding End-to-End
Performance of Topic Detection and Tracking Based Big Data Applications
in the Cloud. In International Internet of Things Summit, pages 315–325.
Springer.

https://jack-vanlightly.com/blog/2017/12/15/rabbitmq-vs-kafka-part-4-message-delivery-semantics-and-guarantees
https://jack-vanlightly.com/blog/2017/12/15/rabbitmq-vs-kafka-part-4-message-delivery-semantics-and-guarantees

282 References

[490] Wang, Y., He, Q., Ye, D., and Yang, Y. (2017). Formulating Criticality-
Based Cost-Effective Monitoring Strategies for Multi-Tenant Service-Based
Systems. In 2017 IEEE International Conference on Web Services (ICWS),
pages 325–332. IEEE.

[491] Wang, Y., Lin, X., and Pedram, M. (2014). A Game Theoretic Framework of
SLA-Based Resource Allocation for Competitive Cloud Service Providers. In
2014 Sixth Annual IEEE Green Technologies Conference, pages 37–43.

[492] Wang, Z., Tang, X., and Luo, X. (2011). Policy-Based SLA-Aware Cloud
Service Provision Framework. In 2011 Seventh International Conference on
Semantics, Knowledge and Grids, pages 114–121.

[493] Whitmore, A., Agarwal, A., and Da Xu, L. (2015). The Internet of Things—A
Survey of Topics and Trends. Information systems frontiers, 17(2):261–274.

[494] wikiwiki (2016). Open Data Handbook . http://opendatahandbook.org/
glossary/en/terms/machine-readable/. Accessed: 2020-07-08.

[495] Wu, L. and Buyya, R. (2012). Service Level Agreement (SLA) in Utility
Computing Systems. In Performance and dependability in service computing:
Concepts, techniques and research directions, pages 1–25. IGI Global.

[496] Wu, L., Garg, S. K., and Buyya, R. (2011). SLA-Based Resource Allocation
for Software as a Service Provider (SaaS) in Cloud Computing Environments.
In 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pages 195–204.

[497] Wu, L., Garg, S. K., and Buyya, R. (2015). Service Level Agreement(SLA)
Based SaaS Cloud Management System. In Proceedings of the 2015 IEEE
21st International Conference on Parallel and Distributed Systems (ICPADS),
ICPADS ’15, pages 440–447, Washington, DC, USA. IEEE Computer Society.

[498] Wu, L., Garg, S. K., Buyya, R., Chen, C., and Versteeg, S. (2013). Automated
SLA Negotiation Framework for Cloud Computing. In 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, pages 235–
244. IEEE.

[499] Wu, L., Garg, S. K., Versteeg, S., and Buyya, R. (2014). SLA-Based Resource
Provisioning for Hosted Software-as-a-Service Applications in Cloud Comput-
ing Environments. IEEE Transactions on Services Computing, 7(3):465–485.

[500] Xiong, K. and Chen, X. (2015). Ensuring Cloud Service Guarantees via
Service Level Agreement (SLA)-Based Resource Allocation. In 2015 IEEE
35th International Conference on Distributed Computing Systems Workshops,
pages 35–41.

[501] Xu, J., Ota, K., and Dong, M. (2018). Plug-and-Play for Fog: Dynamic
Service Placement in Wireless Multimedia Networks. In 2018 IEEE/CIC Inter-
national Conference on Communications in China (ICCC), pages 490–494.

http://opendatahandbook.org/glossary/en/terms/machine-readable/
http://opendatahandbook.org/glossary/en/terms/machine-readable/

References 283

[502] Xu, Y., Yao, J., Jacobsen, H.-A., and Guan, H. (2017). Cost-Efficient Negotia-
tion over Multiple Resources with Reinforcement Learning. In 2017 IEEE/ACM
25th International Symposium on Quality of Service (IWQoS), pages 1–6. IEEE.

[503] Yahya, F., Walters, R. J., and Wills, G. B. (2017). Using Goal-Question-
Metric (GQM) Approach to Assess Security in Cloud Storage. In Chang, V.,
Ramachandran, M., Walters, R. J., and Wills, G., editors, Enterprise Security,
pages 223–240, Cham. Springer International Publishing.

[504] Yao, J. and Ansari, N. (2018). Reliability-Aware Fog Resource Provision-
ing for Deadline-Driven IoT Services. In 2018 IEEE Global Communications
Conference (GLOBECOM), pages 1–6.

[505] Yao, J. and Ansari, N. (2019a). Energy-Aware Task Allocation for Mobile
IoT by Online Reinforcement Learning. In ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), pages 1–6.

[506] Yao, J. and Ansari, N. (2019b). Fog Resource Provisioning in Reliability-
Aware IoT Networks. IEEE Internet of Things Journal, 6(5):8262–8269.

[507] Yao, J. and Ansari, N. (2019c). QoS-Aware Fog Resource Provisioning and
Mobile Device Power Control in IoT Networks. IEEE Transactions on Network
and Service Management, 16(1):167–175.

[508] Yao, Z., Papapanagiotou, I., and Callaway, R. D. (2014). SLA-Aware Re-
source Scheduling for Cloud Storage. In 2014 IEEE 3rd International Confer-
ence on Cloud Networking (CloudNet), pages 14–19.

[509] Yaqub, E., Yahyapour, R., Wieder, P., Jehangiri, A. I., Lu, K., and Kotsokalis,
C. (2014). Metaheuristics-Based Planning and Optimization for SLA-Aware
Resource Management in PaaS Clouds. In 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, pages 288–297.

[510] Yaqub, E., Yahyapour, R., Wieder, P., Kotsokalis, C., Lu, K., and Jehangiri,
A. I. (2014). Optimal Negotiation of Service Level Agreements for Cloud-
Based Services through Autonomous Agents. In Proceedings of the 2014
IEEE International Conference on Services Computing, SCC ’14, pages 59–66,
Washington, DC, USA. IEEE Computer Society.

[511] Yin, B., Cheng, Y., Cai, L. X., and Cao, X. (2017). Online SLA-Aware
Multi-Resource Allocation for Deadline Sensitive Jobs in Edge-Clouds. In
GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pages
1–6.

[512] Yoori Oh, Jieun Choi, Eunjung Song, Moonji Kim, and Yoonhee Kim
(2016). A SLA-Based Spark Cluster Scaling Method in Cloud Environment.
In 2016 18th Asia-Pacific Network Operations and Management Symposium
(APNOMS), pages 1–4.

284 References

[513] Yousefpour, A., Patil, A., Ishigaki, G., Kim, I., Wang, X., Cankaya, H. C.,
Zhang, Q., Xie, W., and Jue, J. P. (2019). FOGPLAN: A Lightweight QoS-Aware
Dynamic Fog Service Provisioning Framework. IEEE Internet of Things Journal,
6(3):5080–5096.

[514] Yuan, H., Bi, J., Li, B. H., Chai, X., and Tie, M. (2012). SLA-Based Virtualized
Resource Allocation for Multi-Tier Web Application in Cloud Simulation Envi-
ronment. In 2012 IEEE International Conference on Industrial Engineering
and Engineering Management, pages 1681–1685.

[515] Yuan Wei, Son, S. H., and Stankovic, J. A. (2006). RTSTREAM: Real-Time
Query Processing for Data Streams. In Ninth IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC’06),
pages 10 pp.–.

[516] Zappatore, M., Longo, A., and Bochicchio, M. A. (2015). SLA Composition
in Service Networks: A Tool for Representing Relationships between SLAs and
Contracts. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC ’15, pages 1219–1224, New York, NY, USA. ACM.

[517] Zaslavsky, A. B., Perera, C., and Georgakopoulos, D. (2013). Sensing as a
Service and Big Data. CoRR, abs/1301.0159.

[518] Zeng, X., Garg, S., Wen, Z., Strazdins, P., Wang, L., and Ranjan, R. (2016).
SLA-Aware Scheduling of Map-Reduce Applications on Public Clouds. In 2016
IEEE 18th International Conference on High Performance Computing and
Communications; IEEE 14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pages 655–662.

