227 research outputs found

    Achievements, open problems and challenges for search based software testing

    Get PDF
    Search Based Software Testing (SBST) formulates testing as an optimisation problem, which can be attacked using computational search techniques from the field of Search Based Software Engineering (SBSE). We present an analysis of the SBST research agenda, focusing on the open problems and challenges of testing non-functional properties, in particular a topic we call 'Search Based Energy Testing' (SBET), Multi-objective SBST and SBST for Test Strategy Identification. We conclude with a vision of FIFIVERIFY tools, which would automatically find faults, fix them and verify the fixes. We explain why we think such FIFIVERIFY tools constitute an exciting challenge for the SBSE community that already could be within its reach

    Achievements, Open Problems and Challenges for Search Based Software Testing

    Full text link
    testing as an optimisation problem, which can be attacked using computational search techniques from the field of Search Based Software Engineering (SBSE). We present an analysis of the SBST research agenda1, focusing on the open problems and chal-lenges of testing non-functional properties, in particular a topic we call ‘Search Based Energy Testing ’ (SBET), Multi-objective SBST and SBST for Test Strategy Identification. We conclude with a vision of FIFIVERIFY tools, which would automatically find faults, fix them and verify the fixes. We explain why we think such FIFIVERIFY tools constitute an exciting challenge for the SBSE community that already could be within its reach. I

    Predicting problems caused by component upgrades

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 89-93).This thesis presents a new, automatic technique to assess whether replacing a component of a software system by a purportedly compatible component may change the behavior of the system. The technique operates before integrating the new component into the system or running system tests, permitting quicker and cheaper identification of problems. It takes into account the system's use of the component, because a particular component upgrade may be desirable in one context but undesirable in another. No formal specifications are required, permitting detection of problems due either to errors in the component or to errors in the system. Both external and internal behaviors can be compared, enabling detection of problems that are not immediately reflected in the output. The technique generates an operational abstraction for the old component in the context of the system, and one for the new component in the context of its test suite. An operational abstraction is a set of program properties that generalizes over observed run-time behavior. Modeling a system as divided into modules, and taking into account the control and data flow between the modules, we formulate a logical condition to guarantee that the system's behavior is preserved across a component replacement. If automated logical comparison indicates that the new component does not make all the guarantees that the old one did, then the upgrade may affect system behavior and should not be performed without further scrutiny.(cont.) We describe a practical implementation of the technique, incorporating enhancements to handle non-local state, non-determinism, and missing test suites, and to distinguish old from new incompatibilities. We evaluate the implementation in case studies using real-world systems, including the Linux C library and 48 Unix programs. Our implementation identified real incompatibilities among versions of the C library that affected some of the programs, and it approved the upgrades for other programs that were unaffected by the changes.by Stephen Andrew McCamant.S.M

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible

    Detecting Dissimilar Classes of Source Code Defects

    Get PDF
    Software maintenance accounts for the most part of the software development cost and efforts, with its major activities focused on the detection, location, analysis and removal of defects present in the software. Although software defects can be originated, and be present, at any phase of the software development life-cycle, implementation (i.e., source code) contains more than three-fourths of the total defects. Due to the diverse nature of the defects, their detection and analysis activities have to be carried out by equally diverse tools, often necessitating the application of multiple tools for reasonable defect coverage that directly increases maintenance overhead. Unified detection tools are known to combine different specialized techniques into a single and massive core, resulting in operational difficulty and maintenance cost increment. The objective of this research was to search for a technique that can detect dissimilar defects using a simplified model and a single methodology, both of which should contribute in creating an easy-to-acquire solution. Following this goal, a ‘Supervised Automation Framework’ named FlexTax was developed for semi-automatic defect mapping and taxonomy generation, which was then applied on a large-scale real-world defect dataset to generate a comprehensive Defect Taxonomy that was verified using machine learning classifiers and manual verification. This Taxonomy, along with an extensive literature survey, was used for comprehension of the properties of different classes of defects, and for developing Defect Similarity Metrics. The Taxonomy, and the Similarity Metrics were then used to develop a defect detection model and associated techniques, collectively named Symbolic Range Tuple Analysis, or SRTA. SRTA relies on Symbolic Analysis, Path Summarization and Range Propagation to detect dissimilar classes of defects using a simplified set of operations. To verify the effectiveness of the technique, SRTA was evaluated by processing multiple real-world open-source systems, by direct comparison with three state-of-the-art tools, by a controlled experiment, by using an established Benchmark, by comparison with other tools through secondary data, and by a large-scale fault-injection experiment conducted using a Mutation-Injection Framework, which relied on the taxonomy developed earlier for the definition of mutation rules. Experimental results confirmed SRTA’s practicality, generality, scalability and accuracy, and proved SRTA’s applicability as a new Defect Detection Technique

    Model-Driven Development of Aspect-Oriented Software Architectures

    Full text link
    The work presented in this thesis of master is an approach that takes advantage of the Model-Driven Development approach for developing aspect-oriented software architectures. A complete MDD support for the PRISMA approach is defined by providing code generation, verification and reusability properties.PĂ©rez BenedĂ­, J. (2007). Model-Driven Development of Aspect-Oriented Software Architectures. http://hdl.handle.net/10251/12451Archivo delegad
    • 

    corecore