

Edinburgh Research Explorer

Bounded Evaluation: Querying Big Data with Bounded
Resources

Citation for published version:
Cao, Y, Fan, W & Yuan, T 2020, 'Bounded Evaluation: Querying Big Data with Bounded Resources',
International Journal of Automation and Computing. https://doi.org/10.1007/s11633-020-1236-1

Digital Object Identifier (DOI):
10.1007/s11633-020-1236-1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
International Journal of Automation and Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 31. Jul. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/327124171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/yang-cao(bd09c3e2-3826-4065-b33c-edc31ce40e15).html
https://www.research.ed.ac.uk/portal/en/persons/wenfei-fan(575cc1dd-c44a-4933-a690-16f21e8ee10a).html
https://www.research.ed.ac.uk/portal/en/publications/bounded-evaluation-querying-big-data-with-bounded-resources(bfb86efe-dd5a-4565-9498-a5978cdabbe5).html
https://doi.org/10.1007/s11633-020-1236-1
https://doi.org/10.1007/s11633-020-1236-1
https://www.research.ed.ac.uk/portal/en/publications/bounded-evaluation-querying-big-data-with-bounded-resources(bfb86efe-dd5a-4565-9498-a5978cdabbe5).html

Bounded Evaluation: Querying Big Data

with Bounded Resources

Yang Cao 1 Wen-Fei Fan 1,2,3 Teng-Fei Yuan 1

1 University of Edinburgh, Edinburg EH8 9AB, UK

2 Shenzhen Institute of Computing Sciences, Shenzhen University, Shenzhen 518060, China

3 Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China

Q D DQ D
Q(D) = Q(DQ) DQ D

DQ Q

Abstract: This work aims to reduce queries on big data to computations on small data, and hence make querying big data possible un-
der bounded resources. A query is boundedly evaluable when posed on any big dataset , there exists a fraction of such that

, and the cost of identifying is independent of the size of . It has been shown that with an auxiliary structure

known as access schema, many queries in relational algebra (RA) are boundedly evaluable under the set semantics of RA. This paper ex-
tends the theory of bounded evaluation to RAaggr, i.e., RA extended with aggregation, under the bag semantics. (1) We extend access
schema to bag access schema, to help us identify for RAaggr queries . (2) While it is undecidable to determine whether an RAaggr

query is boundedly evaluable under a bag access schema, we identify special cases that are decidable and practical. (3) In addition, we
develop an effective syntax for bounded RAaggr queries, i.e., a core subclass of boundedly evaluable RAaggr queries without sacrificing
their expressive power. (4) Based on the effective syntax, we provide efficient algorithms to check the bounded evaluability of RAaggr

queries and to generate query plans for bounded RAaggr queries. (5) As proof of concept, we extend PostgreSQL to support bounded eval-
uation. We experimentally verify that the extended system improves performance by orders of magnitude.

Keywords: Bounded evaluation, resource-bounded query processing, effective syntax, access schema, boundedness.

1 Introduction

Q(D) D

Querying big data can be prohibitively costly. As an

indicator, it is NP-hard1 to decide whether a tuple is in

the answer in a dataset to an SPC (select,

project, Cartesian product) query Q, and it is PSPACE-

hard1 when Q is a query in relational algebra (denoted by

RA)[2]. It takes days to join two tables with 10 million

tuples each[3]. One might be tempted to think that paral-

lel computation could do the job. However, there exist

computational problems for which parallel scalability is

beyond reach, i.e., no matter how many machines are

used, the parallel runtime of algorithms for such prob-

lems may not be reduced[4]. Worse still, small businesses

typically have constrained resources and may not afford

large-scale parallel computation.

Is querying big data beyond the reach of small com-

panies, or is it just a privilege of big companies? Is it pos-

sible to extend DBMS with an immediate capacity to an-

swer common queries over big datasets under con-

strained resources?

D
DQ D

Q(D) D
A

A
D

A DQ ⊆ D
DQ

A Q(DQ) = Q(D) DQ

A
A

A

One approach to tackling the challenge has recently

been studied, based on bounded evaluation[5, 6]. To an-

swer a query Q on a dataset , the idea is to look at only

a “bounded” fraction of that suffices to compute

, instead of at the entire . This is doable by using

an access schema , which is a combination of cardinal-

ity constraints and associated indices. Under , Q is

boundedly evaluable if for all datasets that conform to

, one can identify by reasoning about the car-

dinality constraints, and fetch by using the indices of

, such that (a) and (b) is determ-

ined by and Q only. In other words, if Q is boundedly

evaluable under , query Q can then be exactly

answered via bounded evaluation, by accessing only DQ

of size bounded by the cardinalities in .

The theory has been tested in industry and is found to

“improve the performance by orders of magnitude”[7].

D1

Example 1. Consider query Q1 from Facebook Graph

Search[8]: Find all my friends who have check-ins in UK2.

The query is posed on dataset with two relations:

(a) friend (uid, fid), stating that person fid is a friend of

uid, and (b) checkin (uid, loc, cty, date), stating that per-

son uid checked in at location loc in country cty on date.

Written as an RA query, Q1 is as follows (u0 denotes

“me”):

Research Article

Manuscript received February 21, 2020; accepted April 20, 2020
Recommended by Editor-in-Chief Guo-Ping Liu

© The Author(s) 2020

1See [1] for more about complexity classes, e.g., NP and

PSPACE. 2Facebook users can check-in to locations via “check-ins”.

International Journal of Automation and Computing

DOI: 10.1007/s11633-020-1236-1

Q1(x) = friend(u0, x) 1 checkin(x, loc, “UK”, date).
D1

Q1(D1)

Here dataset is big, with trillions of friend links

and check-ins[9]. It is costly to compute directly.

A1Now consider a set of real-life cardinality con-

straints:

◦ϕ1 friend(pid→ fid, 5 000): ;

◦ϕ2 checkin(uid→ country, 193): .

ϕ1

ϕ2

D1 ϕ1

ϕ2

Here constraint specifies a Facebook policy[10]: a

limit of 5 000 friends per user; and states that each

user can check-in at most 193 countries. Indices can be

built on based on such that given a person, it re-

turns the ids of all her friends by accessing at most 5 000

friend tuples; similarly for . Taken together, these con-

straints and their associated indices are called access con-

straints[5].

A1 Q1(D1)

D1

ϕ1

ϕ2

Q1(D1)

D1

A1

Using , we can compute by accessing at

most 970 000 tuples from , instead of trillions. (1) We

fetch T1 of at most 5000 fid′s of friend tuples with uid =

u0, by using . (2) For each fid f in T1, we fetch T2 of at

most 193 country values with . (3) We return the set of

fid′s in T1 with country = UK in T2. The plan fetches at

most 5 000 + 193 × 5 000 tuples to compute , no

matter how big is. Hence, Q1 is boundedly evaluable

under .

DQ

As shown in Example 1, bounded evaluation answers

a query Q over a big dataset by accessing a set of

data values with bounded size. It does this by retrieving

values (i.e., partial tuples) using indices associated with

cardinality constraints that correlate attributes. One

might think that this can also be carried out by conven-

tional index-only plans for query optimization[11].

However, the two are different problems as indicated by

their complexity bounds: deciding whether an SPC query

can be answered with a “bounded” query plan is EX-

PSPACE-hard[5], while it is in PTIME to decide whether

it has an index-only plan[11].

While bounded evaluation is promising, more work

has to be done, from theory to systems. Bounded evalu-

ation has only been studied for RA queries under the set

semantics[5, 6]. In the real world, queries are often ex-

pressed in RAaggr, i.e., RA extended with aggregation un-

der the bag semantics. RAaggr can express all SQL (struc-

tured query language) queries that do not carry arithmet-

ic expressions. This makes bounded evaluation more in-

triguing.

A1Example 2. Recall query Q1 and access schema

from Example 1. Consider query Q2 to find the number of

UK check-ins from each of my friends. Written in RAaggr,

Q2 is:

Q2 = gpBy(Q3, uid, count(cty)), where

Q3 = πuid,cty(friend(u0, x) 1 checkin(x, loc, ”UK”, date).

A1

Here gpBy(Q3, uid, count(cty)) groups the results of

Q3 by attribute uid and calculates count(cty) for each

group (see Section 2.1 for more details about gpBy oper-

ator). In contrast to Q1, does not help us answer Q2.

Using φ2, we can fetch a set of distinct countries for each

friend x. However, x may have multiple UK check-ins.

Access schema no longer suffices for RAaggr under the bag

semantics.

For practical use to emerge from the study, it is neces-

sary to extend bounded evaluation from RA to RAaggr

(SQL). This gives rise to several questions. How should

we extend the access schema of [5, 6] to support the bag

semantics? We will see that the problem for checking

whether an SQL query is boundedly evaluable is undecid-

able. Given the negative result, is bounded evaluation

beyond reach in practice? More specifically, is there any

practical and decidable special case? Is it possible to de-

velop a systematic method that allows us to efficiently

check the bounded evaluability of SQL queries? In addi-

tion, after determining that an SQL query is boundedly

evaluable, how can we generate and optimize a query

plan to carry out its bounded evaluation?

Contributions. This paper answers these questions

by extending the study to RAaggr, from theory to prac-

tice.

(1) Bounded evaluation for SQL. We extend bounded

evaluation from RA to RAaggr, i.e., SQL (without arith-

metic) to support arbitrarily nested aggregate sub-quer-

ies and group-by clauses. We introduce bag access schem-

as, an extension of the access schema of [5, 6] to support

the bag semantics. We also formulate bounded query

plans for RAaggr.

(2) Complexity of bounded evaluation. Not surprising-

ly, bounded evaluability is undecidable for SQL since it is

already undecidable for RA[5]. We identify practical con-

ditions that cover a number of real-life queries, for which

the bounded evaluability can be efficiently determined.

These conditions tell us what makes queries bounded.

LB

B
Q′ ∈ LB

LB LB

(3) Effective syntax. To accommodate the undecidab-

ility, we develop an effective syntax for boundedly

evaluable RAaggr queries. We show that under a bag ac-

cess schema , (a) an RAaggr query Q is boundedly evalu-

able if and only if it is equivalent to a query ; and

(b) it is in PTIME (polynomial time) to check whether Q

is in . That is, is a core subclass of bounded evalu-

able RAaggr queries that are syntactically checkable

without sacrificing the expressive power. This is along the

same lines as how commercial database systems (DBMS)

deal with safe relational calculus queries, which are unde-

cidable to decide[12–14].

B
B

Q(D)
DQ D B

(4) Extending DBMS with bounded evaluation. We pr-

esent a framework, referred to as BEAS (bounded evalu-

able SQL) to provide commercial DBMS with the capab-

ility of bounded evaluation of RAaggr queries. Given an

RAaggr query Q and a bag access schema , BEAS first

checks whether Q is boundedly evaluable under . If so,

it generates a query plan for Q to compute by ac-

cessing a bounded small fraction of using . Other-

wise, it leverages access schema and generates a partially

bounded plan, to bound sub-queries of Q. We develop al-

 2 International Journal of Automation and Computing

gorithms underlying BEAS.

(5) Experimental study. As proof of concept, we ex-

tend PostgreSQL with bounded evaluation, denoted by

BEAS@PG. Using TPCH benchmark[15] and real-life

datasets, we evaluate the performance of BEAS@PG

compared to PostgreSQL. We find that BEAS@PG im-

proves PostgreSQL by up to 4 orders of magnitude for

boundedly evaluable queries.

D

Querying big data under bounded resources.

This work is a component of a framework for querying

big data. As outlined in [16], the framework works as fol-

lows: given an SQL query Q posed on a big dataset ,

(1) it first checks whether Q is boundedly evaluable;

Q(D)
D

(2) if so, it computes the exact answer by ac-

cessing a bounded fraction DQ of via bounded evalu-

ation;

D
(3) otherwise, it computes approximate answers to Q

in also by accessing a bounded amount of data, and

provides deterministic accuracy ratios[17].

In the entire process, it only accesses a bounded frac-

tion of data and can be conducted under bounded re-

sources. Hence it is feasible to provide small businesses

with a capacity of querying big data despite constrained

resources.

To simplify the discussion, we focus on row-oriented

DBMS (a.k.a. row stores) in this paper. Nonetheless, as

will be seen in Section 2, the model of bounded evalu-

ation subsumes column stores. Moreover, bounded evalu-

ation can be readily extended to parallel and distributed

systems[18].

LB

Organization. The remainder of the paper is organ-

ized as follows. Section 2 defines bag access constraints

and formulates boundedly evaluable RAaggr queries. Sec-

tion 3 studies the complexity of bounded evaluation for

RAaggr queries. Section 4 proposes effective syntax for

boundedly evaluable RAaggr queries. Section 5 introduces

BEAS and develops its underlying algorithms. The exper-

imental study is presented in Section 6. We discuss re-

lated work in Section 7, and identifies topics for future

work in Section 8.

2 Bounded evaluation of SQL queries

We first define bag access schema (Section 2.1) and

then formulate bounded evaluation of RAaggr queries, ag-

gregate or not, under the bag semantics (Section 2.2).

2.1 RAaggr and bag access schema

We start with a review of RAaggr, an extension of RA

with a group-by construct and nested aggregate sub-quer-

ies.

σC

πY × 1C ρA→B

∪

RAaggr queries. An RAaggr query is an expression

defined in terms of RA operators (i.e., select , project

, Cartesian-product or join , renaming , uni-

on and set difference -), and additionally a group-by

aggregate operator

gpBy(Q,X, agg1(V1), · · · , aggm(Vm))

X ∪
∪m

i=1{aggi(Vi)}

gpBy(Q,X, agg(V))

where (a) Q is an RAaggr query, (b) X is a set of

attributes for group-by, (c) aggi is one of aggregate

functions max, min, count, sum, avg, and (d) V1, ··· , Vm
are attributes such that forms the

output relation of Q. We refer to aggi(Vi) as an aggregate

field on attribute Vi. We write the operator as

 when it is clear from the context.

Since Q may include aggregate operators itself,

aggregations in an RAaggr query may be arbitrarily

nested.

In SQL syntax, the operator can be written as

selectX, agg1(V1), · · · , aggm(Vm)

from Q

group by X

X = ∅ gpBy(Q,X, agg(V))As a special case, when ,

does not have a group-by construct. We write it simply

as agg(Q).

Example 3. Query Q2 in Example 2 is an RAaggr

query.

As another example, an RAaggr query with nested ag-

gregation is Q4 over relations R(A, B, C) and S(E, F,

W):

Q4 = avg(πz(Q5(y) 1 S(y, 1, z))), where

Q5(y) = sum(πy(R(w, 1, u) 1 R(w, x, y))) . □

R
B

Bag access schema. To support the bag semantics,

we extend the access schema of [5, 19] to bag access

schema. Over a database schema , a bag access schema

 is a set of bag access constraints of the form:

φ = R (|X → Y,N |)

Rwhere R is a relation schema in , X and Y are sets of

attributes of R, and N is a positive integer.

D
R R

DY (X = ā) = {t[Y] | t ∈ D,
t[X] = ā} DY (X = ā) Y

ā ab

m(D, ab)

{|t ∈ D | t[XY] = ab|}
ab m(D, ab)

ab

To define the semantics of bag access constraints, we

use the following notations. (1) Denote by a database

of , and by D an instance of relation schema R in .

(2) For an instance D of R,

, i.e., denotes the set of values

corresponding to X-value . (3) For any XY-value in

D, denotes the cardinality of the bag (multiset)

, i.e., the number of occurrences of

 as XY attributes in D; we refer to as the

multiplicity of in D.

ψ D |= φWe say that D conforms to , denoted by , if

X ā D |DY (X = ā)| ≤ N
N Y D

(1) for any -value in , , i.e.,

there exist at most distinct associated -values in ;

and

φ

ā

b̄

b̄ m(D, ab)

(2) there exists an index for on D such that given

any X-value , by accessing at most N tuples, it re-

trieves (a) all associated distinct Y-values in D, and (b)

for each such , the multiplicity .

D |= φIntuitively, if for any X-value, there exist at

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 3

most N distinct corresponding Y values in D. Moreover,

these Y-values (partial tuples) and their multiplicities in

D are indexed by ψ and can be efficiently retrieved via

the index.

A1

B1

Example 4. Extending of Example 1, a bag ac-

cess schema consists of the following bag access con-

straints:

◦φ1 = friend(|pid→ fid, 5000|);
◦φ2 = checkin(|uid→ country, 193|).
Here φ2 says that (a) for any uid u1, there exist at

most 193 distinct country values, and (b) there exists an

index built on the friend relation that given any uid u1,

fetches all associated distinct countrys c and for each

country c, the multiplicity of (u1, c) in the friend rela-

tion for country c; similarly for φ2.

B2As another example, consider a bag access schema

for Q4 of Example 3, which consists of bag access con-

straints:

◦φ3 = R(|A→ B, 1|),
◦φ4 = R(|B → C, 10|), and

◦φ5 = S(|EF →W, 10|).

B2

We will see that Q4 can be efficiently answered with

. □
D R

B D |= B D |= φ φ ∈ B
φ = R(|X → Y,N |) D

A database instance of conforms to a bag access

schema , denoted by , if for every ,

where , and D is the instance of R in .

ā

|DY (X = ā)| ≤ N

b̄

ab

Intuitively, a bag access constraint φ extends an ac-

cess constraint ψ of [5, 19] by incorporating multiplicity.

Similar to ψ, given any X-value in D, φ enforces the

cardinality constraint and returns dis-

tinct corresponding Y-values. In contrast to ψ, for each

corresponding Y-value , φ also returns the multiplicity of

 in D. In other words, access constraints under the set

semantics[5, 6] are a special case of bag access constraints

when we only bound the cardinality and retrieve distinct

values.

