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Abstract—We introduce a recursive algorithm for performing
compressed sensing on streaming data. The approach consists
of a) recursive encoding, where we sample the input stream via
overlapping windowing and make use of the previous measure-
ment in obtaining the next one, and b) recursive decoding, where
the signal estimate from the previous window is utilized in order
to achieve faster convergence in an iterative optimization scheme
applied to decode the new one. To remove estimation bias, a
two-step estimation procedure is proposed comprising support set
detection and signal amplitude estimation. Estimation accuracy is
enhanced by a non-linear voting method and averaging estimates
over multiple windows. We analyze the computational complexity
and estimation error, and show that the normalized error
variance asymptotically goes to zero for sublinear sparsity. Our
simulation results show speed up of an order of magnitude over
traditional CS, while obtaining significantly lower reconstruction
error under mild conditions on the signal magnitudes and the
noise level.

Index Terms—Compressed sensing, recursive algorithms,
streaming data, LASSO, machine learning, optimization, MSE.

I. INTRODUCTION

In signal processing, it is often the case that signals of
interest can be represented sparsely by using few coefficients
in an appropriately selected orthonormal basis or frame. For
example, the Fourier basis is used for bandlimited signals,
while wavelet bases are used for piecewise continuous signals—
with applications in communications for the former, and
image compression for the latter. While a small number
of coefficients in the respective basis may be enough for
high accuracy representation, the celebrated Nyquist/Shannon
sampling theorem suggests a sampling rate that is at least twice
the signal bandwidth, which, in many cases, is much higher
than the sufficient number of coefficients [2], [3].

The Compressed Sensing (CS)-also referred to as Com-
pressive Sampling—framework was introduced for sampling
signals not according to bandwidth, but rather to their infor-
mation content, i.e.,, the number of degrees of freedom. This
sampling paradigm suggests a lower sampling rate compared
to the classical sampling theory for signals that have sparse
representation in some fixed basis [2], or even non-bandlimited
signals [3], to which traditional sampling does not even apply.

The foundations of CS have been developed in [4], [5].
Although the field has been extensively studied for nearly a
decade, performing CS on streaming data still remains fairly
open, and an efficient recursive algorithm is, to the best of our
knowledge, not available. This is the topic of the current paper,

The authors are with the School of Computer and Communi-
cation Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland. {nikolaos.freris, orhan.ocal,
martin.vetterli}@epfl.ch.

A preliminary version of this work was presented at the 515¢ Allerton
conference, 2013 [1].

where we study the architecture for compressively sampling an
input data stream, and analyze the computational complexity
and stability of signal estimation from noisy samples. The
main contributions are:

1) We process the data stream by successively performing
CS in sliding overlapping windows. Sampling overhead
is minimized by recursive computations using a cyclic
rotation of the same sampling matrix. A similar approach
is applicable when the data are sparsely representable in
the Fourier domain.

2) We perform recursive decoding of the obtained samples
by using the estimate from a previously decoded window
to obtain a warm-start in decoding the next window (via
an iterative optimization method).

3) In our approach, a given entry of the data stream is
sampled over multiple windows. In order to enhance
estimation accuracy, we propose a three-step procedure
to combine estimates corresponding to a given sample
obtained from different windows:

o Support detection amounts to estimating whether or
not a given entry is non-zero. This is accomplished
by a voting strategy over multiple overlapping win-
dows containing the entry.

e Ordinary least-squares is performed in each win-
dow on the determined support.

o Averaging of estimates across multiple windows
yields the final estimate for each entry of the data
stream.

4) Extensive experiments showcase the merits of our ap-
proach in terms of substantial decrease in both run-time
and estimation error.

Similar in spirit to our approach are the works of Garrigues
and El Ghaoui [6], Boufounos and Asif [7] and Asif and
Romberg [8]. In [6], a recursive algorithm was proposed for
solving LASSO based on warm-start. In [7], the data stream
is assumed sparse in the frequency domain, and Streaming
Greedy Pursuit is proposed for progressively filtering mea-
surements in order to reconstruct the data stream. In [8],
the authors analyze the use of warm-start for speeding up
the decoding step. Our work is different in that: a) it both
minimizes sampling overhead by recursively encoding the data
stream, as well as b) produces high-accuracy estimates by
combining information over multiple windows at the decoding
step.

The organization of the paper is as follows: Section II
describes the notation, definitions and the related literature on
CS. Section III introduces the problem formulation and de-
scribes the key components of Recursive CS (RCS): recursive
sampling and recursive estimation. We analyze the proposed
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method and discuss extensions in Section IV. Experimental
results on resilience to noise and execution time of RCS are
reported in Section VI.

II. BACKGROUND

This section introduces the notation and definitions used in
the paper, and summarizes the necessary background on CS.

A. Notation

Throughout the paper, we use capital boldface letters to
denote matrices (e.g., A) and boldface lowercase letters to
denote vectors (e.g., ). We use z; to denote the i*" entry
of vector x, a; to denote the " column of matrix A, and
A;; to denote its (i,j) entry . The i'" sampling instance
(e.g., i*" window of the input stream, ith sampling matrix,
i sample) is denoted by superscript (e.g., (¥, AW, y(®).
The cardinality of a set S is denoted by |S|, and we use {z;}
as shorthand notation for the infinite sequence {x;}i—o.1.....
Last, we use E,[-] to denote the conditional expectation
E, [-]=E[-la].

B. Definitions and Properties

In the following, we summarize the key definitions related
to compressed sensing.

Definition 1 (k-sparsity). For a vector x € R™ we define
the support supp(x) := {i : ©; # 0}. The Ly pseudonorm is
llz|lo := |supp(x)|. We say that a vector x is k-sparse if and
only if o < .

Definition 2 (Mutual Coherence). For a matrix A € R™*",
the mutual coherence is defined as the largest normalized inner
product between any two different columns of A [9]:

1(A) =

R 1

— X .

o<ij<n—1 [|aillz - [|a;ll2
i#£]

(D

2)

Definition 3 (Restricted Isometry Property). Let A € R™*™,
For given 0 < k < n, the matrix A is said to satisfy the
Restricted Isometry Property (RIP) if there exists 0, € [0,1]
such that:

(1= 0a)llz]l3 < [|[Az]3 < (1 + 0,) ]| 3)

holds for all x € R™ k-sparse vectors, for a constant 0,, > 0
sufficiently small [2].

The value §, is called the restricted isometry constant of
A for r-sparse vectors. Evidently, an equivalent description
of RIP is that every subset of x columns of A approximately
behaves like an orthonormal system [10], hence Ax is ap-
proximately an isometry for k-sparse vectors.

Unfortunately, RIP is NP-hard even to verify for a given
matrix as it requires (Z) eigendecompositions. The success
story lies in that properly constructed random matrices satisfy
RIP with overwhelming probability [2], for example:

1) Sampling n random vectors uniformly at random from
the m-dimensional unit sphere [2].
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2) Random partial Fourier matrices obtained by selecting m
rows from the n dimensional Fourier matrix F' uniformly
at random, where:

1 1 ... 1
1 |w w0 Wt
F=— .
Vn : . :
Wwhow L D)’
for w = e2/N,
3) Random Gaussian matrices with entries drawn i.i.d. from
N (0,1/m).