[519] Zeng, X., Ranjan, R., Strazdins, P., Garg, S. K., and Wang, L. (2015). Cross-
Layer SLA Management for Cloud-Hosted Big Data Analytics Applications. In
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pages 765–768. IEEE.

[520] Zhang, J., He, Z., Huang, H., Wang, X., Gu, C., and Zhang, L. (2014). SLA
Aware Cost Efficient Virtual Machines Placement in Cloud Computing. In
2014 IEEE 33rd International Performance Computing and Communications
Conference (IPCCC), pages 1–8.

[521] Zhang, S. and Lee, J. (2019). Double-Spending with a Sybil Attack in the
Bitcoin Decentralized Network. IEEE Transactions on Industrial Informatics,
pages 1–1.

[522] Zhang, S., Yen, I.-L., and Bastani, F. B. (2016). Toward Semantic En-
hancement of Monitoring Data Repository. In 2016 IEEE Tenth International
Conference on Semantic Computing (ICSC), pages 140–147. IEEE.

[523] Zhang, Y., Liu, H., Lu, Y., and Deng, B. (2013). SLA-Driven State Monitoring
for Cloud Services. In 2013 IEEE 10th International Conference on High
Performance Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing, pages 428–433. IEEE.

References 285

[524] Zhang, Z., Liao, L., Liu, H., and Li, G. (2014). Policy-Based Adaptive
Service Level Agreement Management for Cloud Services. In 2014 IEEE 5th
International Conference on Software Engineering and Service Science, pages
496–499. IEEE.

[525] Zhao, L., Sakr, S., and Liu, A. (2013a). A Framework for Consumer-Centric
SLA Management of Cloud-Hosted Databases. IEEE Transactions on Services
Computing, 8(4):534–549.

[526] Zhao, L., Sakr, S., and Liu, A. (2013b). Consumer-Centric SLA Manager
for Cloud-Hosted Databases. In Proceedings of the 22nd ACM international
conference on Conference on information & knowledge management,
CIKM ’13, pages 2453–2456, New York, NY, USA. ACM.

[527] Zhao, Y., Calheiros, R., Gange, G., Bailey, J., and Sinnott, R. (2018). SLA-
Based Profit Optimization Resource Scheduling for Big Data Analytics-as-a-
Service Platforms in Cloud Computing Environments. IEEE Transactions on
Cloud Computing, pages 1–1.

[528] Zhao, Y., Calheiros, R. N., Bailey, J., and Sinnott, R. (2016). SLA-Based Profit
Optimization for Resource Management of Big Data Analytics-as-a-Service
Platforms in Cloud Computing Environments. In 2016 IEEE International
Conference on Big Data (Big Data), pages 432–441.

[529] Zhao, Y., Calheiros, R. N., Gange, G., Ramamohanarao, K., and Buyya, R.
(2015). SLA-Based Resource Scheduling for Big Data Analytics as a Service in
Cloud Computing Environments. In 2015 44th International Conference on
Parallel Processing, pages 510–519.

[530] Zheng, X., Martin, P., Brohman, K., and Da Xu, L. (2014). Cloud Service
Negotiation in Internet of Things Environment: A Mixed Approach. IEEE
Transactions on Industrial Informatics, 10(2):1506–1515.

[531] Zhihong Yang, Yingzhao Yue, Yu Yang, Yufeng Peng, Xiaobo Wang, and
Wenji Liu (2011). Study and Application on the Architecture and Key Tech-
nologies for IoT. In 2011 International Conference on Multimedia Technology,
pages 747–751.

[532] Zhou, H., de Laat, C., and Zhao, Z. (2018). Trustworthy Cloud Service
Level Agreement Enforcement with Blockchain Based Smart Contract. In 2018
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pages 255–260. IEEE.

[533] Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., and Zhao, Z. (2019). A
Blockchain Based Witness Model for Trustworthy Cloud Service Level Agree-
ment Enforcement. In IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pages 1567–1575.

[534] Zhou, N. and Mohindra, A. (2015). Causality-Driven Performance Moni-
toring and Scaling Automation for Managed Solutions. In Proceedings of the
2015 IEEE International Conference on Services Computing, SCC ’15, pages
467–474, Washington, DC, USA. IEEE Computer Society.

286 References

[535] Zhu, Z., Bi, J., Yuan, H., and Chen, Y. (2011). SLA Based Dynamic Virtual-
ized Resources Provisioning for Shared Cloud Data Centers. In 2011 IEEE 4th
International Conference on Cloud Computing, pages 630–637.

[536] Zhuang, Z., Ramachandra, H., and Sridharan, B. (2015). SLA-Aware
Dynamic CPU Scaling in Business Cloud Computing Environments. In 2015
IEEE 8th International Conference on Cloud Computing, pages 836–843.

[537] Zukowski, M. (2018). Cloud-Based SQL Solutions for Big Data. Encyclope-
dia of Big Data Technologies, pages 1–7.

Appendix A

Questionnaire

Research aim:
Propose a service level agreement specification for IoT applications from the user/service-
consumer perspective.
The purpose of the survey:

• Find out: what should be considered and what should not be considered within the SLA.

• Find out: the expressiveness and generality of the proposed SLA grammar

General questions to find out how strongly the interviewee is interested in taking on a role in
specifying an SLA for IoT applications.

• What is your primary role in relation to IoT projects?
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

Use-case scenario for clarification purposes:

Figure 1 IoT reference architecture

IoT applications are, mostly, time-sensitive applications. Thus, it is important to consider when

data needs to be collected, what the next processing step is, and where to process each step.

Furthermore, the associated QoS requirements for each step should be specified in an

unambiguous way. Therefore, in our work, we focus on end-to-end SLA specification language as

a first step to capture user requirements. An end-to-end SLA specification language is a structural

syntax that is used to express user requirements for all of the involved software and hardware

components within a system/application.

To illustrate how considering an SLA on an end-to-end basis is important, consider a Flood

Monitoring System (FMS). In an FMS, it is important to respond immediately and correctly to

suspicious events in order to prevent serious damage. FMS requires that real-time data is collected

from different types of information, such as from sensors and gauges that measure rainfall levels

and the water levels of rivers, respectively. The FMS would then analyse the collected data and

indicate any abnormal data patterns (e.g. flood possibility) by comparing the new collected data

with the historical/stored data. However, this type of IoT application is time-sensitive, which

means that any unpredicted delay in one or more of the workflow activities (e.g. collecting,

transferring, ingesting, analysing, etc.) will affect the accuracy and suitability of the actions taken.

This example shows how the performance of FMS applications relies not only on the functionality

but also on the quality of the offered services across Edge and/or Cloud computing environments.

Undoubtedly, SLAs need to be observed across all layers of the Cloud and Edge – for example, at

which rate data should be collected, transferred and ingested; how fast and accurate the analysis

should be, etc.

Therefore, the data collected from IoT devices should be accurate and up to date. In addition, it

is important to minimise the latency of data pre-processing (for filtering purposes), which can be

performed using, but not limited to, a raspberry pi or edge servers. If there is a need to perform

some analysis and to compare incoming data with a historical and predefined model, then the

application of certain services should be considered, as well as their Service Level Objective (SLO)

constraints. A service can apply machine-learning algorithms with a high accuracy requirement,

stream processing under low latency constraints and/or batch processing with high throughput.

The analysis results can be stored using SQL databases. Unstructured data such as images of

collapsed bridges can be stored using NoSQL databases.

In our grammar, we used the “workflow activities” concept to hold the list of involved activity –

for example, in the above use case, ‘collect rain level data’ matches the ‘capture event of interest’

activity in our grammar. Each activity is associated with a service(s) and an infrastructure resource

to deploy the service(s). Both the service and the infrastructure resource have their SLO

constraints as well as their own configuration requirements (see Figure 2).

Figure 2 Conceptual mapping to reflect the relationship between main concepts

For further illustration, in the FMS, the ‘capture event of interest’ activity requires a sensing service.

The sensing service has SLO constraints such as constraints on the required level of data freshness

and data accuracy. The sensing service will be deployed/hosted on an IoT device. Therefore, it is

important to consider the requirements of The IoT device such as its type (e.g., sensor, RFID),

the mobility of the device (e.g., fixed or mobile), the communication mechanism and battery life.

