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Abstract:   This work aims to reduce queries on big data to computations on small data, and hence make querying big data possible un-
der bounded resources. A query   is boundedly evaluable when posed on any big dataset  , there exists a fraction   of   such that

, and  the cost of  identifying    is  independent of  the size of  .  It has been shown  that with an auxiliary structure

known as access schema, many queries in relational algebra (RA) are boundedly evaluable under the set semantics of RA. This paper ex-
tends the theory of bounded evaluation to RAaggr, i.e., RA extended with aggregation, under the bag semantics. (1) We extend access
schema to bag access schema, to help us identify   for RAaggr queries  . (2) While it is undecidable to determine whether an RAaggr

query is boundedly evaluable under a bag access schema, we identify special cases that are decidable and practical. (3) In addition, we
develop an effective syntax  for bounded RAaggr queries,  i.e., a core subclass of boundedly evaluable RAaggr queries without sacrificing
their expressive power. (4) Based on the effective syntax, we provide efficient algorithms to check the bounded evaluability of RAaggr

queries and to generate query plans for bounded RAaggr queries. (5) As proof of concept, we extend PostgreSQL to support bounded eval-
uation. We experimentally verify that the extended system improves performance by orders of magnitude.

Keywords:   Bounded evaluation, resource-bounded query processing, effective syntax, access schema, boundedness.

 

1   Introduction

Q(D) D

Querying  big  data  can  be  prohibitively  costly.  As  an

indicator,  it  is  NP-hard1 to  decide  whether  a  tuple  is  in

the  answer  in  a  dataset  to  an  SPC  (select,

project, Cartesian product) query Q, and it is PSPACE-

hard1 when Q is a query in relational algebra (denoted by

RA)[2].  It  takes  days  to  join  two  tables  with  10  million

tuples each[3]. One might be tempted to think that paral-

lel  computation  could  do  the  job.  However,  there  exist

computational  problems  for  which  parallel  scalability  is

beyond  reach, i.e., no  matter  how  many  machines  are

used, the  parallel  runtime  of  algorithms  for  such  prob-

lems may not be reduced[4].  Worse still,  small  businesses

typically  have  constrained  resources  and  may  not  afford

large-scale parallel computation.

Is querying  big  data  beyond  the  reach  of  small  com-

panies, or is it just a privilege of big companies? Is it pos-

sible to extend DBMS with an immediate capacity to an-

swer common  queries  over  big  datasets  under  con-

strained resources?

D
DQ D

Q(D) D
A

A
D

A DQ ⊆ D
DQ

A Q(DQ) = Q(D) DQ

A
A

A

One  approach  to  tackling  the  challenge  has  recently

been  studied,  based  on  bounded  evaluation[5, 6]. To  an-

swer a query Q on a dataset , the idea is to look at only

a  “bounded”  fraction  of  that  suffices  to  compute

, instead of at the entire . This is doable by using

an access schema , which is a combination of cardinal-

ity  constraints  and  associated  indices.  Under , Q is

boundedly evaluable if for all datasets  that conform to

, one can identify  by reasoning about the car-

dinality constraints, and fetch  by using the indices of

,  such  that  (a)  and  (b)  is determ-

ined by  and Q only. In other words, if Q is boundedly

evaluable  under ,  query Q can  then  be  exactly

answered  via  bounded  evaluation,  by  accessing  only DQ

of size bounded by the cardinalities in .

The theory has been tested in industry and is found to

“improve the performance by orders of magnitude”[7].

D1

Example 1. Consider query Q1 from Facebook Graph

Search[8]: Find all my friends who have check-ins in UK2.

The  query  is  posed  on  dataset  with  two  relations:

(a) friend (uid, fid), stating that person fid is a friend of

uid, and (b) checkin (uid, loc, cty, date), stating that per-

son uid checked in at location loc in country cty on date.

Written  as  an  RA  query, Q1 is  as  follows  (u0 denotes

“me”):
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1See  [1]  for  more  about  complexity  classes,  e.g.,  NP  and

PSPACE. 2Facebook users can check-in to locations via “check-ins”.
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Q1(x) = friend(u0, x) 1 checkin(x, loc, “UK”, date).
D1

Q1(D1)

Here  dataset  is  big,  with  trillions  of  friend  links

and check-ins[9]. It is costly to compute  directly.

A1Now  consider  a  set  of real-life  cardinality  con-

straints:

◦ϕ1 friend(pid→ fid, 5 000): ;

◦ϕ2 checkin(uid→ country, 193): .

ϕ1

ϕ2

D1 ϕ1

ϕ2

Here  constraint  specifies  a  Facebook  policy[10]:  a

limit  of  5 000  friends  per  user;  and  states  that  each

user  can  check-in  at  most  193  countries.  Indices  can  be

built on  based on  such that given a person, it re-

turns the ids of all her friends by accessing at most 5 000

friend tuples; similarly for . Taken together, these con-

straints and their associated indices are called access con-

straints[5].

A1 Q1(D1)

D1

ϕ1

ϕ2

Q1(D1)

D1

A1

Using ,  we  can  compute  by  accessing  at

most 970 000 tuples from , instead of trillions. (1) We

fetch T1 of at most 5000 fid′s of friend tuples with uid =

u0, by using . (2) For each fid f in T1, we fetch T2 of at

most 193 country values with . (3) We return the set of

fid′s in T1 with country = UK in T2. The plan fetches at

most 5 000 + 193 × 5 000 tuples to compute ,  no

matter how big  is.  Hence, Q1 is  boundedly evaluable

under .

DQ

As shown in Example 1,  bounded evaluation answers

a  query Q over  a  big  dataset  by  accessing  a  set  of

data values with bounded size. It does this by retrieving

values  (i.e., partial  tuples)  using  indices  associated  with

cardinality  constraints  that  correlate  attributes.  One

might think that this can also be carried out by conven-

tional  index-only  plans  for  query  optimization[11].

However,  the two are different problems as indicated by

their complexity bounds: deciding whether an SPC query

can be  answered  with  a  “bounded”  query  plan  is  EX-

PSPACE-hard[5], while it is in PTIME to decide whether

it has an index-only plan[11].

While  bounded  evaluation  is  promising,  more  work

has to be done,  from theory to systems. Bounded evalu-

ation has only been studied for RA queries under the set

semantics[5, 6]. In  the  real  world,  queries  are  often  ex-

pressed in RAaggr, i.e., RA extended with aggregation un-

der the bag semantics. RAaggr can express all SQL (struc-

tured query language) queries that do not carry arithmet-

ic expressions.  This  makes  bounded  evaluation  more  in-

triguing.

A1Example  2. Recall  query Q1 and  access  schema 

from Example 1. Consider query Q2 to find the number of

UK check-ins from each of my friends. Written in RAaggr,

Q2 is:

Q2 = gpBy(Q3, uid, count(cty)), where

Q3 = πuid,cty(friend(u0, x) 1 checkin(x, loc, ”UK”, date).

A1

Here  gpBy(Q3,  uid,  count(cty))  groups  the  results  of

Q3 by  attribute  uid  and  calculates  count(cty)  for  each

group (see Section 2.1 for more details about gpBy oper-

ator). In contrast to Q1,  does not help us answer Q2.

Using φ2, we can fetch a set of distinct countries for each

friend x.  However, x may  have  multiple  UK  check-ins.

Access schema no longer suffices for RAaggr under the bag

semantics.

For practical use to emerge from the study, it is neces-

sary  to  extend  bounded  evaluation  from  RA  to  RAaggr

(SQL).  This  gives  rise  to  several  questions.  How  should

we extend the access schema of [5, 6] to support the bag

semantics?  We  will  see  that  the  problem  for  checking

whether an SQL query is boundedly evaluable is undecid-

able.  Given  the  negative  result,  is  bounded  evaluation

beyond reach in practice? More specifically,  is  there any

practical and decidable special case? Is it possible to de-

velop  a  systematic  method  that  allows  us  to  efficiently

check the bounded evaluability of SQL queries? In addi-

tion,  after  determining  that  an  SQL query  is  boundedly

evaluable,  how  can  we  generate  and  optimize  a  query

plan to carry out its bounded evaluation?

Contributions.  This  paper  answers  these  questions

by  extending  the  study  to  RAaggr, from  theory  to  prac-

tice.

(1) Bounded evaluation for SQL.  We  extend  bounded

evaluation  from RA to  RAaggr, i.e.,  SQL (without  arith-

metic)  to  support  arbitrarily  nested  aggregate  sub-quer-

ies and group-by clauses. We introduce bag access schem-

as, an extension of the access schema of [5, 6] to support

the  bag  semantics.  We  also  formulate  bounded  query

plans for RAaggr.

(2) Complexity of bounded evaluation. Not surprising-

ly, bounded evaluability is undecidable for SQL since it is

already undecidable for RA[5]. We identify practical  con-

ditions that cover a number of real-life queries, for which

the  bounded  evaluability  can  be  efficiently  determined.

These conditions tell us what makes queries bounded.

LB

B
Q′ ∈ LB

LB LB

(3) Effective syntax. To accommodate  the  undecidab-

ility,  we  develop  an  effective  syntax  for  boundedly

evaluable  RAaggr queries. We show that under a bag ac-

cess schema , (a) an RAaggr query Q is boundedly evalu-

able if and only if it is equivalent to a query ; and

(b) it is in PTIME (polynomial time) to check whether Q

is in . That is,  is a core subclass of bounded evalu-

able  RAaggr queries  that  are  syntactically  checkable

without sacrificing the expressive power. This is along the

same lines as how commercial database systems (DBMS)

deal with safe relational calculus queries, which are unde-

cidable to decide[12–14].

B
B

Q(D)
DQ D B

(4) Extending DBMS with bounded evaluation. We pr-

esent a framework, referred to as BEAS (bounded evalu-

able SQL) to provide commercial DBMS with the capab-

ility  of  bounded  evaluation  of  RAaggr queries.  Given  an

RAaggr query Q and a  bag access  schema ,  BEAS first

checks whether Q is boundedly evaluable under . If so,

it generates a query plan for Q to compute  by ac-

cessing a bounded small fraction  of  using . Other-

wise, it leverages access schema and generates a partially

bounded plan, to bound sub-queries of Q. We develop al-
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gorithms underlying BEAS.

(5) Experimental study. As  proof  of  concept,  we  ex-

tend  PostgreSQL  with  bounded  evaluation,  denoted  by

BEAS@PG.  Using  TPCH  benchmark[15] and  real-life

datasets,  we  evaluate  the  performance  of  BEAS@PG

compared to  PostgreSQL.  We  find  that  BEAS@PG  im-

proves  PostgreSQL  by  up  to  4  orders  of  magnitude  for

boundedly evaluable queries.

D

Querying  big  data  under  bounded  resources.

This  work  is  a  component  of  a  framework  for  querying

big data. As outlined in [16], the framework works as fol-

lows: given an SQL query Q posed on a big dataset ,

(1) it first checks whether Q is boundedly evaluable;

Q(D)
D

(2)  if  so,  it  computes  the  exact  answer  by ac-

cessing  a  bounded  fraction DQ of  via bounded  evalu-

ation;

D
(3) otherwise,  it  computes approximate answers to Q

in  also  by  accessing  a  bounded  amount  of  data,  and

provides deterministic accuracy ratios[17].

In the entire process, it only accesses a bounded frac-

tion of  data  and  can  be  conducted  under  bounded  re-

sources.  Hence  it  is  feasible  to  provide  small  businesses

with a capacity of  querying big data despite constrained

resources.

To  simplify  the  discussion,  we  focus  on  row-oriented

DBMS (a.k.a.  row  stores)  in  this  paper.  Nonetheless,  as

will be  seen  in  Section  2,  the  model  of  bounded  evalu-

ation subsumes column stores. Moreover, bounded evalu-

ation can be readily extended to parallel and distributed

systems[18].

LB

Organization. The remainder of  the paper is  organ-

ized  as  follows.  Section  2  defines  bag  access  constraints

and  formulates  boundedly  evaluable  RAaggr queries. Sec-

tion  3  studies  the  complexity  of  bounded  evaluation  for

RAaggr queries. Section 4 proposes effective syntax  for

boundedly evaluable RAaggr queries.  Section 5 introduces

BEAS and develops its underlying algorithms. The exper-

imental study  is  presented  in  Section  6.  We  discuss  re-

lated  work  in  Section  7,  and  identifies  topics  for  future

work in Section 8.

2   Bounded evaluation of SQL queries

We  first  define  bag  access  schema  (Section  2.1)  and

then formulate bounded evaluation of RAaggr queries, ag-

gregate or not, under the bag semantics (Section 2.2).

2.1   RAaggr and bag access schema

We start with a review of RAaggr, an extension of RA

with a group-by construct and nested aggregate sub-quer-

ies.

σC

πY × 1C ρA→B

∪

RAaggr queries.  An  RAaggr query  is  an  expression

defined in terms of RA operators (i.e., select ,  project

, Cartesian-product  or join , renaming , uni-

on  and  set  difference  -),  and  additionally  a  group-by

aggregate operator

gpBy(Q,X, agg1(V1), · · · , aggm(Vm))

X ∪
∪m

i=1{aggi(Vi)}

gpBy(Q,X, agg(V ))

where  (a) Q is  an  RAaggr query,  (b) X is  a  set  of

attributes  for  group-by,  (c)  aggi is  one  of  aggregate

functions max, min, count, sum, avg, and (d) V1, ··· , Vm
are  attributes  such  that  forms  the

output relation of Q. We refer to aggi(Vi) as an aggregate

field  on  attribute Vi.  We  write  the  operator  as

 when  it  is  clear  from  the  context.

Since Q may  include  aggregate  operators  itself,

aggregations  in  an  RAaggr query  may  be  arbitrarily

nested.

In SQL syntax, the operator can be written as

selectX, agg1(V1), · · · , aggm(Vm)

from Q

group by X

X = ∅ gpBy(Q,X, agg(V ))As  a  special  case,  when , 

does  not  have  a  group-by  construct.  We write  it  simply

as agg(Q).

Example  3. Query Q2 in  Example  2  is  an  RAaggr

query.

As another example, an RAaggr query with nested ag-

gregation  is Q4 over  relations R(A, B, C)  and S(E, F,

W):

Q4 = avg(πz(Q5(y) 1 S(y, 1, z))), where

Q5(y) = sum(πy(R(w, 1, u) 1 R(w, x, y)))     . □

R
B

Bag access schema.  To support the bag semantics,

we  extend  the  access  schema  of  [5, 19]  to bag  access

schema. Over a database schema , a bag access schema

 is a set of bag access constraints of the form:

φ = R (|X → Y,N |)

Rwhere R is  a relation schema in , X and Y are sets of

attributes of R, and N is a positive integer.

D
R R

DY (X = ā) = {t[Y ] | t ∈ D,
t[X] = ā} DY (X = ā) Y

ā ab

m(D, ab)

{|t ∈ D | t[XY ] = ab|}
ab m(D, ab)

ab

To define the semantics of bag access constraints, we

use the following notations. (1) Denote by  a database

of ,  and by D an instance of  relation schema R in .

(2)  For  an instance D of R, 

,  i.e.,  denotes  the  set  of  values

corresponding to X-value . (3) For any XY-value  in

D,  denotes the cardinality of the bag (multiset)

,  i.e., the  number  of  occurrences  of

 as XY attributes  in D;  we  refer  to  as  the

multiplicity of  in D.

ψ D |= φWe say that D conforms to , denoted by , if

X ā D |DY (X = ā)| ≤ N
N Y D

(1)  for  any -value  in , , i.e.,

there exist at most  distinct associated -values in ;

and

φ

ā

b̄

b̄ m(D, ab)

(2)  there exists  an index for  on D such that given

any X-value ,  by  accessing  at  most N tuples, it  re-

trieves (a) all associated distinct Y-values  in D, and (b)

for each such , the multiplicity .

D |= φIntuitively,  if  for  any X-value,  there  exist  at

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 3 

 



most N distinct  corresponding Y values  in D.  Moreover,

these Y-values  (partial  tuples)  and their  multiplicities  in

D are  indexed  by ψ and  can  be  efficiently  retrieved  via

the index.

A1

B1

Example  4. Extending  of Example  1,  a  bag  ac-

cess  schema  consists of  the  following  bag  access  con-

straints:

◦φ1 = friend(|pid→ fid, 5000|);
◦φ2 = checkin(|uid→ country, 193|).
Here φ2 says  that  (a) for  any  uid u1,  there  exist  at

most 193 distinct country values, and (b) there exists an

index built  on the friend relation that given any uid u1,

fetches  all  associated  distinct  countrys c and  for  each

country c,  the  multiplicity  of  (u1, c) in  the  friend  rela-

tion for country c; similarly for φ2.