4) Random Bernoulli matrices with
Aij € {1/y/m,—1/y/m}
with equal probability, or [11]:
1 with probability %,
Ajj =< 0  with probability Z, (4)
—1  with probability §.

having the added benefit of providing a sparse sampling
matrix.

For the last two cases, A satisfies a prescribed J,, for any
k < cym/log(n/k) with probability p > 1 — 2e~ 2™, where
constants ¢; and co depend only on 6, [12]. The important
result here is that such matrix constructions are universal—in
the sense that they satisfy RIP which is a property that does
not depend on the underlying application— as well as efficient,
as they only require random number generation.

It is typically the case that x is not itself sparse, but is
sparsely representable in a given orthonormal basis. In such
case, we write * = Wa, where now o« is sparse. Com-
pressed sensing then amounts to designing a sensing matrix
® ¢ R™*" guch that A := ®¥ is a CS matrix. Luckily,
random matrix constructions can still serve this purpose.

Definition 4 (Coherence). Let ®, ¥ be two orthonormal
bases in R™. The coherence between these two bases is defined
as [2]:

M(®,P) = \/ﬁlgéjén [(Dr, V)] - &)

It follows from elementary linear algebra that 1 <
M(®, W) < \/n for any choice of ® and V.

The basis ® € R"*" is called the sensing basis, while
W € R" " is the representation basis. Compressed sensing
results apply for low coherence pairs [5]. A typical example
of such pairs is the Fourier and canonical basis, for which
the coherence is 1 (maximal incoherence). Most notably, a
random basis ® (generated by any of the previously de-
scribed distributions for .l = n), when orthonormalized is
incoherent with any given basis W (with high probability,
M(®,¥) ~ /2logn) [2]. The sensing matrix ® can be
selected as a row-subset of ®, therefore, designing a sensing
matrix is not different than for the case where x is itself sparse,
ie., ¥ = I,,, the identity matrix. For ease of presentation,
we assume in the sequel that ¥ = I, ,,,, unless otherwise
specified, but the results also hold for the general case.
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C. Setting

Given linear measurements of vector x € R™
y = Az, (6)

y € R™ is the vector of obtained samples and A € R™*" is
the sampling (sensing) matrix. Our goal is to recover  when
m << n. This is an underdetermined linear system, so for
a general vector «x it is essentially ill-posed. The main result
in CS is that if « is k-sparse and k < Cm/log(n/k), this
is possible. Equivalently, random linear measurements can be
used for compressively encoding a sparse signal, so that it is
then possible to reconstruct it in a subsequent decoding step.
The key concept here is that encoding is universal: while it is
straightforward to compress if one knows the positions of the
non-zero entries, the CS approach works for all sparse vectors,
without requiring prior knowledge of the non-zero positions.
To this end, searching for the sparsest vector x that leads

to the measurement y, one needs to solve
min ||z||o

P
st. Az =uy. (Fo)

Unfortunately this problem is, in general, NP-hard requiring
search over all subsets of columns of A [12], e.g., checking
(™) linear systems for a solution in the worst case.

D. Algorithms for Sparse Recovery

Since () may be computationally intractable for large
instances, one can seek to ‘approximate’ it by other tractable
methods. In this section, we summarize several algorithms
used for recovering sparse vectors from linear measurements,
at the decoding phase, with provable performance guarantees.

1) Basis Pursuit: Candes and Tao [10] have shown that
solving (Py) is equivalent to solving the ¢; minimization
problem

min |||

BP
st. Ax =y, (BF)

for all k-sparse vectors x, if A satisfies RIP with do,, < V2-1.
The optimization problem (BP) is called Basis Pursuit. Since
the problem can be recast as a linear program, solving (BP) is
computationally efficient, e.g., via interior-point methods [13],
even for large problem instances as opposed to solving (Fy)
whose computational complexity may be prohibitive.

2) Orthogonal Matching Pursuit: Orthogonal Matching
Pursuit (OMP) is a greedy algorithm that seeks to recover
sparse vectors x from noiseless measurement y = Ax. The
algorithm outputs a subset of columns of A, via iteratively
selecting the column minimizing the residual error of approxi-
mating y by projecting to the linear span of previously selected
columns.

Assuming x is x-sparse, the resulting measurement y can
be represented as the sum of at most x columns of A weighted
by the corresponding nonzero entries of x. Let the columns of
A be normalized to have unit /5-norm. For iteration index ¢, let
7, denote the residual vector, let ¢; € R? be the solution to the
least squares problem at iteration ¢, S; set of indices and Ag,
the submatrix obtained by extracting columns of A indexed

by S;. The OMP algorithm operates as follows: Initially set
t=1,r9 =y and Sy = . At each iteration the index of the
column of A having highest inner product with the residual
vector, i.e., s; = arg max;(r;_1, a;) is added to the index set,
yielding S; = S;—1 U {s;}. Since one index is added to S;
at each iteration the cardinality is |S;| = t. Then, the least
squares problem
t

e =argmin [ly — > cjas, >
j=1

is solved in each iteration; a closed form solution is:
-1
T T
o= (ALAs) ALy,

t
and the residual vector is updated by r; = y— > cijas,;. With
i=1

r; obtained as such, the residual vector at thejend of iteration
t is made orthogonal to all the vectors in the set {a; : i € S;}.

The algorithm stops when a desired stopping criterion
is met, such as ||y — Ag,ci|]2 < ~ for some threshold
v > 0. Despite its simplicity, there are guarantees for exact
recovery; OMP recovers any k-sparse signal exactly if the
mutual coherence of the measurement matrix A satisfies
1(A) < 5= [14]. Both BP and OMP handle the case of
noiseless measurements. However, in most practical scenaria,
noisy measurements are inevitable, and we address this next.

3) Least Absolute Selection and Shrinkage Operator
(LASSO): Given measurements of vector © € R™ corrupted
by additive noise:

y= Az + w, (7

one can solve a relaxed version of BP, where the equality con-
straint is replaced by inequality to account for measurement
noise:

min |||

8
st. Az —yll2 <5, ©

This is best known as Least Absolute Selection and Shrinkage
Operator (LASSO) in the statistics literature [15]. The value
of & is selected to satisfy & > ||w||2.

By duality, the problem can be posed equivalently [13] as
an unconstrained ¢;-regularized least squares problem:

min|| Az — y||3 + Az||1, 9)

where A is the regularization parameter that controls the trade-
off between sparsity and reconstruction error. Still by duality,
an equivalent version is given by the following constrained
optimization problem:

minimize |[Ax — yl|2

]2 < po.

Remark 1 (Equivalent forms of LASSO). All these problems
can be made equivalent—in the sense of having the same solu-
tion set—for particular selection of parameters (&, A, ). This
can be seen by casting between the optimality conditions for
each problem; unfortunately the relations obtained depend on
the optimal solution itself, so there is no analytic formula for
selecting a parameter from the tuple (G, A, (1) given another

10
subject to (19)



one. In the sequel, we refer to both (8), (9) as LASSO; the
distinction will be made clear from the context.

The following theorem characterizes recovery accuracy in
the noisy case through LASSO.

Theorem II.1 (Error of LASSO [2]). If A satisfies RIP with
0ok < V2 — 1, the solution x, to (8) obeys:

[ze —xll2 <co-lle—zulli/VE+cr-6, (1D

for constants cy and ¢y, where x,; is the vector x with all but
the largest k components set to O.