Remark 1. When it is clear from the context, we also

simply refer to bag access schema as access schema.

2.2 Bounded evaluation of RAaggr queries

We next define bounded evaluation for RAaggr queries.

R(|X → Y,N |)
(t[X,Y],m(t[X,Y]))

Multiplicity relations. From an instance D of a re-

lation schema R, we can use the index of a bag access

constraint to retrieve a relation consisting

of tuples , where t is a tuple in D. It

is a set that besides partial tuples t[X, Y] in D, carries

multiplicity m(D, t[X, Y]), and is referred to as a multi-

plicity relation.

1C

I1 1C I2

I1 1C I2
M = m(I1, t1)×

The RAaggr operators can be readily extended to mul-

tiplicity relations. Take join operator as an example.

Given two multiplicity relations I1 and I2, the result of

, denoted by Is, is a multiplicity relation as fol-

lows: (a) tuples in Is have the form (t, M), where t is a

result tuple of using the conventional join se-

mantics (ignoring multiplicity), and (b)

m(I2, t2) t1 ∈ I1 t2 ∈ I2

Ii(i ∈ {1, 2})

, where t is joined from and , and

m(Ii, ti) denotes the multiplicity of tuple ti in multipli-

city relation . Similarly, other RAaggr operat-

ors are defined on multiplicity relations.

ξ

B

φ = R(|X → Y,N |)
B

S =
∪

ā∈T DXY (X = ā)

Bounded RAaggr plans. A bounded RAaggr plan

under a bag access schema is an algebra tree that ex-

tends conventional RAaggr query plans with a new operator

fetch(T,φ), where is a bag access con-

straint in , and T is an intermediate multiplicity rela-

tion on attributes R[X] (see Appendix for a formal defini-

tion). Over an instance D of R that conforms to φ,

fetch（T, φ）retrieves an intermediate relation

 by using the index of φ on D,

where each tuple t in S is annotated with multiplicity

m(D, t) (also retrieved by φ).

∅ D

B

Intuitively, a bounded RAaggr plan starts with a set of

constants (possibly), retrieves data from via the

fetch operator, and applies RAaggr operators to the

fetched data, except that it accesses data by employing

the indices of the bag constraints in only, and allows

group-by aggregate and operates on multiplicity relations.

ξ(D) DWe denote by the result of applying plan ξ to .

B1

ξQ2 B1

Example 5. Recall RAaggr query Q2 from Example 2

and bag access schema from Example 4. A bounded

plan for Q2 under , written in algebra expressions,

is as follows:

T1 (uid,fid)= fetch({u0}, φ1),

T2 (uid,cty)= fetch(πfidT1, φ2),

T3 (uid, cty) = σctyT2,

T4 = gpBy(T3, uid, count(cty)).

B2

D |= B2

Q4 ≡B2 Q6

D |= B2

As a more intriguing example, recall query Q4 from

Example 3 and bag access schema from Example 4.

By the cardinality constraint in φ3, for each A-value in

any database instance for w of Q4, there exists at

most 1 distinct B-value associated with w. Therefore,

, i.e., Q4 is equivalent to Q6 on every data-

base , where Q6 is

Q6 = avg(πz(Q7(y) 1 S(y, 1, z))), where

Q7 (y) sum(πyR(w, 1, y)).

B2

ξQ4

Under , Q6 (hence Q4) has a bounded query plan

:

T1(B,C) = fetch({1}, φ4),

T2 = sum(πCT1),

T3(E,F,W) = fetch(T2 × {1}, φ5),

T4 = avg(πWT3).

ξQ4

ξQ4

ξQ4

D |= B2

Observe that does not explicitly use φ3. However,

the correctness of relies on the cardinality of φ3.

Moreover, propagates constants of Q4 via join and

fetch, such that all values and their combinations that

are needed for answering Q4 are fetched from . In

particular, in the presence of nested aggregation, answers

to aggregate sub-queries can also be used by fetch, e.g.,

T3. □

B
Boundedly evaluable queries. Under access

schema , an RAaggr Q is boundedly evaluable if it has a

 4 International Journal of Automation and Computing

plan ξ such that:

◦ ξ B is a bounded RAaggr plan under ;

◦ constants {c} in ξ are from selection conditions of Q;

◦ D |= B ξ(D) = Q(D) moreover, for any database , .

Q ≡B ξWe write if Q has such a bounded query plan

ξ.

(t,m) ∈ D1

Here for any multiplicity relation D1 and a conven-

tional bag (multiset) D2, we write D1 = D2 if D2 can be

obtained from D1 by including m copies of each tuple

.

B1

ξQ2

B2

For example, query Q2 of Example 2 is boundedly

evaluable under of Example 4, since it has a bounded

plan given in Example 5. Similarly, Q4 of Example 3

is also boundedly evaluable under of Example 4.

Observe the following about bounded RAaggr plans ξ.

B
D D B

(1) Scale independence. Each fetch operation in ξ re-

trieves data with a cost that can be quantified by the bag

constraint employed. Hence the cost of executing ξ is de-

termined by bag access schema and query plan ξ only,

not by the size of dataset as long as conforms to .

That is, under the bag semantics, bounded RAaggr plans

preserve the scale independence of bounded evaluation for

RA queries[5, 6].

(2) Late bag semantics enforcement. Plan ξ fetches

and operates on sets since fetch(T, ψ) returns a set. It

defers the process of the bag semantics to a stage as late

as possible. This reduces performance degradation caused

by duplicated values in, e.g., joins, in which duplicates

get inflated rapidly.

R(|∅ → A,N |)

(3) Subsuming column-stores. Bounded plan ξ can also

express query evaluation over column-stores[20] or column-

store indices[21]. Indeed, in a column store (or a column-

store index), each column (or column index) on attribute

A of a relation schema R is essentially a special case of

bag access constraint of the form . Hence,

column store and columnstore index are a special case of

bag access schema and hence their evaluation plan can be

expressed by a bounded plan ξ under such a bag access

schema.

R(|X → Y,N |)

Note that the efficiency of column stores mainly comes

from its implementation-level optimization, e.g., column

compression and vectorization[20]. While these optimiza-

tion strategies can also be used to implement the indices

of bag access schema, these are not the focus of this pa-

per. We study query evaluation at the logical level, un-

der generic constraints when X is not ne-

cessarily empty. Hence, this paper focuses on row-ori-

ented databases as the underlying platform for imple-

menting bag access schema.

3 Complexity of bounded evaluation

In this section, we study the complexity of bounded

evaluability and identify practical decidable cases.

Bounded evaluability. The problem is stated as fol-

lows.

◦ R B
R R
 Input: A database schema , a bag access schema

over , and an RAaggr query Q over .

◦ B Question: Is Q boundedly evaluable under ?

This bounded evaluability problem is to decide wheth-

er a query can be answered by accessing a bounded

amount of data, and is underlying the first step of our

framework for querying big data under bounded re-

sources (Section 1).

No matter how important, the problem is hard. To see

why it is intriguing, let us consider Example 6.

B3Example 6. Consider bag access schema and SPC

query Q8 defined on relations T(A, B) and U(E, F):

◦B3 consists of the following two access constraints:

φ6 = T (|A→ B,N |),
φ7 = U(|E → F, 2|);
◦ Q8 = Q9 −Q10 query , where

Q9 = πy(T (x, y) 1 U(w, 1) 1 U(w, x) 1 U(w, y)), and

Q10 = πz(T (z, z) 1 U(u, 1) 1 U(u, z)).

B3

U(w, 1) 1 U(w, x) 1 U(w, y)

B3

B3

Q1
9 ∪Q2

9 Q1
9 = πy(T (1, y) 1

U(w, 1) 1 U(w, , y) Q2
9 = πy(T (y, y) 1 U(w, 1) 1

U(w, y) Q8 = (Q1
9 ∪Q2

9)−Q10 = Q1
9

Q2
9 ≡ Q10 Q1

9

B3

At a first glance, none of Q9 and Q10 seems boundedly

evaluable, and hence neither is Q8. Indeed, we cannot re-

trieve values for any of x, y or z using indices in .

However, putting together

and φ7 of , one can deduce that x must be equal to

either 1 or y in all tuples retrieved from instance of T by

any query plan for Q9. In other words, under , Q9 re-

duces to SPCU , where

 and

. Hence, since

. It is easy to see that is boundedly evalu-

able under and as a result, so is Q8.

∪
Q1

4 ∪Q2
4

Q1
4

As shown above, it is often necessary to check query

equivalence to decide whether a query is bounded. The

use of union () allows us to convert SPC to SPCU un-

der a bag access schema (e.g., Q4 to), which may

further interact with set difference (–) (e.g., Q3 and).

It is beyond reach in practice to check the equival-

ence of RA or RAaggr queries. Thus, the bounded evaluab-

ility problem is already undecidable for RA, a special case

of RAaggr.

Theorem 1.[5] The bounded evaluability problem is

undecidable for RA queries.

Theorem 1 was verified under access schema. As re-

marked in Section 2, access schema is a special case of

bag access schema. Hence, the bounded evaluability prob-

lem remains undecidable for RA under a bag access

schema. As an immediate corollary, the bounded evaluab-

ility problem is undecidable for RAaggr, which subsumes

RA.

Decidable cases. We next identify special cases

when the bounded evaluability is decidable. The reason is

twofold. (1) The special cases cover a large number of

RAaggr queries used in practice, e.g., all SPC sub-queries

of built-in benchmark queries in TPCH[15] and TPCDS[22].

(2) These cases reveal insight about why queries become

boundedly evaluable. In Section 4, we will deal with gen-

eric RAaggr queries, by devising an effective syntax for

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 5

boundedly evaluable RAaggr queries.sub> queries.

CP
(I) PTIME cases. The first special case, denoted by

, consists of combinations of SPC queries and bag ac-

cess schema for which the bounded evaluability can be

checked in PTIME, covering all SPC sub-queries of

TPCH and TPCDS.

CP B
R (B, Q) ∈ CP

Class . For any bag access schema and SPC

query Q over the same database schema , if

φ = R(|X → Y,N |)
N > ||Q|| ||Q||

(a) for each bag constraint ,

, where is the number of relation atoms in Q;

and

(b) Q has no self-join.

BTheorem 2. For any bag access schema and SPC

Q,

(B, Q) CP(1) it is in PTIME to decide whether is in ;

and

B (B, Q) CP
(2) it is in PTIME to decide whether Q is boundedly

evaluable under if is in .

B

Proof. Statement (1) apparently holds. Below we

prove (2) by giving a PTIME sufficient and necessary

condition for checking the bounded evaluability of Q un-

der .

cov(Q,B)

B
XQ

C

σA=c cov(Q,B)

The condition needs a notion of covered SPC queries

from [6]. It is characterized by a set , which con-

sists of attributes whose values can be retrieved via fetch

operations along with , without directly accessing raw

data in a database. More specifically, let be the set of

attributes A in the constant selection predicates of Q,

i.e., for a constant c. Then is inductively

defined as:

XQ
C ⊆ cov(Q,B)(a) ;

A ∈ cov(Q,B) ΣQ ⊢ A = B

A = B ΣQ

B ∈ cov(Q,B)

(b) if and (denoting that

 can be deduced from selection predicates via

the transitivity of equality), then ;

X ⊆ cov(Q,B) R(|X → Y,N |) ∈ B
Y ⊆ cov(Q,B)

(c) if and , then

; and

cov(Q,B)(d) contains nothing else.

XQ
RDenote by the set of attributes that are either in

the selection or join predicates of Q, or are the top-level

projection attributes. Then we show the following.

(B, Q) ∈ CP

B
φ = R(|X → Y,N |) ∈ B XQ

R ⊆ XY ⊆
cov(Q,B)

Lemma 3. For any , Q is boundedly eval-

uable under if and only if for each relation R in Q,

there is such that

.

B

From Lemma 3, Theorem 2(2) follows since one can

simply check the condition of Lemma 3 in PTIME in the

sizes of Q and . Below we prove Lemma 3.

⇒ B
B

ξ ≡ Qξ ≡B Q Q ≡B Q
′

Q(D) = Q′(D) D |= B

() Assume that Q is boundedly evaluable under .

Then there exists a bounded plan ξ for Q under . Be-

low we first inductively construct a query Qξ from ξ such

that (a) , where means that

 for any database , and (b) Qξ satis-

fies the condition on Q in Lemma 3. We then show that

Q also satisfies the condition when Qξ satisfies it, and

thus Lemma 3 holds.

Construction of Qξ. We construct query Qξ by induc-

tion on the structure of ξ as follows:

◦ If ξ = {c}, then Qξ = {c}.
◦ ξ = σC(ξ

′) πY (ξ′) Qξ = σC(Qξ′)

πY (Qξ′)

 If (resp.), then

(resp.), where Qξ' is the query constructed for ξ'.
◦ ξ = fetch(ξ′, R(|X → Y,N |)) Qξ = πZ(Qξ′ 1X

R(X,Y, Z))

 If , then

.

◦ ξ = ξ1 × ξ2 Qξ = Qξ1 ×Qξ2 If , then .

Qξ

φ = R(|X → Y,N |) ∈ B X
Qξ

R ⊆
XY ⊆ cov(Qξ,B)

By induction on the structure of ξ, one can readily

verify that for each relation R in , there exists a bag

constraint such that

, i.e., Qξ satisfies the condition of

Lemma 3.

φ = R(|X → Y,N |) ∈ B N > ||Q||
Qξ ≡B Q Qξ ≡ Q

XQ
R ⊆ ρ(X

Qξ

R′)

XQ
R ⊆ρ(X

Qξ

R′) ⊆ XY ⊆ ρ(cov(Qξ,B)) ⊆ cov(Q,B)

Query Q satisfies the condition. We next show that Q

satisfies the condition in Lemma 3 when Qξ does. Since

for each bag constraint , ,

from , one can verify that . Thus there

exists a homomorphism ρ from Qξ to Q[2]. Moreover,

since Q is self-join free, each relation schema R (i.e., rela-

tion atom) has at most one occurrence in Q. Then no re-

lation atom in Q can be removed without changing Q.

Thus, Q is minimal (an SPC query is minimal if it has no

redundant relation atoms[2]). Hence for each relation R in

Q, there must exist a relation R' in Qξ such that ρ(R') =
R, and moreover, . Hence

. That

is, Q also satisfies the condition of Lemma 3.

⇐
B

() Assume that Q satisfies the condition of Lemma

3. We construct a 3-step bounded query plan ξ under

for Q:

(a) it has a bounded sub-plan ξR for each relation R

in Q that fetches all attribute values needed for answer-

ing Q;

ξcR

(b) it combines the attribute values for each relation

R in Q via a bounded sub-plan such that each (par-

tial) tuple fetched and kept for R is guaranteed to draw

values from the same tuple in D; and

ξcR(c) it finally carries out operations in Q over for

each relation R in Q.

To show such a plan ξ exists for Q under the condi-

tion of Lemma 3, we only need to prove the following two

properties:

(1) all necessary attribute values for answering Q from

each relation R in Q can be retrieved by ξR in step (a),

and

ξcR(2) their combinations can be restored by in step

(b).

A ∈ XQ
R

XQ
R

A ∈ cov(Q,B)
B

XQ
R A ∈ cov(Q,B)

Proof of (1). We prove (1) by constructing such a

bounded plan ξR[A] for each attribute . Note that

only attributes in are needed for answering Q. The

plan ξR[A] is constructed by translating the proof that

witnesses . More specifically, since the con-

dition of Lemma 3 holds for Q and , for any attribute A

of such that , there must exist a se-

quence of applications of rules (a)–(c) that defines

 6 International Journal of Automation and Computing

cov(Q,B) such that

ℓ : cov0
r17−→cov1

r27−→ · · · rn7−→covn

cov0 = ∅ A ∈ covn

cov(Q,B) ℓ

where , , step i expands covi-1 by

applying rule ri from one of the rules (a)–(c) for defining

 given earlier. We translate into a bounded

plan:

ξ : ξ0, · · · , ξn

covi−1
ri7−→covi

where ξ0 is empty; ξi is derived from ξ0, ···, ξi-1 based on

step as follows:

XQ
C(i) if ri is rule (a) for a constant c in , then ξi is

{c};
A ∈ covi−1

B ̸∈ covi−1 B ∈ covi

(ii) if ri is rule (b) with A = B such that ,

 and , then ξi = ξi-1;

ξi = fetch(ξj1 1 · · · ξj|X| ,

φ = R(|X → Y,N |)) ξj1 ξj|X|

j1, · · · , j|X| < i

(iii) if ri is rule (c), then

, where , ···, are the bounded

plans that fetch attributes in X ().

By the construction, ξi is a bounded plan that fetches

all A attribute values for Q. Note that each sub-plan ξi is

bounded since it does not involve relation scans.

ξcR ξA
A ∈ XQ

R T1 = ξA1 1 · · · 1 ξA|X| Ai

(i ∈ [1, |X|]) XAi

Ai

XQ
R ⊆XY φ=R(|X → Y,N |) ∈ B ξcR= fetch(T1, φ)

ξA A ∈ XQ
R ξcR

B

Proof of (2). Plan is constructed with for each

 by (i) , where ′s
 range over all attributes in X, and is the

plan generated above for fetching values; and (ii) if

 for , then .

Since is a bounded plan for each , is

bounded under .

B
B

Hence, when the condition of Lemma 3 holds for Q

and , ξ constructed above is a bounded plan for Q un-

der . □

CP
(II) NP cases. One might want to lift the restriction

of condition (b) on the queries in . This covers all SPC

queries, including those with self-joins. However, the

bounded evaluability analysis becomes harder unless P =

NP.