B2As another example, consider a bag access schema 

for Q4 of Example  3,  which  consists  of  bag  access  con-

straints:

◦φ3 = R(|A→ B, 1|),
◦φ4 = R(|B → C, 10|), and

◦φ5 = S(|EF →W, 10|).

B2

We will  see  that Q4 can be efficiently  answered with

. □
D R

B D |= B D |= φ φ ∈ B
φ = R(|X → Y,N |) D

A database instance  of  conforms to a bag access

schema , denoted by , if  for every ,

where , and D is the instance of R in .

ā

|DY (X = ā)| ≤ N

b̄

ab

Intuitively,  a  bag  access  constraint φ extends an  ac-

cess constraint ψ of [5, 19] by incorporating multiplicity.

Similar  to ψ,  given  any X-value  in D, φ enforces  the

cardinality  constraint  and returns  dis-

tinct  corresponding Y-values.  In  contrast  to ψ,  for  each

corresponding Y-value , φ also returns the multiplicity of

 in D. In other words, access constraints under the set

semantics[5, 6] are a special case of bag access constraints

when we only bound the cardinality and retrieve distinct

values.

Remark 1. When it is clear from the context, we also

simply refer to bag access schema as access schema.

2.2   Bounded evaluation of RAaggr queries

We next define bounded evaluation for RAaggr queries.

R(|X → Y,N |)
(t[X,Y ],m(t[X,Y ]))

Multiplicity relations. From an instance D of a re-

lation  schema R,  we  can  use  the  index  of  a  bag  access

constraint  to retrieve a relation consisting

of tuples , where t is a tuple in D. It

is  a  set  that  besides  partial  tuples t[X, Y]  in D,  carries

multiplicity m(D, t[X, Y]), and is referred to as a multi-

plicity relation.

1C

I1 1C I2

I1 1C I2
M = m(I1, t1)×

The RAaggr operators can be readily extended to mul-

tiplicity relations.  Take join operator  as an example.

Given  two  multiplicity  relations I1 and I2,  the  result  of

,  denoted  by Is, is  a  multiplicity  relation  as  fol-

lows: (a) tuples in Is have the form (t, M),  where t is  a

result  tuple  of  using the  conventional  join  se-

mantics  (ignoring  multiplicity),  and  (b) 

m(I2, t2) t1 ∈ I1 t2 ∈ I2

Ii(i ∈ {1, 2})

,  where t is  joined from  and ,  and

m(Ii, ti)  denotes  the  multiplicity  of  tuple ti in multipli-

city relation . Similarly, other RAaggr operat-

ors are defined on multiplicity relations.

ξ

B

φ = R(|X → Y,N |)
B

S =
∪

ā∈T DXY (X = ā)

Bounded RAaggr plans. A  bounded  RAaggr plan 

under a bag access schema  is an algebra tree that ex-

tends conventional RAaggr query plans with a new operator

fetch(T,φ), where  is a bag access con-

straint  in ,  and T is  an  intermediate multiplicity rela-

tion on attributes R[X] (see Appendix for a formal defini-

tion).  Over  an  instance D of R that  conforms  to φ,

fetch（T, φ）retrieves  an  intermediate  relation

 by  using  the  index  of φ on D,

where  each  tuple t in S is  annotated  with  multiplicity

m(D, t) (also retrieved by φ).

∅ D

B

Intuitively, a bounded RAaggr plan starts with a set of

constants  (possibly ),  retrieves  data  from  via  the

fetch  operator,  and  applies  RAaggr operators  to  the

fetched  data,  except  that  it  accesses  data  by  employing

the  indices  of  the  bag  constraints  in  only,  and  allows

group-by aggregate and operates on multiplicity relations.

ξ(D) DWe denote by  the result of applying plan ξ to .

B1

ξQ2 B1

Example 5. Recall RAaggr query Q2 from Example 2

and  bag  access  schema  from  Example  4.  A  bounded

plan  for Q2 under , written in algebra expressions,

is as follows:

T1 (uid,fid)= fetch({u0}, φ1),

T2 (uid,cty)= fetch(πfidT1, φ2),

T3 (uid, cty) = σctyT2,

T4 = gpBy(T3, uid, count(cty)).

B2

D |= B2

Q4 ≡B2 Q6

D |= B2

As  a  more  intriguing  example,  recall  query Q4 from

Example  3  and  bag  access  schema  from  Example  4.

By  the  cardinality  constraint  in φ3,  for  each A-value  in

any database instance  for w of Q4, there exists at

most  1  distinct B-value  associated  with w.  Therefore,

,  i.e., Q4 is  equivalent  to Q6 on every  data-

base , where Q6 is

Q6 = avg(πz(Q7(y) 1 S(y, 1, z))), where

Q7 (y) sum(πyR(w, 1, y)).

B2

ξQ4

Under , Q6 (hence Q4)  has  a  bounded  query  plan

:

T1(B,C) = fetch({1}, φ4),

T2 = sum(πCT1),

T3(E,F,W ) = fetch(T2 × {1}, φ5),

T4 = avg(πWT3).

ξQ4

ξQ4

ξQ4

D |= B2

Observe that  does not explicitly use φ3. However,

the  correctness  of  relies  on  the  cardinality  of φ3.

Moreover,  propagates  constants  of Q4 via  join  and

fetch,  such  that  all  values  and  their  combinations  that

are needed for answering Q4 are fetched from . In

particular, in the presence of nested aggregation, answers

to  aggregate  sub-queries  can  also  be  used  by  fetch,  e.g.,

T3. □

B
Boundedly  evaluable  queries. Under  access

schema , an RAaggr Q is boundedly evaluable if it has a
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plan ξ such that:

◦ ξ B is a bounded RAaggr plan under ;

◦ constants {c} in ξ are from selection conditions of Q;

◦ D |= B ξ(D) = Q(D) moreover, for any database , .

Q ≡B ξWe write  if Q has such a bounded query plan

ξ.

(t,m) ∈ D1

Here  for  any  multiplicity  relation D1 and a  conven-

tional bag (multiset) D2, we write D1 = D2 if D2 can be

obtained  from D1 by  including m copies  of  each  tuple

.

B1

ξQ2

B2

For  example,  query Q2 of  Example  2  is  boundedly

evaluable under  of Example 4, since it has a bounded

plan  given in Example 5. Similarly, Q4 of Example 3

is also boundedly evaluable under  of Example 4.

Observe the following about bounded RAaggr plans ξ.

B
D D B

(1) Scale independence.  Each  fetch  operation  in ξ re-

trieves data with a cost that can be quantified by the bag

constraint employed. Hence the cost of executing ξ is de-

termined by bag access schema  and query plan ξ only,

not by the size of dataset  as long as  conforms to .

That  is,  under  the  bag semantics,  bounded RAaggr plans

preserve the scale independence of bounded evaluation for

RA queries[5, 6].

(2) Late bag semantics enforcement.  Plan ξ fetches

and  operates  on sets since  fetch(T, ψ)  returns a set.  It

defers the process of the bag semantics to a stage as late

as possible. This reduces performance degradation caused

by  duplicated  values  in,  e.g., joins,  in  which  duplicates

get inflated rapidly.

R(|∅ → A,N |)

(3) Subsuming column-stores. Bounded plan ξ can also

express query evaluation over column-stores[20] or column-

store indices[21]. Indeed,  in a column store (or  a column-

store index), each column (or column index) on attribute

A of  a  relation  schema R is  essentially  a  special  case  of

bag  access  constraint  of  the  form .  Hence,

column store and columnstore index are a special case of

bag access schema and hence their evaluation plan can be

expressed  by  a  bounded plan ξ under  such  a  bag  access

schema.

R(|X → Y,N |)

Note that the efficiency of column stores mainly comes

from  its  implementation-level  optimization,  e.g., column

compression  and  vectorization[20]. While  these  optimiza-

tion strategies can also be used to implement the indices

of bag access schema, these are not the focus of this pa-

per. We  study  query  evaluation  at  the  logical  level,  un-

der generic  constraints  when X is not ne-

cessarily  empty.  Hence,  this  paper  focuses  on  row-ori-

ented databases  as  the  underlying  platform  for  imple-

menting bag access schema.

3   Complexity of bounded evaluation

In  this  section,  we  study  the  complexity  of  bounded

evaluability and identify practical decidable cases.

Bounded evaluability. The problem is stated as fol-

lows.

◦ R B
R R
 Input: A database schema , a bag access schema 

over , and an RAaggr query Q over .

◦ B Question: Is Q boundedly evaluable under ?

This bounded evaluability problem is to decide wheth-

er  a  query  can  be  answered  by  accessing  a  bounded

amount  of  data,  and  is  underlying  the  first  step  of  our

framework for  querying  big  data  under  bounded  re-

sources (Section 1).

No matter how important, the problem is hard. To see

why it is intriguing, let us consider Example 6.

B3Example 6. Consider bag access schema  and SPC

query Q8 defined on relations T(A, B) and U(E, F):

◦B3 consists of the following two access constraints:

φ6 = T (|A→ B,N |),
φ7 = U(|E → F, 2|);
◦ Q8 = Q9 −Q10 query , where

Q9 = πy(T (x, y) 1 U(w, 1) 1 U(w, x) 1 U(w, y)), and

Q10 = πz(T (z, z) 1 U(u, 1) 1 U(u, z)).

B3

U(w, 1) 1 U(w, x) 1 U(w, y)

B3

B3

Q1
9 ∪Q2

9 Q1
9 = πy(T (1, y) 1

U(w, 1) 1 U(w, , y) Q2
9 = πy(T (y, y) 1 U(w, 1) 1

U(w, y) Q8 = (Q1
9 ∪Q2

9)−Q10 = Q1
9

Q2
9 ≡ Q10 Q1

9

B3

At a first glance, none of Q9 and Q10 seems boundedly

evaluable, and hence neither is Q8. Indeed, we cannot re-

trieve  values  for  any  of x, y or z using  indices  in .

However,  putting  together 

and φ7 of ,  one  can  deduce  that x must  be  equal  to

either 1 or y in all tuples retrieved from instance of T by

any query plan for Q9.  In other words, under , Q9 re-

duces  to  SPCU ,  where 

 and 

.  Hence,  since

.  It  is  easy  to  see  that  is boundedly  evalu-

able under  and as a result, so is Q8.

∪
Q1

4 ∪Q2
4

Q1
4

As shown above,  it  is  often necessary to check query

equivalence  to  decide  whether  a  query  is  bounded.  The

use of union ( ) allows us to convert SPC to SPCU un-

der a bag access schema (e.g., Q4 to ), which may

further interact with set difference (–) (e.g., Q3 and ).

It is  beyond  reach  in  practice  to  check  the  equival-

ence of RA or RAaggr queries. Thus, the bounded evaluab-

ility problem is already undecidable for RA, a special case

of RAaggr.

Theorem  1.[5] The  bounded  evaluability  problem  is

undecidable for RA queries.

Theorem 1  was  verified  under  access  schema.  As  re-

marked  in  Section  2,  access  schema  is  a  special  case  of

bag access schema. Hence, the bounded evaluability prob-

lem  remains  undecidable  for  RA  under  a  bag  access

schema. As an immediate corollary, the bounded evaluab-

ility  problem  is  undecidable  for  RAaggr,  which  subsumes

RA.

Decidable  cases. We  next  identify  special  cases

when the bounded evaluability is decidable. The reason is

twofold.  (1)  The  special  cases  cover  a  large  number  of

RAaggr queries used in practice,  e.g., all  SPC sub-queries

of built-in benchmark queries in TPCH[15] and TPCDS[22].

(2) These cases reveal insight about why queries become

boundedly evaluable. In Section 4, we will deal with gen-

eric  RAaggr queries,  by  devising  an  effective  syntax  for
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boundedly evaluable RAaggr queries.sub> queries.

CP
(I) PTIME cases. The first special case, denoted by

, consists  of  combinations of  SPC queries  and bag ac-

cess  schema  for  which  the  bounded  evaluability  can  be

checked  in  PTIME,  covering  all  SPC  sub-queries  of

TPCH and TPCDS.

CP B
R (B, Q) ∈ CP

Class .  For  any  bag  access  schema  and  SPC

query Q over the same database schema ,  if

φ = R(|X → Y,N |)
N > ||Q|| ||Q||

(a)  for  each  bag  constraint ,

, where  is the number of relation atoms in Q;

and

(b) Q has no self-join.

BTheorem 2. For any bag access schema  and SPC

Q,

(B, Q) CP(1) it is in PTIME to decide whether  is in ;

and

B (B, Q) CP
(2) it is in PTIME to decide whether Q is boundedly

evaluable under  if  is in .

B

Proof. Statement  (1)  apparently  holds.  Below  we

prove  (2)  by  giving  a  PTIME  sufficient  and  necessary

condition for checking the bounded evaluability of Q un-

der .

cov(Q,B)

B
XQ

C

σA=c cov(Q,B)

The condition needs a notion of  covered SPC queries

from [6]. It is characterized by a set , which con-

sists of attributes whose values can be retrieved via fetch

operations  along  with ,  without  directly  accessing  raw

data in a database. More specifically, let  be the set of

attributes A in  the  constant  selection  predicates  of Q,

i.e.,  for a constant c. Then  is inductively

defined as:

XQ
C ⊆ cov(Q,B)(a) ;

A ∈ cov(Q,B) ΣQ ⊢ A = B

A = B ΣQ

B ∈ cov(Q,B)

(b)  if  and  (denoting  that

 can  be  deduced  from selection  predicates  via

the transitivity of equality), then ;

X ⊆ cov(Q,B) R(|X → Y,N |) ∈ B
Y ⊆ cov(Q,B)

(c)  if  and ,  then

; and

cov(Q,B)(d)  contains nothing else.

XQ
RDenote by  the set of attributes that are either in

the selection or join predicates of Q, or are the top-level

projection attributes. Then we show the following.

(B, Q) ∈ CP

B
φ = R(|X → Y,N |) ∈ B XQ

R ⊆ XY ⊆
cov(Q,B)

Lemma 3. For any , Q is boundedly eval-

uable  under  if  and  only  if  for  each  relation R in Q,

there  is  such  that 

.

B

From  Lemma  3,  Theorem  2(2)  follows  since  one  can

simply check the condition of Lemma 3 in PTIME in the

sizes of Q and . Below we prove Lemma 3.

⇒ B
B

ξ ≡ Qξ ≡B Q Q ≡B Q
′

Q(D) = Q′(D) D |= B

( ) Assume that Q is  boundedly evaluable under .

Then there  exists  a  bounded plan ξ for Q under . Be-

low we first inductively construct a query Qξ from ξ such

that  (a) ,  where  means  that

 for any database , and (b) Qξ satis-

fies the condition on Q in Lemma 3. We then show that

Q also  satisfies  the  condition  when Qξ satisfies  it,  and

thus Lemma 3 holds.

Construction of Qξ. We construct query Qξ by induc-

tion on the structure of ξ as follows:

◦ If ξ = {c}, then Qξ = {c}.
◦ ξ = σC(ξ

′) πY (ξ′) Qξ = σC(Qξ′)

πY (Qξ′)

 If  (resp. ),  then 

(resp. ), where Qξ' is the query constructed for ξ'.
◦ ξ = fetch(ξ′, R(|X → Y,N |)) Qξ = πZ(Qξ′ 1X

R(X,Y, Z))

 If , then 

.

◦ ξ = ξ1 × ξ2 Qξ = Qξ1 ×Qξ2 If , then .

Qξ

φ = R(|X → Y,N |) ∈ B X
Qξ

R ⊆
XY ⊆ cov(Qξ,B)

By  induction  on  the  structure  of ξ,  one  can  readily

verify  that  for  each relation R in ,  there  exists  a  bag

constraint  such  that 

,  i.e., Qξ satisfies  the  condition  of

Lemma 3.

φ = R(|X → Y,N |) ∈ B N > ||Q||
Qξ ≡B Q Qξ ≡ Q

XQ
R ⊆ ρ(X

Qξ

R′ )

XQ
R ⊆ρ(X

Qξ

R′ ) ⊆ XY ⊆ ρ(cov(Qξ,B)) ⊆ cov(Q,B)

Query Q satisfies the condition. We next show that Q

satisfies  the  condition  in  Lemma  3  when Qξ does.  Since

for each bag constraint , ,

from ,  one  can  verify  that .  Thus  there

exists  a  homomorphism ρ from Qξ to Q[2].  Moreover,

since Q is self-join free, each relation schema R (i.e., rela-

tion atom) has at most one occurrence in Q. Then no re-

lation  atom  in Q can  be  removed  without  changing Q.