Theorem II.1 states that the reconstruction error is upper
bounded by the sum of two terms: the first is the error due
to model mismatch, and the second is proportional to the
measurement noise variance. In particular, if  is k-sparse
and 6y, < /2 — 1 then ||z, — ||z < ¢; - 5. Additionally,
for noiseless measurements w = 0 — ¢ = 0, we
retrieve the success of BP as a special case (note that the
requirement on the restricted isometry constant is identical).
This assumption is satisfied with high probability by matrices
obtained from random vectors sampled from the unit sphere,
random Gaussian matrices and random Bernoulli matrices if
m > Cklog(n/k), where C is a constant depending on each
instance [2]; typical values for the constants Cy and C; can
be found in [2] and [5], where it is proven that Cy < 5.5
and C; < 6 for do, = 1/4. A different approach was taken
in [16], where the replica method was used for analyzing the
mean-squared error of LASSO.

The difficulty of solving (Fp) lies in estimating the support
of vector x, i.e., the positions of the non-zero entries. One
may assume that solving LASSO may give some information
on support, and this is indeed the case [17]. To state the result
on support detection we define the generic k-sparse model.

Definition 5 (Generic k-sparse model). Let x € R™ denote
a k-sparse signal and I, := supp(x) be its support set,
supp(x) := {i : x; # 0}. Signal x is said to be generated
by generic k-sparse model if:
1) Support I, C {1,2,...,n} of x is selected uniformly at
random, and |I,| = k.
2) Conditioned on I, the signs of the non zero elements are
independent and equally likely to be —1 and 1.

Theorem IL2 (Support Detection [17]). Assume u(A) <
c1/logn for some constant ¢ > 0, x is generated from
generic k-sparse model, x < con/(||Al|3logn) for some con-
stant ¢y > 0 and w ~ N(0,0%1). Ifnelijn |z;| > 80+/21logmn,

the LASSO estimate obtained by choosing A\ = 40+/2logn
satisfies:

supp(z) = supp(z)
sgn(z;) = sgn(x;), Vi€ I

with probability at least 1 — 2 (ﬁ + lITm‘) -0 (nm%gz)

and
|Az — Az||% < c3k(logn)o?,

with probability at least 1 — 6n=21°82 — n=1(21logn)~1/?,
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for some positive constant cs.

Another result on near support detection, or as alternatively
called ideal model selection for LASSO is given in [18] based
on the so called irrepresentable condition of the sampling
matrix introduced therein.

Remark 2 (Algorithms for LASSO). There is a wealth of
numerical methods for LASSO stemming from convex opti-
mization. LASSO is a convex program (in all equivalent forms)
and the unconstrained problem (9) can be easily recast as a
quadratic program, which can be handled by interior point
methods [19]. This is the case when using a generalized convex
solver such as cvx [20]. Additionally, iterative algorithms have
been developed specifically for LASSO; all these are inspired
by proximal methods [21] for non-smooth convex optimiza-
tion: FISTA [22] and SpaRSA [23] are accelerated proximal
gradient methods [21], SALSA [24] is an application of the
alternative direction method of multipliers. These methods
are first-order methods [19], in essence generalizations of
the gradient method. For error defined as G(xy)) — G(x.)
where G(z) is the objective function of LASSO in (9), x is
the estimate at iteration number t and x, = argmin, G(x)
is the optimal soultion, the error decays as 1/t* for FISTA,
SpaRSA and SALSA. Recently, a proximal Newton-type method
was devised for LASSO [25] with substantial speedup; the
convergence rate is globally no worse than 1/t%, but is locally
quadratic (i.e., goes to zero roughly like e=ct’ ).

Remark 3 (Computational complexity). In iterative schemes,
computational complexity is considered at a per-iteration
basis: a) interior-point methods require solving a dense linear
system, hence a cost of O(n®) per iteration, b) first-order
proximal methods only perform matrix-vector multiplications
at a cost of O(n?), while the second-order method proposed
in [25] requires solving a sparse linear system at a resulting
cost of O(k®). The total complexity depends also on the
number of iterations until convergence; we analyze this in
Sec. V-B. Note that the cost of decoding dominates that of
encoding which requires a single matrix-vector multiplication,
i.e., O(mn) operations.

Our approach is generic, in that it does not rely on a
particular selection of numerical solver. It uses warm-start for
accelerated convergence, so using an algorithm like [25] may
yield improvements over the popular FISTA that we currently
use in experiments.

We conclude this section by providing optimality conditions
for LASSO, which can serve in determining termination
criteria for iterative optimization algorithms. We show the case
of unconstrained LASSO, but similar conditions hold for the
constrained versions (8), (10).

Remark 4 (Optimality conditions for LASSO). For uncon-
strained LASSO cf. (9), define x* to be an optimal solution,
and g == A" (y — Ax™). The necessary and sufficient KKT
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{z}; : @0 a1 w9 Tp1 Tp Tpt1 - - -
x(o) : o 1 | T2 n—1

w(l) : T To n—1| Tn

$(2) . T2 n—1| Tn [Tn+1

Fig. 1: Illustration of the overlapping window processing for
the data stream {x(};—_o ;. .

conditions for optimality [19] are:

gi= 2 sgu(a?) for{i:at £0}
2 (12)

A - *
\gj|<5 for{]:xj:()}.

As termination criterion, we use e-optimality, for some ¢ > 0
suffieciently small:

A
gi— 2 sgn(@l) <e  forfi:al £ 0}
2
A\ (13)
|gj\<§+e for {j: 25 =0}.

III. RECURSIVE COMPRESSED SENSING

We consider the case that the signal of interest is an
infinite sequence, {x;};=0,1,..., and process the input stream
via successive windowing; we define

) T
2 = [a:, Tiq1 $i+n—ﬂ (14)

to be the i*" window taken from the streaming signal. If (")
is known to be sparse, one can apply the tools surveyed in
Section II to recover the signal portion in each window, hence
the data stream. However, the involved operations are costly
and confine an efficient online implementation.

In this section, we present our approach to compres-
sively sampling streaming data, based on recursive encoding-
decoding. The proposed method has low complexity in both
the sampling and estimation parts which makes the algorithm
suitable for an online implementation.

A. Problem Formulation

From the definition of (¥ € R™ we have:

01 0 ... 0 0
001 ... 0 0
2@ =1: 0 - 2 e, (5)
00 0 ... 1 0
000 ... 0 1

which is in the form of a n—dynamical system with scalar
input. The sliding window approach is illustrated in Fig. 1.

Our goal is to design a robust low-complexity sliding-
window algorithm which provides estimates {&;} using suc-
cessive measurements y(?) of the form

y(i) = A@ L) + w(i)7 (16)

where {A(i)} is a sequence of measurement matrices. This is
possible if {z;} is sufficiently sparse in each window, namely
if ||2()||o < & for each i, where x << n (or if this holds with
sufficiently high probability), and {A(i)} are CS matrices, i.e.,
satisfy the RIP as explained in the prequel.

Note that running such an algorithm online is costly and
therefore, it is integral to design an alternative to an ad-hoc
method. We propose an approach that leverages the signal
overlap between successive windows, consisting of recursive
sampling and recursive estimation.

Recursive Sampling: To avoid a full matrix-vector multi-
plication for each y*), we design A 5o that we can reuse
y® in computing y“t1) with low computation overhead, or

y(iH) =f (y(i),$i+n,$z’) .