CNP CNP

B
φ = R(|X → Y,N |) N > ||Q||

Class . Denote by the set of pairs of bag ac-

cess schemas and SPC queries Q such that for each

bag constraint , . We have the

following.

BTheorem 4. For any bag access schema and SPC

Q,

(B, Q) CNP(a) it is in PTIME to decide whether is in ;

and

B (B, Q) CNP
(b) it is NP-complete to decide whether Q is

boundedly evaluable under if is in .

B
(B, Q) ∈ CNP

CNP

Proof. Statement (a) is immediate. To prove state-

ment (b), we first give a sufficient and necessary condi-

tion for query Q to be boundedly evaluable under for

any . Based on the characterization, we then

show that checking bounded evaluability for is NP-

complete.

Let Qm be the minimal equivalent query of Q, i.e., the

minimized version of Q, which can be obtained by remov-

CNP

ing all redundant relations (see [2] for details). For an

SPC query Q, there exists a unique minimal equivalent

query up to isomorphism[2]. Along the same lines as the

proof of Lemma 3, one can verify the following for cases

in .

(B, Q) ∈ CNP

B
φ = R(|X → Y,N |) ∈ B

XQm
R ⊆ XY ⊆ cov(Qm,B)

Lemma 5. For any , Q is boundedly

evaluable under if and only if for each relation atom R

in Qm, there exists such that

. □

B (B, Q)

CNP

Based on this, we prove that deciding whether Q is

boundedly evaluable under is NP-complete for in

.

Upper bound. We give an NP algorithm as follows:

(a) convert Q into its tableau representation (TQ, u)[2];

T ′ ⊆ TQ

(b) guess a sub-query Q' = (T', u) of Q such that

, and a mapping ρ from TQ to T';

φ = R(|X → Y,N |) ∈ B
XQ′

R ⊆ XY ⊆ cov(Q,B)

(c) check (i) whether ρ is a homomorphism from (TQ,

u) to (T', u) and (ii) whether for each relation atom R in

Q', there exists such that

; return “Yes” if so.

(TQm , u)

TQm ⊆ T ′
Q ⊆ TQ

B

|B| |Q′| ≤ |Q|

|B| B

The algorithm is correct since if conditions (i) and (ii)

of step (c) hold on Q', they must also hold on the minim-

al equivalent query Qm of Q. Indeed, ρ also determines a

homomorphism from (TQ, u) to since Qm is a

minimal equivalent query of Q, i.e., ;

therefore, if condition (ii) holds on Q', by the homo-

morphism ρ it must also hold on Qm, i.e., the condition of

Lemma 5 applies to Q and . Thus, by Lemma 5, Q is

boundedly evaluable. The algorithm is in NP since step

(a) is in PTIME, and step (c) is in PTIME in |Q'|, |Q|, |ρ|,
and while and ρ = O(|Q|). Here |Q| is the

size of Q, i.e., the number of attributes and aggregate

fields in Q; is the total length of bag constraints in .

Lower bound. To show that the problem is NP-hard,

we consider the following problem, denoted by MINCQ.

◦ Input: A relation schema R and an SPC query Q

over R.

◦ Question: Is Q minimized, i.e., is Q a minimal equi-

valent query of Q?

It is easy to verify that MINCQ is coNP-complete by

reduction from 3-COLORABILITY, which is NP-complete[23].

Lemma 6. Problem MINCQ is NP-complete.

CNP
We show that the bounded evaluability problem for

 is NP-hard by reduction from the complement of

MINCQ.

R(A1, · · · , Am) SPC
R′ R′

B
B

Given an instance of MINCQ, i.e., a relation schema

 and an query Q over R, we con-

struct a database schema , an SPC query Q' over

and a bag access schema . We show that Q is not min-

imal if and only if Q' is boundedly evaluable under .

R′

R′(A1, · · · , Am, B1, · · · , Bn(n−1)
2

)

(1) Database schema consists of a single relation

schema , where n is the

number of relation atoms that appear in query Q.

B1 Bn(n−1)
2

Intuitively, R' extends R with additional attributes

, ··· , . As will be shown later, together with Q',

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 7

such new attributes will be used as join attributes to

pairwisely connect the n relation atoms of Q in Q'.
(2) Query Q' is derived from Q as follows:

◦

R ∈ R
R′ ∈ R′

 query Q' retains the same number of joins and rela-

tion atoms as Q, such that each relation atom Ri (i.e., re-

naming of relation schema) is replaced with Ri'
(i.e., renaming of relation schema); and

◦ Q′

i < j R′
i[Bp] = R′

j [Bp]

p = n(i− 1)− i(i− 1)

2
+ (j − i)

 the selection (join) condition C of query con-

tains all selection predicates of Q, and in addition, the

following predicates: for each pair of relations Ri and Rj
in Q (), add equality to C, where

.

Bi(i ∈ [1,
n(n− 1)

n
])

Intuitively, C preserves all selection conditions of Q

and additionally joins each pair of the n relation atoms

on a dedicated attribute : (a) for each

Bk, there exist exactly two relation atoms Ri' and Rj'
such that Ri'[Bk] = R'j[Bk]; and (b) for each Ri' and Rj',
there exists exactly one attribute Bk such that Ri'[Bk] =
R'j[Bk].

B n(n− 1)

2
− 1

B

(3) The bag access schema consists of

constraints. Let W be the set of all attributes of A1, ··· ,
Am such that they appear in the selection/join condi-

tions or the top-level projection attributes in Q. Then

consists of

◦ φ1 = R′(|∅ →WB2B3 · · ·Bn(n−1)
2

, N |) ,

◦ φ2 = R′(|∅ →WB1B3 · · ·Bn(n−1)
2

, N |) ,

...

◦ φn(n−1)
2

= R′(|∅ →WB1B2 · · ·Bn(n−1)
2

−1
, N |) .

B
We next show that query Q is not minimal if and only

if Q is boundedly evaluable under .

(⇒)

n
n(n− 1)

2
B1 Bn(n−1)

2

φ = R′(X → Y,N,m) B

|W |+ n(n− 1)

2

φi ∈ B |W |+ n(n− 1)

2
− 1

 Assume that Q is not minimal. Then none of the

 relation atoms in Q' can be removed by minimizing Q'.

Hence all attributes , ···, , together

with W, have to be contained in XY for some

 in by Lemma 5. This yields

 attributes. This is impossible since for any

, φi contains attributes only by

its definition above.

(⇐) B

φi ∈ B |W |+ n(n− 1)

2
− 1

X
Q′

m

R′
i

|W |+ n(n− 1)

2
− 1

XQ′

R′
i

|W |+ n(n− 1)

2

 Assume that Q' is boundedly evaluable under .

Since each contains attributes,

by Lemma 5, must contain at most

 attributes for each relation atom R'i
in Q', where Q'm is the minimal equivalent query of Q'.

Since contains attributes, query Q' is
not minimal. □

CNP
Remark 2. Despite its intractability, checking the

bounded evaluability for is feasible in practice by

Lemma 5. Indeed, there have been effective algorithms for

minimizing SPC queries, i.e., computing Qm for Q[2], and

the size of Q is typically small. Taking one of these al-

Qm

B
|B|

gorithms as an oracle for computing Qm, one can still effi-

ciently check the bounded evaluability of generic SPC

queries: first minimize Q, yielding , and then check

whether Qm and satisfy the condition of Lemma 5 in

PTIME in |Qm| and .

4 Effective syntax

In this section, we propose an effective method to

check the bounded evaluability of generic RAaggr queries.

We show that while the problem is undecidable (Theor-

em 1), there exists an effective syntax for boundedly eval-

uable RAaggr queries, which reduces the problem to syn-

tactic checking (Section 4.1). In addition, we identify two

practical subclasses of RAaggr queries and provide their ef-

fective syntax. In particular, we give one for RA and

show that it covers more bounded queries than the one

given in [6] (Section 4.2).

4.1 An effective syntax for RAaggr

B
L L

LLB L L

Under an access schema , an effective syntax for

boundedly evaluable queries of (refers to, e.g., RA or

RAaggr) is a subclass of such that for any Q in ,

Q′ LLB Q ≡B Q
′

(a) if Q is boundedly evaluable, then there exists a

query in such that ;

LLB(b) every query Q in is boundedly evaluable; and

|Q|
|B| B Q ∈ LL

B

(c) it is in PTIME in the size of query Q and the

length of constraints in to check whether .

Q ≡B Q
′ Q(D) = Q′(D)

D |= B
Here if for all databases

.

L
LLB L

LLB B
LLB LLB

L

Intuitively, the effective syntax reduces the problem of

deciding the bounded evaluability of queries to syntact-

ic checking of . Indeed, every boundedly evaluable

query can find an equivalent query in under . Hence,

we can safely settle with queries in , since can ex-

press, up to equivalence, all boundedly evaluable quer-

ies.

LLB
Remark 3. To some extent, the development of ef-

fective syntax is analogous to the study of range-safe

queries for relational calculus. Indeed, the problem for

checking the “safety” of relational calculus queries is also

undecidable[2]. Despite this, range-safe queries are suppor-

ted by commercial DBMS, by making use of an effective

syntax of range-safe relational calculus queries. We fol-

low the same approach to dealing with the bounded eval-

uability of RAaggr queries.

LB

B

Below we develop such an effective syntax, denoted by

, for RAaggr queries that are boundedly evaluable un-

der .

LB LB

BA(Q,B) BR(Q,B) BQ(Q,B)
B

The class . In a nutshell, we characterize with

three sets: , and . Informally,

under a bag access schema , for an RAaggr query Q,

◦BA(Q,B) A
sum(A)

B

 contains attributes (e.g.,) and aggreg-

ates (e.g.,) of Q whose values can be fetched via

;

 8 International Journal of Automation and Computing

◦BR(Q,B)

BA(Q,B)

 consists of relations in Q whose partial

tuples that are needed to answer Q can be reconstructed

from the fetched values for attributes in ; and

◦BQ(Q,B) contains boundedly evaluable sub-queries of

Q.

LB Q ∈ BQ(Q,B)An RAaggr query Q is included in if .

B

Intuitively, these sets characterize RAaggr queries Q

for which the values of all attributes necessary for an-

swering Q can be “deduced” from constants in Q, via

joins and fetch under access schema . Such attributes

participate in RAaggr operations of Q, and are referred as

the nontrivial attributes of query Q. The class of such

queries makes an effective syntax for boundedly evalu-

able RAaggr queries.

More specifically, sets BA, BR and BQ are defined in

a mutual recursive way using rules given in Fig. 1, with

Xc
Q

BA(Q,B)

BR(Q,B)

notations explained in Table 1. Intuitively, (1) rule γ1 of

Fig. 1 includes constant attributes (see Table 1) in

; (2) γ2 propagates value from attributes and ag-

gregate fields to join attributes; (3) γ3 specifies value

propagation via fetch; (4) γ4 says that if a sub-query is

boundedly evaluable, then its output attributes and ag-

gregate fields can also be fetched; (5) γ5 adds a relation

atom R to only when the partial tuples of R

can be reconstructed from combinations of the fetched

values; and (6) γ6 says that a sub-query is boundedly

evaluable if all its relations can be correctly fetched.

ΣQ

ΣQ ⊢ A = B A = B

ΣQ

As shown in Table 1, denotes the set of equality

predicates embedded in the selection or join conditions of

Q, and denotes that equality can be

deduced from by the transitivity of the equality rela-

tion.

B1

Q2 ∈ LB1

Example 7. Recall query Q2 from Example 2 and

bag access schema from Example 4. We show that

.

BA(Q2,B1)(1) Initially, by rule γ1, includes f.uid and

c.cty, where f (resp. c) are shorthands for friend (resp.

checkin).

BA(Q2,B1)(2) By rule γ3 and φ1, further includes

f.fid.

ΣQ ⊢ f.fid = c.uid f.fid ∈ BA(Q2,B1)

BA(Q2,B1)

(3) Since , by , we

have that includes c.uid by rule γ2.

f ∈ BR(Q2,B1)

BA(Q2,B1)

c ∈ BR(Q2,B1)

BA(Q2,B1)

(4) By γ5, because both f.uid and f.fid

are in and are attributes of φ1. Similarly,

 because of φ2. Note that only c.uid and

c.cty are nontrivial attributes of Q in relation c and they

are both in .

BQ(Q,B)
(5) By γ6, sub-query Q3 and query Q2 itself are in

.

B2 Q6 ∈ LB2

As another example, recall query Q6 from Example 5

and from Example 4. We next show that .

BA(Q6,B2)

BR(Q6,B2)

γ5

(1) One can readily deduce that includes

B and C by using γ1 and γ3, and that in-

cludes R with .

BQ(Q6,B2)(2) By γ6, includes sub-query Q7 of Q6.

ZQ7 ∈ BA(Q6,B2) ZQ7

(3) Hence, further by γ4 we have that

, where is the output of Q7, i.e., an

aggregate field.

BA(Q6,B2) F

σQ6 ⊢ ZQ7 = F F

(4) By γ2, we know that includes since

 and is not an aggregate field.

S ∈ BR(Q6,B2)

Q6 ∈ BQ(Q6,B2)

(5) Thus, by γ5 and γ6, and

.

Q4 ̸∈ LB2 Q4 ≡B2 Q6 Q6 ∈ LB2

B2

Q1
9 B3

Q8 ̸∈ LB3 Q1
9 ∈ LB3 Q1

9

B3

Note that . However, ,

and Q6 is boundedly evaluable under . Similarly, for

Q8, and of Example 6, one can verify that

 but and is boundedly evaluable

under .

LBWe next show that is indeed an effective syntax

Table 1 Notations and definitions

Notation Definition

A (or
R[A])

An attribute or an aggregate field in Q

X, Y Sets of attributes in Q

|Q| Number of attributes and aggregate fields in Q

||Q|| Number of relation atoms in Q

XQ Set of all attributes and aggregate fields in Q

Xc
Q σA=cSet of attributes A of Q in constant selections

ΣQ
3 Set of equality predicates in selections/joins of Q

ΣQ⊢A=B A = B ΣQ can be deduced from via equality transitivity

ZQ Set of attributes and aggregate fields of the output of Q

nontr.
attr.

Attributes participated in algebra operations of Q

A B/ Access schema/bag access schema

|B| BTotal length of bag constraints in

||B|| BThe number of bag constraints in

ϕ φ/ Access constraint/bag access constraint

LB
RAaggr

B
Effective syntax for queries

bounded. eval. under

LLB L BEffective syntax for -queries bounded. eval. under

query

nontrivial attributes

i. e.,
e.g.,

LB RAaggrFig. 1 Effective syntax for queries

∨
∪

3To reduce notations, we assume w.l.o.g. that selection

conditions are conjunctive, i.e., in selection predicates is

reduced using .

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 9

Bfor boundedly evaluable RAaggr queries under .

B LBTheorem 7. Under any bag access schema , is

an effective syntax for boundedly evaluable RAaggr quer-

ies.

LBProof. We show below that has properties (a) and

(b) of an effective syntax, by proving the following lem-

mas. We will constructively prove property (c) in Section

5.2.

B Q ≡B ξ

LB

(I) For any bounded plan ξ under , there is

in .

Q ∈ LB ξ ≡B Q

B
(II) For any , there is plan bounded

under .

B
B Q′ ≡B ξQ LB

Q ≡B Q
′ ∈ LB

ξ′ ≡B Q
′ ≡B Q

B LB

These suffice. Indeed, for any Q that is bounded un-

der , by definition there must exist a plan ξQ bounded

under ; hence by (I), there exists in . On

the other hand, if , by (II), Q' has a

bounded plan , i.e., Q is also boundedly

evaluable under . Hence, has properties (a) and (b)

of an effective syntax.

We next prove the two lemmas.

ξ

Proof of (I). We prove it by induction on the struc-

ture of .

ξ {c} ∅ ξ

LB

Base case. When is or , by definition itself is

in .

ξInduction. We consider the structure of .

ξ gpBy(ξ′, X, agg(V))

Q′ ≡B ξ
′ Q′ ∈ LB

Q = gpBy(Q′, X, agg(V))

LB Q′ BR(Q′,B) ⊆ BR(Q,B)
Q′

Q ∈ BQ(Q,B) γ6 Q ∈ LB

Q ≡B ξ

(i) is . By the induction hypo-

thesis, there exists a query such that .

Consider . By the definition of

, all relations in are in (since

Q and share the same nontrivial attributes). Hence

 by rule . That is, . Obviously,

.

ξ = πY (ξ′) σC(ξ
′) ξ1 × ξ2 ξ1 ∪ ξ2

ξ1 − ξ2
The cases for , , , ,

 are similar and can be verified along the same

lines.

ξ fetch(ξ′, φ) φ = R(|X → Y,N |)
Q′ ≡B ξ

′

Q′ ∈ LB Q = πR[XY](Q
′ 1ZQ′=R[X] R)

fetch Q ≡B ξ

Q ∈ LB Q′ ∈ LB Q′ ∈ BQ(Q′,B)
γ4 Q′[X] ⊆ BA(Q′,B) ⊆ BA(Q,B) γ2

R[X] ⊆ BA(Q,B) γ3 R[Y] ⊆ BA(Q,B) γ5

γ6 Q ∈ BQ(Q,B) ξ ∈ LB

(ii) is with . By the

induction hypothesis, there exists query such

that . Consider . By

the semantics of , . We next show that

. Since , . Hence by rule

, . Further by ,

. By , . Hence by

and , . That is, .