The same will apply for the “Filter captured event of interest” activity, which will be done at the

edge computing layer, using certain devices such as a mobile phone, raspberry pi or server. Each

one of these devices has its computational capabilities such as CPU speed and memory size.

Furthermore, to perform the “large data analysis on fly” activity, a stream processing service can

be applied with certain requirement constraints such as low latency and certain configuration

requirements, such as specifying window type: time-based window or event-based window. The

stream processing service can be deployed on the Cloud, so certain requirements related to the

required resources from the Cloud can be specified, such as number of VMs and the acceptable

percentage of CPU utilisation.

 Question 1: Considering the following predefined list of workflow activities

☐ Capture event of interest (EoI)

☐ Examine the Captured EoI on fly

☐ Filter Captured EoI

☐ Aggregate the Captured EoI

☐ Ingest Data from one or more data resources

☐ Large-Scale Real-time data analysis

☐ Large-Scale Historical data analysis

☐ Apply machine learning approach

☐ Store Structured Data

☐ Store Unstructured Data

1. Does the predefined list of workflow activities cover your IoT project’s workflow

activities? Answer : Yes or No 

…………………………………………………………………………………………

2. Could you please “tick” the activities that you believe will be involved/part of your

application/project.

…………………………………………………………………………………………

3. Do you think more workflow activities should be included?

Answer: Yes or no 

…………………………………………………………………………………………

4. if your answer in 3 is “yes”, could you please list the workflow activities that you

suggest be considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 2: Considering the following predefined list of computing layers

☐ IoT device layer

☐ Edge Computing Layer

☐ Cloud Computing Layer

1. Do you agree that it is necessary to allow the IoT administrators to specify their

requirements at IoT device, Edge Computing and Cloud Computing layers? Answer:

Yes or No 

…………………………………………………………………………………………

2. Could you please “tick” the computing layer that you believe will be involved/part of

your application/project.

…………………………………………………………………………………………

3. Do you think more computing layers should be included?

Answer: Yes or no 

…………………………………………………………………………………………

4. If your answer in 3 is “yes”, could you please list the other computing layers that you

suggest be considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 3: Considering the following predefined list of services

☐ Sensing Service

☐ Networking Service

☐ Ingestion Service

☐ Stream Processing Service

☐ Batch Processing Service

☐ SQL Database Service

☐ NoSQL Database Service

☐ Machine Learning Service

1. Does the predefined list of services cover your IoT project’s services? Answer : Yes

or No 

…………………………………………………………………………………………

2. Could you please “tick” the services that you believe will be involved/part of your

application/project.

…………………………………………………………………………………………

3. Do you think more services should be included?

Answer: Yes or no 

…………………………………………………………………………………………

4. If your answer in 3 is “yes”, could you please list the services that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 4: Considering the following predefined list of vocabulary to express

consumer requirements for IoT devices

 ☐ Type of device (sensor; RFID tag)

 ☐ Number of devices

 ☐ Mobility of device

 ☐ Communication Mechanism

 ☐ Communication technology

 ☐ Battery life

 ☐ Warranty period

 ☐ Data integrity

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for IoT devices.

2. Do you think more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 5: Considering the following predefined list of vocabulary to express

consumer requirements of for Edge Computing

☐ Type of device (Mobile, Raspberry Pi, Server)

☐ Number of Devices

☐ mobility of device

☐ Communication Mechanism with IoT

☐ Communication Technology with IoT

☐ Communication Mechanism with Cloud

☐ Communication Technology with Cloud

☐ Encryption Support

☐ Compression Support

☐ Storage Size

☐ Memory Size

☐ CPU Speed

☐ Data integrity

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for Edge Computing.

2. Do you think more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 6: Considering the following predefined list of vocabulary to express

consumer requirements for Cloud Computing

☐ Availability

☐ CPU utilisation

☐ Response Time

☐ Outage Length

☐ Throughput

☐ Storage Bandwidth

☐ Storage Size

☐ Memory Size

☐ Network Bandwidth

☐ vCPU Capacity

☐ vCPU limit per VM

☐ No Of vCPU

☐ No of core per vCPU

☐ Vertical scale down limit

☐ Vertical scale up limit

☐ Horizontal scale up limit

☐ Horizontal scale down limit

☐ input/output Storage operations

☐ Replication factor

☐ Data integrity

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for Cloud Computing.

2. Do you think more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 7: Considering the following predefined list of vocabulary to express

consumer requirements of sensing services

☐ Data Freshness

☐ Sample Rate

☐ Data accuracy

☐ Data integrity

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for sensing services.

2. Do you think there are more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 8: Considering the following predefined list of vocabulary to express

consumer requirements of networking services

☐ Gateway Throughput

☐ Gateway Latency

☐ Network Throughput

☐ Network Latency

☐ Data integrity

☐ Size of data-in/data-in rate

☐ Size of data-out/data-out rate

☐ Time Interval to send data/Publish rate

☐ Storage/buffer size

☐ Link Bandwidth

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for networking services.

2. Do you think there more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 9: Considering the following predefined list of vocabulary to express

consumer requirements for ingestion services

 ☐ Throughput

 ☐ Latency

 ☐ Data integrity

 ☐ Size of data-in/data-in rate

 ☐ Size of data-out/data-out rate

 ☐ Time Interval to send data/Publish rate

 ☐ Storage size

 ☐ Data retention time limit

 ☐ Replication factor

 ☐ Compression/Decompression support

 ☐ Data Encryption Support

 ☐ Delivery Guarantee Mechanism

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for Ingestion services.

2. Do you think more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 10: Considering the following predefined list of vocabulary to express

consumer requirements for machine learning services

 ☐ Accuracy

 ☐ Data integrity

 ☐ Class of Machine learning

 ☐ Name of Machine Learning Algorithm

 ☐ Way to run Machine Learning Algorithm

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for Machine Learning services.

2. Do you think more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 11: Considering the following predefined list of vocabulary to express

consumer requirements for stream processing services

☐ Throughput

☐ Latency

☐ Data Completeness

☐ Miss Ratio

☐ Data integrity

☐ Time-based window size

☐ Event-based window size

☐ Sliding window

☐ Tumbling window

☐ Micro Batch Size

☐ Data Arrival Rate

☐ Write Capacity

☐ Read Capacity

☐ Replication factor

☐ Total Number of Queries

☐ Number of Queries per Stream

☐ Compression/Decompression Support

☐ Data Encryption Support

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for Stream Processing services.

2. Do you think more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 12: Considering the following predefined list of vocabulary to express

consumer requirements for batch processing services

☐ Throughput

☐ Latency

☐ Data integrity

☐ Data Arrival Rate

☐ Batch Size Limit

☐ Read Capacity

☐ Write Capacity

☐ Process running frequency

☐ Max Memory of Map Task

☐ Max Memory of Reduce Task

☐ No of Mapper Limit

☐ No of Reducer Limit

☐ No of Batch Jobs

☐ Compression/Decompression Support

☐ Data Encryption Support

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for Batch Processing services.

2. Do you think more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 13: Considering the following predefined list of vocabulary to express

consumer requirements for SQL database services

☐ Throughput

☐ Response Time

☐ Data integrity

☐ Read Error Rate

☐ Cache Hit Ratio

☐ Write Error Rate

☐ Read Capacity

☐ Write Capacity

☐ Compression/Decompression Support

☐ Data Encryption Support

☐ Replication factor

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for SQL database services.

2. Do you think more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 Question 14: Considering the following predefined list of vocabulary to express

consumer requirements for NoSQL database services

☐ Type of NoSQL

☐ Throughput

☐ Data integrity

☐ Response Time

☐ Read Error Rate

☐ Cache Hit Ratio

☐ Write Error Rate

☐ Read Capacity

☐ Write Capacity

☐ Compression/Decompression Support

☐ Data Encryption Support

☐ Replication factor

☐ Replication factor

1. Considering the predefined list of SLO metrics and configuration requirements of

sensing services, could you please “tick” the vocabularies that you believe will be

used to express your requirements for NoSQL database services.