Recursive Estimation: In order to speed up the conver-
gence of an iterative optimization scheme, we make‘use of
the estimate corresponding to the previous window, 207V, o

derive a starting point, & D for estimating &9, or

U

B. Recursive Sampling of sparse signals

We propose the following recursive sampling scheme with
low computational overhead; it reduces the complexity to
O(m) vs. O(mn) as required by the standard data encoding.

We derive our scheme for the most general case of noisy
measurements, with ideal measurements following as special
case.

At the first iteration, there is no prior estimate, so we
necessarily have to compute

Y0 = A0 z0) 4 4(0),
We choose a sequence of sensing matrices A recursively
as:

A<i+1):[ QRN () ()

a” as il a(()i)}zA(i)P (17)

(®

where a; is the 5" column of A" _where we have used the
convention j € {0,1,...,n — 1} for notational convenience—
and P is a permutation matrix:
0 ... 01
1 ... 00
P = (18)
0O ... 10

The success of this data encoding scheme is ensured by noting
that if A satisfies RIP for given x with constant J,, then
A® satisfies RIP for the same K, 0., due to the fact that RIP
is insensitive to permutations of the columns of AO).

Given the particular recursive selection of A® we can



time _
o T, Ty Tn
T T L1 Tn+1
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Tn—1 Ln—1 Ln—1 Ln—1
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Fig. 2: Tllustration of () for the first four windows. The
sampling of z(?) by the matrix AW jg equivalent to sampling
v@ by A je, AW = A0y,

compute y"*+1) recursively as:
Y1) = AGHD D) 4 gy (i41)

_ AD pglitD) 4 i+
=AW (sc(i) + [0 ! } (Tin — xi)) 4w+
n—1

=y 4 (2ipn — xi)agi) +w — @ (19)

where 0,,_; denotes the all 0 vector of length n — 1. This
takes the form of a noisy rank-1 update:

Y+ = g 4 (g, xi)agi) 42D (20)
—

rank-1 update

where the innovation is the scalar difference between the
new sampled portion of the stream, namely x;4,, and the
entry x; that belongs in the previous window but not in the
current one. Above, we also defined z(® = w® — w1 to
be the noise increment; note that the noise sequence {z(V}
has independent entries if w(” is an independent increment
process. Our approach naturally extends to sliding the window
by 1 < 7 < n units, in which case we have a rank-7 update,
cf. Sec. IV

Remark 5. The particular selection of the sampling matrices
{A(Z)}izoﬁlw given in (17) satisfies AWz = AO) pig(),
Defining

v@ = Piw(i), (21)

recursive sampling can be viewed as encoding v'") by us-
ing the same measurement matrix A With the particular
structure of V) given in (14), all of the entries of v and
v~V are equal except v;",. Thus the resulting problem can
be viewed as signal estimation with partial information.

1) Recursive sampling in Orthonormal Basis: So far, we
have addressed the case that for a given n € Z™T, a given
window z(Y) of length n obtained from the sequence {z;}
is r-spase: |[(?|o < k, Vi. In general, it might rarely be
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the case that x(*) is sparse itself, however it may be sparse
when represented in a properly selected basis (for instance the
Fourier basis for time series or a wavelet basis for images).
We show the generalization below.

Let (¥ € R™ be sparsely representable in a given or-
thonormal basis W, ie., () = Wa'?, where al?) is sparse.
Assuming a common basis for the entire sequence {x;} (over
windows of size n) we have:

AD 0 — ADga )

For the CS encoding/decoding procedure to carry over, we
need that AW satisfy RIP. The key result here is that RIP
is satisfied with high probability for the product of a random
matrix A® and any fixed matrix [12]. In this case the LASSO
problem is expressed as:

minimize [|AY®a® —y@|2 + A,

where the input signal is expressed as m@ = wal, and
measurements are still given by y(& = AW z®) 4 4,

Lemma III.1 (Recursive Sampling in Orthonormal Basis). Let
) = O, ywhere W is an orthonormal matrix with inverse
L:=WU"" Then,

o) =TTIw
+ Yn—1 (d’(n—l)a(ﬂ_l) - ¢(O)a(2)) )

where II .= P, and (o) and Y (n_1) denote the first and
last row of T, respectively.

(22)

Proof. By the definition of **1) we have:
) = 112 + [Onl_l] (Titn — ).

Since z() = Ta ™, it holds:
T = :c(()i) = [1 On,l] T lith)
Titn = ngjll) = [On—l 1] 'I’a(i+1)~

Using these equations along with a(? = T'z() yields:
oY = 1) = TTI2® + T {0"1_1] (Tign — 1)

=TTz + (2440 — )7V,
=T@a® + o, () e — () Ta®).

O
2) Recursive Sampling in Fourier Basis: The Fourier basis

is of particular interest in many practical applications, e.g.,
time-series analysis. For such a basis, an efficient update rule
can be derived, as is shown in the next corollary.

Corollary IIL.2. Let ¥ be n x n inverse Discrete Fourier
Transform (IDFT) matrix with entries V; ; = w® /\/n where
1,7€40,...,n—1} and w := eI5 . In such case:

ot =0+ f, (wm_l)a““) - ¢<o>a“>) (23)
where §,, is the n x n diagonal matrix with (Q,);; = w™,
and F = W1 is the orthonormal Fourier basis.
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Proof. Circular shift in the time domain corresponds to multi-
plication by complex exponentials in the Fourier domain, i.e.,
FII = Q, F, and the result follows from FW¥ = I. O

Remark 6 (Complexity of recursive sampling in an or-
thonormal basis). In general, the number of computations for
calculating o'tV from a'? is O(n?). For the particular
case of using Fourier basis, the complexity is reduced to only
O(n), i.e., we have zero-overhead for sampling directly on the
Fourier domain.

C. Recursive Estimation

In the absence of noise, estimation is trivial, in that it
amounts to successfully decoding the first window (), e.g., by
BP; then all subsequent stream entries can be plainly retrieved
by solving a redundant consistent set of linear equations
ylith = ¢4 4 (Tign — xi)agl) where the only unknown
is x;4,. For noisy measurements, however, this approach is
not a valid option due to error propagation: it is no longer
true that (9 = D, so computing z;1,, via (19) leads to
accumulated errors and poor performance.

For recursive estimation we seek to find an estimate

AR :ﬁé”l) . jﬁ;fll) leveraging the estimate 2 =
|24 ,| and using LASSO

20+D) — arg min HA(¢+1)w —y 2 4 Nz
x

In iterative schemes for convex optimization, convergence
speed depends on the distance of the starting point to the
optimal solution [26]. In order to accelerate convergence, we
leverage the overlap between windows and set the starting
point as:

. T
~(1) [ LG-1)  AG—1 L(i—1
Lo = |21 ) xé ) 'I’E’Lfl) x|

where a?;i_l), for j =1,...,n—1, is the portion of the optimal

solution based on the previous window; we set :i;;i_l), j =

0,1,...,n—1 to be the estimate of the (j + 1)—th‘entry of the
previous window, i.e., of w;_14;. The last entry @5?_1 (denoted
by “*” above) can be selected using prior information on the
data source; for example, for randomly generated sequence,
the maximum likelihood estimate E_ 1) wan,l] may be a
reasonable option, or we can simply set 9%,:)_1 = 0, given that
the sequence is assumed sparse. By choosing the starting point
as such, the expected number of iterations for convergence is
reduced (cf. Section V for a quantitative analysis).