Q ∈ LB LB

ℓQ

Q ∈ BQ(Q,B)

Proof of (II). Since , by the definition of

there must exist a proof consisting of applications of

rules in Fig. 1 that deduces , i.e., a se-

quence of the form

(BA0,BR0,BQ0)
r17−→ · · · rn7−→(BAn,BRn,BQn)

ri(i ∈ [1, n])

BA0 = BR0 = BQ0 = ∅ i

BAi BRi BQi BAi+1 BRi+1

BQi+1 rn γ6

Q ∈ BQ(Q,B) ℓQ

where (a) is one of the rules in Fig. 1; (b)

; (c) for each step , only one of

, and is changed in , and

, respectively; and (d) is rule that deduces

. We define the length of as the number

n ℓQ of rules applied in .

ℓ

i

Induction hypothesis. We show that for a proof of

length ,

◦ A ∈ BAi+1 A ̸∈ BAi A

B

 if but , values for that are ne-

cessary for answering Q can be fetched via bounded plan

under ;

◦ R ∈ BRi+1 R ̸∈ BRi

B
 if but , then values from R ne-

cessary for Q can be fetched via bounded plans under ;

and

◦ q ∈ BRi+1 q ̸∈ BQi

B

 if but , then the exact answers to

sub-query Q of Q can be answered via bounded plans un-

der .

Q ∈ LB ℓQ

Q ∈ BQ(Q,B)
B

Note that for any , Q must have a proof

ending by including . If the induction hypo-

thesis holds, Q must have a bounded plan under ,

which proves lemma (II).

l(ℓ) ℓWe next prove it by induction on the length of .

l(ℓ) = 1

A ∈ BA1

φ = R(|∅ → Y,N |) ∈ B

ξR[Y] = fetch(∅, φ)

Base case. When , then rule r1 can only be

either (i) γ1 of Fig. 1, i.e., to include from selec-

tion A = c of Q; or (ii) γ3 of Fig. 1, i.e., to include R[Y] in

BA1 with . For (i), simply let ξA =

{c}. Then ξA is a bounded plan that fetches all necessary

values for A. For (ii), let . Then by the

semantics of fetch, all values for R[Y] that are necessary

for answering Q are fetched by ξR[Y] (here we rename Q

beforehand such that there exist no duplicated attribute

names).

ℓ

(BAi,BRi,BQi)
ri+17−→

(BAi+1,BRi+1,BQi+1) ℓ

Induction. Assume that the hypothesis holds for

proofs of length at most k. Consider proof of length

k+1. We discuss the last step

 of .

(i) If rk+1 is rule γ1 with attribute A = c, then A can

be fetched in exactly the same way as the base case.

(ii) If rk+1 is rule γ2 that includes attribute B in BAi+1

with A = B, then attribute A must be included in BAi+1

at some steps prior to k+1. By the induction hypothesis,

there must exist a bounded plan ξA that fetches all neces-

sary values for answering Q except B. Hence ξB =ξA is

also a bounded plan that fetches B for Q by the condi-

tion A = B.

R[X] ⊆ BA(Q,B) φ = R(|X → Y,N |)
i1, · · · , ip

R[Xip] R[X1] ∪ · · · ∪R[Xp] =

R[X] R[Xj](j ∈ [1, p])

ξR[Xj] ξR[X] 1
p
j=1 ξR[Xj]

(iii) If rk+1 is rule γ3 that includes R[Y] in BAi+1 with

 and constraint , then

there exist steps prior to k+1 that include

R[X1], ··· , in BA such that

. Hence by the induction hypothesis,

has bounded plan . Let be , then

ξR[X] fetches all values for R[X] that are necessary for an-

swering Q. Hence, further by the semantics of fetch, R[Y]

has a plan fetch(ξR[X], φ) that retrieves all R[Y]-values

needed for answering Q.

ZQs

j < i+ 1

ξQs B
ZQs

(iv) If rk+1 is γ4 that includes in BAi+1 from a

subquery Qs of Q that is included in BQj at step

, then by the induction hypothesis, there exists a

plan for Qs under that exactly answers Qs. Hence

we can get values for its output attributes simply by

 10 International Journal of Automation and Computing

ξQs ξQs

ZQs

. Note that since is an exact plan for Qs, the val-

ues for are guaranteed correct even when Qs is an ag-

gregate subquery.

φ = R(|X → Y,N |) ∈ B
ξR[X1] ξR[Xp]

R[X1] ∪ · · · ∪R[Xp] = R[X]

ξR[X] =1
p
j=1 ξR[Xj]

R[X]

ξR[XY] = fetch(ξR[X], φ)

(v) If rk+1 is γ5 that includes R in BRi+1 with R[X]

and , then by the induction hypo-

thesis, there exist plans , ···, to fetch all ne-

cessary values for R[X1], ··· , R[Xp] for Q, respectively,

such that . Hence R[X] has a

bounded plan that fetches all neces-

sary -values for Q. Since R[XY] covers all nontrivial

attributes of R for Q, by , we can

fetch all combinations of R[XY]-values that are needed

for answering Q.

ξR1 ξRp

ξQs Ri(i ∈ [1, p])

ξRi ξQs

ξRi(i ∈ [1, p])

(vi) If rk+1 is γ6 that includes Qs in BQi+1, then all re-

lations R1, ··· , Rp of Qs have been included in {BR in

prior steps. Hence by the induction hypothesis, there ex-

ist , ···, that fetch all values from R1, ··· , Rp, re-
spectively, which are necessary for Q. Now construct plan

 by replacing each relation in Qs with

. Then must be a query plan for Qs of Q since all

necessary value combinations can be retrieved from D via

, and Qs then filters and combines values ex-

actly the same as on D.

Hence the hypothesis holds for proofs of length k+1. □

4.2 Special cases

RA0
aggr

RA0
aggr

These are two important sub-classes of RAaggr: (1) RA

consists of RAaggr queries without aggregation; and (2)

 is the class of RAaggr queries in which group-by

aggregation, if it exists, only appears at the top-level (fi-

nal operation). It is common to find RA and in

practice.

RA0
aggr LB[RA]

LB[RA0
agg] RA RA0

aggr
LB

RA0
aggr

We provide effective syntax for boundedly evaluable

RA and queries. Denote by and

 the class of and the class of quer-

ies that are in , respectively. They yield effective syn-

tax for RA and .

B LB[RA]

RA B
LB[RA

0
agg] RA0

aggr
B

Corollary 8. For any access schema , (1) is

an effective syntax for queries bounded by ; (2)

 is an effective syntax for queries

bounded by .

LB LB

B LB[RA] LB[RA0
aggr]

RA0
aggr

RA0
aggr Q2 Q′

1 ∈ LB[RA]

Q′
2 ∈ LB[RA0

aggr] Q1 ≡B Q
′
1 Q2 ≡B Q

′
2

RA0
aggr

LB[RA] LB[RA0
aggr]

Proof. Since it is in PTIME to check whether a query

is in and every query in has a bounded plan under

, to show that and are effective syn-

tax for boundedly evaluable RA and queries, re-

spectively, it suffices to show that for any boundedly

evaluable RA Q1 and , there exist

and such that and .

This is verified along the same lines as the proof of

Lemma (I) for Theorem 7 above, by showing that every

bounded RA (resp.) plan has an equivalent query

in (resp.). □
RA0

aggrThere are close connections between and RA

regarding their effective syntax: any effective syntax for

RA0
aggr

L RA0
aggr

Q = gpBy(Q′, X, agg(V)) L0

L L[RA]

L

boundedly evaluable queries also gives us an ef-

fective syntax for boundedly evaluable RA queries, and

vice versa. For any class of queries

, denote by (a) the class of

RA queries Q' that are sub-queries embedded in RAaggr

queries Q in ; and (b) the class of RA queries in

. Then we have the following.

BLemma 9. Under any bag access schema ,

L
(1) RA is an effective syntax for boundedly evaluable

RA if is an effective syntax for boundedly evaluable

RAaggr;

L
L0

(2) is an effective syntax for boundedly evaluable

RAaggr if is an effective syntax for boundedly evalu-

able RA.

Q = gpBy(Q′, X, agg(V))

B

Proof. Lemma 9(1) can be verified by the definition

of effective syntax. We focus on Lemma 9(2) here (the

proof for Lemma 9(1) is simpler). By the definition of

boundedly evaluable queries, it is easy to show the follow-

ing lemma: for any RAaggr , un-

der , Q is boundedly evaluable iff Q' is boundedly eval-

uable.

L0

B L L0

L
L0

Q = gpBy(Q1, X, agg(V))

Q1

B Q′
1 ∈ L0

Q1 ≡B Q
′
1 Q′ = gpBy(Q′

1, X, agg(V)) ≡B Q

Q′ ∈ L Q′
1 ∈ L0

L
Q′ L0

We next use the lemma to prove Lemma 9(2). When

 is an effective syntax for boundedly evaluable RA

queries under , consider the associated class of . (1)

First observe that all queries in are also boundedly

evaluable since RA queries in are. (2) For any RAaggr

query that is boundedly evalu-

able, by the lemma above, is also boundedly evalu-

able under . Hence, there exists such that

. Hence and

 (since). (3) Moreover, it is in PTIME to

check whether a query Q is in by checking whether its

embedded RA query is in , in PTIME. From (1),

(2) and (3) above, Lemma 9(2) follows. □
By Lemma 9, one can easily extend an effective syn-

tax for boundedly evaluable RA queries, e.g., covered RA

in[6], to an effective syntax for boundedly evaluable RAag-

gr queries.

One might think that such an extension is also pos-

sible for RAaggr. However, when group-by aggregation is

nested with other RAaggr operators, a convenient exten-

sion is beyond reach. It is much harder for RAaggr to

characterize propagation of values from aggregate sub-

queries to other relations, or to cover all boundedly evalu-

able queries up to equivalence.

LB[RA]Nonetheless, is more expressive than the class

of covered RA of [6], which is also an effective syntax for

RA.

B
B

LB[RA]

Proposition 10. For any bag access schema , the

set of RA queries covered by is properly contained in

.

LB[RA]

LB

LB[RA]

Proof. One can verify that covered RA queries[6] can

be expressed in without rule γ4. Hence it is a sub-

class of . To see it is a proper subclass, consider an

 query Q over relations R(A, B) and S(C, D):

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 11

Q = πD((σA=1R1 − σB=1R2) 1A=C S) R1 R2

B R(|A→ B,N1|)
R(|B → A,N2|) S(|C → D,N3|)

B
Q ∈ LB[RA]

, where and

rename R. Consider consisting of ,

 and . One can verify that

Q is not covered by since subquery S is not covered

(see [6]). However, . □

5 BEAS for querying big data

In this section, we show how to extend DBMS with

the functionality of bounded evaluation. We first present

such a framework (Section 5.1). We then provide al-

gorithms underlying the framework, for checking the

bounded evaluability (Section 5.2) and generating

bounded plans (Section 5.3).

5.1 A Framework of bounded evaluation

R

The framework, referred to as BEAS, is shown in

Fig. 2. Given an application that involves queries over in-

stances of a database schema , BEAS works as follows.

Boundedly
evaluable?

(C2)

Generate bounded
query plan (C3)

Generate partially
bounded plan (C5)

DBMS
(C4)

discover, build, maintain
access schema (C1)

Yes

No

(Online)
(Offline)

Q

Q(D)

ξ′

ξ

BEAS DBMSFig. 2 : Bounded evaluation on

B R B
D R B
D

Offline preprocessing. As shown in C1 of Fig. 2, as off-

line preprocessing, BEAS discovers a bag access schema

 from (sample) instances of , builds indices of on

the database of in use, and maintains in response

to updates to .

D
B

B

DQ

B

Online processing. When a user poses an RAaggr>
query Q on , BEAS first checks whether Q is

boundedly evaluable under (>C2). If so, it generates a

bounded query plan ξ for Q under (C3), which is inter-

preted as an SQL query Qξ and hence can be directly ex-

ecuted by the underlying DBMS on a bounded dataset

 identified by plan ξ (C4). If Q is not boundedly eval-

uable, it generates a query plan ξ' for Q that is partially

bounded, to make maximal use of access constraints in

(C5). The (partially) bounded plans are optimized and

executed by DBMS (C4).

Note that the BEAS framework does not need to

change the underlying DBMS. Indeed, it interacts with

the DBMS via SQL only. Hence, BEAS can be built on

top of any existing DBMS, providing a bounded evalu-

ation capacity.

BEAS can also compute approximate answers to un-

bounded queries under constrained resources, and offers

deterministic accuracy guarantees under access schema[17].

We focus on computing exact answers in this paper.

Below we develop algorithms for components C2 and

C3 of BEAS in Section 5.2 and Section 5.3, respectively.

5.2 Checking bounded evaluability

B
We next develop a practical algorithm for component

C2 of BEAS. Under a bag access schema , given an

RAaggr query Q, it decides whether Q is boundedly evalu-

able.

B
CP CNP

LB

To do this, we first checks whether Q and fall into

the two classes of special cases, i.e., or , in

PTIME. If so, their bounded evaluability can be decided

efficiently as shown in the proofs of Theorems 2 and 4.

Otherwise, we check whether Q is in the effective syntax

 for RAaggr (Section 4). Below we give a PTIME al-

gorithm for this.

BA(Q,B)
BR(Q,B) BQ(Q,B) ∅
BA(Q,B) BR(Q,B) BQ(Q,B)

Algorithm BEChk. The algorithm, denoted by

BEChk, is shown in Algorithm 1. It first sets ,

 and to . It then iteratively updates

, and using the rules in

Fig. 1. In each iteration, it

BA(Q,B)(a) first computes using γ1, γ2 and γ3 (line

3);

BR(Q,B)(b) then updates using γ4 (line 4); and

BQ(Q,B)(c) it finally updates using γ5 (line 5).

BQ(Q,B)
Q ∈ BQ(Q,B)

The iteration continues until can no longer

be updated (line 6). It returns “Yes” if and

“No” otherwise (lines 7–8). In each iteration, steps (b)

and (c) are straightforward. Below we discuss step (a) in

more details.

Algorithm 1. BEChk

R
B R

Input: Relational schema , RAaggr Q and bag ac-

cess schema over .

B
Output: “Yes” (“No”) if Q is (is not) boundedly

evaluable under .

BA(Q,B)← ∅ BR(Q,B)← ∅ BQ(Q,B)← ∅1 ; ; ; flag

 ← true;

2 while flag = true do

BA(Q,B)3　　compute using γ1, γ2, γ3 // recall γi in

 Table 1

BR(Q,B)4　　compute using γ5;

BQ(Q,B)5　　compute using γ6;

BQ(Q,B)6　　if is not changed then flag ← false;

Q ∈ BQ(Q,B)7　　if then return “Yes”;

8 else return “No”;

BA(Q,B)
BA(Q,B)

Computing (line 3 of Algorithm 1). In each

iteration, is updated in two steps, as follows.

 12 International Journal of Automation and Computing

BQ(Q,B)

ΣQ ⊢ R[A] =
S[B]

ZQs Qs ∈ BQ(Q,B)
B

(1) Building universal relation. We first build a “uni-

versal schema” UQ of Q w.r.t. , by mapping at-

tributes and aggregate fields of Q to attributes of UQ, via

a mapping function ρ. For any two attributes R[A] and

S[B] of Q, ρ(R[A]) = ρ(S[B]) if and only if

 is in the selection condition of Q. For aggregate field

agg(A) and attribute R[B], agg(A)) = ρ(R[B]) only when

agg(A) is in (recall Table 1) for some .

Accordingly, bag constraints in are also mapped on to

UQ by ρ.

BA(Q,B)
B

WB

(2) Computing fetch closure. We then reduce the com-

putation of to the computation of fetch clos-

ures over UQ with w.r.t. ρ. For a set W of attributes of

UQ, its fetch closure, denoted by , is a set of attrib-

utes of UQ such that

W ⊆WB(i) ;

X ′ ⊆WB φ = R(|X → Y,N |) ∈ B
ρ(R[X]) = X ′ ρ(R[Y]) = Y ′ Y ′ ⊆WB

(ii) if and such that

 and , then ; and

WB(iii) contains nothing else.

W = ρ(Xc
Q) ∪ ρ(BA(Q,B)) ∪

∪
Qs∈BQ(Q,B) ρ(ZQs)

BA(Q,B) = {A ∈ XQ | ρ(A) ∈WB}
Let .

We set (see ZQ, XQ

in Table 1).

B1

B1

∅

Example 8. Recall Q2 from Example 2 and bag ac-

cess schema from Example 4. Algorithm BEChk iter-

atively updates BA, BR and BQ for Q2 and , which are

all initially.

BA(Q2,B1)

UQ2 = {f.uid, f.fid, c.cty, c.date}

ρ(Xc
Q2

) = {f.uid, c.cty} ρ(BA(Q2,B1)) = ∅
BQ(Q2,B1) = ∅ ρ(Xc

Q2
)

WB1

WB1 = {f.uid, f.fid, c.cty} BA(Q2,B1)

BR(Q2,B1)

BA(Q2,B1) BQ(Q2,B1)

In the first iteration, BEChk starts by updating

 (line 3). To do this, it builds a universal rela-

tion via function ρ that

maps c.uid to f.fid and keeps all other attributes intact (f

and c stand for friend and checkin, respectively). Since

, and

, BEChk sets W to and computes

the fetch closure of W, yielding

. Hence it updates to

{f.uid, f.fid, c.cty}. It then updates to {f, c}
since all nontrivial attributes of f and c are already in

 (line 4). BEChk finally updates

to {Q3, Q2} (line 5) and terminates in next iteration and

returns “Yes”.