2. Do you think more vocabulary should be included? Answer: Yes or no 

…………………………………………………………………………………………

3. If your answer in 2 is “yes”, could you please list the vocabularies that you suggest be

considered

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

Appendix B

SLA Specification for RHMS

1 {

2 [{

3 "appType" : "Remote Health Monitoring Service",

4 "startDate" : "Thu Sep 12 12:14:19 BST 2019",

5 "endDate" : "Wed Sep 30 12:14:19 BST 2020",

6 "sloAtApplicationLevel" : [{

7 "qosMetric" : "Availability",

8 "priority" : "High",

9 "requiredLevel" : "greater than",

10 "value" : "99.0",

11 "unit" : "% per month"

12 }, {

13 "qosMetric" : "Outage Length",

14 "priority" : "High",

15 "requiredLevel" : "less than",

16 "value" : "10",

17 "unit" : "seconds per day"

18 }, {

19 "qosMetric" : "Response Time",

20 "priority" : "High",

21 "requiredLevel" : "greater than",

22 "value" : "10",

23 "unit" : "milliseconds"

24 } ,{

306 SLA Specification for RHMS

25 "qosMetric" : "Cost/Price",

26 "priority" : "High",

27 "requiredLevel" : "less than",

28 "value" : "100.0",

29 "unit" : "$ per month"

30 }

31],

32 "slaid" : " Remote Health Monitoring Service Thu Sep 12 12:14:19

BST 2019Wed Sep 30 12:14:19 BST 2020j"

33 } ,{

34

35 "activityName" : "Capture Event of Interest(EoI) ",

36 "slo" : [{

37 "qosMetric" : "Data Freshness",

38 "priority" : "High ",

39 "requiredLevel" : " equals to ",

40 "value" : "5 ",

41 "unit" : "milliseconds "

42 }],

43 "configurationRequirement" : [{

44 "configurationFeature" : "Sample Rate",

45 "priority" : "High ",

46 "requiredLevel" : " equals to",

47 "value" : "5 ",

48 "unit" : "kHz "

49 }],

50 "resourceSpecification" : {

51 "resourceLayer" : "IoT Resource",

52 "configurationRequirement" : [

53 {

54 "configurationFeature" : "deviceType",

55 "value" : "Sensors "

56 },

57 {

58 "configurationFeature" : "numberOfDevices",

307

59 "value" : "6 "

60 },

61 {

62 "configurationFeature" : "mobilityOfDevice",

63 "value" : "mobile "

64 },

65 {

66 "configurationFeature" : "communicationMechanism",

67 "value" : "push "

68 },

69 {

70 "configurationFeature" : "communicationTechnology",

71 "value" : "WiFi "

72 },

73 {

74 "configurationFeature" : "cpuCapacity",

75 "value" : "1.6 ",

76 "unit" :"GHz"

77 },

78 {

79 "configurationFeature" : "memorySize",

80 "value" : "1 ",

81 "unit" :"GB"

82

83 }]

84 }

85 }, {

86 "activityName" : "Examine Captured EoI",

87 "slo" : [{

88 "qosMetric" : "Gateway Throughput",

89 "priority" : "High ",

90 "requiredLevel" : "greater than ",

91 "value" : "98 ",

92 "unit" : "Kbps "

93 }, {

308 SLA Specification for RHMS

94 "qosMetric" : "Gateway Latency",

95 "priority" : "High ",

96 "requiredLevel" : " less than ",

97 "value" : "1 ",

98 "unit" : "milliseconds "

99 }, {

100 "qosMetric" : "Network Throughput",

101 "priority" : "High ",

102 "requiredLevel" : "greater than ",

103 "value" : "99 ",

104 "unit" : "Mbps "

105 }],

106 "configurationRequirement" : [{

107 "configurationFeature" : "Size of data-out",

108 "priority" : "High ",

109 "requiredLevel" : "greater than ",

110 "value" : "8 ",

111 "unit" : "kB "

112 },

113 {

114 "qosMetric" : "Size of data-in",

115 "priority" : "High ",

116 "requiredLevel" : "greater than ",

117 "value" : "10 ",

118 "unit" : "kB "

119 },

120 ,{

121 "configurationFeature" : "Data Encryption Support",

122 "value" : "true "

123 },

124 {

125 "configurationFeature" : "Data Compression Support",

126 "value" : "false "

127 }],

128 "resourceSpecification" : {

309

129 "resourceLayer" : "Edge Resource",

130

131 "configurationRequirement" : [

132 {

133 "configurationFeature" : "deviceType",

134 "value" : "Raspberry Pi "

135 },

136 {

137 "configurationFeature" : "numberOfDevices",

138 "value" : "1 "

139 },

140 {

141 "configurationFeature" : "mobilityOfDevice",

142 "value" : "fixed "

143 },

144 {

145 "configurationFeature" : "communicationMechanismWithIoTDevice

",

146 "value" : "push "

147 },

148 {

149 "configurationFeature" : "

communicationTechnologyWithIoTDevice",

150 "value" : "WiFi "

151 },

152 {

153 "configurationFeature" : "communicationMechanismWithCloud",

154 "value" : "push "

155 },

156 {

157 "configurationFeature" : "communicationTechnologyWithClould",

158 "value" : "WiFi "

159 },

160 {

161 "configurationFeature" : "cpuCapacity",

310 SLA Specification for RHMS

162 "value" : "1.6 ",

163 "unit" :"GHz"

164 },

165 {

166 "configurationFeature" : "memorySize",

167 "value" : "1 ",

168 "unit" :"GB"

169

170 }]

171]

172 }

173 },

174

175 {

176 "activityName" : "Analyse Small-Scale realtime data ",

177 "slo" : [{

178 "qosMetric" : "Throughput",

179 "priority" : "high ",

180 "requiredLevel" : "greater than ",

181 "value" : "99 ",

182 "unit" : "Mbps "

183 }],

184 "configurationRequirement" : [{

185 "configurationFeature" : "Miss Ratio",

186 "value" : " less than ",

187 "requiredLevel" : "high ",

188 "unit" : "1 "

189 },{

190 "configurationFeature" : "Window Size",

191 "requiredLevel" : " equals to ",

192 "value" : "5 ",

193 "unit" : "milliseconds "

194 }, {

195 "configurationFeature" : "Sliding Window",

196 "requiredLevel" : " equals to ",

311

197 "value" : "3 ",

198 "unit" : "milliseconds "

199 }, {

200 "configurationFeature" : "Replication factor",

201 "requiredLevel" : " equals to ",

202 "value" : "2 "

203 }, {

204 "configurationFeature" : "Total Number of Query",

205 "requiredLevel" : " equals to ",

206 "value" : "3 "

207 }, {

208 "configurationFeature" : "Compression/Decompression Support",

209 "value" : "false "

210 }, {

211 "configurationFeature" : "Data Encryption Support",

212 "value" : "true "

213 }],

214 "resourceSpecification" : {

215 "resourceLayer" : "Edge Resource",

216 "slo" : [{

217 "qosMetric" : "Availability",

218 "priority" : "high ",

219 "requiredLevel" : "greater than ",

220 "value" : "99 ",

221 "unit" : "% "

222 },{

223 "qosMetric" : "Outage Length",

224 "priority" : "High",

225 "requiredLevel" : "less than",

226 "value" : "3",

227 "unit" : "seconds per day"

228 }],

229 "configurationRequirement" : [

230 {

231 "configurationFeature" : "deviceType",

312 SLA Specification for RHMS

232 "value" : "server "

233 },

234 {

235 "configurationFeature" : "numberOfDevices",

236 "value" : "1 "

237 },

238 {

239 "configurationFeature" : "mobilityOfDevice",

240 "value" : "fixed "

241 },

242 {

243 "configurationFeature" : "communicationMechanismWithIoTDevice

",

244 "value" : "push "

245 },

246 {

247 "configurationFeature" : "

communicationTechnologyWithIoTDevice",

248 "value" : "WiFi "

249 },

250 {

251 "configurationFeature" : "communicationMechanismWithCloud",

252 "value" : "push "