In the general case where the signal is sparsely-
representable in an orthonormal basis, one can leverage the
recursive update for a**1) (based on a(?) so as to acquire

an initial estimate for warm start in recursive estimation, e.g.,
E [a(i+1)|a(i)]_

D. Averaging LASSO Estimates

One way to enhance estimation accuracy, i.e., to reduce
estimation error variance, is to average the estimates obtained
from successive windows. In particular, for the i entry of the

streaming signal, x;, we may obtain an estimate by averaging'
the values corresponding to x; obtained from all windows that
contain the value, i.e., {Ci'(])}j:i—n-&-l,___’ii

i

T; = o Z i‘gi)j

j=t—n+1

—_

(24)

By Jensen’s inequality, we get:

DX (@ma) 2 (]
n v ! n

j=i—n+1

9

> ()

j=i—n+1

v

= (z; — wi)2 ;

which implies that averaging may only decrease the recon-
struction error—defined in the /s-sense. In the following, we
analyze the expected ¢s-norm of the reconstruction error
(z; — a:i)Q. We first present an important lemma establishing
independence of estimates corresponding to different windows.

Lemma IIL3 (Independence of estimates). Ler y(®) =
AWDg® 4 w® =01, -, and {wD} be independent,
zero mean random vectors. The estimates {:i:(i)} obtained by
LASSO,

& .= argmin || Az — y || + A||z|1

are independent (conditioned on the input stream x := {z;}?).
Proof. The objective function of LASSO
(2, w) = f(z,w) = A2 — AV2 — w3 + Al|z|x

is jointly continuous in (x,w), and the mapping obtained by
minimizing over x

w — min f(z, w) = g(w)
x
is continuous, hence Borel measurable. Thus, the definition of

independence and the fact that w("), w®) are independent for
i # j concludes the proof. O

The expected ¢5-norm of the reconstruction error satisfies:

. 2
i

ED DR U

j=i—nt1
= (e [al) ) e 60 -2 )]
where we have used Cov {:ﬁgi)j,a}g.]i)k = 0 for j # Kk,

j,k € {i—n+1,...,i} which follows from independence. The
resulting equality is the so called bias-variance decomposition
of the estimator. Note that as the window length is increased,
the second term goes to zero and the reconstruction error
asymptotically converges to the square of the LASSO bias’.

IFor notational simplicity, we consider the case ¢ > n — 1, whence each
entry ¢ is included in exactly n overlapping windows. The case ¢ < n — 1
can be handled analogously by considering ¢ + 1 estimates instead.

2This accounts for the general case of a random input source x, where
noise {w("} is independent of x

3LASSO estimator is biased as a mapping from R™ — R™ with m < n.



We have seen that averaging helps improve estimation
accuracy. However, averaging, alone, is not enough for good
performance, cf. Sec. VI, since the error variance is affected
by the LASSO bias, even for large values of window size n.
In the sequel, we propose a non-linear scheme for combining
estimates from multiple windows which can overcome this
limitation.

E. The Proposed Algorithm

In the previous section, we pointed out that leveraging
the overlaps between windows—through averaging LASSO
estimates—cannot yield an unbiased estimator, and the error
variance does not go to O for large values of window size
n. The limitation is the indeterminacy in the support of the
signal-if the signal support is known, then applying least
squares estimation (LSE) to an overdetermined linear systems
yields an unbiased estimator. In consequence, it is vital to
address support detection.

We propose a two-step estimation procedure for recovering
the data stream: At first, we obtain the LASSO estimates
{&D} which are fed into a de-biasing algorithm. For de-
biasing, we estimate the signal support and then perform
LSE on the support set in order to obtain estimates .
The estimates obtained over successive windows are subse-
quently averaged. The block diagram of the method and the
pseudocode for the algorithm can be seen in Figure 3 and
Algorithm 1, respectively. In step 8, we show a recursive
estimation of averages, applicable to an online implementation.
In the next section, we present an efficient method for support
detection with provable performance guarantees.

Algorithm 1 Recursive Compressed Sensing

Input: A© € R™" {2:}i01.,A>0
Olltpllt: estimate {(Ei}i:(),l,...-
1: initialize signal estimate: {Z} « {0}
2: for i =0,1,2,... do
3: () — [JEZ Tigl - xi-{—n—l]
4 y@ AD 2@ 4 4y > encoding
. &0 argminHA(i):B —y@D|2 4+ N|z|l; > LASSO

weR’n

6: I < supp (:i(i) > support estimation

7: 2 «— argmin|| AWz — y@|2 > LSE
2

s iy o (00) = Doy + 3 k() for j =

0,...,n—1 where k;(j) = min{i + 1,n — j} > update
average estimates
9. AW Al-VPp
10: end for

> for recursive sampling

F. Voting strategy for support detection

Recall the application of LASSO to signal support estima-
tion covered in Section II. In this section, we introduce a
method utilizing supports estimated over successive windows
for robust support detection even in high measurement noise.
At first step, LASSO is used for obtaining estimate :i(i), which
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is then used as input to a voting algorithm for estimating the
non-zero positions. Then, ordinary least squares are applied to
the overdetermined system obtained by extracting the columns
of the sampling matrix corresponding to the support. The
benefit is that, since LSE is an unbiased estimator, averaging
estimates obtained over successive windows may eliminate the
bias, and so it is possible to converge to true values as the
window length increases.

In detail, the two-step algorithm with voting entails solving
LASSO:

20 = argmin (A2 —y O3 + A2 ),

zCR™
then identifying the indices having magnitude larger than some
predetermined constant £; > 0, in order to estimate the support

of window = by:
fm ) s 6.

The entries of this set are given a vote; the total number
of votes determines whether a given entry is zero or not.
Formally, we define the sequence containing the cumulative
votes as {v;} and the number of times an index 4 is used in
LSE as {I;}. At the beginning of the algorithm {v;} and {/;}
are all set to zero. For each window, we add votes on the
positions that are in the set Ii as v i € Vi T 1 (where

(25)

the subscript I; + i is used to translate the indices within the
window to global indices on the streaming data). By applying
threshold & € Z™ on the number of votes {v; }, we get indices
that have been voted sufficiently many times to be accepted
as non-zeros and store them in:

Ri={j:vjsi>6 j=0,...,n—1}.  (26)

Note that the threshold & € {1,---,n} is equal to the
delay in obtaining estimates. This can be chosen such that
|R;| < m, hence yielding an overdetermined system for the
LSE. Subsequently, we solve the overdetermined least squares
problem based on these indices in R;,

29 = argmin  |ADz — y@|2.

zER™ @ rc=0
i

27)

This problem can be solved in closed form, 535%) =
(A%?TAEQ) ' Agz—ry(i), where :E%) is the vector obtained
by extracting elements indexed by R;, and A%?
trix obtained by extracting columns of A" indexed by R;.
Subsequently, we increment the number of recoveries for the
entries used in LSE procedure as g, +; < [r,+; + 1, and the
average estimates are updated based on the recursive formula

_ Livi—1 - 1 ~ .
Ti4j <« ﬁxlﬂ'] + KZ‘J, for VS Ri.

is the ma-

IV. EXTENSIONS

In this section we present various extensions to the algo-
rithm.