Thus, Q is minimal (an SPC query is minimal if it has no

redundant relation atoms[2]). Hence for each relation R in

Q, there must exist a relation R' in Qξ such that ρ(R') =
R,  and  moreover, .  Hence

.  That

is, Q also satisfies the condition of Lemma 3.

⇐
B

( ) Assume that Q satisfies the condition of Lemma

3. We construct a 3-step bounded query plan ξ under 

for Q:

(a)  it  has  a bounded sub-plan ξR for  each relation R

in Q that fetches all  attribute values needed for answer-

ing Q;

ξcR

(b)  it  combines  the  attribute  values  for  each relation

R in Q via a bounded sub-plan  such that each (par-

tial) tuple fetched and kept for R is guaranteed to draw

values from the same tuple in D; and

ξcR(c)  it  finally  carries  out  operations  in Q over  for

each relation R in Q.

To show such a plan ξ exists  for Q under the condi-

tion of Lemma 3, we only need to prove the following two

properties:

(1) all necessary attribute values for answering Q from

each relation R in Q can be retrieved by ξR in step (a),

and

ξcR(2)  their  combinations  can  be  restored  by  in  step

(b).

A ∈ XQ
R

XQ
R

A ∈ cov(Q,B)
B

XQ
R A ∈ cov(Q,B)

Proof  of  (1).  We  prove  (1)  by  constructing  such  a

bounded plan ξR[A] for each attribute . Note that

only  attributes  in  are  needed  for  answering Q.  The

plan ξR[A] is  constructed  by  translating  the  proof  that

witnesses . More specifically, since the con-

dition of Lemma 3 holds for Q and , for any attribute A

of  such  that , there  must  exist  a  se-

quence  of  applications  of  rules  (a)–(c)  that  defines
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cov(Q,B) such that

ℓ : cov0
r17−→cov1

r27−→ · · · rn7−→covn

cov0 = ∅ A ∈ covn

cov(Q,B) ℓ

where , ,  step i expands  covi-1 by

applying rule ri from one of the rules (a)–(c) for defining

 given  earlier.  We  translate  into  a  bounded

plan:

ξ : ξ0, · · · , ξn

covi−1
ri7−→covi

where ξ0 is empty; ξi is derived from ξ0, ···, ξi-1 based on

step  as follows:

XQ
C(i)  if ri is  rule  (a)  for  a  constant c in ,  then ξi is

{c};
A ∈ covi−1

B ̸∈ covi−1 B ∈ covi

(ii) if ri is rule (b) with A = B such that ,

 and , then ξi = ξi-1;

ξi = fetch(ξj1 1 · · · ξj|X| ,

φ = R(|X → Y,N |)) ξj1 ξj|X|

j1, · · · , j|X| < i

(iii)  if ri is  rule  (c),  then 

,  where , ···,  are  the  bounded

plans that fetch attributes in X ( ).

By the construction, ξi is a bounded plan that fetches

all A attribute values for Q. Note that each sub-plan ξi is

bounded since it does not involve relation scans.

ξcR ξA
A ∈ XQ

R T1 = ξA1 1 · · · 1 ξA|X| Ai

(i ∈ [1, |X|]) XAi

Ai

XQ
R ⊆XY φ=R(|X → Y,N |) ∈ B ξcR= fetch(T1, φ)

ξA A ∈ XQ
R ξcR

B

Proof of (2).  Plan  is constructed with  for each

 by  (i) ,  where ′s
 range over all attributes in X, and  is the

plan  generated  above  for  fetching  values;  and  (ii)  if

 for , then .

Since  is  a  bounded  plan  for  each ,  is

bounded under .

B
B

Hence,  when  the  condition  of  Lemma  3  holds  for Q

and , ξ constructed above is a bounded plan for Q un-

der . □

CP
(II) NP cases. One might want to lift the restriction

of condition (b) on the queries in . This covers all SPC

queries,  including  those  with  self-joins.  However,  the

bounded evaluability analysis becomes harder unless P =

NP.

CNP CNP

B
φ = R(|X → Y,N |) N > ||Q||

Class .  Denote by  the set of pairs of bag ac-

cess  schemas  and  SPC  queries Q such  that  for  each

bag constraint , . We have the

following.

BTheorem 4. For any bag access schema  and SPC

Q,

(B, Q) CNP(a) it is in PTIME to decide whether  is in ;

and

B (B, Q) CNP
(b)  it  is  NP-complete  to  decide  whether Q is

boundedly evaluable under  if  is in .

B
(B, Q) ∈ CNP

CNP

Proof. Statement (a)  is  immediate.  To  prove  state-

ment (b),  we  first  give  a  sufficient  and  necessary  condi-

tion for query Q to be boundedly evaluable under  for

any . Based on the characterization, we then

show that  checking bounded evaluability  for  is  NP-

complete.

Let Qm be the minimal equivalent query of Q, i.e., the

minimized version of Q, which can be obtained by remov-

CNP

ing  all  redundant  relations  (see  [2]  for  details).  For  an

SPC  query Q,  there  exists  a  unique  minimal  equivalent

query  up  to  isomorphism[2].  Along  the  same  lines  as  the

proof of Lemma 3, one can verify the following for cases

in .

(B, Q) ∈ CNP

B
φ = R(|X → Y,N |) ∈ B

XQm
R ⊆ XY ⊆ cov(Qm,B)

Lemma  5. For  any , Q is  boundedly

evaluable under  if and only if for each relation atom R

in Qm,  there  exists  such  that

. □

B (B, Q)

CNP

Based  on  this,  we  prove  that  deciding  whether Q is

boundedly evaluable under  is NP-complete for  in

.

Upper bound. We give an NP algorithm as follows:

(a) convert Q into its tableau representation (TQ, u)[2];

T ′ ⊆ TQ

(b)  guess  a  sub-query Q' =  (T', u)  of Q such  that

, and a mapping ρ from TQ to T';

φ = R(|X → Y,N |) ∈ B
XQ′

R ⊆ XY ⊆ cov(Q,B)

(c) check (i) whether ρ is a homomorphism from (TQ,

u) to (T', u) and (ii) whether for each relation atom R in

Q',  there  exists  such  that

; return “Yes” if so.

(TQm , u)

TQm ⊆ T ′
Q ⊆ TQ

B

|B| |Q′| ≤ |Q|

|B| B

The algorithm is correct since if conditions (i) and (ii)

of step (c) hold on Q', they must also hold on the minim-

al equivalent query Qm of Q. Indeed, ρ also determines a

homomorphism  from  (TQ, u)  to  since Qm is  a

minimal  equivalent  query  of Q,  i.e., ;

therefore,  if  condition  (ii)  holds  on Q', by  the  homo-

morphism ρ it must also hold on Qm, i.e., the condition of

Lemma 5 applies  to Q and .  Thus,  by Lemma 5, Q is

boundedly  evaluable.  The  algorithm  is  in  NP  since  step

(a) is in PTIME, and step (c) is in PTIME in |Q'|, |Q|, |ρ|,
and  while  and ρ = O(|Q|). Here  |Q| is  the

size  of Q,  i.e., the  number  of  attributes  and  aggregate

fields in Q;  is the total length of bag constraints in .

Lower bound. To show that the problem is NP-hard,

we consider the following problem, denoted by MINCQ.

◦ Input:  A  relation  schema R and  an  SPC  query Q

over R.

◦ Question: Is Q minimized, i.e., is Q a minimal equi-

valent query of Q?

It is easy to verify that MINCQ is coNP-complete by

reduction from 3-COLORABILITY, which is NP-complete[23].

Lemma 6. Problem MINCQ is NP-complete.

CNP
We  show  that  the  bounded  evaluability  problem  for

 is  NP-hard  by  reduction  from  the  complement  of

MINCQ.

R(A1, · · · , Am) SPC
R′ R′

B
B

Given  an  instance  of  MINCQ, i.e., a  relation  schema

 and  an  query Q over R, we  con-

struct  a  database  schema ,  an  SPC query Q' over 

and a bag access schema . We show that Q is not min-

imal if and only if Q' is boundedly evaluable under .

R′

R′(A1, · · · , Am, B1, · · · , Bn(n−1)
2

)

(1)  Database  schema  consists  of  a  single  relation

schema ,  where n is  the

number of relation atoms that appear in query Q.

B1 Bn(n−1)
2

Intuitively, R' extends R with  additional  attributes

, ··· , . As will be shown later, together with Q',
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such  new  attributes  will  be  used  as  join  attributes  to

pairwisely connect the n relation atoms of Q in Q'.
(2) Query Q' is derived from Q as follows:

◦

R ∈ R
R′ ∈ R′

 query Q' retains the same number of joins and rela-

tion atoms as Q, such that each relation atom Ri (i.e., re-

naming  of  relation  schema )  is  replaced  with Ri'
(i.e., renaming of relation schema ); and

◦ Q′

i < j R′
i[Bp] = R′

j [Bp]

p = n(i− 1)− i(i− 1)

2
+ (j − i)

 the  selection  (join)  condition C of  query  con-

tains  all  selection  predicates  of Q,  and  in  addition,  the

following predicates: for each pair of relations Ri and Rj
in Q ( ),  add  equality  to C,  where

.

Bi(i ∈ [1,
n(n− 1)

n
])

Intuitively, C preserves  all  selection  conditions  of Q

and  additionally  joins  each  pair  of  the n relation  atoms

on a dedicated attribute : (a) for each

Bk,  there  exist  exactly  two  relation  atoms Ri' and Rj'
such that Ri'[Bk] = R'j[Bk]; and (b) for each Ri' and Rj',
there exists exactly one attribute Bk such that Ri'[Bk] =
R'j[Bk].

B n(n− 1)

2
− 1

B

(3) The bag access schema  consists of 

constraints. Let W be the set of all attributes of A1, ··· ,
Am such that  they  appear  in  the  selection/join  condi-

tions or the top-level projection attributes in Q. Then 

consists of

◦ φ1 = R′(|∅ →WB2B3 · · ·Bn(n−1)
2

, N |) ,

◦ φ2 = R′(|∅ →WB1B3 · · ·Bn(n−1)
2

, N |) ,

...

◦ φn(n−1)
2

= R′(|∅ →WB1B2 · · ·Bn(n−1)
2

−1
, N |) .

B
We next show that query Q is not minimal if and only

if Q is boundedly evaluable under .

(⇒)

n
n(n− 1)

2
B1 Bn(n−1)

2

φ = R′(X → Y,N,m) B

|W |+ n(n− 1)

2

φi ∈ B |W |+ n(n− 1)

2
− 1

 Assume that Q is not minimal. Then none of the

 relation atoms in Q' can be removed by minimizing Q'.

Hence  all  attributes , ···, ,  together

with W,  have  to  be  contained  in XY for  some

 in  by  Lemma  5.  This  yields

 attributes. This is impossible since for any

, φi contains  attributes only by

its definition above.

(⇐) B

φi ∈ B |W |+ n(n− 1)

2
− 1

X
Q′

m

R′
i

|W |+ n(n− 1)

2
− 1

XQ′

R′
i

|W |+ n(n− 1)

2

 Assume that Q' is boundedly evaluable under .

Since each  contains  attributes,

by  Lemma  5,  must  contain  at  most

 attributes  for  each  relation  atom R'i
in Q',  where Q'm is  the  minimal  equivalent  query  of Q'.

Since  contains  attributes, query Q' is
not minimal. □

CNP
Remark  2. Despite  its  intractability,  checking  the

bounded  evaluability  for  is  feasible  in  practice  by

Lemma 5. Indeed, there have been effective algorithms for

minimizing SPC queries, i.e., computing Qm for Q[2], and

the  size  of Q is typically  small.  Taking  one  of  these  al-

Qm

B
|B|

gorithms as an oracle for computing Qm, one can still effi-

ciently  check  the  bounded  evaluability  of  generic  SPC

queries:  first  minimize Q,  yielding ,  and  then  check

whether Qm and  satisfy  the  condition  of  Lemma 5  in

PTIME in |Qm| and .

4   Effective syntax

In  this  section,  we  propose  an  effective  method  to

check the bounded evaluability of generic RAaggr queries.

We show that  while  the  problem is  undecidable  (Theor-

em 1), there exists an effective syntax for boundedly eval-

uable  RAaggr queries, which  reduces  the  problem to  syn-

tactic checking (Section 4.1). In addition, we identify two

practical subclasses of RAaggr queries and provide their ef-

fective  syntax.  In  particular,  we  give  one  for  RA  and

show  that  it  covers  more  bounded  queries  than  the  one

given in [6] (Section 4.2).

4.1   An effective syntax for RAaggr

B
L L

LLB L L

Under  an  access  schema ,  an  effective  syntax  for

boundedly evaluable queries of  (  refers to, e.g., RA or

RAaggr) is a subclass  of  such that for any Q in ,

Q′ LLB Q ≡B Q
′

(a)  if Q is  boundedly  evaluable,  then  there  exists  a

query  in  such that ;

LLB(b) every query Q in  is boundedly evaluable; and

|Q|
|B| B Q ∈ LL

B

(c) it is in PTIME in the size  of query Q and the

length  of constraints in  to check whether .

Q ≡B Q
′ Q(D) = Q′(D)

D |= B
Here  if  for  all  databases

.

L
LLB L

LLB B
LLB LLB

L

Intuitively, the effective syntax reduces the problem of

deciding the bounded evaluability of  queries to syntact-

ic  checking  of .  Indeed,  every  boundedly  evaluable 

query can find an equivalent query in  under . Hence,

we can safely settle with queries in , since  can ex-

press, up to equivalence, all boundedly evaluable  quer-

ies.

LLB
Remark  3. To some  extent,  the  development  of  ef-

fective syntax  is analogous to the study of range-safe

queries  for  relational  calculus.  Indeed,  the  problem  for

checking the “safety” of relational calculus queries is also

undecidable[2]. Despite this, range-safe queries are suppor-

ted by commercial DBMS, by making use of an effective

syntax of  range-safe  relational  calculus  queries.  We  fol-

low the same approach to dealing with the bounded eval-

uability of RAaggr queries.

LB

B

Below we develop such an effective syntax, denoted by

,  for  RAaggr queries that  are  boundedly  evaluable  un-

der .

LB LB

BA(Q,B) BR(Q,B) BQ(Q,B)
B

The class .  In  a  nutshell,  we  characterize  with

three sets: ,  and . Informally,

under a bag access schema , for an RAaggr query Q,

◦BA(Q,B) A
sum(A)

B

 contains  attributes  (e.g., ) and  aggreg-

ates (e.g., ) of Q whose values can be fetched via

;
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◦BR(Q,B)

BA(Q,B)

 consists  of  relations  in Q whose  partial

tuples that are needed to answer Q can be reconstructed

from the fetched values for attributes in ; and

◦BQ(Q,B) contains boundedly evaluable sub-queries of

Q.

LB Q ∈ BQ(Q,B)An RAaggr query Q is included in  if .

B

Intuitively,  these  sets  characterize  RAaggr queries Q

for which  the  values  of  all  attributes  necessary  for  an-

swering Q can  be  “deduced”  from  constants  in Q,  via

joins  and  fetch  under  access  schema .  Such  attributes

participate in RAaggr operations of Q, and are referred as

the  nontrivial  attributes  of  query Q.  The  class  of  such

queries makes  an  effective  syntax  for  boundedly  evalu-

able RAaggr queries.

More specifically, sets BA, BR and BQ are defined in

a  mutual  recursive  way  using  rules  given  in Fig. 1,  with

Xc
Q

BA(Q,B)

BR(Q,B)

notations explained in Table 1. Intuitively, (1) rule γ1 of

Fig. 1 includes  constant  attributes  (see Table  1)  in

; (2) γ2 propagates value from attributes and ag-

gregate  fields  to  join  attributes;  (3) γ3 specifies  value

propagation  via  fetch;  (4) γ4 says  that  if  a  sub-query  is

boundedly evaluable,  then  its  output  attributes  and  ag-

gregate  fields  can also  be  fetched;  (5) γ5 adds  a  relation

atom R to  only  when  the  partial  tuples  of R

can  be  reconstructed  from  combinations  of  the  fetched

values;  and  (6) γ6 says  that  a  sub-query  is  boundedly

evaluable if all its relations can be correctly fetched.