B2

UQ6 = {A,B,C,E, F,W,F ′}
ρ

ρ

ΣQ6 ⊢ sum(y) = E Q7 ̸∈ BQ(Q6,B2) = ∅
XC

Q6
UQ6

BA(Q6,B2)

BA(Q6,B2)

BR(Q6,B2) {R}
BQ(Q6,B2)

UQ6 = {A,B,C,E, F,W} Q7 ∈ BQ(Q6,B2)

ΣQ6 ⊢ sum(y) = E BA(Q6,B2)

It gets more involved for Q6 from Example 5 and

from Example 4. In the first iteration, BEChk builds a

universal schema via a map-

ping function that keeps attributes of R and S and

maps aggregate field (i.e., the output) sum(y) of Q7 to

F'. Note that does not map sum(y) to E although

 since yet.

BEChk then computes the fetch closure of over

and sets to {B, C, F}. It then finds that all

nontrivial attributes of R are in and hence

updates to . Consequently, it sets

 to Q7 as well. In the second iteration, BEChk

builds an updated universal relation

 since and

. It continues to update to

BR(Q6,B2) BQ(Q6,B2)

B2

{B, C, E, F, W}, to {R, S} and

to {Q7, Q6}. It terminates after the third iterations and

returns “Yes” for Q6 under .

LB

BQ(Q,B)
BA(Q,B)

WB WB

Correctness & Complexity. To see that BEChk

correctly checks the effective syntax of Fig. 1, observe

the following. (1) For any fixed , the corres-

ponding decided by rules γ1, ··· , γ4 is exactly

the fetch closure (recall the definition of above).

(2) The while loop propagates changes from BA to BR

and to BQ, and finally to BA again, until reaching a

fixed point w.r.t. the rules of Fig. 1.

O(pQ(||Q|||B|+ |Q|))

||B|| |B|
B

O(||Q||||B||)
O(||Q||||B||+ |Q|)

BEChk can be implemented in

time, where pQ is the number of sub-queries in Q, ||Q|| is
the number of relation atoms in Q, |Q| is the number of

attributes and aggregate fields in the relation atoms and

predicates of Q, and are the number and total

length of bag constraints in , respectively (see Table 1).

Indeed, computing the fetch closure can be implemented

in -time, and hence each while iteration is in

 time; there are at most pQ iterations.

LB

Q ∈ LB

Algorithm BEChk provides a constructive proof for

property (c) of the effective syntax in Theorem 7, i.e.,

it is in PTIME to check whether for an RAaggr

query Q.

This also completes the proof of Theorem 7.

5.3 Generating bounded plans

B
B

B

We next provide an algorithm underlying component

C3 of BEAS, denoted by BPlan. Given a bag access

schema and an RAaggr query Q that is determined to

be boundedly evaluable under by BEChk of Section

5.2, BPlan generates a bounded RAaggr query plan for Q

under .

Q ∈ LB

B

Algorithm BPlan. Given a boundedly evaluable

RAaggr query (see Section 4), BPlan generates a

bounded plan ξQ for Q under as follows: (1) fetch a

bounded amount of data for each relation R that ap-

pears in Q, and (2) carry out operations of Q over

fetched data. While step (2) is straightforward, step (1) is

rather involved.

B
B

B

To carry out step (1), BPlan generates bounded logic-

al access paths (bLAPs). A bLAP ξR for a relation R in

Q fetches all values (partial tuples) of R that are neces-

sary for evaluating Q with ; moreover, ξR is a bounded

RAaggr plan under . Intuitively, bLAPs play the same

role as conventional DBMS access paths. But instead of

accessing complete tuples by scan or index, bLAPs

fetches values (partial tuples) using such that the

amount of data accessed is bounded.

B

More specifically, we give an algorithm, denoted by

BAP, as a sub-procedure of BPlan to find a bLAP ξR for

R under . While there may exist exponentially many

such bLAPs, BAP aims at computing those with minim-

um cost.

After BAP computes bLAP ξR for every relation R in

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 13

B
Q, algorithm BPlan generates a bounded plan ξQ for Q

under , by replacing each R in Q with its bLAP ξR, and

by carrying out RAaggr operations of Q on the data re-

trieved by ξR.

In the rest of the section, we focus on algorithm BAP.

Parametric cost measures. To evaluate the qual-

ity of bLAPs found by BAP, we start with a generic class

of cost functions. Conventional access path measures as-

sess the cost of physical table-access methods, e.g., se-

quential scan and index scan[11]. These metrics do not ap-

ply to bLAPs, which involve, e.g., fetch and joins. Hence,

BAP employs a generic cost function c(ξR) that takes

user specified functions as parameters, to express various

cost measures over ξR as bLAPs, e.g., output size, data

access, etc.

B

Γ1 ΓU Γ− Γfetch
ΓgpBy

The cost of a bLAP ξR for R under , denoted by

c(ξR), is inductively defined in Table 2, with five user

configurable parameter functions , , , and

.

c() Γ1/−/∪/fetch/gpByTable 2 with parameters 4

bLAPξR c(ξR) ξRof

{c} ∅or 1

σC(ξ
′) c(ξ′)× λσ(C)

ξ1 1C ξ2 Γ1(c(ξ1), c(ξ2))× λ1(C)

ξ1 − ξ2 Γ−(c(ξ1), c(ξ2))

ξ1 ∪ ξ2 Γ∪(c(ξ1), c(ξ2))

πY (ξ′) c(ξ′)

gpBy(ξ′, X, rmagg(V)) ΓgpBy(c(ξ
′), λπ(X))

fetch(ξ′, φ) φ = R(|X → Y,N |)with Γfetch(c(ξ
′), N)

Γ1(c1, c2) c1 ∗ c2 Γfetch(c
′, N)

c′ ×N Γ∪(c1, c2) c1 + c2 Γ−(c1, c2)

ΓgpBy(c
′, c) c ̸= 0

λπ(X) = 0 X = ∅

By parameterizing these user configurable functions,

we can support various measures for bLAPs. For ex-

ample, to estimate the worst-case output size of ξ, we

simply set (i) to , (ii) to

, (iii) to , (iv) to c1, and

(v) to c' if and to 1 otherwise (assume

 when).

Algorithm BAP. Algorithm BAP works in two

steps:

R ∈ BR(Q,B)
G(Q,B)

(1) it reduces bLAPs to proofs of and

encodes all proofs with a directed graph in

PTIME; and

G(Q,B)(2) it searches to find proofs with minimum

cost, where a proof corresponds to a subgraph in the

search trace.

R ∈ BR(Q,B)Here a proof of is a sequence of applica-

tions of the rules given in Fig. 1. Each step of the proof

corresponds to one or several operations in a bLAP ξR for

R.

Below we outline BAP (see Appendix for its pseudo

code).

B
R ∈ BR(Q,B) R ∈ BR(Q,B)

G(Q,B)
R(|X → Y,N |) ∈ B

R ∈ BR(Q,B)
u∅ G(Q,B)

G(Q,B) 2||B||+ |Q| ||B||(||B||+ |Q|)

(1) Reduction. It reduces the problem of generating

bLAPs for R of Q under to finding proofs of

. It encodes all proofs of

(hence all bLAPs for R) in a weighted directed graph

, where nodes encode (a) attributes R[X] and

R[XY] in constraints , and (b) rela-

tions and sub-queries of Q. Edges encode value propaga-

tion among them. It ensures that each proof of

 is encoded by a traversal from a dummy

node to node uR encoding R in . Graph

 has at most nodes and

edges.

We illustrate reduced graphs with the following ex-

ample, and defer the construction details to Appendix.

B1 B2

G(Q2,B1) G(Q6,B2)

u∅

Example 9. Recall RAaggr queries Q2 of Example 2

and Q6 of Example 5, and bag access schemas and

from Example 4. Graphs and are

shown in Fig. 3. Here is a dummy node connected to

all constant attributes in Q. Edges with numeric weights

are to encode deduction steps with rule γ3 of Fig. 1, where

the weights are the cardinality N's of the corresponding

access constraints.

(a) G(Q2, B1) for Q2 and B1

(b) G(Q6, B2) for Q6 and B2

1 1 10

10

1
uø uA

uF uEF

uEFW uS

uAB uB uBC

uRuQ7

uQ6

uZ[Q7]

5 000 1931

1
uø uf. uid

uu. cty

u{f. uid, f. fid}

uf

u{c. uid, c. cty}

ucuQ3

uZ[Q3]

uc. uid

Fig. 3 Reduced graphs for Example 9

R ∈ BR(Q,B) u∅

G(Q,B)

As will be show below, proofs of a relation

 can be encoded as traversals from to uR

in .

G(Q,B)
u∅

B

(2) Conditional Dijkstra search. Algorithm BAP then

adopts a Dijkstra-like search over , from the

dummy node to the relation node uR encoding R, such

that the trace of the search encodes a bLAP (i.e., proof)

for R under .

It extends Dijkstra algorithm[24] as follows.

G(Q,B)

(a) Conditional expansion. Denote by Uu the attrib-

ute, relation or sub-query encoded by a node u in

. Note that Uu may be deduced from attributes or

λσ(C) λ1(C) λπ(X)4Following query optimizer in DBMS, , ,

are coefficients that can be estimated from database statistics as

a priori.

 14 International Journal of Automation and Computing

R ∈ BR(Q,B)
sub-queries encoded by multiple predecessors of u as pre-

conditions in the proof of . To capture this,

BAP visits a new node u under the condition that Uu can

be obtained from predecessors of u via, e.g., joins or

fetch.

R ∈ BR(Q,B) G(Q,B)
u∅

B

With the condition, BAP ensures that for node u en-

coding relation , a traversal in from

 to u encodes a bLAP for relation atom R in query Q

under . To illustrate this, let us consider Example 10.

f ∈ BR(Q2,B1)

u∅ G(Q2,B1)

c ∈ BR(Q2,B1)

Example 10. A proof of (here f de-

notes friend) consists of the deduction steps (1), (2) and

(4) in Example 7. It is encoded by the unique path from

 to uf in ; similarly for the proof of

.

S ∈ BR(Q6,B2)

u∅ G(Q6,B2)

(us, uQ6)

u∅

A more informative example is . Its

proof is also described in Example 7. The proof is en-

coded by the traversal from to uS, which is

without the edge as shown in Fig. 3. Note that

although there are two simple paths from to uS, none

of them is a valid traversal because of the conditional ex-

pansion.

B1

ξQ2

B2

ξQ4

ξQ4

The bLAPs encoded by these proofs are exactly sub-

plans of Q2 and Q6 given in Example 5. Indeed, the

bLAP ξc for relation c of Q2 under is (T1, T2) of the

bounded plan in Example 5, and the bLAP ξf for f is

simply T1. Similarly, the bLAP ξR for R of Q6 under is

simply T1 of in Example 5; and bLAP ξS for S is (T1,

T2, T3) of .

Note that a bLAP may involve multiple relations via

fetch and join, e.g., ξS for S of Q6. Hence its costs cannot

be assessed by traditional access path measures since

those methods are developed for evaluating the access

method of a single relation via, e.g., sequential or index

scan.

(b) Search revision. Note that the output of an RAag-

gr sub-query can be used to fetch attributes that have

already been deduced, possibly with a smaller cost re-

duced by c(ξR). To retain the optimality of the search,

when visiting a node u that encodes a sub-query of Q, al-

gorithm BAP checks whether this yields a better bLAP

by starting a new search from u and marking all nodes as

unvisited. It terminates if it cannot further improve the

previously searched bLAPs.

B1 B2

c(ξf) = 5 000 c(ξc) = 5 000× 193

B1 c(ξR) = 10 c(ξS) = 10 Q6 B2

ξS Q6

B2

Example 11. Continuing with Example 9, assume

that we use c(ξR) to express the worst-case output size of

ξR (recall its parameter functions described earlier). Then

BAP computes exactly the bLAPs for Q2 and Q6 under

 and , respectively, as described in Example 10. In

particular, and for Q2

under ; and for under . In

this case, when computing for relation S of under

, it restarts the search once due to the aggregate sub-

query Q7, which does not improve the bLAPs ξR and ξS.

R ∈ BR(Q,B)

Correctness & Complexity. The correctness of al-

gorithm BAP is warranted by the following: (1) each

search trace of BAP encodes a proof of ;

R ∈ BR(Q,B)
B

O(|Q||B|(||B||+ |Q| log(|Q|+ 2||B||)))

G(Q,B)

and (2) a proof of encodes a bLAP for R

under . BAP can be implemented in

-time (ignoring the

complexity of parameter functions of c(ξR)). One can

verify that BAP restarts at most N times, where N is the

number of nodes in .

Optimality. Algorithm BAP is able to find optimal

bLAPs for a large class of parameter functions for c(ξR).

We defer detailed proofs of this optimality to Appendix.

6 Experimental study

We have developed BEAS@PG by extending Postgr-

eSQL with bounded evaluation. Using a benchmark and

two real-life datasets, we conducted four sets of experi-

ments to evaluate (1) the overall performance of

BEAS@PG vs PostgreSQL; and the effectiveness of

bounded evaluation for (2) bounded queries and (3) un-

bounded queries.

Experimental setting. We start with the setting.

Bench mark. We used TPCH benchmark[15]. It uses

TPCHdbgen to generate 8 relations with 61 attributes of

different scales. It contains 22 built-in benchmark queries.

Real-life datasets. We also used two real-life datasets.

(a) US Air carriers (AIRCA) records flight and stat-

istic data of US air carriers. It consists of Flight On-Time

Performance Data[25] for departure and arrival informa-

tion, and Carrier Statistic data[26] for airline market and

segment data of the air carriers. It has 3 tables, 200 at-

tributes, and about 16 GB of data with records from 1990

to 1997.

(b) UK MOT data (UKMOT) integrates the an-

onymised data[27] that records MOT tests and outcomes,

and the roadside survey of vehicle observations[28] that in-

cludes vehicles passing observation points in the UK. It

has 3 tables with 42 attributes, about 16 GB of data from

2007 to 2011.

Queries. To test the impact of query structures on the

effectiveness of bounded evaluation, we designed a gener-

ator to generate queries with different structures over the

two real-life datasets. More specifically, we manually cre-

ated 30 query templates for each of the two datasets

(Q1–Q15 are boundedly evaluable and Q16–Q30 are un-

bounded), with 0 to 4 joins. The generator populates

these templates by randomly instantiating parameters in

the templates with values from the datasets, yielding 150

queries for each real-life dataset.

φ = R(|X → Y,N |)

Access schema. We built access schemas with 59, 18

and 14 access constraints over TPCH, AIRCA and UK-

MOT, respectively. We extended TANE[29], an algorithm

for discovering functional dependencies, to first find can-

didate constraints on small sample

datasets of 100 MB, and ranked them by their cardinalit-

ies N′s. We then checked whether their N′s are insensit-

ive to the size of datasets D, by varying the size of D,

e.g., 200 MB and 500 MB. We picked those access con-

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 15

straints with small and size-insensitive N′s, such that the

total size of the indices is at most 3 times of the size of

its D.

R(|X → Y,N |)

Configuration. For DBMS, we used PostgreSQL 9.6

with all optimization enabled (BEAS@PG is built with

PostgreSQL 9.6). In favor of PostgreSQL, besides indices

for access constraints, we also built the following extra in-

dices for PostgreSQL: (1) for each access constraint

, we built a B-tree index on attributes X

over R as well; (2) we built all primary key and foreign

key indices; and (3) we also built B-tree on numerical at-

tributes. Note that these were only for PostgreSQL, not

built for BEAS@PG. We set the cost measure paramet-

ers of BEAS@PG as the worst-case output size estima-

tion (recall Section 5.3).

The experiments were conducted on an Amazon EC2

Dense-storage instance m4.xlarge, with 16 GB of memory,

4 Intel Xeon E5-2676 vCPUs, and 500 GB of EBS SSD

storage. Both the plan generation time and the execution

time of the generated plans are included in evaluation

time. All the experiments were run 3 times. The average

is reported here.

Experimental results. We next report our findings.

Exp-1: Overall performance. We first report the

evaluation time of 22 TPCH queries over 16 GB of TPCH

data, and the 60 query templates over the entire AIRCA

and UKMOT datasets, where evaluation time of a query

template is the average of the evaluation time of its 5 in-

stantiated queries.

(1) Index size. The indices of all the access con-

straints over TPCH, AIRCA and UKMOT account for

2.98, 0.01 and 0.25 times of the size of the datasets, re-

spectively; the additional indices built only for Postgr-

eSQL (in favor of the conventional DBMS) are of size

2.21, 0.87 and 1.5 times of that of TPCH, AIRCA and

UKMOT, respectively.

R(|X → Y,N |)

(2) Query overview. None of the TPCH queries is

boundedly evaluable under the access constraints selec-

ted. This is because the TPCH data generator scales car-

dinalities N's of almost all candidate access constraints

 due to its simple scaling up strategy. This

rules out most of the candidate constraints when we scale

up to larger datasets while using a fixed threshold for N.

For the 60 query templates over AIRCA and UKMOT,

30 of them are boundedly evaluable under the access con-

straints used, 15 for each dataset. Note that one could

build more access constraints to allow more bounded

queries. We will evaluate the performance of BEAS@PG

for bounded and unbounded queries in more details in

Exp-2 and Exp-3, respectively.

(3) Performance. The results for TPCH, AIRCA and

UKMOT are reported in Tables 3–5, respectively.

×104

(a) BEAS@PG outperforms PostgreSQL on each and

every query on all the three datasets, when all indices are

enabled for PostgreSQL. It is 1.11 times faster on

average.