A. Sliding window with step size T

Consider a generalization in which sensing is performed
via recurring windowing with a step size 0 < 7 < n , ie.,
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i—1 ~(i—1
y( ) Delay l m( l ) Delay
Recursive Recursive Support LSE on Averaging
—_>\ Sampling |——>| Estimation |—>[ Detection |—>| SupportSet |—>
() yli AQ) T (1) (@)
Fig. 3: Architecture of RCS.
; T . . .
z(® = [a:” Tirt1 xirﬂl,ﬂ estimator for the error between the true signal and estimate

We let 1; denote the sampling efficiency, that is the ratio of
the total number of samples taken until time n+4 to the number
of retrieved entries, n+4. For one window, sampling efficiency
is m/n. By the end of it" window, we have recovered n +
(i —1)7 elements while having sensed im many samples. The
asymptotic sampling efficiency is:

o I m m
=N A n+(i—-r 7
The alternative is to encode using a rank-7 update (i.e., by
recursively sampling using the matrix obtained by circularly
shifting the sensing matrix 7 times, ATTD — A PT) In this
scheme, for each window we need to store 7 scalar parameters;
for instance, this can be accomplished by a least-squares fit
of the difference y**1) — (%) in the linear span of the first 7
columns of A® (cf. (20)). The asymptotic sampling efficiency
becomes*:
m+(i— 1)1

=1.
ianolo n -+ (i— 1)7’

In the latter case, the recursive sampling approach is
asymptotically equivalent to taking one sample for each time
instance. Note, however, that the benefit of such an approach
lies in noise suppression. By taking overlapping windows
each element is sensed at minimum |n /7| many times, hence
collaborative decoding using multiple estimates can be used
to increase estimation accuracy.

B. Alternative support detection

The algorithm explained in Sec. III-F selects indices to be
voted by thresholding the LASSO estimate as in (25). An
alternative approach is by leveraging the estimates obtained
so far: since we have prior knowledge about the signal at ith
window ifé) from (i —1)"" window, 2", we can annihilate
the sampled signal as:

g(i) — y(i) _ A(i)zfz(l]).

If the recovery of the previous window was perfect, Q(i)
would be equal to an):can + w® and thus Titn_1 Can
be estimated by LSE as x;,—1 = aﬁf )Tf/(i). However, since
the previous window will have estimation errors, this does

not hold. In such case, we can again use LASSO to find the

4Note that when 7 > m, recording samples {y(”
to storing 7 parameters) yields better efficiency 1 =

-

directly (as opposed
<1

13

as:

2 = arg min (|49 ~ 5|3 + A2|)
x

and place votes on the 3 € Z* indices of highest magnitudes,

ie.,
i R ()
s = {a: 125 )

instead of (25). The rest of the estimation method remains
the same. Since the noise is i.i.d., the expected number of
votes a non-support position collects is less than 3. Thus the
threshold &, in (26) needs to satisfy {3 < & < n in order to
eliminate false positives.

Last, in the spirit of recursive least squares (RLS) [27],
we consider joint identification over multiple windows with
exponential forgetting. Let T' be the horizon, i.e., the number
of past windows considered in the estimation of the current
one. Also, let p € [0,1). For the i—th window® we solve:

(28)

2" = argmin Y /7 (|[AV20) —y O3+ Nj2D1])

xeR+T

j=i—T

(29)

where the decision vector @  corresponds to
NG

[Zi—T, "+ ,Titn—1], and we set 20 = (7, )

It is interesting to point out that this optimization problem
can be put into standard LASSO form by weighting the
entries of the decision vector at a pre-processing step, so
standard numerical schemes can be applied. Note that the
computational complexity is increasing with 7' and, unlike
traditional RLS, 7" has to be finite.

C. Expected Signal Sparsity

We have considered, so far, the case that each window (%)
is k-sparse. However, the most general case is when the data
stream is k-sparse on average, in the sense that:

1 N
R :=limsup — 1p,20 < K.
In such case, one can simply design RCS based on some value
Kk > R, and leverage Theorem II.1 to incorporate the error due
to model-mismatch in the analysis (cf. Theorem V.1). For both
analysis and experiments we adopt a random model, in which

SWe consider the case i > T, and 7 = 1 for notational simplicity.



each entry of the data stream is generated i.i.d. according to:

fxi(x){él_p)é(x) T iie[_A’A} (30)

where p € (0,1]. This is the density function of a random
variable that is O with probability 1 —p and sampled uniformly
over the interval [—A, A] otherwise®. The average sparsity of
the stream is K = p.

We can calculate the mean error due to model-mismatch
by:

E[IX — Xl

n
= A ")pta
=0

where X denotes an n-dimensional random vector with
entries generated i.i.d. from (30), and X is obtained from
X by setting all but its « largest entries equal to zero.

The result is a function of the window length, n, the sparsity
+ used in designing sensing matrices (e.g., we can take mean
sparsity k = pn), and the probability of an element being
nonzero, p. In place of the (rather lengthy, yet elementary) al-
gebraic calculations we illustrate error due to model-mismatch
in Fig. 4. We point out that we can analytically establish
boundedness for all values of p,n, so our analysis in Sec. V
carries over unaltered. The analysis of other distributions on
the magnitudes of non-zero entries can be carried out in a
similar way.

i=kr+1

V. ANALYSIS

In this section we analyze the estimation error variance and
computational complexity of the proposed method.

A. Estimation Error Variance

Given {z;} we give a bound on the normalized error
variance of each window defined as:

' |29 _x(i)h}
NE(i) =E | —————
=2
Note that for an ergodic data source this index (its inverse ex-

pressed in log-scale) corresponds to average Signal to Residual
Ratio (SRR).

Theorem V.1 (Normalized Error of RCS). Under the assump-
tions of Theorem IL.2 and given A©) satisfying RIP with 6,
for {x;}i—o.1,... satisfying ||z o > Q (k), NE(i) satisfies:

1
NE(i) <P" .- ¢| ——
() <P s
Vm )
1—-P" .
+( ))<CQ—|—83\/@ ,

where c1, co and c3 are constants, and

SNote that the case p = 0 is trivially excluded since then the data stream
is an all-zero sequence.
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Proof. Defining the event Si,_; = {support is detected
correctly on 2n — 1 consecutive windows}’, we have the
following equality for NE given {x;}i=0,1,..:

o 2 — 2]

NE(i) =P(S2-1) - Ez,55,_, [HHJ()HQ

2 — 2],

1— P(S . .Ez — |
+( (S2n-1)) - Easg, { [z® ][

where, dropping the subscript 2n — 1, and using S as a
shorthand notation for Ss,,_1, we have:

_p)n—k i <1_ i ) s> (1 2 2% O 1 2n—1
= k1 8) = "~ ny2mlogn n? n2log2 ’

by Theorem II.2.
In S, by LSE we get:

||w<i>—w<f>|2} | ———
Em,s{ . < 1 B [I70 — 202
ESIP o, VEes | d
@ o R
= TeOlayal =5

where (a) follows from

Evs 189 = 2O13] = Evs | @iy — is)°

jel
2
(i+j—t)
g+t T Tt

=E.5 | <inzlx

jEI t=0
(it ~(itj—r

s (x§‘+t] ) xH—j) (x§‘+rj ) mz‘—&-]’)

=2 D Eus ;
n
jeI t,r=0

B 1 nfl]E (z+] t o 2
B EZZ o8 |\ Tj+t T Tidg

JEI =0
® 1 ko2
<
< ZZ "5

jel t=0

where I = supp(2?), is also equal to supp(x(®)) given

S, and (b) follows since the covariance matrix of LSE is
02(AT A;)~" and by RIP we have all of the eigenvalues of
A] A, greater than (1 — d,) since (1 — d,)|z|3 < || A3
for all x x-sparse.