ΣQ

ΣQ ⊢ A = B A = B

ΣQ

As shown in Table  1,  denotes  the  set  of  equality

predicates embedded in the selection or join conditions of

Q,  and  denotes that equality  can be

deduced from  by the transitivity of the equality rela-

tion.

B1

Q2 ∈ LB1

Example  7. Recall  query Q2 from  Example  2  and

bag  access  schema  from  Example  4.  We  show  that

.

BA(Q2,B1)(1) Initially, by rule γ1,  includes f.uid and

c.cty,  where  f  (resp.  c)  are  shorthands  for  friend  (resp.

checkin).

BA(Q2,B1)(2)  By  rule γ3 and φ1,  further  includes

f.fid.

ΣQ ⊢ f.fid = c.uid f.fid ∈ BA(Q2,B1)

BA(Q2,B1)

(3) Since , by , we

have that  includes c.uid by rule γ2.

f ∈ BR(Q2,B1)

BA(Q2,B1)

c ∈ BR(Q2,B1)

BA(Q2,B1)

(4) By γ5,  because both f.uid and f.fid

are  in  and  are  attributes  of φ1.  Similarly,

 because  of φ2.  Note  that  only  c.uid  and

c.cty are nontrivial attributes of Q in relation c and they

are both in .

BQ(Q,B)
(5)  By γ6,  sub-query Q3 and  query Q2 itself  are  in

.

B2 Q6 ∈ LB2

As another example, recall query Q6 from Example 5

and  from Example 4. We next show that .

BA(Q6,B2)

BR(Q6,B2)

γ5

(1)  One  can  readily  deduce  that  includes

B and C by  using γ1 and γ3,  and  that  in-

cludes R with .

BQ(Q6,B2)(2) By γ6,  includes sub-query Q7 of Q6.

ZQ7 ∈ BA(Q6,B2) ZQ7

(3)  Hence,  further  by γ4 we  have  that

, where  is the output of Q7, i.e., an

aggregate field.

BA(Q6,B2) F

σQ6 ⊢ ZQ7 = F F

(4) By γ2, we know that  includes  since

 and  is not an aggregate field.

S ∈ BR(Q6,B2)

Q6 ∈ BQ(Q6,B2)

(5)  Thus,  by γ5 and γ6,  and

.

Q4 ̸∈ LB2 Q4 ≡B2 Q6 Q6 ∈ LB2

B2

Q1
9 B3

Q8 ̸∈ LB3 Q1
9 ∈ LB3 Q1

9

B3

Note  that .  However, , 

and Q6 is  boundedly  evaluable  under .  Similarly,  for

Q8,  and  of  Example  6,  one  can  verify  that

 but  and  is  boundedly  evaluable

under .

LBWe  next  show  that  is  indeed  an  effective  syntax

 

Table 1    Notations and definitions

Notation Definition

A (or
R[A])

An attribute or an aggregate field in Q

X, Y Sets of attributes in Q

|Q| Number of attributes and aggregate fields in Q

||Q|| Number of relation atoms in Q

XQ Set of all attributes and aggregate fields in Q

Xc
Q σA=cSet of attributes A of Q in constant selections 

ΣQ
3 Set of equality predicates in selections/joins of Q

ΣQ⊢A=B A = B ΣQ can be deduced from   via equality transitivity

ZQ Set of attributes and aggregate fields of the output of Q

nontr.
attr.

Attributes participated in algebra operations of Q

A B/ Access schema/bag access schema

|B| BTotal length of bag constraints in 

||B|| BThe number of bag constraints in 

ϕ φ/ Access constraint/bag access constraint

LB
RAaggr

B
Effective syntax for   queries

bounded. eval. under 

LLB L BEffective syntax for  -queries bounded. eval. under 
 

 

query

nontrivial attributes

i. e.,
e.g.,

 
LB RAaggrFig. 1     Effective syntax   for   queries

 

∨
∪

3To  reduce  notations,  we  assume w.l.o.g. that  selection

conditions  are  conjunctive,  i.e.,  in  selection  predicates  is

reduced using .
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Bfor boundedly evaluable RAaggr queries under .

B LBTheorem 7. Under  any bag access  schema ,  is

an effective syntax for  boundedly evaluable  RAaggr quer-

ies.

LBProof. We show below that  has properties (a) and

(b) of  an effective syntax,  by proving the following lem-

mas. We will constructively prove property (c) in Section

5.2.

B Q ≡B ξ

LB

(I) For any bounded plan ξ under , there is 

in .

Q ∈ LB ξ ≡B Q

B
(II)  For  any ,  there  is  plan  bounded

under .

B
B Q′ ≡B ξQ LB

Q ≡B Q
′ ∈ LB

ξ′ ≡B Q
′ ≡B Q

B LB

These suffice.  Indeed,  for  any Q that is  bounded un-

der ,  by definition there must exist a plan ξQ bounded

under ;  hence  by  (I),  there  exists  in .  On

the  other  hand,  if ,  by  (II), Q' has  a

bounded  plan ,  i.e., Q is  also  boundedly

evaluable under . Hence,  has properties (a) and (b)

of an effective syntax.

We next prove the two lemmas.

ξ

Proof of (I). We  prove  it  by  induction  on  the  struc-

ture of .

ξ {c} ∅ ξ

LB

Base case. When  is  or , by definition  itself is

in .

ξInduction. We consider the structure of .

ξ gpBy(ξ′, X, agg(V ))

Q′ ≡B ξ
′ Q′ ∈ LB

Q = gpBy(Q′, X, agg(V ))

LB Q′ BR(Q′,B) ⊆ BR(Q,B)
Q′

Q ∈ BQ(Q,B) γ6 Q ∈ LB

Q ≡B ξ

(i)  is . By  the  induction  hypo-

thesis,  there  exists  a  query  such  that .

Consider .  By  the  definition  of

, all relations in  are in  (since

Q and  share  the  same  nontrivial  attributes).  Hence

 by  rule .  That  is, .  Obviously,

.

ξ = πY (ξ′) σC(ξ
′) ξ1 × ξ2 ξ1 ∪ ξ2

ξ1 − ξ2
The  cases  for , , , ,

 are  similar  and  can  be  verified  along  the  same

lines.

ξ fetch(ξ′, φ) φ = R(|X → Y,N |)
Q′ ≡B ξ

′

Q′ ∈ LB Q = πR[XY ](Q
′ 1ZQ′=R[X] R)

fetch Q ≡B ξ

Q ∈ LB Q′ ∈ LB Q′ ∈ BQ(Q′,B)
γ4 Q′[X] ⊆ BA(Q′,B) ⊆ BA(Q,B) γ2

R[X] ⊆ BA(Q,B) γ3 R[Y ] ⊆ BA(Q,B) γ5

γ6 Q ∈ BQ(Q,B) ξ ∈ LB

(ii)  is  with .  By  the

induction  hypothesis,  there  exists  query  such

that . Consider . By

the  semantics  of , .  We  next  show  that

.  Since , .  Hence  by  rule

, .  Further  by ,

.  By , .  Hence by 

and , . That is, .

Q ∈ LB LB

ℓQ

Q ∈ BQ(Q,B)

Proof of (II).  Since ,  by  the  definition  of 

there  must  exist  a  proof  consisting  of  applications  of

rules  in Fig. 1 that  deduces ,  i.e., a se-

quence of the form

(BA0,BR0,BQ0)
r17−→ · · · rn7−→(BAn,BRn,BQn)

ri(i ∈ [1, n])

BA0 = BR0 = BQ0 = ∅ i

BAi BRi BQi BAi+1 BRi+1

BQi+1 rn γ6

Q ∈ BQ(Q,B) ℓQ

where  (a)  is  one  of  the  rules  in Fig. 1;  (b)

;  (c)  for  each  step ,  only  one  of

,  and  is  changed  in ,  and

,  respectively;  and  (d)  is  rule  that  deduces

. We define the length of  as the number

n ℓQ of rules applied in .

ℓ

i

Induction  hypothesis.  We  show  that  for  a  proof  of

length ,

◦ A ∈ BAi+1 A ̸∈ BAi A

B

 if  but , values for  that are ne-

cessary for answering Q can be fetched via bounded plan

under ;

◦ R ∈ BRi+1 R ̸∈ BRi

B
 if  but ,  then values  from R ne-

cessary for Q can be fetched via bounded plans under ;

and

◦ q ∈ BRi+1 q ̸∈ BQi

B

 if  but , then the exact answers to

sub-query Q of Q can be answered via bounded plans un-

der .

Q ∈ LB ℓQ

Q ∈ BQ(Q,B)
B

Note  that  for  any , Q must  have  a  proof 

ending by including . If the induction hypo-

thesis  holds, Q must  have  a  bounded  plan  under ,

which proves lemma (II).

l(ℓ) ℓWe next prove it by induction on the length  of .

l(ℓ) = 1

A ∈ BA1

φ = R(|∅ → Y,N |) ∈ B

ξR[Y ] = fetch(∅, φ)

Base  case.  When ,  then  rule r1 can  only  be

either (i) γ1 of Fig. 1, i.e., to include  from selec-

tion A = c of Q; or (ii) γ3 of Fig. 1, i.e., to include R[Y] in

BA1 with . For (i), simply let ξA =

{c}. Then ξA is a bounded plan that fetches all necessary

values for A. For (ii), let . Then by the

semantics of fetch, all  values for R[Y]  that are necessary

for answering Q are fetched by ξR[Y] (here we rename Q

beforehand such that  there  exist  no  duplicated attribute

names).

ℓ

(BAi,BRi,BQi)
ri+17−→

(BAi+1,BRi+1,BQi+1) ℓ

Induction.  Assume  that  the  hypothesis  holds  for

proofs  of  length  at  most k.  Consider  proof  of  length

k+1.  We  discuss  the  last  step 

 of .

(i) If rk+1 is rule γ1 with attribute A = c, then A can

be fetched in exactly the same way as the base case.

(ii) If rk+1 is rule γ2 that includes attribute B in BAi+1

with A = B, then attribute A must be included in BAi+1

at some steps prior to k+1. By the induction hypothesis,

there must exist a bounded plan ξA that fetches all neces-

sary  values  for  answering Q except B.  Hence ξB =ξA is

also  a  bounded plan that  fetches B for Q by the  condi-

tion A = B.

R[X] ⊆ BA(Q,B) φ = R(|X → Y,N |)
i1, · · · , ip

R[Xip ] R[X1] ∪ · · · ∪R[Xp] =

R[X] R[Xj ](j ∈ [1, p])

ξR[Xj ] ξR[X] 1
p
j=1 ξR[Xj ]

(iii) If rk+1 is rule γ3 that includes R[Y] in BAi+1 with

 and constraint , then

there  exist  steps  prior  to k+1  that  include

R[X1], ··· ,  in BA such that 

. Hence by the induction hypothesis, 

has  bounded  plan .  Let  be ,  then

ξR[X] fetches all values for R[X] that are necessary for an-

swering Q. Hence, further by the semantics of fetch, R[Y]

has  a  plan  fetch(ξR[X], φ)  that  retrieves  all R[Y]-values

needed for answering Q.

ZQs

j < i+ 1

ξQs B
ZQs

(iv)  If rk+1 is γ4 that  includes  in  BAi+1 from  a

subquery Qs of Q that  is  included  in  BQj at  step

, then by the induction hypothesis, there exists a

plan  for Qs under  that exactly answers Qs. Hence

we can get values for its output attributes  simply by
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ξQs ξQs

ZQs

. Note that since  is an exact plan for Qs, the val-

ues for  are guaranteed correct even when Qs is an ag-

gregate subquery.

φ = R(|X → Y,N |) ∈ B
ξR[X1] ξR[Xp]

R[X1] ∪ · · · ∪R[Xp] = R[X]

ξR[X] =1
p
j=1 ξR[Xj ]

R[X]

ξR[XY ] = fetch(ξR[X], φ)

(v)  If rk+1 is γ5 that  includes R in  BRi+1 with R[X]

and , then by the induction hypo-

thesis, there exist plans , ···,  to fetch all ne-

cessary  values  for R[X1], ··· , R[Xp]  for Q,  respectively,

such that .  Hence R[X]  has  a

bounded  plan  that fetches  all  neces-

sary -values for Q. Since R[XY] covers all nontrivial

attributes of R for Q, by , we can

fetch  all  combinations  of R[XY]-values  that  are  needed

for answering Q.

ξR1 ξRp

ξQs Ri(i ∈ [1, p])

ξRi ξQs

ξRi(i ∈ [1, p])

(vi) If rk+1 is γ6 that includes Qs in BQi+1, then all re-

lations R1, ··· , Rp of Qs have  been  included  in {BR in

prior steps. Hence by the induction hypothesis, there ex-

ist , ···,  that fetch all values from R1, ··· , Rp, re-
spectively, which are necessary for Q. Now construct plan

 by  replacing  each  relation  in Qs with

. Then  must be a query plan for Qs of Q since all

necessary value combinations can be retrieved from D via

, and Qs then filters and combines values ex-

actly the same as on D.

Hence the hypothesis holds for proofs of length k+1. □

4.2   Special cases

RA0
aggr

RA0
aggr

These are two important sub-classes of RAaggr: (1) RA

consists  of  RAaggr queries  without  aggregation;  and  (2)

 is  the  class  of  RAaggr queries  in  which  group-by

aggregation, if it exists, only appears at the top-level (fi-

nal  operation).  It  is  common  to  find  RA and  in

practice.

RA0
aggr LB[RA]

LB[RA0
agg] RA RA0

aggr
LB

RA0
aggr

We  provide  effective  syntax  for  boundedly  evaluable

RA  and  queries.  Denote  by  and

 the class of  and the class of  quer-

ies that are in , respectively. They yield effective syn-

tax for RA and .

B LB[RA]

RA B
LB[RA

0
agg] RA0

aggr
B

Corollary 8. For any access schema , (1)  is

an  effective  syntax  for  queries  bounded  by ;  (2)

 is  an  effective  syntax  for  queries

bounded by .

LB LB

B LB[RA] LB[RA0
aggr]

RA0
aggr

RA0
aggr Q2 Q′

1 ∈ LB[RA]

Q′
2 ∈ LB[RA0

aggr] Q1 ≡B Q
′
1 Q2 ≡B Q

′
2

RA0
aggr

LB[RA] LB[RA0
aggr]

Proof. Since it is in PTIME to check whether a query

is in  and every query in  has a bounded plan under

, to show that  and  are effective syn-

tax  for  boundedly  evaluable  RA and  queries, re-

spectively,  it  suffices  to  show  that  for  any  boundedly

evaluable RA Q1 and  , there exist 

and  such that  and .

This  is  verified  along  the  same  lines  as  the  proof  of

Lemma (I)  for  Theorem 7 above,  by showing that every

bounded RA (resp. ) plan has an equivalent query

in  (resp. ). □
RA0

aggrThere  are  close  connections  between  and  RA

regarding  their  effective  syntax:  any  effective  syntax  for

RA0
aggr

L RA0
aggr

Q = gpBy(Q′, X, agg(V )) L0

L L[RA]

L

boundedly  evaluable  queries also  gives  us  an  ef-

fective  syntax  for  boundedly  evaluable  RA  queries,  and

vice  versa.  For  any  class  of  queries

,  denote  by  (a)  the  class  of

RA  queries Q' that  are  sub-queries  embedded  in  RAaggr

queries Q in ; and (b)  the class of RA queries in

. Then we have the following.

BLemma 9. Under any bag access schema ,

L
(1) RA is an effective syntax for boundedly evaluable

RA  if  is  an  effective  syntax  for  boundedly  evaluable

RAaggr;

L
L0

(2)  is  an  effective  syntax  for  boundedly  evaluable

RAaggr if  is an  effective  syntax  for  boundedly  evalu-

able RA.

Q = gpBy(Q′, X, agg(V ))

B

Proof. Lemma 9(1)  can be  verified  by the  definition

of  effective  syntax.  We  focus  on  Lemma  9(2)  here  (the

proof  for  Lemma  9(1)  is  simpler).  By  the  definition  of

boundedly evaluable queries, it is easy to show the follow-

ing lemma:  for  any RAaggr , un-

der , Q is boundedly evaluable iff Q' is boundedly eval-

uable.