253 },

254 {

255 "configurationFeature" : "communicationTechnologyWithClould",

256 "value" : "WiFi "

257 },

258 {

259 "configurationFeature" : "cpuCapacity",

260 "value" : "1.6 ",

261 "unit" :"GHz"

262 },

263 {

264 "configurationFeature" : "memorySize",

313

265 "value" : "1 ",

266 "unit" :"GB"

267

268 }]

269 }

270 },

271

272 {

273 "activityName" : "Analyse Large-Scale realtime data ",

274 "slo" : [{

275 "qosMetric" : "Throughput",

276 "priority" : "high ",

277 "requiredLevel" : "greater than ",

278 "value" : "99 ",

279 "unit" : "Mbps "

280 },{

281 "qosMetric" : "Miss Ratio",

282 "priority" : "high ",

283 "value" : " less than ",

284 "requiredLevel" : "high ",

285 "unit" : "1 "

286 }

287],

288 "configurationRequirement" : [{

289 "configurationFeature" : "Window Size",

290 "requiredLevel" : " equals to ",

291 "value" : "30 ",

292 "unit" : "milliseconds "

293 }, {

294 "configurationFeature" : "Sliding Window",

295 "requiredLevel" : " equals to ",

296 "value" : "10 ",

297 "unit" : "milliseconds "

298 }, {

299 "configurationFeature" : "Replication factor",

314 SLA Specification for RHMS

300 "requiredLevel" : " equals to ",

301 "value" : "2 "

302 }, {

303 "configurationFeature" : "Total Number of Query",

304 "requiredLevel" : " equals to ",

305 "value" : "3 "

306 }, {

307 "configurationFeature" : "Compression/Decompression Support",

308 "value" : "false "

309 }, {

310 "configurationFeature" : "Data Encryption Support",

311 "value" : "true "

312 }],

313 "resourceSpecification" : {

314 "resourceLayer" : "Cloudresource",

315 "slo" : [{

316 "qosMetric" : "Availability",

317 "priority" : "high ",

318 "requiredLevel" : "greater than ",

319 "value" : "99 ",

320 "unit" : "% "

321 }, {

322 "qosMetric" : "CPU Utilization",

323 "priority" : "high ",

324 "requiredLevel" : "greater than ",

325 "value" : "80 ",

326 "unit" : "% "

327 }],

328 "configurationRequirement" : [{

329 "configurationFeature" : "Memory Size",

330 "value" : "40000 ",

331 "requiredLevel" : "greater than ",

332 "unit" : "KB "

333 }, {

334 "configurationFeature" : "vCPU Capacity",

315

335 "value" : "44800",

336 "unit" : "GHz Xeon "

337 }, {

338 "configurationFeature" : "Hypervisor",

339 "value" : "Xen "

340 }, {

341 "configurationFeature" : "OS Type",

342 "value" : "Linux Ubuntu "

343 } , {

344 "configurationFeature" : "Tenancy Type",

345 "value" : "single tenant "

346 }, {

347 "configurationFeature" : "Backup Support",

348 "value" : "true "

349 }, {

350 "configurationFeature" : "Non acceptaple Geographical

location",

351 "value" : " Hong Kong "

352 }, {

353 "configurationFeature" : "Storage Type",

354 "value" : "HDD(Storage Area Network) "

355 }, {

356 "configurationFeature" : "Hypervisor",

357 "value" : "Xen "

358 }, {

359 "configurationFeature" : "OS Type",

360 "value" : : "Unix "

361 }, {

362 "configurationFeature" : "Geographical location",

363 "value" : "USA "

364 }]

365 }

366 }, {

367 "activityName" : "Apply machine learing algorithm",

368 "slo" : [{

316 SLA Specification for RHMS

369 "qosMetric" : "Accuracy",

370 "priority" : "high ",

371 "requiredLevel" : "greater than ",

372 "value" : "98 ",

373 "unit" : "% "

374 }],

375 "configurationRequirement" : [{

376 "configurationFeature" : "Name of ML Algorithm ",

377 "value" : "neural network "

378 }, {

379 "configurationFeature" : "Way to Run",

380 "value" : " MapReduce "

381 }],

382 "resourceSpecification" : {

383 "resourceLayer" : "Cloudresource",

384 "slo" : [{

385 "qosMetric" : "Availability",

386 "priority" : "high ",

387 "requiredLevel" : "greater than ",

388 "value" : "99 ",

389 "unit" : "% "

390 },{

391 "qosMetric" : "Outage Length",

392 "priority" : "High",

393 "requiredLevel" : "less than",

394 "value" : "3",

395 "unit" : "seconds per day"

396 }, {

397 "qosMetric" : "CPU Utilization",

398 "priority" : "high ",

399 "requiredLevel" : "greater than ",

400 "value" : "80 ",

401 "unit" : "% "

402 }],

403 "configurationRequirement" : [{

317

404 "configurationFeature" : "storage Size",

405 "value" : "99 ",

406 "requiredLevel" : "greater than ",

407 "unit" : "TB "

408 },{

409 "configurationFeature" : "Memory Size",

410 "value" : "40000 ",

411 "requiredLevel" : "greater than ",

412 "unit" : "KB "

413 }, {

414 "configurationFeature" : "vCPU Capacity",

415 "value" : "44800",

416 "unit" : "GHz Xeon "

417 }]

418 }

419 }, {

420 "activityName" : "Store unstructured data ",

421 "slo" : [{

422 "qosMetric" : "Read Error Rate",

423 "priority" : "% ",

424 "requiredLevel" : "1 ",

425 "value" : " less than ",

426 "unit" : "5 "

427 }, {

428 "qosMetric" : "Cache Hit Ratio",

429 "priority" : "high ",

430 "requiredLevel" : " less than ",

431 "value" : "5 ",

432 "unit" : "% "

433 }, {

434 "qosMetric" : "Write Error Rate",

435 "priority" : "high ",

436 "requiredLevel" : " less than ",

437 "value" : "5 ",

438 "unit" : "% "

318 SLA Specification for RHMS

439 }, {

440 "qosMetric" : "Response Time",

441 "priority" : "high ",

442 "requiredLevel" : " less than ",

443 "value" : "1 ",

444 "unit" : "miliseconds "

445 }],

446 "configurationRequirement" : [{

447 "configurationFeature" : "Write Capacity",

448 "value" : "99 ",

449 "requiredLevel" : "greater than ",

450 "unit" : "tuples/sec "

451 },

452 {

453 "configurationFeature" : "Read Capacity",

454 "requiredLevel" : "greater than ",

455 "value" : "99 ",

456 "unit" : "tuples/sec "

457 }, {

458 "configurationFeature" : "Type of NOSQL",

459 "value" : " graph "

460 }, {

461 "configurationFeature" : "Back-Up",

462 "value" : "true "

463 } , {

464 "configurationFeature" : "Replication factor",

465 "value" : "3 ",

466 "requiredLevel" : " equals to "

467 }, {

468 "configurationFeature" : "Data Encryption Support",

469 "value" : "true "

470 }, {

471 "configurationFeature" : "Compression/Decompression Support",

472 "value" : "true "

473 }],

319

474 "resourceSpecification" : {

475 "resourceLayer" : "Cloudresource",

476 "slo" : [{

477 "qosMetric" : "Availability",

478 "priority" : "high ",

479 "requiredLevel" : "greater than ",

480 "value" : "99 ",

481 "unit" : "% "

482 }],

483 "configurationRequirement" : [{

484 "configurationFeature" : "storage Size",

485 "value" : "99 ",

486 "requiredLevel" : "greater than ",

487 "unit" : "TB "

488 }, {

489 "configurationFeature" : "Storge Type",

490 "value" : "SAN-HDD(Storage area network) "

491 }, {

492 "configurationFeature" : "Geographical location",

493 "value" : "USA "

494 }]

495 }

496

497 }

498]

499 }

Appendix C

SLA for Case study 1 in Chapter 8

1

2 [{

3 "appType" : "Remote Health Monitoring Service",

4 "startDate" : "Wed Nov 21 00:00:00 GMT 2018",

5 "endDate" : "Thu Nov 21 10:35:46 GMT 2019",

6 "sloAtApplicationLevel" : [{

7 "qosMetric" : "Response Time",

8 "priority" : "High",

9 "requiredLevel" : "less than",

10 "value" : "1000",

11 "unit" : "milliseconds"