×103 ×103

×104

×104

(b) Even though all TPCH queries are unbounded,

over 16 GB of TPCH data, BEAS@PG is up to 40.46

times faster than PostgreSQL, and is on average 7.32

times faster. For unbounded queries over AIRCA and

UKMOT, BEAS@PG is on average 1.32 and 4.61

times faster than PostgreSQL, respectively, up to 1.48

and 6.10 times.

×104

×104

×104 ×105

(c) For bounded queries, BEAS@PG is 1.79 and

3.66 times faster than PostgreSQL on AIRCA and

UKMOT, respectively, up to 3.44 and 2.52

times.

The results show that with a modest number (and

size) of access constraints, BEAS@PG can speed up Post-

greSQL on both bounded queries and unbounded queries,

when all relevant indices are enabled for PostgreSQL, in-

cluding those of access constraints and additional indices

tailored for PostgreSQL. This verifies the effectiveness of

bounded evaluation for generic queries, bounded or not,

while the speedup is much larger for bounded queries, as

expected.

Below we report more in-depth evaluation results for

BEAS@PG versus PostgreSQL (with additional indices)

for bounded queries (Exp-2) and unbounded queries

(Exp-3).

Exp-2: Effectiveness for bounded queries. We

next evaluated the impact of datasets D and queries Q

on the evaluation time of BEAS@PG and PostgreSQL

(with indices enabled), when queries Q are boundedly

evaluable.

Varying |D|. To evaluate the impact of |D|, we parti-

tioned AIRCA and UKMOT datasets by their date at-

tributes (year and month), yielding subsets of sizes from

1 GB to 16 GB, consistent with how we scale up TPCH

datasets when testing unbounded queries below in Exp-3.

We did not use TPCH here since it has no boundedly

evaluable queries.

×102

×104 ×105

×105 ×105

×104 ×103

As shown in Figs. 4(a) and 4(b), (a) the evaluation

time of BEAS@PG is indifferent to the size of D, as ex-

pected for boundedly evaluable queries. (b) Bounded

query plans work well with large D. Indeed, BEAS@PG

took less than 11.67 ms and 3.94 ms for all queries

over all subsets of AIRCA and UKMOT, respectively, no

matter how large the datasets were. In contrast, even on

the subsets of AIRCA and UKMOT of size 8 GB, Postgr-

eSQL took 8.45 ms and 3.88 ms, respectively,

up to 1.58 ms and 7.80 ms over the full data-

sets. That is, PostgreSQL is 1.35 and 1.98

slower than BEAS@PG on AIRCA and UKMOT, re-

spectively, even with all relevant indices built. The lar-

ger the dataset is, the bigger the gap between Postgr-

eSQL and BEAS@PG is for bounded queries.

Varying Q. To evaluate the impact of queries Q, we

varied the complexity of Q, measured as the number #Q

of joins in the query templates Q, from 0 to 4, while us-

ing the entire AIRCA and UKMOT datasets. Note that

for each query template, we instantiated 5 queries by set-

 16 International Journal of Automation and Computing

ting its parameters with different values (hence these

queries share the same query structure and #Q). The

evaluation time of each query template is the average of

all its instantiated queries.

×105 ×104

The results are reported in Figs. 4(c) and 4(d). We

find the following. (a) The complexity of Q has impacts

on the performance of both BEAS@PG and PostgreSQL,

as expected. They both take longer time for queries with

more joins (i.e., #Q). However, (b) BEAS@PG scales

much better with the number #Q of joins in Q than

PostgreSQL (with indices). For instance, on average

BEAS@PG found answers for all queries with #Q = 4

within 11.67 ms on full-sized AIRCA, while PostgreSQL

takes 1.56 ms; that is, PostgreSQL is 1.34

times slower than BEAS@PG for large queries.

×103 ×104

Remark. We find that when queries Q incur joins on

keys only, PostgreSQL with extra key/foreign key in-

dices built is almost as fast as BEAS@PG (e.g., TPCH

Q4). However, as long as Q involves non-key attributes,

e.g., many of the AIRCA and UKMOT queries, Postgr-

eSQL performs poorly on big tables, even provided with

all indices. Indeed, on average BEAS@PG outperforms

PostgreSQL by 8.98 times and 1.76 times for

all bounded queries over all subsets of AIRCA and UK-

MOT, respectively. The gap gets larger when the num-

ber of non-key attributes increases.

R(|X → Y,N |)

By looking into PostgreSQL′s plan and its EXPLAIN

output, we find that this is partially due to the following

reason. Given an access constraint ,

BEAS@PG fetches only distinct values of the relevant

XY attributes, but PostgreSQL fetches entire tuples with

irrelevant attributes of R, although those attributes are

not needed for answering Q at all, no matter what in-

dices are provided. This led to duplicated (X,Y) values

when X is not a key, and the duplication got inflated

rapidly by joins, e.g., EXPLAIN output shows that Postgr-

eSQL consistently accesses entire tables when there are

non-key attributes.

Exp-3: Effectiveness for unbounded queries. In

the same setting as in Exp-2, we evaluated the impact of

D and Q on the performance of unbounded queries by

BEAS@PG and PostgreSQL with indices enabled for

PostgreSQL.

Varying |D|. The results on AIRCA, UKMOT and

TPCH are in Fig. (4e), (4f) and (4g), respectively. Ob-

serve the following.

Table 3 TPCH query evaluation time on 16 GB (ms)

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

tPPostgreSQL 8.16 × 105 3.68 × 104 1.02 × 105 1.56 × 104 1.50 × 105 2.07 × 104 9.53 × 104 3.71 × 104 5.03 × 104 2.28 × 105 7.05 × 104

tBBEAS@PG 5.72 × 104 1.67 × 104 2.97 × 104 1.45 × 104 1.43 × 105 4.25 × 103 7.65 × 104 3.43 × 104 3.24 × 104 8.19 × 104 3.46 × 103

tP/tBSpeedup 14.28 2.21 3.44 1.07 1.05 4.88 1.24 1.08 1.55 2.79 20.39

Queries Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

tPPostgreSQL 6.42 × 104 1.79 × 105 1.74 × 104 5.10 × 104 4.46 × 104 6.04 × 103 2.83 × 105 7.27 × 103 1.06 × 105 2.66 × 105 7.74 × 103

tBBEAS@PG 8.58 × 103 1.20 × 105 1.10 × 104 2.20 × 104 3.02 × 104 1.49 × 102 2.38 × 105 1.29 × 103 2.70 × 103 1.04 × 105 5.70 × 103

tP/tBSpeedup 7.48 1.49 1.58 2.32 1.48 40.46 1.19 5.65 39.16 2.55 1.36

Table 4 Average query template evaluation time on AIRCA (ms)

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

tPPostgreSQL 7.00 × 103 7.2 × 103 2.06 × 104 9.04 × 104 4.44 × 104 9.41 × 104 1.36 × 105 1.44 × 105 9.41 × 104 1.38 × 105

tBBEAS@PG 1.22 1.19 0.64 2.63 2.61 6.34 4.28 6.69 6.02 4.98

tP/tBSpeedup 5.75 × 103 6.04 × 103 3.21 × 104 3.44 × 104 1.70 × 104 1.48 × 104 3.19 × 104 2.15 × 104 1.57 × 104 2.77 × 104

Queries Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

tPPostgreSQL 1.46 × 105 9.46 × 104 1.49 × 105 1.56 × 105 10.63 × 104 4.46 × 104 4.65 × 104 4.22 × 104 4.25 × 104 9.29 × 104

tBBEAS@PG 7.24 11.42 6.55 8.5 11.67 24.96 24.3 2.84 4.63 × 102 7.26 × 102

tP/tBSpeedup 2.01 × 104 8.29 × 103 2.29 × 104 1.84 × 104 9.11 × 103 1.79 × 103 1.91 × 103 1.48 × 104 91.86 1.29 × 102

Queries Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30

tPPostgreSQL 9.30 × 104 8.98 × 104 9.44 × 104 9.41 × 104 1.39 × 105 1.47 × 105 9.58 × 104 1.75 × 105 1.85 × 105 1.31 × 105

tBBEAS@PG 5.43 × 102 4.61 × 102 7.25 × 102 5.23 × 102 1.4 × 103 1.74 × 103 1.36 × 103 2.67 × 104 3.06 × 104 2.62 × 104

tP/tBSpeedup 1.71 × 102 1.94 × 102 1.31 × 102 1.80 × 102 99.52 84.49 70.35 6.54 6.06 5.02

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 17

×102

×103

(a) BEAS@PG is able to speed up PostgreSQL even

for queries that are not bounded under the available ac-

cess constraints. On average, BEAS@PG is 7.22 ,

2.29 and 3.43 times faster than PostgreSQL for un-

bounded queries on AIRCA, UKMOT and TPCH, re-

spectively. This is because while not all relations in these

queries are bounded, bounded evaluation can still speed

up their “bounded” subqueries, and hence remains faster

than PostgreSQL.

×102

×103 ×103 ×103 ×104

×104

×103 ×104 ×103 ×105

×105 ×105

(b) As opposed to evaluating bounded queries, both

BEAS@PG and PostgreSQL are sensitive to the size of

the datasets when evaluating unbounded queries.

However, BEAS@PG scales much better than Postgr-

eSQL, and their performance gap becomes larger when

the dataset size increases. For example, when the dataset

increases from 1 GB to 16 GB, the average processing

time of BEAS@PG increases from 9.53 ms, 1.67

 ms and 2.21 ms to 6.09 ms, 1.84 ms

and 4.54 ms on AIRCA, UKMOT and TPCH, re-

spectively. In contrast, PostgreSQL increases from 7.50

 ms, 2.61 ms and 5.98 ms to 1.04 ms,

4.53 ms and 1.23 ms, respectively, even with

all indices built and enabled.

R(|X → Y,N |)

Note that the speedup for unbounded TPCH queries

is not as good as for AIRCA and UKMOT queries. This

is because (i) the N's of access constraints

over TPCH scale linearly as the dataset gets larger, while

those on AIRCA and UKMOT are more stable and inde-

pendent of the dataset size; and (ii) joins in TPCH quer-

ies are mostly key/foreign key joins, and thus the extra

key indices built for PostgreSQL can mimic bounded

query plans used by BEAS@PG to some extent, reducing

their performance gaps.

Varying Q. Varying the number #Q of joins in the

queries, the evaluation time of unbounded queries over

×104

×104

×105

AIRCA and UKMOT is reported in Figs. (4h) and (4i),

respectively. The results tell us the following. (a) The

processing time of BEAS@PG and PostgreSQL increases

when the number of joins increases. However, (b) the gap

between BEAS@PG and PostgreSQL becomes larger

when #Q increases from 0 to 4. For instance, over AIR-

CA, on average BEAS@PG and PostgreSQL take

17.37 ms and 4.43 ms, respectively, to answer quer-

ies with #Q = 0; and the two take 2.78 ms and 1.64

 ms, respectively, when #Q = 4; the results over

UKMOT are similar. Note that for bounded queries, the

gap between the two is even larger (Exp-2).

×103

×104

×104

×105

×104 ×104

×102

×103

Summary. We find the following. (1) BEAS@PG

(PostgreSQL with BEAS built on top) does better than

PostgreSQL for each and every query in all cases, even

with extra indices built for the latter. On average

BEAS@PG improves PostgreSQL by 7.32, 9.58 and

2.06 times for TPCH benchmark of 16 GB, AIRCA

and UKMOT, respectively, up to 40.46, 3.44 , and

2.52 times in the best case. (2) For queries that are

boundedly evaluable, BEAS@PG outperforms Postgr-

eSQL by 1.9 and 3.6 times on AIRCA and

UKMOT, respectively. (3) For queries with complicated

joins, e.g., joins on non-key attributes (AIRCA and UK-

MOT queries), BEAS@PG is particularly effective, even

for unbounded queries. For example, on average

BEAS@PG improves PostgreSQL by 5.97 and

1.90 times for queries that are not boundedly evalu-

able over AIRCA and UKMOT, respectively. For cases

where conventional DBMS does its best, e.g., table

scan/aggregation and key-foreign key joins (most TPCH

queries), BEAS@PG still does better than PostgreSQL.

(4) The storage cost for indices of access schema is mod-

est, accounting for 2.98, 0.01 and 0.25 times of the size of

16 GB TPCH, AIRCA and UKMOT, respectively.

Table 5 Average query template evaluation time on UKMOT (ms)

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

tPPostgreSQL 1.37 × 105 6.47 × 104 7.80 × 104 4.62 × 105 4.65 × 105 3.86 × 105 5.8 × 105 3.91 × 105 5.72 × 105 5.99 × 105

tBBEAS@PG 0.55 2.73 0.62 16.13 75.2 5.62 1.50 × 102 3.78 × 102 54.79 1.89 × 102

tP/tBSpeedup 2.52 × 105 2.38 × 104 1.25 × 105 2.86 × 104 6.18 × 103 6.88 × 104 3.88 × 103 1.04 × 103 1.04 × 104 3.18 × 103

Queries Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

tPPostgreSQL 4.09 × 105 5.91 × 105 7.80 × 105 5.91 × 105 7.74 × 105 1.61 × 105 1.59 × 105 1.53 × 105 3.97 × 105 3.93 × 105

tBBEAS@PG 3.89 × 102 55.42 1.89 × 102 3.94 × 102 96.24 30.49 65.09 2.51 7.4 × 103 7.41 × 103

tP/tBSpeedup 1.06 × 103 1.07 × 104 4.13 × 103 1.49 × 103 8.05 × 103 5.28 × 103 2.44 × 103 6.10 × 104 53.55 53.14

Queries Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30

tPPostgreSQL 3.93 × 105 6.01 × 105 3.94 × 105 5.98 × 105 6.26 × 105 4.13 × 105 6.19 × 105 7.04 × 105 4.86 × 105 6.96 × 105

tBBEAS@PG 9.25 × 103 7.51 × 103 7.72 × 103 9.34 × 103 7.62 × 103 7.82 × 103 7.38 × 103 6.42 × 104 7.65 × 104 6.26 × 104

tP/tBSpeedup 42.48 80.07 51.12 64.08 82.14 52.87 83.81 10.95 6.37 11.12

 18 International Journal of Automation and Computing

7 Related work

The related work is categorized as follows.

Bounded evaluation. The notion of bounded evalu-

ation was introduced in [5], as an effort to formalize scale

independence[19, 30, 31]. The latter aims to guarantee that a

bounded amount of work is required to execute all quer-

ies in an application, regardless of the size of the underly-

ing data. Under access schema proposed in [19], Fan et

al.[5] defines boundedly evaluable RA queries. It estab-

lishes the complexity of deciding whether a query is

boundedly evaluable, for queries in various fragments of

RA, ranging from EXPSPACE-hard to undecidable.

Bounded evaluation using views was studied in [32], fo-

cusing on its complexity bounds.

To cope with the undecidability of the bounded evalu-

ability problem, an effective syntax was given for RA in

[6] under the set semantics. Based on the syntax, al-

gorithms were developed[6] for checking the bounded eval-

uability of RA queries Q, and if affirmative, generating a

bounded query plan for Q. These issues were also stud-

ied in [33] for SPC, using a restricted form of query plans.

Based on [6], a prototype BEAS for RA queries was de-

veloped[34].

This work extends the prior work in the following. (1)

We define bag access schema, an extension of access

schema of [5, 19] to support the bag semantics (Section

2). (2) We identify decidable special cases of the bounded

evaluability problem that cover a variety of SQL queries

commonly used in practice. (3) We develop an effective

syntax for boundedly evaluable RAaggr queries under a

bag access schema, supporting nested aggregations (Sec-

tion 4). Moreover, the syntax allows us to make a larger

class of RA queries bounded, improving the result of [6]

for RA. (4) We extend BEAS[34] from RA to RAaggr, by

seamlessly integrating bounded evaluation with DBMS

query optimizers, which is quite different from [6, 34].

These extend DBMS with bounded evaluation, which was

not studied in [5, 6, 33, 34].

Query answering with constrained resources. The ob-

jective of this work is to make big data analytics access-

ible to small companies under constrained resources. For

queries that are not boundedly evaluable, an approach is

to compute approximate answers under available re-

1 2 4 8 16
Dataset size (GB) (logscaled)

0

2

4

6

8

10
Ev

al
ua

tio
n

tim
e

(1
04 m

s)
PostgreSQL
BEAS@PG

(a) AIRCA: varying |D| (bounded)

1 2 4 8 16
Dataset size (GB) (logscaled)

0

1

2

3

4

5

Ev
al

ua
tio

n
tim

e
(1

05 m
s) PostgreSQL

BEAS@PG

(b) UKMOT: varying |D| (bounded)

0 1 2 3 4
Join number

0
25
50
75

100
125
150

Ev
al

ua
tio

n
tim

e
(1

03 m
s)

PostgreSQL
BEAS@PG

(c) AIRCA: varying #Q (bounded)

0 1 2 3 4
Join number

0

2

4

6

Ev
al

ua
tio

n
tim

e
(1

05 m
s) PostgreSQL

BEAS@PG

(d) UKMOT: varying #Q (bounded)

1 2 4 8 16
Dataset size (GB) (logscaled)

0

2

4

6

8

10

Ev
al

ua
tio

n
tim

e
(1

04 m
s) PostgreSQL

BEAS@PG

(e) AIRCA: varying |D| (unbounded)

1 2 4 8 16
Dataset size (GB) (logscaled)

0

1

2

3

4

Ev
al

ua
tio

n
tim

e
(1

05 m
s) PostgreSQL

BEAS@PG

(f) UKMOT: varying |D| (unbounded)

1 2 4 8 16
Dataset size (GB) (logscaled)

0

25

50

75

100

125

Ev
al

ua
tio

n
tim

e
(1

03 m
s) PostgreSQL

BEAS@PG

(g) TPCH: varying |D| (unbounded)

0 1 2 3 4
Join number

0
25
50
75

100
125
150

Ev
al

ua
tio

n
tim

e
(1

03 m
s) PostgreSQL

BEAS@PG

(h) AIRCA: varying #Q (unbounded)

0 1 2 3 4
Join number

0

2

4

6

Ev
al

ua
tio

n
tim

e
(1

05 m
s)

PostgreSQL
BEAS@PG

(i) UKMOT: varying #Q (unbounded)
Fig. 4 Effectiveness of bounded evaluation for bounded and unbounded queries

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 19

Q(DQ) D
DQ D

s ∈ Q(DQ)

t ∈ Q(D)
s ∈ Q(DQ)

sources. Approximation techniques have been extensively

studied, based on synopsis (e.g.,[35–39]) or dynamic

sampling (e.g.,[40–42]). We have proposed a data-driven

approximation scheme[17] that computes approximate an-

swers to an RAaggr query Q in a dataset , by

identifying a fraction of under an extension of the

access schema of [5]. It ensures a deterministic accuracy

bound η: (a) for each tuple , there exists an ex-

act answer t that is within distance at most η from S,

and (b) for each exact answer , there exists

 within distance η from t.