L0

B L L0

L
L0

Q = gpBy(Q1, X, agg(V ))

Q1

B Q′
1 ∈ L0

Q1 ≡B Q
′
1 Q′ = gpBy(Q′

1, X, agg(V )) ≡B Q

Q′ ∈ L Q′
1 ∈ L0

L
Q′ L0

We next use the lemma to prove Lemma 9(2). When

 is  an  effective  syntax  for  boundedly  evaluable  RA

queries under , consider the associated class  of . (1)

First  observe  that  all  queries  in  are  also  boundedly

evaluable since RA queries in  are. (2) For any RAaggr

query  that is  boundedly  evalu-

able,  by  the  lemma  above,  is also  boundedly  evalu-

able  under .  Hence,  there  exists  such  that

.  Hence  and

 (since ). (3) Moreover, it is in PTIME to

check whether a query Q is in  by checking whether its

embedded  RA  query  is  in ,  in  PTIME.  From  (1),

(2) and (3) above, Lemma 9(2) follows. □
By Lemma 9,  one can easily  extend an effective  syn-

tax for boundedly evaluable RA queries, e.g., covered RA

in[6], to an effective syntax for boundedly evaluable RAag-

gr queries.

One might  think  that  such  an  extension  is  also  pos-

sible  for  RAaggr.  However,  when  group-by  aggregation  is

nested  with  other  RAaggr operators, a  convenient  exten-

sion  is  beyond  reach.  It  is  much  harder  for  RAaggr to

characterize  propagation  of  values  from  aggregate  sub-

queries to other relations, or to cover all boundedly evalu-

able queries up to equivalence.

LB[RA]Nonetheless,  is more expressive than the class

of covered RA of [6], which is also an effective syntax for

RA.

B
B

LB[RA]

Proposition  10. For  any  bag  access  schema ,  the

set  of  RA queries  covered by  is  properly contained in

.

LB[RA]

LB

LB[RA]

Proof. One can verify that covered RA queries[6] can

be expressed in  without rule γ4. Hence it is a sub-

class  of .  To  see  it  is  a  proper  subclass,  consider  an

 query Q over  relations R(A, B)  and S(C, D):
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Q = πD((σA=1R1 − σB=1R2) 1A=C S) R1 R2

B R(|A→ B,N1|)
R(|B → A,N2|) S(|C → D,N3|)

B
Q ∈ LB[RA]

,  where  and 

rename R.  Consider  consisting  of ,

 and .  One  can  verify  that

Q is  not  covered  by  since  subquery S is  not  covered

(see [6]). However, . □

5   BEAS for querying big data

In  this  section,  we  show  how  to  extend  DBMS  with

the functionality of bounded evaluation. We first present

such a  framework  (Section  5.1).  We  then  provide  al-

gorithms  underlying  the  framework,  for  checking  the

bounded  evaluability  (Section  5.2)  and  generating

bounded plans (Section 5.3).

5.1   A Framework of bounded evaluation

R

The  framework,  referred  to  as  BEAS,  is  shown  in

Fig. 2. Given an application that involves queries over in-

stances of a database schema , BEAS works as follows.

 
 

Boundedly
evaluable?

(C2)

Generate bounded
query plan (C3)

Generate partially
bounded plan (C5)

DBMS
(C4)

discover, build, maintain
access schema (C1)

Yes

No

(Online)
(Offline)

Q

Q(D)

ξ′

ξ

 
BEAS DBMSFig. 2      : Bounded evaluation on 

 

B R B
D R B
D

Offline preprocessing. As shown in C1 of Fig. 2, as off-

line  preprocessing,  BEAS  discovers  a  bag  access  schema

 from  (sample)  instances  of ,  builds  indices  of  on

the database  of  in use, and maintains  in response

to updates to .

D
B

B

DQ

B

Online processing.  When  a  user  poses  an  RAaggr>
query Q on ,  BEAS  first  checks  whether Q is

boundedly evaluable under  (>C2). If so, it generates a

bounded query plan ξ for Q under  (C3), which is inter-

preted as an SQL query Qξ and hence can be directly ex-

ecuted  by  the  underlying  DBMS  on  a  bounded  dataset

 identified by plan ξ (C4). If Q is not boundedly eval-

uable, it generates a query plan ξ' for Q that is partially

bounded, to make maximal use of access constraints in 

(C5).  The  (partially)  bounded  plans  are  optimized  and

executed by DBMS (C4).

Note  that  the  BEAS  framework  does  not  need  to

change  the  underlying  DBMS.  Indeed,  it  interacts  with

the  DBMS via  SQL only.  Hence,  BEAS can be  built  on

top of  any  existing  DBMS,  providing  a  bounded  evalu-

ation capacity.

BEAS can  also  compute  approximate  answers  to  un-

bounded  queries  under  constrained  resources,  and  offers

deterministic accuracy guarantees under access schema[17].

We focus on computing exact answers in this paper.

Below we develop algorithms for  components  C2 and

C3 of BEAS in Section 5.2 and Section 5.3, respectively.

5.2   Checking bounded evaluability

B
We next develop a practical algorithm for component

C2  of  BEAS.  Under  a  bag  access  schema ,  given  an

RAaggr query Q, it decides whether Q is boundedly evalu-

able.

B
CP CNP

LB

To do this, we first checks whether Q and  fall into

the  two  classes  of  special  cases,  i.e.,  or ,  in

PTIME. If so, their bounded evaluability can be decided

efficiently  as  shown  in  the  proofs  of  Theorems  2  and  4.

Otherwise, we check whether Q is in the effective syntax

 for  RAaggr (Section 4).  Below  we  give  a  PTIME  al-

gorithm for this.

BA(Q,B)
BR(Q,B) BQ(Q,B) ∅
BA(Q,B) BR(Q,B) BQ(Q,B)

Algorithm  BEChk. The  algorithm,  denoted  by

BEChk,  is  shown in  Algorithm 1.  It  first  sets ,

 and  to .  It then iteratively updates

,  and  using  the  rules  in

Fig. 1. In each iteration, it

BA(Q,B)(a)  first  computes  using γ1, γ2 and γ3 (line

3);

BR(Q,B)(b) then updates  using γ4 (line 4); and

BQ(Q,B)(c) it finally updates  using γ5 (line 5).

BQ(Q,B)
Q ∈ BQ(Q,B)

The iteration continues until  can no longer

be updated (line 6). It returns “Yes” if  and

“No”  otherwise  (lines  7–8).  In  each  iteration,  steps  (b)

and (c) are straightforward. Below we discuss step (a) in

more details.

Algorithm 1. BEChk

R
B R

Input: Relational  schema ,  RAaggr Q and bag  ac-

cess schema  over .

B
Output: “Yes”  (“No”)  if Q is  (is  not)  boundedly

evaluable under .

BA(Q,B)← ∅ BR(Q,B)← ∅ BQ(Q,B)← ∅1 ; ; ; flag

  ← true;

2 while flag = true do

BA(Q,B)3　　compute  using γ1, γ2, γ3 // recall γi in

  Table 1

BR(Q,B)4　　compute  using γ5;

BQ(Q,B)5　　compute  using γ6;

BQ(Q,B)6　　if  is not changed then flag ← false;

Q ∈ BQ(Q,B)7　　if  then return “Yes”;

8 else return “No”;

BA(Q,B)
BA(Q,B)

Computing  (line 3 of Algorithm 1). In each

iteration,  is updated in two steps, as follows.
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BQ(Q,B)

ΣQ ⊢ R[A] =
S[B]

ZQs Qs ∈ BQ(Q,B)
B

(1) Building universal relation. We first build a “uni-

versal schema” UQ of Q w.r.t. , by mapping at-

tributes and aggregate fields of Q to attributes of UQ, via

a  mapping  function ρ.  For  any two attributes R[A]  and

S[B] of Q, ρ(R[A]) = ρ(S[B]) if and only if 

 is in the selection condition of Q. For aggregate field

agg(A) and attribute R[B], agg(A)) = ρ(R[B]) only when

agg(A) is in  (recall Table 1) for some .

Accordingly, bag constraints in  are also mapped on to

UQ by ρ.

BA(Q,B)
B

WB

(2) Computing fetch closure. We then reduce the com-

putation  of  to the  computation  of  fetch  clos-

ures over UQ with  w.r.t. ρ. For a set W of attributes of

UQ,  its  fetch  closure,  denoted  by , is  a  set  of  attrib-

utes of UQ such that

W ⊆WB(i) ;

X ′ ⊆WB φ = R(|X → Y,N |) ∈ B
ρ(R[X]) = X ′ ρ(R[Y ]) = Y ′ Y ′ ⊆WB

(ii) if  and  such that

 and , then ; and

WB(iii)  contains nothing else.

W = ρ(Xc
Q) ∪ ρ(BA(Q,B)) ∪

∪
Qs∈BQ(Q,B) ρ(ZQs)

BA(Q,B) = {A ∈ XQ | ρ(A) ∈WB}
Let .

We  set  (see ZQ, XQ

in Table 1).

B1

B1

∅

Example 8. Recall Q2 from Example  2  and bag  ac-

cess schema  from Example 4. Algorithm BEChk iter-

atively updates BA, BR and BQ for Q2 and , which are

all  initially.

BA(Q2,B1)

UQ2 = {f.uid, f.fid, c.cty, c.date}

ρ(Xc
Q2

) = {f.uid, c.cty} ρ(BA(Q2,B1)) = ∅
BQ(Q2,B1) = ∅ ρ(Xc

Q2
)

WB1

WB1 = {f.uid, f.fid, c.cty} BA(Q2,B1)

BR(Q2,B1)

BA(Q2,B1) BQ(Q2,B1)

In  the  first  iteration,  BEChk  starts  by  updating

 (line 3). To do this, it builds a universal rela-

tion  via  function ρ that

maps c.uid to f.fid and keeps all other attributes intact (f

and  c  stand  for  friend  and  checkin,  respectively).  Since

,  and

, BEChk sets W to  and computes

the  fetch  closure  of W,  yielding

. Hence it updates  to

{f.uid,  f.fid,  c.cty}.  It  then updates  to {f,  c}
since  all  nontrivial  attributes  of  f  and  c  are  already  in

 (line  4).  BEChk  finally  updates 

to {Q3, Q2} (line 5) and terminates in next iteration and

returns “Yes”.

B2

UQ6 = {A,B,C,E, F,W,F ′}
ρ

ρ

ΣQ6 ⊢ sum(y) = E Q7 ̸∈ BQ(Q6,B2) = ∅
XC

Q6
UQ6

BA(Q6,B2)

BA(Q6,B2)

BR(Q6,B2) {R}
BQ(Q6,B2)

UQ6 = {A,B,C,E, F,W} Q7 ∈ BQ(Q6,B2)

ΣQ6 ⊢ sum(y) = E BA(Q6,B2)

It gets more involved for Q6 from Example 5 and 

from  Example  4.  In  the  first  iteration,  BEChk  builds  a

universal schema  via a map-

ping  function  that  keeps  attributes  of R and S and

maps  aggregate  field  (i.e., the  output)  sum(y)  of Q7 to

F'.  Note  that  does  not  map  sum(y)  to E although

 since  yet.

BEChk then computes the fetch closure of  over 

and sets  to {B, C, F}.  It  then finds that all

nontrivial  attributes  of R are  in  and  hence

updates  to .  Consequently,  it  sets

 to Q7 as well. In the second iteration, BEChk

builds  an  updated  universal  relation

 since  and

. It continues to update  to

BR(Q6,B2) BQ(Q6,B2)

B2

{B, C, E, F, W},  to {R, S} and 

to {Q7, Q6}.  It  terminates  after  the  third  iterations  and

returns “Yes” for Q6 under .

LB

BQ(Q,B)
BA(Q,B)

WB WB

Correctness  &  Complexity. To  see  that  BEChk

correctly checks the effective syntax  of Fig. 1, observe

the  following.  (1)  For  any  fixed , the  corres-

ponding  decided by rules γ1, ··· , γ4 is  exactly

the fetch closure  (recall the definition of  above).

(2)  The  while  loop  propagates  changes  from  BA  to  BR

and  to  BQ,  and  finally  to  BA  again,  until  reaching  a

fixed point w.r.t. the rules of Fig. 1.

O(pQ(||Q|||B|+ |Q|))

||B|| |B|
B

O(||Q||||B||)
O(||Q||||B||+ |Q|)

BEChk  can  be  implemented  in 

time, where pQ is the number of sub-queries in Q, ||Q|| is
the number of relation atoms in Q, |Q| is the number of

attributes and aggregate fields in the relation atoms and

predicates  of Q,  and  are  the  number  and  total

length of bag constraints in , respectively (see Table 1).

Indeed, computing the fetch closure can be implemented

in -time,  and  hence  each  while  iteration  is  in

 time; there are at most pQ iterations.

LB

Q ∈ LB

Algorithm  BEChk  provides  a  constructive  proof  for

property (c) of the effective syntax  in Theorem 7, i.e.,

it  is  in  PTIME  to  check  whether  for  an  RAaggr

query Q.

This also completes the proof of Theorem 7.

5.3   Generating bounded plans

B
B

B

We next  provide  an algorithm underlying  component

C3  of  BEAS,  denoted  by  BPlan.  Given  a  bag  access

schema  and an RAaggr query Q that  is  determined to

be  boundedly  evaluable  under  by  BEChk  of  Section

5.2, BPlan generates a bounded RAaggr query plan for Q

under .

Q ∈ LB

B

Algorithm BPlan. Given  a  boundedly  evaluable

RAaggr query  (see  Section  4),  BPlan  generates  a

bounded  plan ξQ for Q under  as  follows:  (1)  fetch  a

bounded  amount  of  data  for  each  relation R that ap-

pears  in Q,  and  (2)  carry  out  operations  of Q over

fetched data. While step (2) is straightforward, step (1) is

rather involved.

B
B

B

To carry out step (1), BPlan generates bounded logic-

al access paths (bLAPs). A bLAP ξR for a relation R in

Q fetches all  values (partial tuples) of R that are neces-

sary for evaluating Q with ; moreover, ξR is a bounded

RAaggr plan  under .  Intuitively,  bLAPs  play  the  same

role  as  conventional  DBMS access  paths.  But  instead  of

accessing  complete  tuples  by  scan  or  index,  bLAPs

fetches  values  (partial  tuples)  using  such  that  the

amount of data accessed is bounded.

B

More  specifically,  we  give  an  algorithm,  denoted  by

BAP, as a sub-procedure of BPlan to find a bLAP ξR for

R under .  While  there  may  exist  exponentially  many

such bLAPs, BAP aims at computing those with minim-

um cost.

After BAP computes bLAP ξR for every relation R in
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B
Q,  algorithm BPlan  generates  a  bounded  plan ξQ for Q

under , by replacing each R in Q with its bLAP ξR, and

by  carrying  out  RAaggr operations  of Q on the  data  re-

trieved by ξR.

In the rest of the section, we focus on algorithm BAP.

Parametric  cost  measures. To  evaluate  the  qual-

ity of bLAPs found by BAP, we start with a generic class

of cost  functions.  Conventional  access  path measures  as-

sess  the  cost  of  physical  table-access  methods, e.g., se-

quential scan and index scan[11]. These metrics do not ap-

ply to bLAPs, which involve, e.g., fetch and joins. Hence,

BAP  employs  a  generic  cost  function c(ξR)  that  takes

user specified functions as parameters, to express various

cost  measures  over ξR as  bLAPs,  e.g., output  size,  data

access, etc.

B

Γ1 ΓU Γ− Γfetch
ΓgpBy

The  cost  of  a  bLAP ξR for R under ,  denoted  by

c(ξR),  is  inductively  defined  in Table  2,  with  five  user

configurable  parameter  functions , , ,  and

.

 
c() Γ1/−/∪/fetch/gpByTable 2      with parameters  4

bLAPξR c(ξR) ξRof 

{c} ∅or  1

σC(ξ
′) c(ξ′)× λσ(C)

ξ1 1C ξ2 Γ1(c(ξ1), c(ξ2))× λ1(C)

ξ1 − ξ2 Γ−(c(ξ1), c(ξ2))

ξ1 ∪ ξ2 Γ∪(c(ξ1), c(ξ2))

πY (ξ′) c(ξ′)

gpBy(ξ′, X, rmagg(V )) ΓgpBy(c(ξ
′), λπ(X))

fetch(ξ′, φ) φ = R(|X → Y,N |)with  Γfetch(c(ξ
′), N)

 

Γ1(c1, c2) c1 ∗ c2 Γfetch(c
′, N)

c′ ×N Γ∪(c1, c2) c1 + c2 Γ−(c1, c2)

ΓgpBy(c
′, c) c ̸= 0

λπ(X) = 0 X = ∅

By  parameterizing  these  user  configurable  functions,

we can  support  various  measures  for  bLAPs.  For  ex-

ample,  to  estimate  the  worst-case  output  size  of ξ,  we

simply  set  (i)  to ,  (ii)  to

, (iii)  to , (iv)  to c1, and

(v)  to c' if  and to 1 otherwise  (assume

 when ).