12 }, {

13 "qosMetric" : "Cost/Price",

14 "priority" : "High",

15 "requiredLevel" : "less than",

16 "value" : "3000.0",

17 "unit" : "$ per contract period"

18 }],

19 "slaid" : "Remote Health Monitoring Service Wed Nov 21 00:00:00

GMT 2018Thu Nov 21 10:35:46 GMT 2019d"

20 } ,{

21 "activityName" : "Capture Event of Interest(EoI) ",

22 "slo" : [{

23 "qosMetric" : "Data Freshness",

322 SLA for Case study 1 in Chapter 8

24 "priority" : "High ",

25 "requiredLevel" : "late than real time by ",

26 "value" : "2 ",

27 "unit" : "milliseconds "

28 }, {

29 "qosMetric" : "Sample Rate",

30 "priority" : "High ",

31 "requiredLevel" : "greater than ",

32 "value" : "3 ",

33 "unit" : "kHz "

34 }],

35 "resourceSpecification" : {

36 "configurationRequirement" : [

37 {

38 "configurationFeature" : "deviceType",

39 "value" : "Sensors "

40 },

41 {

42 "configurationFeature" : "numberOfDevices",

43 "value" : "6 "

44 },

45 {

46 "configurationFeature" : "mobilityOfDevice",

47 "value" : "mobile "

48 },

49 {

50 "configurationFeature" : "communicationMechanism",

51 "value" : "push "

52 },

53 {

54 "configurationFeature" : "communicationTechnology",

55 "value" : "WiFi "

56 },

57 {

58 "configurationFeature" : "cpuCapacity",

323

59 "value" : "1.6 ",

60 "unit" :"GHz"

61 },

62 {

63 "configurationFeature" : "memorySize",

64 "value" : "1 ",

65 "unit" :"GB"

66

67 }]

68 }

69 }, {

70 "activityName" : "Examine Captured EoI",

71 "slo" : [{

72 "qosMetric" : "Gateway Throughput",

73 "priority" : "High ",

74 "requiredLevel" : "greater than ",

75 "value" : "6 ",

76 "unit" : "Mbps "

77 }, {

78 "qosMetric" : "Network Latency",

79 "priority" : "High ",

80 "requiredLevel" : " less than",

81 "value" : "2 ",

82 "unit" : "milliseconds "

83 }, {

84 "qosMetric" : "Size of data-in",

85 "priority" : "High ",

86 "requiredLevel" : "greater than ",

87 "value" : "1000",

88 "unit" : "KB "

89 }, {

90 "qosMetric" : "Size of data-out",

91 "priority" : "High ",

92 "requiredLevel" : " equals to ",

93 "value" : "1000",

324 SLA for Case study 1 in Chapter 8

94 "unit" : "KB "

95 }, {

96 "qosMetric" : "Link Bandwidth",

97 "priority" : "High ",

98 "requiredLevel" : " equals to ",

99 "value" : "6 ",

100 "unit" : "Kbps "

101 }],

102 "resourceSpecification" : {

103 "configurationRequirement" : [

104 {

105 "configurationFeature" : "deviceType",

106 "value" : "Gateway "

107 },

108 {

109 "configurationFeature" : "numberOfDevices",

110 "value" : "4 "

111 },

112 {

113 "configurationFeature" : "mobilityOfDevice",

114 "value" : "fixed "

115 },

116 {

117 "configurationFeature" : "communicationMechanismWithIoTDevice

",

118 "value" : "push "

119 },

120 {

121 "configurationFeature" : "

communicationTechnologyWithIoTDevice",

122 "value" : "WiFi "

123 },

124 {

125 "configurationFeature" : "communicationMechanismWithCloud",

126 "value" : "push "

325

127 },

128 {

129 "configurationFeature" : "communicationTechnologyWithClould",

130 "value" : "WiFi "

131 },

132 {

133 "configurationFeature" : "cpuCapacity",

134 "value" : "3 ",

135 "unit" :"GHz"

136 },

137 {

138 "configurationFeature" : "memorySize",

139 "value" : "4 ",

140 "unit" :"GB"

141

142 }]

143 }

144 }, {

145 "activityName" : "Analyse small-scale realtime data ",

146 "slo" : [{

147 "qosMetric" : "Throughput",

148 "priority" : "high ",

149 "requiredLevel" : "greater than ",

150 "value" : "1000 ",

151 "unit" : "Kbps "

152 }, {

153 "qosMetric" : "Latency",

154 "priority" : "high ",

155 "requiredLevel" : " less than",

156 "value" : "5 ",

157 "unit" : "milliseconds "

158 }],

159 "resourceSpecification" : {

160 "configurationRequirement" : [{

161 "configurationFeature" : "Memory Size",

326 SLA for Case study 1 in Chapter 8

162 "value" : "4000 ",

163 "requiredLevel" : "greater than ",

164 "unit" : "KB "

165 }, {

166 "configurationFeature" : "vCPU Capacity",

167 "value" : "2800",

168 "unit" : "GHz Xeon "

169 },{

170 "configurationFeature" : "Hypervisor",

171 "value" : "Xen "

172 }, {

173 "configurationFeature" : "OS Type",

174 "value" : "Linux Ubuntu "

175 }]

176 }

177 },{

178 "activityName" : "Analyse large-scale realtime data ",

179 "slo" : [{

180 "qosMetric" : "Throughput",

181 "priority" : "high ",

182 "requiredLevel" : "greater than ",

183 "value" : "10000 ",

184 "unit" : "Kbps "

185 }, {

186 "qosMetric" : "Latency",

187 "priority" : "high ",

188 "requiredLevel" : " less than ",

189 "value" : "5 ",

190 "unit" : "milliseconds "

191 }],

192 "resourceSpecification" : {

193 "configurationRequirement" : [{

194 "configurationFeature" : "Memory Size",

195 "value" : "40000 ",

196 "requiredLevel" : "greater than ",

327

197 "unit" : "KB "

198 }, {

199 "configurationFeature" : "vCPU Capacity",

200 "value" : "44800 ",

201 "unit" : "GHz Xeon "

202 },{

203 "configurationFeature" : "Hypervisor",

204 "value" : "Xen "

205 }, {

206 "configurationFeature" : "OS Type",

207 "value" : "Linux Ubuntu "

208 }]

209 }

210 }, {

211 "activityName" : "Store structured data ",

212 "slo" : [{

213 "qosMetric" : "Availability",

214 "priority" : "high ",

215 "requiredLevel" : "greater than ",

216 "value" : "99 ",

217 "unit" : "% "

218 }],

219 "resourceSpecification" : {

220 "configurationRequirement" : [{

221 "configurationFeature" : "storage Size",

222 "value" : "99 ",

223 "requiredLevel" : "greater than ",

224 "unit" : "TB "

225 }, {

226 "configurationFeature" : "Storge Type",

227 "value" : "SAN-HDD(Storage area network) "

228 }, {

229 "configurationFeature" : "Geographical location",

230 "value" : "USA "

231 }]

328 SLA for Case study 1 in Chapter 8

232 }

233 }]

Appendix D

SLA for Case study 2 in Chapter 8

1

2

3 [{

4 "appType" : "Intelligent Surveillance",

5 "startDate" : "Wed Nov 21 00:00:00 GMT 2018",

6 "endDate" : "Thu Nov 21 10:35:46 GMT 2019",

7 "sloAtApplicationLevel" : [{

8 "qosMetric" : "Response Time",

9 "priority" : "High",

10 "requiredLevel" : "less than",

11 "value" : "1000",

12 "unit" : "milliseconds"

13 }, {

14 "qosMetric" : "Cost/Price",

15 "priority" : "High",

16 "requiredLevel" : "less than",

17 "value" : "1000.0",

18 "unit" : "$ per contract period"

19 }],

20 "slaid" : "Intelligent Surveillance Wed Nov 21 00:00:00 GMT 2018

Thu Nov 21 10:35:46 GMT 2019d"