This work differs from [17] in that we focus on com-

puting exact answers instead of approximation. The tech-

niques are hence quite different. In particular, a bag ac-

cess schema carries the multiplicities of tuples to deal

with the bag semantics, as opposed to distance bounds in

access templates of [17]. This said, this work and [17] are

complementary to each other. On one hand, the methods

of [17] can be used to compute approximate answers to

unbounded queries under constrained resources. On the

other hand, the techniques developed in this work can be

incorporated into the methods of [17], to improve the ac-

curacy of approximate answers by making use of DBMS

optimizers and bounded sub-plans.

R(|X → Y,N |)

Indices. Hash-based or tree-based, DBMS indices are

typically defined at the tuple level[11], to retrieve tuple

IDs and fetch full tuples. In contrast, a bag constraint

 offers a value-based index. Bounded plans

fetch distinct partial tuples(Y-values) for each input X-

value, and thus reduce duplicated and unnecessary attrib-

utes in tuples fetched by DBMS, i.e., reduce data access

and intermediate relations. The redundancies get inflated

rapidly with joins. Moreover, the cardinality constraints

in a bag access schema allow us to determine whether

data access is bounded.

Related to bag access schema is a notion of access pat-

terns, which require a relation to be accessed only by

providing certain combinations of attributes, e.g.,[43–45].

As opposed to access patterns, a bag access schema of-

fers cardinality constraints, tuple multiplicity and indices.

Moreover, it is not required to cover all the attributes of

a relation and hence, allows us to fetch partial tuples and

reduce redundancy. Further, this work studies bounded

evaluation of RAaggr queries and its integration with

DBMS, which were not considered in the prior work on

query answering under access patterns.

Query optimization. There has been a host of work on

query optimization in DBMS, including access path selec-

tion[46], join optimization[47, 48] and recently, machine lean-

ing methods[49–51]. These focus on access path cost mod-

els for, e.g., main-memory concurrent systems[46], heurist-

ics for join[47] and group-by[48] re-ordering, learned

indices[50, 51] or optimizers[49, 52–54]. Our algorithms and

techniques are complementary to the prior work, to incor-

porate bounded evaluation into DBMS query optimiza-

tion.

8 Conclusions

We have presented an approach to extending DBMS

with bounded evaluation of SQL queries. The novelty of

the work consists of (a) a notion of bag access schema to

support the bag semantics of nested aggregations; (b) de-

cidable special cases of the bounded evaluability of RAaggr

queries; (c) an effective syntax to characterize boundedly

evaluable RAaggr queries; and (d) a framework and its un-

derlying algorithms for integrating bounded evaluation

with DBMS. Our experimental study has verified that the

approach is promising. Together with the approximation

scheme of [17], we hope that this work provides small

businesses with a capacity for querying big data under

constrained resources.

One topic for future work is to develop algorithms for

discovering bag access schemas by incorporating machine

learning techniques. Another topic is to extend bounded

evaluation of SQL queries to column-oriented DBMS.

Appendix

BBounded plans under (Section 2)

ΞB

B
The set of bounded query plans under a bag ac-

cess scheme is inductively defined in Fig. 5.

B ΞBFig. 5 Bounded plans under (set)

Details of Algorithm BPlan (Section 5.3)

G(Q,B)
We provide (1) the construction of weighted directed

graph for generating bLAPs, (2) algorithm BAP,

and (3) justification for the optimality of bLAPs found by

BAP.

G(Q,B)
G(Q,B)

R (|X → Y,N |) ∈ B

uQs vZ[Qs]

u∅

Constructing . Let V and E be the node set

and edge set of , respectively. They are construc-

ted as follows: (1) for each access constraint

, (a) include uR[X], uR[XY] in V, re-

ferred to as BA-node; (b) include (uR[X], uR[XY]) in E, re-

ferred to as a fetch-edge; (2) for each relation S, include a

node uS in V, referred to as a BR-node; (3) for each sub-

query Qs of Q, include in V as a BQ-node and

in V as a BA-node, where Z[Qs] includes the output at-

tributes of Qs; (4) for each constant attribute A = c in

Q, there is a BA-node uA in V, and an additional node ;

(5) for any two BA-nodes uX and uY, if uX (resp. uY) is

not the head (resp. tail) of a fetch-edge, then (uX, uY) is

 20 International Journal of Automation and Computing

A ∈ X B ∈ Y
ΣQ ⊢ A = B (u∅, uA)

uQs

(uR, uQs)

an edge in E if there exist and such that

; (6) is an edge in E for every con-

stant attribute A in Q; (7) for any BA-node uX and BR-

node uR, if uX is the tail of a fetch edge and X contains

all nontrivial attributes of R, then (uX, uR) is an edge in

E; and (8) for any BR-node uR and BQ-node ,

 is an edge in E if R is a relation of Qs.

G(Q,B)
R (|X → Y,N |) ∈ B

(u∅, uA)

G(Q,B) 2 ∥B∥+ |Q| ∥B∥ (∥B∥+
|Q|)

In graph , fetch-edges carry cardinality N′s in
their encoded access constraints as

their weights; each edge for constant node uA has

weight 1; and the other edges have no weight. Graph

 has at most nodes and

 edges.

G(Q,B)

φ = R (|X → Y,N |) ∈ B
u∅

uX1 uXm

uY ξY = πY (ξX1 1 · · · 1 ξXm)

ξXi(i ∈ [1,m])

u∅ uXi

Encoding proofs using . Traversing a fetch-

edge uR[X], uR[XY]) encodes fetch h(ξR[X], φ) for some

 that fetches values for Y, where

ξX is the bLAP encoded by the traversal from to uR[X],

which retrieves values for R[X] necessary for answering

Q; a traversal from a set S of BA-nodes , ···, to a

BA-node encodes a bLAP

for Y, where is the bLAP encoded by the

traversal from to that retrieves values for Xi. Oth-

er cases are similar.

Algorithm 2. BAP

B
Input: RAaggr query Q, bounded relation R of Q, bag

access schema and cost function c().

BOutput: A bLAP ξR for R under .

G(Q,B)1 construct graph ;

PQ := ∅ Svt := ∅ H := ∅ DT [u∅] := 0 LT [u∅] := ∅
GATE[u∅] := ∅

2 ; ; ; ; ;

;

G(Q,B)3 for each u in do

u ̸= u∅ DT [u] := +∞ LT [u] := ∅4　if then ; ;

 GATE[u] := L[u];

PQ.push(u∅)5 ; //Initialization

PQ ̸= ∅6 while: do

7　u := PQ.pop();//PQ pops out u with minimum

 DT[u] in PQ
Svt := Svt ∪ {u}8　 ;

9　for each neighbor v of u that is not in Svt do

GATE[v] := GATE[v] \ L[u]10　　 ;

(u, v) DT [v] > Γfetch(DT [u],11　　if is a fetch-edge and

 w(u, v)) then

12　　　PQ.push(v);

DT [v] := Γ fetch(DT [u], w(u, v))13　　　 ; LT[v]:= {u}
14　　else if v is a BR-node then

15　　　PQ.push(v), DT[v]:= DT[u]; LT[v]:={u}
GATE[v] = ∅16　　else if v is a BQ-node and then

17　　　PQ.push(v); DT[v]:= c(ξv);

　　　　LT[v]:=pre(v) //ξv is the plan for Q encoded

 by v, composed from predecessors pre(v) of v

 following the structure of Q

GATE[v] = ∅18　　else if then

pre(v) ∩ Svt

　　　//attributes X of v are joined from those of

19　　　PQ.push(v);

(DT [v], LT [v], Svt) := SC(u, pre(v) ∩ Svt, v)20　　　 ;

d := Γ1(LT [v])　　　 ;

uq ̸∈ H
21　　　if LT[v] contains BQ-node uq and DT[v] and

 then

Svt := {u∅, v} H := H ∪ {v}22　　　DT[v] := d; ; //

 restart the search

u∅

23 return bLAP that is encoded by the traversal

 from to uR recorded in LT[].

u∅

H

Algorithm BAP. BAP is given as Algorithm 2. It

uses (a) GATE[u] to record the condition for visiting u,

e.g., for the head uX of a fetch-edge, GATE[u] = X; (b)

L[u] to denote the attributes or relations u encoded; (c)

DT[u] to denote the cost of the part of bLAP encoded by

the search trace from to u; (d) LT[u] to store the nodes

to be visited before visiting u; (e) a priority queue PQ for

nodes to explore; and (f) sets Svt of visited nodes and

of nodes triggered restarts.

v∅Algorithm BAP starts the search from . It first ini-

tializes data structures (lines 2–5). It then iteratively ex-

plores nodes in PQ (lines 6–22). The search extends the

Dijkstra search with conditional node expansion con-

trolled by GATE[v] and types of the edges (lines 9–22),

using c() to calculate the traversal cost. It restarts the

search if the output of a sub-query is used as an input for

a fetch (i.e., to visit the head of a fetch-edge; determined

by SC given as Algorithm 3) with a reduced cost (lines

21–22). It returns bLAP encoded by the search trace if

restarts cannot improve its cost (line 23).

Algorithm 3. SC

Input: visited vertex u and vertex set Svt, and vertex

 v to be visited.

Output: DT[v], LT[v] and updated Svt.

GATE[v] ̸= ∅ DT [v] := λ(DT [u], w(u, v))

LT [v] := {u}
1 if then ;

 ;

2 return DT[v], LT[v], Svt
W := L[v] Hv := ∅3 ; ;

W ̸= ∅4 while: do

u′ ∈ Svt ∩ pre(v)
gv({DT[v′] | v′∈Hv∪{u′}})

|W∩L[u′]|

5　choose with minimum
 ;

W :=W \ L[u′] Hv := Hv ∪ {u′}6　 ;

λ(DT [u], w(u, v)) <

gv({DT [v
′] | v′ ∈ Hv)

7 if (u, v) is a fetch-edge and

 then

DT [v] := λ(DT [u], w(u, v)) LT [v] := {u}8　 ;

9 else

DT [v] := gv({DT [v
′] |v′ ∈ Hv)10　 ; LT[v] := Hv;

11　if Hv contains q-vertex then Svt := {v};
12 return DT[v], LT[v], Svt);

c(ξR)

Γ1 Γ−
Γ∪ ΓgpBy Γfetch

Optimality of BAP. We say that cost is regu-

lar if (a) all parameter functions are monotonically non-

decreasing w.r.t. each of their arguments; and (b) , ,

, and are commutative and associative.

maxφ=R(|X→Y,N|)∈B|Y | #BDenote by , where |Y| is the

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 21

number of attributes in Y. Then we have the following.

#B ≤ 1

Proposition 11. Under any access schema B, BAP

finds optimal bLAPs with regular cost functions if

.

Proof sketch. We discuss SPC Q first, followed by

RAaggr.

(1) Q is in SPC. We first prove the following lemmas.

u ∈ Svt

u∅

u∅

(a) For each node , DT[u] is the shortest dis-

tance from to u; and for each unvisited node v, DT[v]

is the shortest distance from when traversing nodes in

Svt only.

u ∈ Svt

u∅

#B = 1

(b) For each , the plan encoded by the tra-

versal from to u is of cost DT[u] when c() is regular

and .

u∅

For if these hold, then when BAP terminates, the en-

coded plan from to uR is an LAP for R with minim-

um c().

S0 ⊆ S
#B = 1

u∅

G(Q,B)
B

Lemma (a) can be proved by induction on the num-

ber of nodes in Svt, along the same line as Dijkstra′s op-

timality proof, by observing that SC(v, S) always selects

the subset with minimum cost w.r.t. c() for visit-

ing v when . Lemma (b) can be verified by the

same induction with (i) the observation that DT[u] mim-

ics c() for the encoded bLAP from to u, and (ii) the

correspondence between proofs (traversals in)

and bLAPs under in the proof of Theorem 7 (part of

the proof of Lemma (II)).

(2) Q is in RAaggr. For RAaggr queries, we show that

BAP preserves the optimality of SPC with the following

lemmas:

(c) Every sub-query Qs of Q can improve searched

LAP once.

(d) The order of sub-queries to restart does not

change the final bLAP (up to equivalence).

∪
Γ×

Both lemmas are proved by induction on the number

of –, and gpBy operations in Q, using the condition

that is associative and commutative and c() is mono-

tonic. □
One may expect BAP to find optimal bLAP for more

cases while remaining in PTIME. This is, however, bey-

ond reach.

k > 1

B
#B = k Q ∈ LB

c(ξR) ≤ r c(ξR)

Proposition 12. For each integer , it is NP-

hard to decide, given any bag access schema with

, RAaggr query , relation atom R of Q and

number R, whether there exists a bLAP ξR for R with

cost , even when is regular.

S ⊆ V
e ∈ E u ∈ S e

|S| ≤ n

Proof. We show the NP-hardness by reduction from

VERTEX COVER (VC), which is NP-complete[1]. An in-

stance of VC consists of a graph G(V, E) and an integer

n. Given G and n (in binary form), VC is to decide

whether there exists a subset such that (1) S cov-

ers G, i.e., for any edge , there exists on ;

and (2) .

G(V = {v1, · · · , vp}, E = {e1, · · · ,
eq}) R

Given an instance

 and n of VC, we construct a database schema , a

B R #B = k k ≥ 2

R

B c(ξ) ≤ r
|S| ≤ n

bag access schema over with (is an in-

teger), RAaggr Q over , a bounded relation RB in Q, a

real number R, a regular cost function c() such that there

exists a bLAP ξ for RB under with if and only

if G has a cover S with . More specifically, the re-

duction is given as follows.

R
R(A0, A) S(A1, · · · , Aq, I) T (F1, · · · , Fk)

B #B = k

(1) Database schema consists of 3 relation schemas

, , and . Here rela-

tion R is to encode the vertices of G, S is to represent

edges of G, and T will be used to make with .

(2) Query Q is defined as follows:

πS[I](σR1[A0]=1(R1) 1 · · · 1 σRp[A0]=p(Rp) 1 S)

Ri[A] = S[Aj] vi ∈ V
ej ∈ E Ri(i ∈ [1, p])

πS[I]

where the join condition is if is an

end point of in G. Here relation atom

is a renaming of relation schema R. Intuitively, the join

condition encodes the edge relation of G, and is to

ensure that every attribute in S is nontrivial.

B(3) The bag access schema consists of 3 access con-

straints:

φR = R (|A0 → A, 2|),
φS = S (|{A1, · · · , Aq} → I, 1|), and

φT = T (|∅ → {F1, · · · , Fk}, 1|).

R[A1, · · · , Aq] #B = k

Here φR is to fetch values of attribute R[A] (i.e., ver-

tices of G), and φS is to fetch edges encoded by S[I] us-

ing (i.e., edges of G). Note that .

B
(4) The bounded relation RB is set to be R. One can

easily verify that R is bounded under .

(5) We set r = 2n. Note that this is in PTIME since n

in the VC instance is in binary.

Γ×(c(ξ1), c(ξ2)) = c1 × c2 ξ1 ̸= ξ2 max(c(ξ1),
c(ξ2)) Γfetch(c,N) = c×N

(6) Function c() is instantiated as follows: (i)

 if and is

 otherwise. (ii) ; and (iii) we

simply set all other functions as constants. Note that c()

is regular.

c(ξ) ≤ r
We show that G has a vertex cover S of size at most

n if and only if R has a bLAP ξ with cost

⇒ |S| ≤ n
B

ξ = fetch(1q
i=1 ξAi , φS) ξAi = fetch({j}, φR)

vj ∈ S

B |S| ≤ n,
c(ξ) = Γ×(1

q
i=1 ξAi)× 1 ≤ 2n = r

 Assume that G has a vertex cover S with .

We construct a bLAP ξ for R under as follows:

, where if ei is

covered by (when ei is covered by multiple ver-

tices in S, we pick one of them randomly). By the con-

struction of Q and by that S covers all edges of G, ξ is a

bLAP for S under . From we know that

.

⇐ B
c(ξ) ≤ 2n

S = {vi(i ∈ [1, p]) | ∃j ∈ [1, q], ξAj = fetch
({i}, φR)}

|S| ≤ n

 Assume that R has a bLAP ξ under with cost

. By the join condition of Q and φS, there exist

at most n distinct fetch operations for fetching S[A1], ··· ,
S[Aq], i.e., S[A1], ··· , S[Aq] can be fetched from at most n

numbers 1, 2, ···, p using φR. This gives us a cover S of

G as follows:

. By the construction of Q, S is a cover of G

with . □

 22 International Journal of Automation and Computing

Acknowlegements

The authors are supported in part by Royal Society

Wolfson Research Merit Award WRM/R1/180014, ERC

652976, EPSRC EP/M025268/1, Shenzhen Institute of

Computing Sciences, and Beijing Advanced Innovation

Center for Big Data and Brain Computing.