Algorithm BAP. Algorithm  BAP  works  in  two

steps:

R ∈ BR(Q,B)
G(Q,B)

(1)  it  reduces  bLAPs  to  proofs  of  and

encodes  all  proofs  with  a  directed  graph  in

PTIME; and

G(Q,B)(2)  it  searches  to  find  proofs  with  minimum

cost,  where  a  proof  corresponds  to  a  subgraph  in  the

search trace.

R ∈ BR(Q,B)Here a proof of  is a sequence of applica-

tions  of  the  rules  given in Fig. 1.  Each step of  the  proof

corresponds to one or several operations in a bLAP ξR for

R.

Below  we  outline  BAP  (see  Appendix  for  its  pseudo

code).

B
R ∈ BR(Q,B) R ∈ BR(Q,B)

G(Q,B)
R(|X → Y,N |) ∈ B

R ∈ BR(Q,B)
u∅ G(Q,B)

G(Q,B) 2||B||+ |Q| ||B||(||B||+ |Q|)

(1) Reduction.  It  reduces  the  problem  of  generating

bLAPs  for R of Q under  to  finding  proofs  of

.  It  encodes  all  proofs  of 

(hence  all  bLAPs  for R)  in  a  weighted  directed  graph

,  where  nodes  encode  (a)  attributes R[X]  and

R[XY]  in  constraints , and  (b)  rela-

tions and sub-queries of Q. Edges encode value propaga-

tion  among  them.  It  ensures  that  each  proof  of

 is  encoded  by  a  traversal  from  a  dummy

node  to  node uR encoding R in .  Graph

 has at most  nodes and 

edges.

We illustrate  reduced  graphs  with  the  following  ex-

ample, and defer the construction details to Appendix.

B1 B2

G(Q2,B1) G(Q6,B2)

u∅

Example  9. Recall  RAaggr queries Q2 of  Example  2

and Q6 of Example 5, and bag access schemas  and 

from  Example  4.  Graphs  and  are

shown in Fig. 3.  Here  is  a  dummy node  connected  to

all constant attributes in Q. Edges with numeric weights

are to encode deduction steps with rule γ3 of Fig. 1, where

the  weights  are  the  cardinality N's  of  the  corresponding

access constraints.

 
 

(a) G(Q2, B1) for Q2 and B1

(b) G(Q6, B2) for Q6 and B2

1 1 10

10

1
uø uA

uF uEF

uEFW uS

uAB uB uBC

uRuQ7

uQ6

uZ[Q7]

5 000 1931

1
uø uf. uid

uu. cty

u{f. uid, f. fid}

uf

u{c. uid, c. cty}

ucuQ3

uZ[Q3]

uc. uid

 
Fig. 3     Reduced graphs for Example 9

 

R ∈ BR(Q,B) u∅

G(Q,B)

As  will  be  show  below,  proofs  of  a  relation

 can be encoded as traversals from  to uR

in .

G(Q,B)
u∅

B

(2) Conditional Dijkstra search.  Algorithm  BAP  then

adopts  a  Dijkstra-like  search  over ,  from  the

dummy node  to the relation node uR encoding R, such

that the trace of the search encodes a bLAP (i.e., proof)

for R under .

It extends Dijkstra algorithm[24] as follows.

G(Q,B)

(a)  Conditional  expansion.  Denote  by Uu the attrib-

ute,  relation  or  sub-query  encoded  by  a  node u in

. Note that Uu may be deduced from attributes or

λσ(C) λ1(C) λπ(X)4Following  query  optimizer  in  DBMS, , , 

are coefficients that can be estimated from database statistics as

a priori.
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R ∈ BR(Q,B)
sub-queries encoded by multiple predecessors of u as pre-

conditions in the proof of . To capture this,

BAP visits a new node u under the condition that Uu can

be  obtained  from  predecessors  of u via,  e.g., joins  or

fetch.

R ∈ BR(Q,B) G(Q,B)
u∅

B

With the condition, BAP ensures that for node u en-

coding relation , a traversal in  from

 to u encodes a bLAP for relation atom R in query Q

under . To illustrate this, let us consider Example 10.

f ∈ BR(Q2,B1)

u∅ G(Q2,B1)

c ∈ BR(Q2,B1)

Example  10. A  proof  of  (here f  de-

notes friend) consists of the deduction steps (1), (2) and

(4) in Example 7. It is encoded by the unique path from

 to uf in ;  similarly  for  the  proof  of

.

S ∈ BR(Q6,B2)

u∅ G(Q6,B2)

(us, uQ6)

u∅

A  more  informative  example  is .  Its

proof is  also  described  in  Example  7.  The  proof  is  en-

coded by the traversal from  to uS, which is 

without the edge  as shown in Fig. 3. Note that

although there are two simple paths from  to uS, none

of them is a valid traversal because of the conditional ex-

pansion.

B1

ξQ2

B2

ξQ4

ξQ4

The bLAPs encoded by these  proofs  are  exactly  sub-

plans  of Q2 and Q6 given  in  Example  5.  Indeed,  the

bLAP ξc for  relation c  of Q2 under  is  (T1, T2)  of  the

bounded plan  in Example 5, and the bLAP ξf for f is

simply T1. Similarly, the bLAP ξR for R of Q6 under  is

simply T1 of  in Example 5; and bLAP ξS for S is (T1,

T2, T3) of .

Note that a bLAP may involve multiple relations via

fetch and join, e.g., ξS for S of Q6. Hence its costs cannot

be  assessed  by  traditional  access  path  measures  since

those  methods  are  developed  for  evaluating  the  access

method  of  a  single  relation  via,  e.g., sequential  or  index

scan.

(b) Search revision. Note that the output of an RAag-

gr sub-query  can  be  used  to  fetch  attributes  that  have

already been  deduced,  possibly  with  a  smaller  cost  re-

duced  by c(ξR).  To  retain  the  optimality  of  the  search,

when visiting a node u that encodes a sub-query of Q, al-

gorithm BAP checks  whether  this  yields  a  better  bLAP

by starting a new search from u and marking all nodes as

unvisited.  It  terminates  if  it  cannot  further  improve  the

previously searched bLAPs.

B1 B2

c(ξf) = 5 000 c(ξc) = 5 000× 193

B1 c(ξR) = 10 c(ξS) = 10 Q6 B2

ξS Q6

B2

Example  11. Continuing  with  Example  9,  assume

that we use c(ξR) to express the worst-case output size of

ξR (recall its parameter functions described earlier). Then

BAP computes  exactly  the  bLAPs for Q2 and Q6 under

 and ,  respectively,  as  described  in  Example  10.  In

particular,  and  for Q2

under ;  and  for  under . In

this case, when computing  for relation S of  under

, it restarts the search once due to the aggregate sub-

query Q7, which does not improve the bLAPs ξR and ξS.

R ∈ BR(Q,B)

Correctness & Complexity. The correctness of al-

gorithm  BAP  is  warranted  by  the  following:  (1)  each

search  trace  of  BAP  encodes  a  proof  of ;

R ∈ BR(Q,B)
B

O(|Q||B|(||B||+ |Q| log(|Q|+ 2||B||)))

G(Q,B)

and (2)  a  proof  of  encodes  a  bLAP for R

under .  BAP  can  be  implemented  in

-time  (ignoring  the

complexity  of  parameter  functions  of c(ξR)).  One  can

verify that BAP restarts at most N times, where N is the

number of nodes in .

Optimality. Algorithm BAP is  able  to  find  optimal

bLAPs for a large class of parameter functions for c(ξR).

We defer detailed proofs of this optimality to Appendix.

6   Experimental study

We have  developed  BEAS@PG by  extending  Postgr-

eSQL with  bounded  evaluation.  Using  a  benchmark  and

two real-life  datasets,  we  conducted  four  sets  of  experi-

ments  to  evaluate  (1)  the  overall  performance  of

BEAS@PG  vs  PostgreSQL;  and  the  effectiveness  of

bounded evaluation  for  (2)  bounded  queries  and  (3)  un-

bounded queries.

Experimental setting. We start with the setting.

Bench mark.  We  used  TPCH  benchmark[15].  It  uses

TPCHdbgen to generate 8 relations with 61 attributes of

different scales. It contains 22 built-in benchmark queries.

Real-life datasets. We also used two real-life datasets.

(a) US Air  carriers  (AIRCA) records  flight  and  stat-

istic data of US air carriers. It consists of Flight On-Time

Performance  Data[25] for departure  and  arrival  informa-

tion,  and Carrier  Statistic  data[26] for  airline market and

segment data of  the air  carriers.  It  has 3 tables,  200 at-

tributes, and about 16 GB of data with records from 1990

to 1997.

(b) UK  MOT  data  (UKMOT)  integrates  the  an-

onymised data[27] that records MOT tests and outcomes,

and the roadside survey of vehicle observations[28] that in-

cludes  vehicles  passing  observation  points  in  the  UK.  It

has 3 tables with 42 attributes, about 16 GB of data from

2007 to 2011.

Queries. To test the impact of query structures on the

effectiveness of bounded evaluation, we designed a gener-

ator to generate queries with different structures over the

two real-life datasets. More specifically, we manually cre-

ated  30  query  templates  for  each  of  the  two  datasets

(Q1–Q15 are  boundedly  evaluable  and Q16–Q30 are  un-

bounded),  with  0  to  4  joins.  The  generator  populates

these templates by randomly instantiating parameters in

the templates with values from the datasets, yielding 150

queries for each real-life dataset.

φ = R(|X → Y,N |)

Access schema.  We  built  access  schemas  with  59,  18

and 14  access  constraints  over  TPCH,  AIRCA and  UK-

MOT, respectively. We extended TANE[29], an algorithm

for discovering functional dependencies, to first find can-

didate  constraints  on  small  sample

datasets of 100 MB, and ranked them by their cardinalit-

ies N′s.  We then checked whether their N′s are insensit-

ive  to  the  size  of  datasets D,  by  varying  the  size  of D,

e.g., 200 MB  and  500 MB. We  picked  those  access  con-
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straints with small and size-insensitive N′s, such that the

total  size of  the indices is  at most 3 times of  the size of

its D.

R(|X → Y,N |)

Configuration.  For  DBMS,  we  used  PostgreSQL  9.6

with  all  optimization  enabled  (BEAS@PG  is  built  with

PostgreSQL 9.6). In favor of PostgreSQL, besides indices

for access constraints, we also built the following extra in-

dices  for  PostgreSQL:  (1)  for  each  access  constraint

,  we  built  a  B-tree  index  on  attributes X

over R as  well;  (2)  we built  all  primary key and foreign

key indices; and (3) we also built B-tree on numerical at-

tributes.  Note  that  these  were  only  for  PostgreSQL,  not

built for  BEAS@PG.  We set  the  cost  measure  paramet-

ers of  BEAS@PG  as  the  worst-case  output  size  estima-

tion (recall Section 5.3).

The experiments were conducted on an Amazon EC2

Dense-storage instance m4.xlarge, with 16 GB of memory,

4  Intel  Xeon  E5-2676  vCPUs,  and  500 GB  of  EBS  SSD

storage. Both the plan generation time and the execution

time  of  the  generated  plans  are  included  in  evaluation

time. All the experiments were run 3 times. The average

is reported here.

Experimental results. We next report our findings.

Exp-1:  Overall  performance. We  first  report  the

evaluation time of 22 TPCH queries over 16 GB of TPCH

data, and the 60 query templates over the entire AIRCA

and UKMOT datasets, where evaluation time of a query

template is the average of the evaluation time of its 5 in-

stantiated queries.

(1) Index size. The  indices  of  all  the  access  con-

straints  over  TPCH,  AIRCA  and  UKMOT  account  for

2.98, 0.01  and 0.25  times  of  the  size  of  the  datasets,  re-

spectively; the  additional  indices  built  only  for  Postgr-

eSQL  (in  favor  of  the  conventional  DBMS)  are  of  size

2.21,  0.87  and  1.5  times  of  that  of  TPCH,  AIRCA  and

UKMOT, respectively.

R(|X → Y,N |)

(2) Query overview.  None  of  the  TPCH  queries  is

boundedly evaluable  under  the  access  constraints  selec-

ted. This is because the TPCH data generator scales car-

dinalities N's  of  almost  all  candidate  access  constraints

 due to its simple scaling up strategy. This

rules out most of the candidate constraints when we scale

up to larger datasets while using a fixed threshold for N.

For  the  60  query  templates  over  AIRCA  and  UKMOT,

30 of them are boundedly evaluable under the access con-

straints  used,  15  for  each  dataset.  Note  that  one  could

build  more  access  constraints  to  allow  more  bounded

queries.  We will  evaluate the performance of BEAS@PG

for  bounded  and  unbounded  queries  in  more  details  in

Exp-2 and Exp-3, respectively.

(3) Performance.  The  results  for  TPCH,  AIRCA and

UKMOT are reported in Tables 3–5, respectively.

×104

(a)  BEAS@PG outperforms PostgreSQL on each and

every query on all the three datasets, when all indices are

enabled  for  PostgreSQL.  It  is  1.11  times  faster  on

average.

×103 ×103

×104

×104

(b)  Even  though  all  TPCH  queries  are  unbounded,

over  16 GB  of  TPCH  data,  BEAS@PG  is  up  to  40.46

times  faster  than  PostgreSQL,  and  is  on  average  7.32

times  faster.  For  unbounded  queries  over  AIRCA  and

UKMOT, BEAS@PG is on average 1.32  and 4.61 

times faster than PostgreSQL, respectively, up to 1.48 

and 6.10  times.

×104

×104

×104 ×105

(c) For bounded queries, BEAS@PG is 1.79  and

3.66  times faster  than PostgreSQL on AIRCA and

UKMOT,  respectively,  up  to  3.44  and  2.52 

times.

The  results  show  that  with  a  modest  number  (and

size) of access constraints, BEAS@PG can speed up Post-

greSQL on both bounded queries and unbounded queries,

when all relevant indices are enabled for PostgreSQL, in-

cluding those of access constraints and additional indices

tailored for PostgreSQL. This verifies the effectiveness of

bounded  evaluation  for  generic  queries,  bounded  or  not,

while the speedup is much larger for bounded queries, as

expected.

Below we report  more  in-depth evaluation results  for

BEAS@PG  versus  PostgreSQL  (with  additional  indices)

for  bounded  queries  (Exp-2)  and  unbounded  queries

(Exp-3).

Exp-2:  Effectiveness  for  bounded  queries. We

next  evaluated  the  impact  of  datasets D and  queries Q

on  the  evaluation  time  of  BEAS@PG  and  PostgreSQL

(with  indices  enabled),  when  queries Q are  boundedly

evaluable.

Varying |D|. To evaluate the impact of  |D|, we parti-

tioned AIRCA  and  UKMOT  datasets  by  their  date  at-

tributes (year and month), yielding subsets of sizes from

1 GB to  16 GB,  consistent  with  how  we  scale  up  TPCH

datasets when testing unbounded queries below in Exp-3.

We  did  not  use  TPCH  here  since  it  has  no  boundedly

evaluable queries.

×102

×104 ×105

×105 ×105

×104 ×103

As  shown  in Figs. 4(a) and 4(b),  (a)  the  evaluation

time of BEAS@PG is indifferent to the size of D, as ex-

pected  for  boundedly  evaluable  queries.  (b)  Bounded

query plans  work well  with large D.  Indeed,  BEAS@PG

took  less  than  11.67 ms  and  3.94  ms  for  all  queries

over all subsets of AIRCA and UKMOT, respectively, no

matter how large the datasets were. In contrast, even on

the subsets of AIRCA and UKMOT of size 8 GB, Postgr-

eSQL took 8.45  ms and 3.88  ms, respectively,

up to 1.58  ms and 7.80  ms over the full data-

sets.  That  is,  PostgreSQL  is  1.35  and  1.98 

slower than  BEAS@PG  on  AIRCA  and  UKMOT,  re-

spectively, even  with  all  relevant  indices  built.  The  lar-

ger the  dataset  is,  the  bigger  the  gap  between  Postgr-

eSQL and BEAS@PG is for bounded queries.

Varying Q.  To  evaluate  the  impact  of  queries Q,  we

varied the complexity of Q, measured as the number #Q

of joins in the query templates Q, from 0 to 4, while us-

ing  the  entire  AIRCA and UKMOT datasets.  Note  that

for each query template, we instantiated 5 queries by set-
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ting  its  parameters  with  different  values  (hence  these

queries  share  the  same  query  structure  and  #Q).  The

evaluation time of each query template is the average of

all its instantiated queries.