21 } ,{

22 "activityName" : "Capture Event of Interest: Motion Detector ",

23 "slo" : [{

330 SLA for Case study 2 in Chapter 8

24 "qosMetric" : "Data Freshness",

25 "priority" : "High ",

26 "requiredLevel" : "late than real time by ",

27 "value" : "1 ",

28 "unit" : "milliseconds "

29 }, {

30 "qosMetric" : "Sample Rate",

31 "priority" : "High ",

32 "requiredLevel" : "greater than ",

33 "value" : "3 ",

34 "unit" : "kHz "

35 }],

36 "resourceSpecification" : {

37 "configurationRequirement" : [

38 {

39 "configurationFeature" : "deviceType",

40 "value" : "Sensor "

41 },

42 {

43 "configurationFeature" : "numberOfDevices",

44 "value" : "4 "

45 },

46 {

47 "configurationFeature" : "mobilityOfDevice",

48 "value" : "fixed "

49 },

50 {

51 "configurationFeature" : "communicationMechanism",

52 "value" : "push "

53 },

54 {

55 "configurationFeature" : "communicationTechnology",

56 "value" : "WiFi "

57 },

58 {

331

59 "configurationFeature" : "cpuCapacity",

60 "value" : "1.6 ",

61 "unit" :"GHz"

62 },

63 {

64 "configurationFeature" : "memorySize",

65 "value" : "1 ",

66 "unit" :"GB"

67

68 }]

69 }

70 }, {

71 "activityName" : "Examine Captured EoI: Object Detector",

72 "slo" : [{

73 "qosMetric" : "Gateway Throughput",

74 "priority" : "High ",

75 "requiredLevel" : "greater than ",

76 "value" : "2 ",

77 "unit" : "Mbps "

78 }, {

79 "qosMetric" : "Network Latency",

80 "priority" : "High ",

81 "requiredLevel" : " less than ",

82 "value" : "2 ",

83 "unit" : "milliseconds "

84 }, {

85 "qosMetric" : "Size of data-in",

86 "priority" : "High ",

87 "requiredLevel" : "greater than ",

88 "value" : "4 ",

89 "unit" : "KB "

90 }, {

91 "qosMetric" : "Size of data-out",

92 "priority" : "High ",

93 "requiredLevel" : " equals to ",

332 SLA for Case study 2 in Chapter 8

94 "value" : "4 ",

95 "unit" : "KB "

96 }, {

97 "qosMetric" : "Link Bandwidth",

98 "priority" : "High ",

99 "requiredLevel" : " equals to ",

100 "value" : "6 ",

101 "unit" : "Kbps "

102 }],

103 "resourceSpecification" : {

104 "configurationRequirement" : [

105 {

106 "configurationFeature" : "deviceType",

107 "value" : "Gateway "

108 },

109 {

110 "configurationFeature" : "numberOfDevices",

111 "value" : "4 "

112 },

113 {

114 "configurationFeature" : "mobilityOfDevice",

115 "value" : "fixed "

116 },

117 {

118 "configurationFeature" : "communicationMechanism",

119 "value" : "push "

120 },

121 {

122 "configurationFeature" : "communicationTechnology",

123 "value" : "WiFi "

124 },

125 {

126 "configurationFeature" : "cpuCapacity",

127 "value" : "3 ",

128 "unit" :"GHz"

333

129 },

130 {

131 "configurationFeature" : "memorySize",

132 "value" : "4 ",

133 "unit" :"GB"

134

135 }]

136 }

137 },{

138 "activityName" : "Analyse large-scale realtime data: Object

Tracker ",

139 "slo" : [{

140 "qosMetric" : "Throughput",

141 "priority" : "high ",

142 "requiredLevel" : "greater than ",

143 "value" : "5 ",

144 "unit" : "Kbps "

145 }, {

146 "qosMetric" : "Latency",

147 "priority" : "high ",

148 "requiredLevel" : " less than ",

149 "value" : "5 ",

150 "unit" : "milliseconds "

151 }],

152 "resourceSpecification" : {

153 "configurationRequirement" : [{

154 "configurationFeature" : "Memory Size",

155 "value" : "1 ",

156 "requiredLevel" : "greater than ",

157 "unit" : "KB "

158 }, {

159 "configurationFeature" : "vCPU Capacity",

160 "value" : "2 ",

161 "unit" : "GHz Xeon "

162 },{

334 SLA for Case study 2 in Chapter 8

163 "configurationFeature" : "Hypervisor",

164 "value" : "Xen "

165 }, {

166 "configurationFeature" : "OS Type",

167 "value" : "Linux Ubuntu "

168 }]

169 }

170 }, {

171 "activityName" : "Actuate: PTZ Control ",

172 "slo" : [{

173 "qosMetric" : "Accuracy",

174 "priority" : "High ",

175 "requiredLevel" : "greater than ",

176 "value" : "90 ",

177 "unit" : "%"

178 }],

179 "resourceSpecification" : {

180 "configurationRequirement" : [

181 {

182 "configurationFeature" : "deviceType",

183 "value" : "Sensor "

184 },

185 {

186 "configurationFeature" : "numberOfDevices",

187 "value" : "4 "

188 },

189 {

190 "configurationFeature" : "mobilityOfDevice",

191 "value" : "fixed "

192 },

193 {

194 "configurationFeature" : "communicationMechanism",

195 "value" : "event-driven "

196 },

197 {

335

198 "configurationFeature" : "communicationTechnology",

199 "value" : "WiFi "

200 },

201 {

202 "configurationFeature" : "cpuCapacity",

203 "value" : "1.6 ",

204 "unit" :"GHz"

205 },

206 {

207 "configurationFeature" : "memorySize",

208 "value" : "1 ",

209 "unit" :"GB"

210

211 }]

212 }

213 }]

Appendix E

SLA for Case study 3 in Chapter 8

1 [{

2 "appType" : "EEG Beam Tractor Game",

3 "startDate" : "Wed Nov 21 00:00:00 GMT 2018",

4 "endDate" : "Thu Nov 21 10:35:46 GMT 2019",

5 "sloAtApplicationLevel" : [{

6 "qosMetric" : "Response Time",

7 "priority" : "High",

8 "requiredLevel" : "less than",

9 "value" : "1000",

10 "unit" : "milliseconds"

11 }, {

12 "qosMetric" : "Cost/Price",

13 "priority" : "High",

14 "requiredLevel" : "less than",

15 "value" : "1000.0",

16 "unit" : "$ per contract period"

17 }],

18 "slaid" : "EEG Beam Tractor Game Wed Nov 21 00:00:00 GMT 2018Thu

Nov 21 10:35:46 GMT 2019d"

19 } ,{

20 "activityName" : "Capture Event of Interest (EoI) ",

21 "slo" : [{

22 "qosMetric" : "Data Freshness",

23 "priority" : "High ",

338 SLA for Case study 3 in Chapter 8

24 "requiredLevel" : "late than real time by ",

25 "value" : "1 ",

26 "unit" : "milliseconds "

27 },

28 {

29 "qosMetric" : "Sample Rate",

30 "priority" : "High ",

31 "requiredLevel" : "greater than ",

32 "value" : "100 ",

33 "unit" : "kHz "

34 }],

35 "resourceSpecification" : {

36 "configurationRequirement" : [

37 {

38 "configurationFeature" : "deviceType",

39 "value" : "Sensors "

40 },

41 {

42 "configurationFeature" : "numberOfDevices",

43 "value" : "6 "

44 },

45 {

46 "configurationFeature" : "mobilityOfDevice",

47 "value" : "fixed "

48 },

49 {

50 "configurationFeature" : "communicationMechanism",

51 "value" : "push "

52 },

53 {

54 "configurationFeature" : "communicationTechnology",

55 "value" : "WiFi "

56 },

57 {

58 "configurationFeature" : "cpuCapacity",

339

59 "value" : "1.6 ",

60 "unit" :"GHz"

61 },

62 {

63 "configurationFeature" : "memorySize",

64 "value" : "1 ",

65 "unit" :"GB"

66

67 }]