To bound the estimation error in S, note that independent
of the selected support, by triangle inequality, we have:

14920 —y O, < [y,

IIy
< APy + w ]|
< (1409l 2 + [[w D2,
and
Iyl > 14920 =y s > A9 2 — [y

> (1 - 81272 — ly ]2,

"Note that the definition of the “success” set is very conservative.
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Fig. 4: Error due to model-mismatch:

where (a) follows since

29 = argmin APz —y@|,.
xeR™ xrc=0

From these two inequalities we have:
2 .
ly™|l2

—1—6k
(480l 2 + w2)

N

125
2
<
— 19,

By applying triangle inequality once more we get:

12 — 22 < |72 + 2]

; 2(143,)Y | 2[w|.
<|lz@|5 (1 il )
<l |2< T, >+ 1-5,
Thus in S¢ we have:
Eg s {”w(i) __w(i)||2}
2]
= LEI ge {”@(i) _ fB(i)Hz}
(B[P
(b) 1 ) .
— _E, { 2 _ (@) }
= @], s |l ' ||2
1 2 E[[|w®
1—46. 1-6. |lz®]

where (b) follows from Jensen’s inequality.

We get the result by taking the expectation over {x;};=0.1,...
and noting by the assumptions of Theorem II.2 we have
E[|lw®|2] < oym, |ziyj| > 80y2logn where j €
supp (z) and ||z o > Q (k). O

Corollary V.2. For sublinear sparsity k = O(n'=¢), non-zero
data entries with magnitude Q(\/logn), and obtained samples
m = O(klogn), where n is the window length, the normalized
error goes to 0 as n — oo.

Proof. For &k = O(n'=¢) we have P" >
2n—1
(1 -0 (n \/lloﬂ)) , and from the assumptions we
have c3 —4C— constant. We get the result by noting P" goes
e log n . .
to 1 as the window length n goes to infinity. O

Remark 7 (Error of voting). Note that the exact same analysis
applies directly to voting by invoking stochastic dominance:

expected norm vs. p
T T T

expected norm

L L L L L L L L L
] 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02

(0) E[||& — @« ||1] vs. probability of non-zero p; k = np, n = 1000.

Expected deviation from signal sparsity E [||x — x.||1].

for any positive threshold & < 8c+/logn, correct detection
occurs in a superset of So,_1 (defined by requiring perfect
detection in all windows, i.e., &, = 0,8 = n).

Remark 8 (Dynamic range®). Note that in a real scenario, it

may be implausible to increase the window length arbitrarily,

because the dynamic range condition m%n |z;| > 80v/2logn
i€ly

may be violated. This observation may serve to provide
a means for selecting n (the good news being that the
lower bound increases very slowly in window length, only as
Vlogn). In multiple simulations we have observed that this
limitation is actually negligible: n can be selected way beyond
this barrier without any compromise in increasing estimation
accuracy.

Last, we note that it is possible to carry out the exact same
analysis for general step size 7; as expected, the upper bound
on normalized error variance is increasing in 7, but we skip
the details for length considerations.

B. Computational Complexity Analysis

In this section, we analyze the computational complexity
of RCS. Let ¢ be the window index, AW ¢ RMXn be the
sampling matrix, and recall the extension on 7, the number
of shifts between successive windows. By the end of it"
window, we have recovered n + (¢ — 1)7 many entries. As
discussed in Section III, the first window is sampled by
Az this requires O(mn) basic operations (additions
and multiplications). After the initial window, sampling of the
window () = [;viT Tirt1 1'i7—+n,1} is achieved
by recursive sampling having rank-7 update with complexity
O(mT). Thus, by the end of i** window, total complexity of
sampling is O(mn) + O(m7)i. The encoding complexity is
defined as the normalized complexity due to sampling over
the number of retrieved entries:

lim Ce (i)

C. := _—
T iSYeon+ (i — 1)1’

€1y
where C.(i) denotes the total complexity of encoding all
stream entries 0, 1,. .., ¢. For recursive sampling C, = O(m)
while for non-recursive we have C. = O(mn/7); note that

8The authors would like to thank Pr. Yoram Bresler for a fruitful comment
on dynamic range.



by recursively sampling the input stream, the complexity is
reduced by 2

The other contribution to computational complexity is due
to the iterative solver, where the expected complexity can be
calculated as the number of operations of a single iteration
multiplied by the expected number of iterations for conver-
gence. The latter is a function of the distance of the starting
point to the optimal solution [26], which we bound in the case
of using recursive estimation, as follows:

{ (i—1) L)

Lin—1

Lemma V.3. Using :i:EZ)]) =
the starting point we have:

.
Tor OI} as
a1 /Ve
VAV

+c10+ || { )_ ng),l} ll2,

() — 24[l2 < cola1) —

+coll2® —

where ¢y and ¢ are constants.

Proof. Defining:

; , T , qT
= [al a2 of] —[ald el ]
e =z — g0

we have
e @ — {lx(f:l) o xsn_j% 0:} T ORI ORI O)

Taking the norm and using triangle inequality yields:
e/ Vllz < 1Dl + 1@l + 1l [0, .20, ] I

Using Theorem II.1 we get:

lle" V2 < coflY — 2l-Vly /v/m
+coll2® — 2|1 /v
+c1o+ | 95527955;)—1 [l2- (32)
O

Exact computational complexity of each iteration depends
on the algorithm. Minimally, iterative solver for LASSO
requires multiplication of sampling matrix and the estimate
at each iteration which requires O(mn) operations. In an
algorithm where cost function decays sublinearly (e.g., 1/t2),
as in FISTA, the number of iterations, t, required for obtaining
Z[, such that G(Zf)) — G(x.) < ¢, where x, is the optimal
solution, is proportional to ||y —« |2 (e.g., [T (o) =X« ||2//€)
where x[o) is the starting point of the algorithm [22]. From
this bound, it is seen that average number of iterations is
proportional to the Euclidean distance of the starting point
of the algorithm from the optimal point.

Lemma V.4 (Expected number of iterations). ° For the se-
quence {x;}i=o1.. where |[zV|o < K with the posmons of
non-zeros chosen umformly at random and  max |£B

7=0,...,n—1 ‘ -

9We note in passing that this bound on the expected number of iterations

is actually conservative, and can be improved based on a homotopy analysis
of warm-start [6], [8]; this is beyond the scope of the current paper.

IEEE TRANSACTIONS ON INFORMATION THEORY - SUBMITTED, DEC. 2013

0] (\/log n) for all i, the expected number of iterations for
convergence of algorithms where cost function decays as 1/t>

is O(+/(k7logn)/n) for noiseless measurements and O(y/m)

for i.i.d. measurement noise.