×105 ×104

The  results  are  reported  in Figs. 4(c) and 4(d).  We

find the following.  (a)  The complexity of Q has impacts

on the performance of both BEAS@PG and PostgreSQL,

as expected. They both take longer time for queries with

more  joins  (i.e., #Q).  However,  (b)  BEAS@PG  scales

much  better  with  the  number  #Q of  joins  in Q than

PostgreSQL  (with  indices).  For  instance,  on  average

BEAS@PG  found  answers  for  all  queries  with  #Q =  4

within  11.67 ms on  full-sized  AIRCA,  while  PostgreSQL

takes  1.56  ms;  that  is,  PostgreSQL  is  1.34 

times slower than BEAS@PG for large queries.

×103 ×104

Remark. We find that when queries Q incur joins on

keys only,  PostgreSQL  with  extra  key/foreign  key  in-

dices  built  is  almost  as  fast  as  BEAS@PG  (e.g., TPCH

Q4).  However,  as  long as Q involves  non-key attributes,

e.g., many of  the  AIRCA and  UKMOT queries,  Postgr-

eSQL performs poorly  on big  tables,  even provided with

all  indices.  Indeed,  on  average  BEAS@PG  outperforms

PostgreSQL by 8.98  times and 1.76  times for

all bounded queries  over  all  subsets  of  AIRCA and UK-

MOT, respectively.  The  gap  gets  larger  when  the  num-

ber of non-key attributes increases.

R(|X → Y,N |)

By  looking  into  PostgreSQL′s  plan  and  its  EXPLAIN

output, we find that this is partially due to the following

reason.  Given  an  access  constraint ,

BEAS@PG  fetches  only  distinct  values  of  the  relevant

XY attributes, but PostgreSQL fetches entire tuples with

irrelevant  attributes  of R,  although  those  attributes  are

not  needed  for  answering Q at all,  no  matter  what  in-

dices  are  provided.  This  led  to  duplicated  (X,Y)  values

when X is  not  a  key,  and  the  duplication  got  inflated

rapidly by joins, e.g., EXPLAIN output shows that Postgr-

eSQL  consistently  accesses  entire  tables  when  there  are

non-key attributes.

Exp-3:  Effectiveness  for  unbounded queries. In

the same setting as in Exp-2, we evaluated the impact of

D and Q on  the  performance  of  unbounded  queries  by

BEAS@PG  and  PostgreSQL  with  indices  enabled  for

PostgreSQL.

Varying |D|.  The  results  on  AIRCA,  UKMOT  and

TPCH  are  in Fig. (4e), (4f) and (4g), respectively.  Ob-

serve the following.

 

Table 3    TPCH query evaluation time on 16 GB (ms)

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

tPPostgreSQL 8.16 × 105 3.68 × 104 1.02 × 105 1.56 × 104 1.50 × 105 2.07 × 104 9.53 × 104 3.71 × 104 5.03 × 104 2.28 × 105 7.05 × 104

tBBEAS@PG 5.72 × 104 1.67 × 104 2.97 × 104 1.45 × 104 1.43 × 105 4.25 × 103 7.65 × 104 3.43 × 104 3.24 × 104 8.19 × 104 3.46 × 103

tP/tBSpeedup 14.28 2.21 3.44 1.07 1.05 4.88 1.24 1.08 1.55 2.79 20.39

Queries Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

tPPostgreSQL 6.42 × 104 1.79 × 105 1.74 × 104 5.10 × 104 4.46 × 104 6.04 × 103 2.83 × 105 7.27 × 103 1.06 × 105 2.66 × 105 7.74 × 103

tBBEAS@PG 8.58 × 103 1.20 × 105 1.10 × 104 2.20 × 104 3.02 × 104 1.49 × 102 2.38 × 105 1.29 × 103 2.70 × 103 1.04 × 105 5.70 × 103

tP/tBSpeedup 7.48 1.49 1.58 2.32 1.48 40.46 1.19 5.65 39.16 2.55 1.36
 

 

Table 4    Average query template evaluation time on AIRCA (ms)

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

tPPostgreSQL 7.00 × 103 7.2 × 103 2.06 × 104 9.04 × 104 4.44 × 104 9.41 × 104 1.36 × 105 1.44 × 105 9.41 × 104 1.38 × 105

tBBEAS@PG 1.22 1.19 0.64 2.63 2.61 6.34 4.28 6.69 6.02 4.98

tP/tBSpeedup 5.75 × 103 6.04 × 103 3.21 × 104 3.44 × 104 1.70 × 104 1.48 × 104 3.19 × 104 2.15 × 104 1.57 × 104 2.77 × 104

Queries Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

tPPostgreSQL 1.46 × 105 9.46 × 104 1.49 × 105 1.56 × 105 10.63 × 104 4.46 × 104 4.65 × 104 4.22 × 104 4.25 × 104 9.29 × 104

tBBEAS@PG 7.24 11.42 6.55 8.5 11.67 24.96 24.3 2.84 4.63 × 102 7.26 × 102

tP/tBSpeedup 2.01 × 104 8.29 × 103 2.29 × 104 1.84 × 104 9.11 × 103 1.79 × 103 1.91 × 103 1.48 × 104 91.86 1.29 × 102

Queries Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30

tPPostgreSQL 9.30 × 104 8.98 × 104 9.44 × 104 9.41 × 104 1.39 × 105 1.47 × 105 9.58 × 104 1.75 × 105 1.85 × 105 1.31 × 105

tBBEAS@PG 5.43 × 102 4.61 × 102 7.25 × 102 5.23 × 102 1.4 × 103 1.74 × 103 1.36 × 103 2.67 × 104 3.06 × 104 2.62 × 104

tP/tBSpeedup 1.71 × 102 1.94 × 102 1.31 × 102 1.80 × 102 99.52 84.49 70.35 6.54 6.06 5.02
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(a)  BEAS@PG is  able  to  speed  up  PostgreSQL even

for queries that are not bounded under the available ac-

cess  constraints.  On  average,  BEAS@PG  is  7.22 ,

2.29  and 3.43 times faster than PostgreSQL for un-

bounded queries  on  AIRCA,  UKMOT  and  TPCH,  re-

spectively. This is because while not all relations in these

queries  are  bounded,  bounded  evaluation  can  still  speed

up their “bounded” subqueries, and hence remains faster

than PostgreSQL.

×102

×103 ×103 ×103 ×104

×104

×103 ×104 ×103 ×105

×105 ×105

(b)  As  opposed  to  evaluating  bounded  queries,  both

BEAS@PG  and  PostgreSQL  are  sensitive  to  the  size  of

the  datasets  when  evaluating  unbounded  queries.

However, BEAS@PG  scales  much  better  than  Postgr-

eSQL,  and  their  performance  gap  becomes  larger  when

the dataset size increases. For example, when the dataset

increases  from  1 GB  to  16 GB,  the  average  processing

time  of  BEAS@PG  increases  from  9.53  ms,  1.67

 ms and 2.21  ms to 6.09  ms, 1.84   ms

and  4.54  ms on  AIRCA,  UKMOT  and  TPCH,  re-

spectively.  In  contrast,  PostgreSQL  increases  from  7.50

 ms, 2.61  ms and 5.98  ms to 1.04  ms,

4.53  ms  and  1.23   ms,  respectively,  even  with

all indices built and enabled.

R(|X → Y,N |)

Note  that  the  speedup  for  unbounded  TPCH queries

is not as good as for AIRCA and UKMOT queries. This

is because (i) the N's of access constraints 

over TPCH scale linearly as the dataset gets larger, while

those on AIRCA and UKMOT are more stable and inde-

pendent of the dataset size; and (ii) joins in TPCH quer-

ies  are  mostly  key/foreign  key  joins,  and  thus  the  extra

key  indices  built  for  PostgreSQL  can  mimic  bounded

query plans used by BEAS@PG to some extent, reducing

their performance gaps.

Varying Q.  Varying  the  number  #Q of  joins  in  the

queries,  the  evaluation  time  of  unbounded  queries  over

×104

×104

×105

AIRCA  and  UKMOT  is  reported  in Figs. (4h) and (4i),

respectively.  The  results  tell  us  the  following.  (a)  The

processing time of  BEAS@PG and PostgreSQL increases

when the number of joins increases. However, (b) the gap

between  BEAS@PG  and  PostgreSQL  becomes  larger

when #Q increases from 0 to 4. For instance, over AIR-

CA,  on  average  BEAS@PG  and  PostgreSQL  take

17.37 ms and 4.43  ms, respectively,  to  answer  quer-

ies with #Q = 0; and the two take 2.78  ms and 1.64

 ms,  respectively,  when  #Q =  4;  the  results  over

UKMOT are similar.  Note that for bounded queries,  the

gap between the two is even larger (Exp-2).

×103

×104

×104

×105

×104 ×104

×102

×103

Summary.  We  find  the  following.  (1)  BEAS@PG

(PostgreSQL with  BEAS  built  on  top)  does  better  than

PostgreSQL  for  each  and  every  query  in  all  cases,  even

with  extra  indices  built  for  the  latter.  On  average

BEAS@PG improves PostgreSQL by 7.32, 9.58  and

2.06  times for TPCH benchmark of 16 GB, AIRCA

and  UKMOT,  respectively,  up  to  40.46,  3.44 ,  and

2.52  times in the best case. (2) For queries that are

boundedly evaluable,  BEAS@PG  outperforms  Postgr-

eSQL  by  1.9  and  3.6  times  on  AIRCA  and

UKMOT,  respectively.  (3)  For  queries  with  complicated

joins, e.g., joins on non-key attributes (AIRCA and UK-

MOT queries),  BEAS@PG is  particularly  effective,  even

for  unbounded  queries.  For  example,  on  average

BEAS@PG  improves  PostgreSQL  by  5.97   and

1.90  times for queries that are not boundedly evalu-

able  over  AIRCA  and  UKMOT,  respectively.  For  cases

where  conventional  DBMS  does  its  best, e.g., table

scan/aggregation  and key-foreign  key  joins  (most  TPCH

queries),  BEAS@PG  still  does  better  than  PostgreSQL.

(4) The storage cost for indices of access schema is mod-

est, accounting for 2.98, 0.01 and 0.25 times of the size of

16 GB TPCH, AIRCA and UKMOT, respectively.

 

Table 5    Average query template evaluation time on UKMOT (ms)

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

tPPostgreSQL 1.37 × 105 6.47 × 104 7.80 × 104 4.62 × 105 4.65 × 105 3.86 × 105 5.8 × 105 3.91 × 105 5.72 × 105 5.99 × 105

tBBEAS@PG 0.55 2.73 0.62 16.13 75.2 5.62 1.50 × 102 3.78 × 102 54.79 1.89 × 102

tP/tBSpeedup 2.52 × 105 2.38 × 104 1.25 × 105 2.86 × 104 6.18 × 103 6.88 × 104 3.88 × 103 1.04 × 103 1.04 × 104 3.18 × 103

Queries Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

tPPostgreSQL 4.09 × 105 5.91 × 105 7.80 × 105 5.91 × 105 7.74 × 105 1.61 × 105 1.59 × 105 1.53 × 105 3.97 × 105 3.93 × 105

tBBEAS@PG 3.89 × 102 55.42 1.89 × 102 3.94 × 102 96.24 30.49 65.09 2.51 7.4 × 103 7.41 × 103

tP/tBSpeedup 1.06 × 103 1.07 × 104 4.13 × 103 1.49 × 103 8.05 × 103 5.28 × 103 2.44 × 103 6.10 × 104 53.55 53.14

Queries Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30

tPPostgreSQL 3.93 × 105 6.01 × 105 3.94 × 105 5.98 × 105 6.26 × 105 4.13 × 105 6.19 × 105 7.04 × 105 4.86 × 105 6.96 × 105

tBBEAS@PG 9.25 × 103 7.51 × 103 7.72 × 103 9.34 × 103 7.62 × 103 7.82 × 103 7.38 × 103 6.42 × 104 7.65 × 104 6.26 × 104

tP/tBSpeedup 42.48 80.07 51.12 64.08 82.14 52.87 83.81 10.95 6.37 11.12
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7   Related work

The related work is categorized as follows.

Bounded evaluation. The  notion  of  bounded  evalu-

ation was introduced in [5], as an effort to formalize scale

independence[19, 30, 31]. The latter aims to guarantee that a

bounded amount of work is required to execute all quer-

ies in an application, regardless of the size of the underly-

ing  data.  Under  access  schema  proposed  in  [19],  Fan  et

al.[5] defines boundedly  evaluable  RA  queries.  It  estab-

lishes  the  complexity  of  deciding  whether  a  query  is

boundedly  evaluable,  for  queries  in  various  fragments  of

RA,  ranging  from  EXPSPACE-hard  to  undecidable.

Bounded  evaluation  using  views  was  studied  in  [32], fo-

cusing on its complexity bounds.

To cope with the undecidability of the bounded evalu-

ability problem, an effective syntax was given for RA in

[6] under  the  set  semantics.  Based  on  the  syntax,  al-

gorithms were developed[6] for checking the bounded eval-

uability of RA queries Q, and if affirmative, generating a

bounded  query  plan  for Q. These  issues  were  also  stud-

ied in [33] for SPC, using a restricted form of query plans.

Based on [6], a prototype BEAS for RA queries  was de-

veloped[34].

This work extends the prior work in the following. (1)

We  define  bag  access  schema,  an  extension  of  access

schema  of  [5, 19]  to  support  the  bag  semantics  (Section

2). (2) We identify decidable special cases of the bounded

evaluability problem that cover a variety of SQL queries

commonly  used  in  practice.  (3)  We  develop  an  effective

syntax  for  boundedly  evaluable  RAaggr queries  under  a

bag  access  schema,  supporting  nested  aggregations  (Sec-

tion 4). Moreover, the syntax allows us to make a larger

class  of  RA queries  bounded,  improving the  result  of  [6]

for  RA.  (4)  We extend BEAS[34] from RA to  RAaggr,  by

seamlessly  integrating  bounded  evaluation  with  DBMS

query  optimizers,  which  is  quite  different  from  [6, 34].

These extend DBMS with bounded evaluation, which was

not studied in [5, 6, 33, 34].

Query answering with constrained resources. The  ob-

jective of this work is to make big data analytics access-

ible to small companies under constrained resources. For

queries that are not boundedly evaluable, an approach is

to compute  approximate  answers  under  available  re-
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Fig. 4     Effectiveness of bounded evaluation for bounded and unbounded queries
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sources. Approximation techniques have been extensively

studied,  based  on  synopsis  (e.g.,[35–39])  or  dynamic

sampling  (e.g.,[40–42]).  We  have  proposed  a  data-driven

approximation scheme[17] that computes approximate an-

swers  to  an  RAaggr query Q in  a  dataset ,  by

identifying a fraction  of  under an extension of the

access  schema of  [5].  It  ensures  a  deterministic  accuracy

bound η: (a) for each tuple , there exists an ex-

act  answer t that  is  within  distance  at  most η from S,

and  (b)  for  each  exact  answer ,  there  exists

 within distance η from t.

This  work differs  from [17] in  that  we focus  on com-

puting exact answers instead of approximation. The tech-

niques are  hence quite  different.  In particular,  a  bag ac-

cess  schema  carries  the  multiplicities  of  tuples  to  deal

with the bag semantics, as opposed to distance bounds in

access templates of [17]. This said, this work and [17] are

complementary to each other. On one hand, the methods

of  [17]  can  be  used  to  compute  approximate  answers  to

unbounded  queries  under  constrained  resources.  On  the

other hand, the techniques developed in this work can be

incorporated into the methods of [17], to improve the ac-

curacy of  approximate answers  by making use of  DBMS

optimizers and bounded sub-plans.

R(|X → Y,N |)

Indices.  Hash-based  or  tree-based,  DBMS  indices  are

typically  defined  at  the  tuple  level[11],  to  retrieve  tuple

IDs  and  fetch  full  tuples.  In  contrast,  a  bag  constraint

 offers a value-based index.  Bounded plans

fetch distinct  partial  tuples( Y-values)  for  each  input X-

value, and thus reduce duplicated and unnecessary attrib-

utes in tuples fetched by DBMS, i.e., reduce data access

and intermediate relations. The redundancies get inflated

rapidly  with  joins.  Moreover,  the  cardinality  constraints

in  a  bag  access  schema  allow  us  to  determine  whether

data access is bounded.

Related to bag access schema is a notion of access pat-

terns,  which  require  a  relation  to  be  accessed  only  by

providing certain combinations of attributes, e.g.,[43–45].