68 }

69 },

70 {

71 "activityName" : "Examine Captured EoI- Client",

72 "slo" : [{

73 "qosMetric" : " Throughput",

74 "priority" : "High ",

75 "requiredLevel" : "greater than ",

76 "value" : "1 ",

77 "unit" : "Kbps "

78 }, {

79 "qosMetric" : " Latency",

80 "priority" : "High ",

81 "requiredLevel" : " less than ",

82 "value" : "2 ",

83 "unit" : "milliseconds "

84 }, {

85 "qosMetric" : "Size of data-in",

86 "priority" : "High ",

87 "requiredLevel" : "greater than ",

88 "value" : "2 ",

89 "unit" : "KB "

90 }, {

91 "qosMetric" : "Size of data-out",

92 "priority" : "High ",

93 "requiredLevel" : " equals to ",

340 SLA for Case study 3 in Chapter 8

94 "value" : "4 ",

95 "unit" : "KB "

96 }],

97 "resourceSpecification" : {

98 "configurationRequirement" : [

99 {

100 "configurationFeature" : "deviceType",

101 "value" : "Gateway "

102 },

103 {

104 "configurationFeature" : "numberOfDevices",

105 "value" : "4 "

106 },

107 {

108 "configurationFeature" : "mobilityOfDevice",

109 "value" : "fixed "

110 },

111 {

112 "configurationFeature" : "communicationMechanism",

113 "value" : "push "

114 },

115 {

116 "configurationFeature" : "communicationTechnology",

117 "value" : "WiFi "

118 },

119 {

120 "configurationFeature" : "cpuCapacity",

121 "value" : "3 ",

122 "unit" :"GHz"

123 },

124 {

125 "configurationFeature" : "memorySize",

126 "value" : "4 ",

127 "unit" :"GB"

128

341

129 }]

130 }

131 },

132

133 {

134 "activityName" : "Analyse small-scale realtime data-

Concentration Calculator",

135 "slo" : [{

136 "qosMetric" : " Throughput",

137 "priority" : "High ",

138 "requiredLevel" : "greater than ",

139 "value" : "1 ",

140 "unit" : "Mbps "

141 }, {

142 "qosMetric" : " Latency",

143 "priority" : "High ",

144 "requiredLevel" : " less than ",

145 "value" : "2 ",

146 "unit" : "milliseconds "

147 }, {

148 "qosMetric" : "Size of data-in",

149 "priority" : "High ",

150 "requiredLevel" : "greater than ",

151 "value" : "4 ",

152 "unit" : "KB "

153 }, {

154 "qosMetric" : "Size of data-out",

155 "priority" : "High ",

156 "requiredLevel" : " equals to ",

157 "value" : "4 ",

158 "unit" : "KB "

159 }],

160 "resourceSpecification" : {

161 "configurationRequirement" : [{

162 "configurationFeature" : "Memory Size",

342 SLA for Case study 3 in Chapter 8

163 "value" : "4 ",

164 "requiredLevel" : "greater than ",

165 "unit" : "GB "

166 }, {

167 "configurationFeature" : "vCPU Capacity",

168 "value" : "3 ",

169 "unit" : "GHz Xeon "

170 },{

171 "configurationFeature" : "Hypervisor",

172 "value" : "Xen "

173 }, {

174 "configurationFeature" : "OS Type",

175 "value" : "Linux Ubuntu "

176 }]

177 }

178 },

179 {

180 "activityName" : "Analyse large-scale realtime data ",

181 "slo" : [{

182 "qosMetric" : "Throughput",

183 "priority" : "high ",

184 "requiredLevel" : "greater than ",

185 "value" : "5 ",

186 "unit" : "Mbps "

187 }, {

188 "qosMetric" : "Latency",

189 "priority" : "high ",

190 "requiredLevel" : " less than ",

191 "value" : "5 ",

192 "unit" : "milliseconds "

193 }],

194 "resourceSpecification" : {

195 "configurationRequirement" : [{

196 "configurationFeature" : "Memory Size",

197 "value" : "4 ",

343

198 "requiredLevel" : "greater than ",

199 "unit" : "GB "

200 }, {

201 "configurationFeature" : "vCPU Capacity",

202 "value" : "3 ",

203 "unit" : "GHz Xeon "

204 },{

205 "configurationFeature" : "Hypervisor",

206 "value" : "Xen "

207 }, {

208 "configurationFeature" : "OS Type",

209 "value" : "Linux Ubuntu "

210 }]

211 }

212 }]

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation and research problem
	1.2 Research Aim and Questions
	1.2.1 Question 1
	1.2.2 Question 2

	1.3 Publication

	2 Background
	2.1 Background
	2.1.1 Service Level Agreement (SLA)
	2.1.2 Blockchain
	2.1.3 Smart Contract

	2.2 State of the art
	2.2.1 Research Methodology

	2.3 Results
	2.3.1 Works Related to SLA Lifecycle Category
	2.3.2 Works Related to SLA Applications Category

	2.4 Discussion
	2.5 Conclusion

	3 SLA Conceptual Model for IoT Applications
	3.1 Introduction
	3.1.1 Remote Health Monitoring Service (RHMS)

	3.2 Related Work
	3.3 An End-to-End SLA Conceptual Model for IoT Applications
	3.4 Vocabulary Terms of the Configuration Parameters and QoS Metrics
	3.4.1 Infrastructure Resources
	3.4.2 Service Concept

	3.5 Evaluation
	3.5.1 Experiment
	3.5.2 Participants
	3.5.3 Procedure
	3.5.4 Experimental results
	3.5.5 Evaluation Analysis

	3.6 Conclusion and Future Work

	4 Service level Agreement Specification for IoT Applications
	4.1 Introduction
	4.2 SLA Grammar for IoT Applications
	4.2.1 <SLA>
	4.2.2 <Party>
	4.2.3 <slo>
	4.2.4 <workflowActivity>
	4.2.5 <configurationRequirement>
	4.2.6 <price>

	4.3 Evaluation
	4.3.1 Goal/question/metric (GQM) approach
	4.3.2 Applying the GQM approach to evaluate the Proposed SLA Specification for IoT Applications

	4.4 Comparison with Other SLA Languages
	4.5 Conclusion and Future Work

	5 SLA Specification Tool for IoT Applications
	5.1 Introduction
	5.2 Design Goals
	5.3 System Architecture
	5.4 Evaluation
	5.4.1 Experiment results
	5.4.2 Evaluation Analysis

	5.5 Conclusion and Future Work

	6 Application Scenario Where the SLA Specification Tool Brings New Value for SLA Management
	6.1 Introduction
	6.2 Background
	6.2.1 Hyperledger Fabric
	6.2.2 IoT-CANE (Context-Aware recommendatioN systEm)
	6.2.3 From SLA to Smart Contract Java Library

	6.3 Proposed SLA management Framework
	6.4 Proof of Concept
	6.4.1 Use Case Study: Flood Monitoring and Prediction (FMP)
	6.4.2 Implementation

	6.5 Discussion
	6.5.1 Comparison with Other SLA Management Frameworks

	6.6 Conclusion and Future Research

	7 SLA-aware Approach for IoT Workflow Activities Placement Across Layers
	7.1 Introduction
	7.2 SLA- and context-aware approach for IoT activity placement across the Cloud and the Edge
	7.2.1 Problem Definition and Modelling
	7.2.2 Time Complexity Analysis

	7.3 Evaluation
	7.3.1 Use-Case Studies
	7.3.2 Physical network
	7.3.3 Performance Evaluation Results

	7.4 Discussion
	7.5 Conclusion and Future Research

	8 Conclusion and Future Research
	8.1 Thesis Summary
	8.1.1 Limitations

	8.2 Future Research
	8.2.1 SLA negotiation protocol to enhance consumer experience when selecting a service provider
	8.2.2 Build cross-layer multi-provider SLA-based monitoring systems for the IoT

	References
	Appendix A Questionnaire
	Appendix B SLA Specification for RHMS
	Appendix C SLA for Case study 1 in Chapter 8
	Appendix D SLA for Case study 2 in Chapter 8
	Appendix E SLA for Case study 3 in Chapter 8

