602 research outputs found

    Online unit clustering in higher dimensions

    Full text link
    We revisit the online Unit Clustering and Unit Covering problems in higher dimensions: Given a set of nn points in a metric space, that arrive one by one, Unit Clustering asks to partition the points into the minimum number of clusters (subsets) of diameter at most one; while Unit Covering asks to cover all points by the minimum number of balls of unit radius. In this paper, we work in Rd\mathbb{R}^d using the L∞L_\infty norm. We show that the competitive ratio of any online algorithm (deterministic or randomized) for Unit Clustering must depend on the dimension dd. We also give a randomized online algorithm with competitive ratio O(d2)O(d^2) for Unit Clustering}of integer points (i.e., points in Zd\mathbb{Z}^d, d∈Nd\in \mathbb{N}, under L∞L_{\infty} norm). We show that the competitive ratio of any deterministic online algorithm for Unit Covering is at least 2d2^d. This ratio is the best possible, as it can be attained by a simple deterministic algorithm that assigns points to a predefined set of unit cubes. We complement these results with some additional lower bounds for related problems in higher dimensions.Comment: 15 pages, 4 figures. A preliminary version appeared in the Proceedings of the 15th Workshop on Approximation and Online Algorithms (WAOA 2017

    A survey on the complexity of learning quantum states

    Full text link
    We survey various recent results that rigorously study the complexity of learning quantum states. These include progress on quantum tomography, learning physical quantum states, alternate learning models to tomography and learning classical functions encoded as quantum states. We highlight how these results are paving the way for a highly successful theory with a range of exciting open questions. To this end, we distill 25 open questions from these results.Comment: Invited article by Nature Review Physics. 39 pages, 6 figure

    Recursive Compressed Sensing

    Get PDF
    We introduce a recursive algorithm for performing compressed sensing on streaming data. The approach consists of a) recursive encoding, where we sample the input stream via overlapping windowing and make use of the previous measurement in obtaining the next one, and b) recursive decoding, where the signal estimate from the previous window is utilized in order to achieve faster convergence in an iterative optimization scheme applied to decode the new one. To remove estimation bias, a two-step estimation procedure is proposed comprising support set detection and signal amplitude estimation. Estimation accuracy is enhanced by a non-linear voting method and averaging estimates over multiple windows. We analyze the computational complexity and estimation error, and show that the normalized error variance asymptotically goes to zero for sublinear sparsity. Our simulation results show speed up of an order of magnitude over traditional CS, while obtaining significantly lower reconstruction error under mild conditions on the signal magnitudes and the noise level.Comment: Submitted to IEEE Transactions on Information Theor

    Automatic Table Extension with Open Data

    Get PDF
    With thousands of data sources available on the web as well as within organisations, data scientists increasingly spend more time searching for data than analysing it. To ease the task of find and integrating relevant data for data mining projects, this dissertation presents two new methods for automatic table extension. Automatic table extension systems take over the task of tata discovery and data integration by adding new columns with new information (new attributes) to any table. The data values in the new columns are extracted from a given corpus of tables

    Bounded Evaluation: Querying Big Data with Bounded Resources

    Get PDF
    • …
    corecore