As opposed  to  access  patterns,  a  bag  access  schema  of-

fers cardinality constraints, tuple multiplicity and indices.

Moreover, it is not required to cover all the attributes of

a relation and hence, allows us to fetch partial tuples and

reduce  redundancy.  Further,  this  work  studies  bounded

evaluation  of  RAaggr queries  and  its  integration  with

DBMS,  which  were  not  considered  in  the  prior  work  on

query answering under access patterns.

Query optimization. There has been a host of work on

query optimization in DBMS, including access path selec-

tion[46], join optimization[47, 48] and recently, machine lean-

ing  methods[49–51]. These  focus  on  access  path  cost  mod-

els for, e.g., main-memory concurrent systems[46], heurist-

ics  for  join[47] and  group-by[48] re-ordering,  learned

indices[50, 51] or  optimizers[49, 52–54].  Our  algorithms  and

techniques are complementary to the prior work, to incor-

porate bounded  evaluation  into  DBMS  query  optimiza-

tion.

8   Conclusions

We have  presented  an  approach  to  extending  DBMS

with bounded evaluation of  SQL queries.  The novelty of

the work consists of (a) a notion of bag access schema to

support the bag semantics of nested aggregations; (b) de-

cidable special cases of the bounded evaluability of RAaggr

queries; (c) an effective syntax to characterize boundedly

evaluable RAaggr queries; and (d) a framework and its un-

derlying  algorithms  for  integrating  bounded  evaluation

with DBMS. Our experimental study has verified that the

approach is  promising.  Together with the approximation

scheme  of  [17],  we  hope  that  this  work  provides  small

businesses  with  a  capacity  for  querying  big  data  under

constrained resources.

One topic for future work is to develop algorithms for

discovering bag access schemas by incorporating machine

learning  techniques.  Another  topic  is  to  extend bounded

evaluation of SQL queries to column-oriented DBMS.

Appendix

BBounded plans under  (Section 2)

ΞB

B
The  set  of bounded  query  plans  under  a  bag  ac-

cess scheme  is inductively defined in Fig. 5.

 
 

 
B ΞBFig. 5     Bounded plans under   (set  )

 

Details of Algorithm BPlan (Section 5.3)

G(Q,B)
We provide (1) the construction of  weighted directed

graph  for generating bLAPs, (2) algorithm BAP,

and (3) justification for the optimality of bLAPs found by

BAP.

G(Q,B)
G(Q,B)

R (|X → Y,N |) ∈ B

uQs vZ[Qs]

u∅

Constructing . Let V and E be the node set

and edge set of , respectively. They are construc-

ted  as  follows:  (1)  for  each  access  constraint

,  (a)  include uR[X], uR[XY] in V, re-

ferred to as BA-node; (b) include (uR[X], uR[XY]) in E, re-

ferred to as a fetch-edge; (2) for each relation S, include a

node uS in V, referred to as a BR-node; (3) for each sub-

query Qs of Q, include  in V as a BQ-node and 

in V as  a  BA-node,  where Z[Qs] includes  the  output  at-

tributes  of Qs;  (4)  for  each  constant  attribute A = c in

Q, there is a BA-node uA in V, and an additional node ;

(5) for any two BA-nodes uX and uY,  if uX (resp. uY) is

not the head (resp. tail) of a fetch-edge, then (uX, uY) is
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A ∈ X B ∈ Y
ΣQ ⊢ A = B (u∅, uA)

uQs

(uR, uQs)

an  edge  in E if  there  exist  and  such  that

;  (6)  is  an edge in E for every con-

stant attribute A in Q; (7) for any BA-node uX and BR-

node uR, if uX is the tail of a fetch edge and X contains

all nontrivial attributes of R, then (uX, uR) is an edge in

E;  and  (8)  for  any  BR-node uR and  BQ-node ,

 is an edge in E if R is a relation of Qs.

G(Q,B)
R (|X → Y,N |) ∈ B

(u∅, uA)

G(Q,B) 2 ∥B∥+ |Q| ∥B∥ (∥B∥+
|Q|)

In graph , fetch-edges carry cardinality N′s in
their  encoded  access  constraints  as

their weights; each edge  for constant node uA has

weight  1;  and  the  other  edges  have  no  weight.  Graph

 has  at  most  nodes  and 

 edges.

G(Q,B)

φ = R (|X → Y,N |) ∈ B
u∅

uX1 uXm

uY ξY = πY (ξX1 1 · · · 1 ξXm)

ξXi(i ∈ [1,m])

u∅ uXi

Encoding proofs using . Traversing a fetch-

edge uR[X], uR[XY])  encodes  fetch h(ξR[X], φ)  for  some

 that  fetches  values  for Y,  where

ξX is the bLAP encoded by the traversal from  to uR[X],

which  retrieves  values  for R[X]  necessary  for  answering

Q; a traversal from a set S of BA-nodes , ···,  to a

BA-node  encodes  a  bLAP 

for Y,  where  is  the  bLAP encoded by the

traversal from  to  that retrieves values for Xi. Oth-

er cases are similar.

Algorithm 2. BAP

B
Input: RAaggr query Q, bounded relation R of Q, bag

access schema  and cost function c().

BOutput: A bLAP ξR for R under .

G(Q,B)1 construct graph ;

PQ := ∅ Svt := ∅ H := ∅ DT [u∅] := 0 LT [u∅] := ∅
GATE[u∅] := ∅

2 ; ; ; ; ;

;

G(Q,B)3 for each u in  do

u ̸= u∅ DT [u] := +∞ LT [u] := ∅4　if  then ; ;

   GATE[u] := L[u];

PQ.push(u∅)5 ; //Initialization

PQ ̸= ∅6 while:  do

7　u := PQ.pop();//PQ pops out u with minimum

    DT[u] in PQ
Svt := Svt ∪ {u}8　 ;

9　for each neighbor v of u that is not in Svt do

GATE[v] := GATE[v] \ L[u]10　　 ;

(u, v) DT [v] > Γfetch(DT [u],11　　if  is a fetch-edge and 

   w(u, v)) then

12　　　PQ.push(v);

DT [v] := Γ fetch(DT [u], w(u, v))13　　　 ; LT[v]:= {u}
14　　else if v is a BR-node then

15　　　PQ.push(v), DT[v]:= DT[u]; LT[v]:={u}
GATE[v] = ∅16　　else if v is a BQ-node and  then

17　　　PQ.push(v); DT[v]:= c(ξv);

　　　　LT[v]:=pre(v) //ξv is the plan for Q encoded

   by v, composed from predecessors pre(v) of v

         following the structure of Q

GATE[v] = ∅18　　else if  then

pre(v) ∩ Svt

　　　//attributes X of v are joined from those of

 

19　　　PQ.push(v);

(DT [v], LT [v], Svt) := SC(u, pre(v) ∩ Svt, v)20　　　 ;

d := Γ1(LT [v])　　　   ;

uq ̸∈ H
21　　　if LT[v] contains BQ-node uq and DT[v] and

   then

Svt := {u∅, v} H := H ∪ {v}22　　　DT[v]  := d; ; //

  restart the search

u∅

23 return bLAP  that  is  encoded  by  the  traversal

   from  to uR recorded in LT[].

u∅

H

Algorithm BAP. BAP  is  given  as  Algorithm  2.  It

uses  (a)  GATE[u]  to  record the condition for  visiting u,

e.g.,  for the head uX of a fetch-edge, GATE[u]  = X;  (b)

L[u]  to  denote the attributes  or  relations u encoded;  (c)

DT[u] to denote the cost of the part of bLAP encoded by

the search trace from  to u; (d) LT[u] to store the nodes

to be visited before visiting u; (e) a priority queue PQ for

nodes to explore; and (f) sets Svt of visited nodes and 

of nodes triggered restarts.

v∅Algorithm BAP starts the search from . It first ini-

tializes data structures (lines 2–5). It then iteratively ex-

plores  nodes  in PQ (lines  6–22).  The  search  extends  the

Dijkstra search  with  conditional  node  expansion  con-

trolled  by  GATE[v]  and  types  of  the  edges  (lines  9–22),

using c()  to  calculate  the  traversal  cost.  It  restarts  the

search if the output of a sub-query is used as an input for

a fetch (i.e., to visit the head of a fetch-edge; determined

by  SC given  as  Algorithm 3)  with  a  reduced  cost  (lines

21–22).  It  returns  bLAP  encoded  by  the  search  trace  if

restarts cannot improve its cost (line 23).

Algorithm 3. SC

Input: visited vertex u and vertex set Svt, and vertex

   v to be visited.

Output: DT[v], LT[v] and updated Svt.

GATE[v] ̸= ∅ DT [v] := λ(DT [u], w(u, v))

LT [v] := {u}
1 if  then ;

   ;

2 return DT[v], LT[v], Svt
W := L[v] Hv := ∅3 ; ;

W ̸= ∅4 while:  do

u′ ∈ Svt ∩ pre(v)
gv({DT[v′] | v′∈Hv∪{u′}})

|W∩L[u′]|

5　choose  with minimum  
   ;

W :=W \ L[u′] Hv := Hv ∪ {u′}6　 ; 

λ(DT [u], w(u, v)) <

gv({DT [v
′] | v′ ∈ Hv)

7 if (u, v) is a fetch-edge and 

   then

DT [v] := λ(DT [u], w(u, v)) LT [v] := {u}8　 ; 

9 else

DT [v] := gv({DT [v
′] |v′ ∈ Hv)10　 ; LT[v] := Hv;

11　if Hv contains q-vertex then Svt := {v};
12 return DT[v], LT[v], Svt);

c(ξR)

Γ1 Γ−
Γ∪ ΓgpBy Γfetch

Optimality of BAP. We say that cost  is regu-

lar  if  (a)  all  parameter  functions  are  monotonically  non-

decreasing w.r.t. each of their arguments; and (b) , ,

,  and  are commutative and associative.

maxφ=R(|X→Y,N|)∈B|Y | #BDenote  by , where |Y| is the
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number of attributes in Y. Then we have the following.

#B ≤ 1

Proposition  11. Under  any  access  schema B,  BAP

finds  optimal  bLAPs  with  regular  cost  functions  if

.

Proof  sketch. We  discuss  SPC Q first,  followed  by

RAaggr.

(1) Q is in SPC. We first prove the following lemmas.

u ∈ Svt

u∅

u∅

(a)  For  each  node , DT[u] is  the  shortest  dis-

tance from  to u; and for each unvisited node v, DT[v]

is the shortest distance from  when traversing nodes in

Svt only.

u ∈ Svt

u∅

#B = 1

(b)  For  each , the  plan  encoded  by  the  tra-

versal  from  to u is  of  cost DT[u]  when c()  is  regular

and .

u∅

For if these hold, then when BAP terminates, the en-

coded plan from  to uR is  an LAP for R with minim-

um c().

S0 ⊆ S
#B = 1

u∅

G(Q,B)
B

Lemma (a)  can  be  proved  by  induction  on  the  num-

ber of nodes in Svt, along the same line as Dijkstra′s op-

timality proof, by observing that SC(v, S) always selects

the subset  with minimum cost w.r.t. c() for visit-

ing v when .  Lemma  (b)  can  be  verified  by  the

same induction with (i) the observation that DT[u] mim-

ics c()  for  the encoded bLAP from  to u,  and (ii)  the

correspondence  between  proofs  (traversals  in )

and bLAPs under  in  the proof  of  Theorem 7 (part  of

the proof of Lemma (II)).

(2) Q is in RAaggr.  For  RAaggr queries,  we  show  that

BAP preserves the optimality of SPC with the following

lemmas:

(c)  Every  sub-query Qs of Q can  improve  searched

LAP once.

(d)  The  order  of  sub-queries  to  restart  does  not

change the final bLAP (up to equivalence).

∪
Γ×

Both lemmas are proved by induction on the number

of  –,  and  gpBy  operations  in Q,  using  the  condition

that  is associative and commutative and c() is mono-

tonic. □
One may expect BAP to find optimal bLAP for more

cases while  remaining  in  PTIME.  This  is,  however,  bey-

ond reach.

k > 1

B
#B = k Q ∈ LB

c(ξR) ≤ r c(ξR)

Proposition  12. For  each  integer ,  it  is  NP-

hard  to  decide,  given  any  bag  access  schema  with

, RAaggr query , relation atom R of Q and

number R,  whether  there  exists  a  bLAP ξR for R with

cost , even when  is regular.

S ⊆ V
e ∈ E u ∈ S e

|S| ≤ n

Proof.  We show the  NP-hardness  by  reduction  from

VERTEX COVER (VC),  which  is  NP-complete[1]. An  in-

stance of VC consists of a graph G(V, E) and an integer

n.  Given G and n (in  binary  form),  VC  is  to  decide

whether there exists a subset  such that (1) S cov-

ers G,  i.e.,  for  any  edge ,  there  exists  on ;

and (2) .

G(V = {v1, · · · , vp}, E = {e1, · · · ,
eq}) R

Given  an  instance 

 and n of VC, we construct a database schema , a

B R #B = k k ≥ 2

R

B c(ξ) ≤ r
|S| ≤ n

bag access schema  over  with  (  is an in-

teger), RAaggr Q over ,  a bounded relation RB in Q,  a

real number R, a regular cost function c() such that there

exists a bLAP ξ for RB under  with  if and only

if G has a cover S with . More specifically, the re-

duction is given as follows.

R
R(A0, A) S(A1, · · · , Aq, I) T (F1, · · · , Fk)

B #B = k

(1) Database schema  consists of 3 relation schemas

, , and . Here rela-

tion R is  to  encode  the  vertices  of G, S is  to  represent

edges of G, and T will be used to make  with .

(2) Query Q is defined as follows:

πS[I](σR1[A0]=1(R1) 1 · · · 1 σRp[A0]=p(Rp) 1 S)

Ri[A] = S[Aj ] vi ∈ V
ej ∈ E Ri(i ∈ [1, p])

πS[I]

where the join condition is  if  is  an

end point of  in G. Here relation atom 

is  a  renaming of  relation schema R.  Intuitively,  the  join

condition encodes the edge relation of G,  and  is  to

ensure that every attribute in S is nontrivial.

B(3) The bag access schema  consists of 3 access con-

straints:

φR = R (|A0 → A, 2|),
φS = S (|{A1, · · · , Aq} → I, 1|), and

φT = T (|∅ → {F1, · · · , Fk}, 1|).

R[A1, · · · , Aq] #B = k

Here φR is to fetch values of attribute R[A] (i.e., ver-

tices of G), and φS is to fetch edges encoded by S[I] us-

ing  (i.e., edges of G). Note that .

B
(4) The bounded relation RB is set to be R. One can

easily verify that R is bounded under .

(5) We set r = 2n. Note that this is in PTIME since n

in the VC instance is in binary.

Γ×(c(ξ1), c(ξ2)) = c1 × c2 ξ1 ̸= ξ2 max(c(ξ1),
c(ξ2)) Γfetch(c,N) = c×N

(6)  Function c()  is  instantiated  as  follows:  (i)

 if  and  is 

 otherwise.  (ii) ;  and  (iii)  we

simply set all other functions as constants. Note that c()

is regular.

c(ξ) ≤ r
We show that G has a vertex cover S of size at most

n if and only if R has a bLAP ξ with cost 

⇒ |S| ≤ n
B

ξ = fetch(1q
i=1 ξAi , φS) ξAi = fetch({j}, φR)

vj ∈ S

B |S| ≤ n,
c(ξ) = Γ×(1

q
i=1 ξAi)× 1 ≤ 2n = r

 Assume that G has a vertex cover S with .

We  construct  a  bLAP ξ for R under  as  follows:

, where  if ei is

covered  by  (when ei is covered  by  multiple  ver-

tices  in S, we  pick  one  of  them randomly).  By  the  con-

struction of Q and by that S covers all edges of G, ξ is a

bLAP  for S under .  From  we  know  that

.

⇐ B
c(ξ) ≤ 2n

S = {vi(i ∈ [1, p]) | ∃j ∈ [1, q], ξAj = fetch
({i}, φR)}

|S| ≤ n

 Assume  that R has  a  bLAP ξ under  with  cost

. By the join condition of Q and φS, there exist

at most n distinct fetch operations for fetching S[A1], ··· ,
S[Aq], i.e., S[A1], ··· , S[Aq] can be fetched from at most n

numbers 1, 2, ···, p using φR. This gives us a cover S of

G as  follows: 

.  By  the  construction  of Q, S is  a  cover  of G

with . □
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