Proof. Since (9 is k-sparse, the terms ||z~ — 2™V
and [jz() — :c,(.f)Hl vanish in (32). By |z;| = O (v/logn)
and uniform distribution of non-zero elements we have

{H [ .. 7,_ } ll2| < +/(kTlogn)/n.

With n01sy measurements, the term c;o is related to the
noise level. Since noise has distribution w() ~ N (0, oI )
the squared norm of the noise ||w(® ||2 has chi-squared distri-
bution with mean o>m and standard deviation o2v/2m; prob-
ability of the squared norm exceeding its mean plus 2 standard
deviations is small, hence we can pick 62 = o (m + 2v/2m)
[5] to satisfy the conditions of Theorem II.1. Using this
result in (32), we get O(y/(xlognTt)/n) + O(/m), where
the second term dominates since 7 < n not to leave out any
element of the signal and m ~ O(klogn). Hence it is found
that the expected number of iterations is O(y/m) in the noisy
case. O

The other source of complexity is the LSE in each iteration,
which requires solving a linear  x x system that needs O(x?3)
operations. Finally, averaging can be performed using O(n/7)
operations for each given entry. We define the decoding
complexity as the normalized complexity due to estimation
over the number of retrieved entries:

Cy:= lim Ca(i)

et (- Dr 33)

where Cy(i) denotes the total complexity of decoding all
stream entries 0,1, ..., 4. It follows that decoding complexity
is equal to Oy = O(M), using recursive estimation.
To conclude, the asymptotic total complexity (per retrieved
stream entry),

C=C.+ Cy,

is dominated by LASSO and LSE (based on the facts that
m > 1,2 > 1), therefore:
m3/2

C=0(

1’L+Ii3

), (34)

In Table I we demonstrate the total complexity for various
sparsity classes k, based on the fundamental relation m =
O(klog ) [12]. Note that the computational complexity is
decreasing in 7, while error variance is increasing in 7. This
trade-off can be used for selecting window length n and step
size 7 based on desired estimation accuracy and real-time
considerations.

T

VI. SIMULATION RESULTS

The data used in the simulations are generated from the
random model (30) '° with p = 0.05. The measurement model
is y@ = ADz® 4 w® with w® ~ N (0,02I) where

10We also tested the case where the values of non-zero entries are generated
ii.d. from a Gaussian distribution; even though this model may violate the
dynamic range assumption, cf. Rem. 8, the results are very similar.
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TABLE I: Computational complexity per entry as function of
window length n and step size 7 for different sparsity classes.

K Computational Complexity
o(1) O (n(logn)*/2/r)
O(logn) | O (n (logn - log(n/ log n))*/? /T)
O(v/n) O(n?/7)
O(n) O(n®/7)

o € R*, and the sampling matrix is A®) € R™*" where
m = 6pn and n is equal to the window length.

In the sequel, we test RCS as described in sections III-E,
ITI-F. We have also experimented extensively on the extensions
presented in Sec. IV-B, but do not present the results here
because: a) the exponential-forgetting approach, alone, does
not improve estimation accuracy while it incurs computation
overhead, and b) the performance and run-time of generalized
voting is no different than that of standard voting.

A. Runtime

We experimentally test the speed gain achieved by RCS by
comparing the average time required to estimate a given win-
dow while using FISTA for solving LASSO. RCS is compared
against so called ‘naive approach’, where the sampling is done
by matrix multiplication in each window and FISTA is started
from all zero vector. The average time required to recover one
window in each case is shown in Figure 5.

Runtime Plot
2.5 T T T
—+&— naive approach b
—&—RCS
ol
@ 151
Q
g
B 1r
0.5
0 + L L L L L
0 500 1000 1500 2000 2500 3000

window size

Fig. 5: Average processing time of RCS vs. traditional (non-
recursive) CS over a single time window.

B. Support Estimation

We present the results of experiments on the support es-
timation using LASSO. In the measurements © € R000,
lzllo = 60, A € R™*6000 j5 generated by i.i.d. Gaussian
distribution with A; ; ~ N(0,1/m), and w has ¢ = 0.1.
As suggested in Theorem II.2 for these parameters, LASSO
is solved with A = 4o0+/2logn, and the nonzero entries of
@ are chosen so that min |z;| > 3.34 by sampling from

1=1,2

U ([—4.34,-3.34] U [3.34, 434]) In simulations, we vary the

number of samples taken from the signal, m, and study the

accuracy of support estimation by using

|detected support N true support|
|true support|

|detected support\true support|

true positive rate =

false positive rate =

n — |true support] ’

where | - | denotes the cardinality of a set and \ is the set
difference operator.

The support is detected by taking the positions where the
magnitude of the LASSO estimate is greater than threshold &;
for values 0.01, 0.1, 1. Figure 6 shows the resulting curves,
obtained by randomly generating the input signal 20 times for
each m and averaging the results. It can be seen that the false
positive rate can be reduced significantly by properly adjusting
the threshold on the resulting LASSO estimates.

true positive rate and false positive rate

— @

@
threshold = 0.01
— — - threshold = 0.10
-—-— threshold = 1.00 (|

0.2 i

= = o =

——f—— = 5 5 = &
300 400 500 600 700 800
number of samples (m)

Fig. 6: Support set estimation using LASSO: for n = 6000,
o = 0.1, min|z;| > 3.34, threshold & = 0.01, 0.10 and
1.00. Circles depict true positive rate, and squares depict false
positive rate.

C. Reconstruction Error

As was discussed in Section III-F, LASSO can be used
together with a voting strategy and least squares estimation
to reduce error variance. Figure 7 shows the comparison of
performance of a) averaged LASSO estimates, b) debiasing
and averaging with voting strategy, and c) debiasing and
averaging without voting. The figure is obtained by using fixed
x (i.e., a single window) and taking multiple measurements
(each being an m-dimensional vector) corrupted by i.i.d.
Gaussian noise. It can be seen that the error does not decrease
to zero for averaged estimate, which is due to LASSO being
a biased estimator, cf. Section III, whereas for the proposed
schemes it does.

Figure 8 shows the behavior of normalized error variance

T [~
2ic (T — @i)”
T
Ei:1(mi)2
as the window length, n, increases. The signals are generated

to be 5% sparse, m is chosen to be 5 times the expected win-
dow sparsity, and the measurement noise is w'*) ~ N(0, 02T

lim
T— 00
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Fig. 7: Error plots for a) averaged estimates, b) voting strategy,
and c) debiasing without voting.
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Fig. 8: Normalized error variance vs. window length for RCS
on streaming data.

where o0 = 0.1. The non-zero amplitudes of the signal are
drawn from uniform distribution U ([—-2,—1] U [1,2]) The
figure shows that the normalized error variance decreases as
the window length increases, which is in full agreement with
our theoretical analysis.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed an efficient online method for com-
pressively sampling data streams. The method uses a sliding
window for data processing and entails recursive sampling and
iterative recovery. By exploiting redundancy we achieve higher
estimation accuracy as well as reduced run-time, which makes
the algorithm suitable for an online implementation. Extensive
experiments showcase the merits of our approach compared to
traditional CS: a) at least 10x speed-up in run-time, and b) 2-3
orders of magnitude lower reconstruction error.

In ongoing work, we study accelerating the decoding pro-
cedure by deriving a fast LASSO solver directly applicable to
RCS. We also seek to apply the derived scheme in practical
applications such as burst detection in networks and channel
estimation in wireless communications.
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