Open access

This article is licensed under a Creative Commons At-

tribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit

to the original author(s) and the source, provide a link to

the Creative Commons licence, and indicate if changes

were made.

The images or other third party material in this art-

icle are included in the article’s Creative Commons li-

cence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creat-

ive Commons licence and your intended use is not per-

mitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the

copyright holder.

To view a copy of this licence, visit http://creative-

commons.org/licenses/by/4.0/.

References

 C. H. Papadimitriou. Computational Complexity, Read-
ing, USA: Addison-Wesley, 1994.

[1]

 S. Abiteboul, R. Hull, V. Vianu. Foundations of Data-
bases, Boston, USA: Addison Wesley, 1995.

[2]

 R. Horak. Telecommunications and Data Communica-
tions Handbook, New York, USA: Wiley, 2007.

[3]

 W. F. Fan, X. Wang, Y. H. Wu, D. Deng. Distributed
graph simulation: Impossibility and possibility. Proceed-
ings of the VLDB Endowment, vol. 7, no. 12, pp. 1083–
1094, 2014. DOI: 10.14778/2732977.2732983.

[4]

 W. F. Fan, F. Geerts, Y. Cao, T. Deng, P. Lu. Querying
big data by accessing small data. In Proceedings of the
34th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, ACM, Melbourne, Victor-
ia, Australia, pp. 173–184, 2015. DOI:
10.1145/2745754.2745771.

[5]

 Y. Cao, W. F. Fan. An effective syntax for bounded rela-
tional queries. In Proceedings of 2016 International Con-
ference on Management of Data, ACM, San Francisco,
 USA, 2016. DOI: 10.1145/2882903.2882942.

[6]

 The University of Edinburgh. Huawei deal to advance ex-
pertise in data science, [Online], Available: https://
www.ed.ac.uk/news/2017/huawei-deal-to-advance-ex-
pertise-in-data-science, June 14, 2017.

[7]

 Facebook. Introducing graph search beta, [Online], Avail-
able: https://about.fb.com/news/2013/01/introducing-
graph-search-beta/, January 15, 2013.

[8]

 I. Grujic, S. Bogdanovic-Dinic, L. Stoimenov. Collecting
and analyzing data from e-government Facebook pages. In

[9]

ICT Innovations, Ohrid, Macedonia, pp. 86–96, 2014.

 Facebook. Newsroom, [Online], Available: http://news-
room.fb.com.

[10]

 R. Ramakrishnan, J. Gehrke. Database Management Sys-
tems, 2nd ed., New York, USA: McGraw-Hill Education,
2000.

[11]

 J. D. Ullman. Principles of Database Systems, 2nd ed.,
Computer Science Press, 1982.

[12]

 A. P. Stolboushkin, M. A. Taitslin. Finite queries do not
have effective syntax. In Proceedings of the 14th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, ACM, San Jose, USA, pp. 277–285,
1995. DOI: 10.1145/212433.212477.

[13]

 A. van Gelder, R. W. Topor. Safety and translation of re-
lational calculus queries. ACM Transactions on Database
Systems, vol. 16, no. 2, pp. 235–278, 1991. DOI: 10.1145/
114325.103712.

[14]

 TPC. TPC-H, [Online], Available: http://www.tpc.org/
tpch/.

[15]

 W. F. Fan. Making Big Data Small, UK: British Royal So-
ciety, 2019. DOI: 10.1098/rspa.2019.0034.

[16]

 Y. Cao, W. F. Fan. Data driven approximation with
bounded resources. Proceedings of the VLDB Endowment,
vol. 10, no. 9, pp. 973–984, 2017. DOI: 10.14778/3099622.
3099628.

[17]

 Y. Cao, W. F. Fan, T. F. Yuan. Block as a value for SQL
over NoSQL. Proceedings of the VLDB Endowment,
vol. 12, no. 10, pp. 1153–1166, 2019. DOI: 10.14778/3339490.
3339498.

[18]

 W. F. Fan, F. Geerts, L. Libkin. On scale independence for
querying big data. In Proceedings of the 33rd ACM SIG-
MOD-SIGACT-SIGART Symposium on Principles of
Database Systems, ACM, Snowbird, USA, 2014. DOI:
10.1145/2594538.2594551.

[19]

 D. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, S. Mad-
den. The design and implementation of modern column-
oriented database systems. Foundations and Trends® in
Databases, vol. 5, no. 3, pp. 197–280, 2013. DOI: 10.1561/
1900000024.

[20]

 Microsoft SQL server columnstore indexes: Overview, [On-
line], Available: https://docs.microsoft.com/en-us/sql/re-
lational-databases/indexes/columnstore-indexes-over-
view?view=sql-server-ver15.

[21]

 TPC. TPC-DS, [Online], Available: http://www.tpc.org/
tpcds/.

[22]

 M. R. Garey, D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness, San
Francisco, USA: W. H. Freeman, 1979.

[23]

 M. L. Fredman, R. E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journ-
al of the ACM, vol. 34, no. 3, pp. 596–615, 1987. DOI:
10.1145/28869.28874.

[24]

 Bureau of Transportation Statistics. The carrier on-time
performance database, [Online], Available: http://www.
transtats.bts.gov/DatabaseInfo.asp?DB_ID=120.

[25]

 Bureau of Transportation Statistics. The air carrier stat-
istics database, [Online], Available: http://www.transtats.
bts.gov/DatabaseInfo.asp?DB_ID=110.

[26]

 Department for Transport. Anonymised mot tests and res-
ults, [Online], Available: http://data.gov.uk/dataset/an-
onymised_mot_test, January 11, 2019.

[27]

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 23

http://dx.doi.org/10.14778/2732977.2732983
http://dx.doi.org/10.1145/2745754.2745771
http://dx.doi.org/10.1145/2882903.2882942
https://www.ed.ac.uk/news/2017/huawei-deal-to-advance-expertise-in-data-science
https://www.ed.ac.uk/news/2017/huawei-deal-to-advance-expertise-in-data-science
https://www.ed.ac.uk/news/2017/huawei-deal-to-advance-expertise-in-data-science
https://www.ed.ac.uk/news/2017/huawei-deal-to-advance-expertise-in-data-science
https://about.fb.com/news/2013/01/introducing-graph-search-beta/
https://about.fb.com/news/2013/01/introducing-graph-search-beta/
http://newsroom.fb.com
http://newsroom.fb.com
http://newsroom.fb.com
http://dx.doi.org/10.1145/212433.212477
http://dx.doi.org/10.1145/114325.103712
http://dx.doi.org/10.1145/114325.103712
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
http://dx.doi.org/10.14778/3099622.3099628
http://dx.doi.org/10.14778/3099622.3099628
http://dx.doi.org/10.14778/3339490.3339498
http://dx.doi.org/10.14778/3339490.3339498
http://dx.doi.org/10.1145/2594538.2594551
http://dx.doi.org/10.1561/1900000024
http://dx.doi.org/10.1561/1900000024
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
http://www.tpc.org/tpcds/
http://www.tpc.org/tpcds/
http://dx.doi.org/10.1145/28869.28874
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=110
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=110
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=110
http://data.gov.uk/dataset/anonymised_mot_test
http://data.gov.uk/dataset/anonymised_mot_test
http://data.gov.uk/dataset/anonymised_mot_test
http://data.gov.uk/dataset/anonymised_mot_test
http://data.gov.uk/dataset/anonymised_mot_test
http://dx.doi.org/10.14778/2732977.2732983
http://dx.doi.org/10.1145/2745754.2745771
http://dx.doi.org/10.1145/2882903.2882942
https://www.ed.ac.uk/news/2017/huawei-deal-to-advance-expertise-in-data-science
https://www.ed.ac.uk/news/2017/huawei-deal-to-advance-expertise-in-data-science
https://www.ed.ac.uk/news/2017/huawei-deal-to-advance-expertise-in-data-science
https://www.ed.ac.uk/news/2017/huawei-deal-to-advance-expertise-in-data-science
https://about.fb.com/news/2013/01/introducing-graph-search-beta/
https://about.fb.com/news/2013/01/introducing-graph-search-beta/
http://newsroom.fb.com
http://newsroom.fb.com
http://newsroom.fb.com
http://dx.doi.org/10.1145/212433.212477
http://dx.doi.org/10.1145/114325.103712
http://dx.doi.org/10.1145/114325.103712
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
http://dx.doi.org/10.14778/3099622.3099628
http://dx.doi.org/10.14778/3099622.3099628
http://dx.doi.org/10.14778/3339490.3339498
http://dx.doi.org/10.14778/3339490.3339498
http://dx.doi.org/10.1145/2594538.2594551
http://dx.doi.org/10.1561/1900000024
http://dx.doi.org/10.1561/1900000024
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
http://www.tpc.org/tpcds/
http://www.tpc.org/tpcds/
http://dx.doi.org/10.1145/28869.28874
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=110
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=110
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=110
http://data.gov.uk/dataset/anonymised_mot_test
http://data.gov.uk/dataset/anonymised_mot_test
http://data.gov.uk/dataset/anonymised_mot_test
http://data.gov.uk/dataset/anonymised_mot_test
http://data.gov.uk/dataset/anonymised_mot_test

 Department for Transport. Roadside survey of vehicle ob-
servations, [Online], Available: https://data.gov.uk/data-
set/52e1e2ab-5687-489b-a4d8-b207cd5d6767/roadside-
survey-of-vehicle-observations.

[28]

 Y. Huhtala, J. Kärkkainen, P. Porkka, H. Toivonen. Tane:
An efficient algorithm for discovering functional and ap-
proximate dependencies. The Computer Journal, vol. 42,
no. 2, pp. 100–111, 1999. DOI: 10.1093/comjnl/42.2.100.

[29]

 M. Armbrust, A. Fox, D. A. Patterson, N. Lanham, B.
Trushkowsky, J. Trutna, H. Oh. Scads: Scale-independent
storage for social computing applications. In Proceedings
of the 4th Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, USA, 2009.

[30]

 M. Armbrust, S. Tu, A. Fox, M. J. Franklin, D. A. Patter-
son, N. Lanham, B. Trushkowsky, J. Trutna. PIQL: A per-
formance insightful query language. In Proceedings of 2010
ACM SIGMOD International Conference on Management
of Data, ACM, Indiana, USA, pp. 1207–1210, 2010. DOI:
10.1145/1807167.1807320.

[31]

 Y. Cao, W. F. Fan, F. Geerts, P. Lu. Bounded query re-
writing using views. In Proceedings of the 35th ACM SIG-
MOD-SIGACT-SIGAI Symposium on Principles of Data-
base Systems, ACM, San Francisco, USA, pp. 107–119,
2016. DOI: 10.1145/2902251.2902294.

[32]

 Y. Cao, W. F. Fan, T. Y. Wo, W. Y. Yu. Bounded con-
junctive queries. Proceedings of the VLDB Endowment,
vol. 7, no. 12, pp. 1231–1242, 2014. DOI: 10.14778/2732977.
2732996.

[33]

 Y. Cao, W. F. Fan, Y. H. Wang, T. F. Yuan, Y. C. Li, L.
Y. Chen. BEAS: Bounded evaluation of SQL queries. In
Proceedings of ACM International Conference on Manage-
ment of Data, ACM, Chicago, USA, pp. 1667–1670, 2017.
DOI: 10.1145/3035918.3058748.

[34]

 S. Acharya, P. B. Gibbons, V. Poosala. Congressional
samples for approximate answering of group-by queries. In
Proceedings of ACM SIGMOD International Conference
on Management of Data, ACM, Dallas, Texas, USA,
pp. 487–498, 2000. DOI: 10.1145/342009.335450.

[35]

 Y. E. Ioannidis, V. Poosala. Histogram-based approxima-
tion of set-valued query-answers. In Proceedings of the
25th International Conference on Very Large Data Bases,
Edinburgh, Scotland, UK, pp. 174–185, 1999.

[36]

 H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. C. Sevcik, T. Suel. Optimal histograms with quality
guarantees. In Proceedings of the 24rd International Con-
ference on Very Large Data Bases, New York City, USA,
pp. 275–286, 2009.

[37]

 K. Chakrabarti, M. N. Garofalakis, R. Rastogi, K. Shim.
Approximate query processing using wavelets. The VLDB
Journal, vol. 10, no. 2–3, pp. 199–223, 2001.

[38]

 G. Cormode, M. Garofalakis. Sketching streams through
the net: Distributed approximate query tracking. In Pro-
ceedings of the 31st International Conference on Very
Large Data Bases, ACM, Trondheim, Norway, 2005.

[39]

 B. Babcock, S. Chaudhuri, G. Das. Dynamic sample selec-
tion for approximate query processing. In Proceedings of
ACM SIGMOD International Conference on Management
of Data, ACM, San Diego, USA, pp. 539–550, 2003. DOI:
10.1145/872757.872822.

[40]

 S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R.
Grandl, S. Chaudhuri, B. Ding. Quickr: Lazily approxim-
ating complex AdHoc queries in BigData clusters. In Pro-
ceedings of International Conference on Management of

[41]

Data, ACM, San Francisco, USA, pp. 631–646, 2016. DOI:
10.1145/2882903.2882940.

 S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
I. Stoica. BlinkDB: Queries with bounded errors and
bounded response times on very large data. In Proceed-
ings of the 8th ACM European Conference on Computer
Systems, SCM, Prague, Czech Republic, pp. 29–42, 2013.
DOI: 10.1145/2465351.2465355.

[42]

 C. Li. Computing complete answers to queries in the pres-
ence of limited access patterns. The VLDB Journal,
vol. 12, no. 3, pp. 211–227, 2003. DOI: 10.1007/s00778-002-
0085-6.

[43]

 M. Benedikt, J. Leblay, B. ten Cate, E. Tsamoura. Gener-
ating Plans from Proofs: Synthesis Lectures on Data Mar-
agement, vol.8, no.1, pp. 1–205, 2016. DOI: 10.2200/
S00703ED1V01Y201602DTM043.

[44]

 A. Nash, B. Ludäscher. Processing first-order queries un-
der limited access patterns. In Proceedings of the 23rd
ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, ACM, Paris, France,
pp. 307–318, 2004. DOI: 10.1145/1055558.1055601.

[45]

 M. S. Kester, M. Athanassoulis, S. Idreos. Access path se-
lection in main-memory optimized data systems: Should I
scan or should I probe? In Proceedings of ACM Interna-
tional Conference on Management of Data, ACM, Chica-
go, USA, pp. 715–730, 2017. DOI: 10.1145/3035918.
3064049.

[46]

 T. Neumann. Query simplification: Graceful degradation
for join-order optimization. In Proceedings of ACM SIG-
MOD International Conference on Management of Data,
ACM, Rhode Island, USA, pp. 403–414, 2009. DOI:
10.1145/1559845.1559889.

[47]

 M. Eich, P. Fender, G. Moerkotte. Faster plan generation
through consideration of functional dependencies and
keys. Proceedings of the VLDB Endowment, vol. 9, no. 10,
pp. 756–767, 2016. DOI: 10.14778/2977797.2977802.

[48]

 B. L. Ding, S. Das, R. Marcus, W. T. Wu, S. Chaudhuri,
V. R. Narasayya. AI meets AI: Leveraging query execu-
tions to improve index recommendations. In Proceedings
of International Conference on Management of Data,
ACM, Amsterdam, The Netherlands, pp. 1241–1258, 2019.
DOI: 10.1145/3299869.3324957.

[49]

 T. Kraska, A. Beutel, E. H. Chi, J. Dean, N. Polyzotis.
The case for learned index structures. In Proceedings of In-
ternational Conference on Management of Data, ACM,
Houston, USA, pp. 489–504, 2018. DOI: 10.1145/3183713.
3196909.

[50]

 A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, T.
Kraska. Fiting-tree: A data-aware index structure. In Pro-
ceedings of 2019 International Conference on Manage-
ment of Data, ACM, Amsterdam, The Netherlands,
pp. 1189–1206, 2019. DOI: 10.1145/3299869.3319860.

[51]

 R. C. Marcus, P. Negi, H. Z. Mao, C. Zhang, M. Alizadeh,
T. Kraska, O. Papaemmanouil, N. Tatbul. Neo: A learned
query optimizer. Proceedings of the VLDB Endowment,
vol. 12, no. 11, pp. 1705–1718, 2019. DOI: 10.14778/3342263.
3342644.

[52]

 J. Sun, G. Li. An end-to-end learning-based cost estimat-
or. Proceedings of the VLDB Endowment, vol. 13, no. 3,
pp. 307–319, 2019. DOI: 10.14778/3368289.3368296.

[53]

 I. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo, J.
Antonakakis. Skinnerdb: Regret-bounded query evalu-
ation via reinforcement learning. https://arxiv.org/abs/

[54]

 24 International Journal of Automation and Computing

https://data.gov.uk/dataset/52e1e2ab-5687-489b-a4d8-b207cd5d6767/roadside-survey-of-vehicle-observations
https://data.gov.uk/dataset/52e1e2ab-5687-489b-a4d8-b207cd5d6767/roadside-survey-of-vehicle-observations
https://data.gov.uk/dataset/52e1e2ab-5687-489b-a4d8-b207cd5d6767/roadside-survey-of-vehicle-observations
https://data.gov.uk/dataset/52e1e2ab-5687-489b-a4d8-b207cd5d6767/roadside-survey-of-vehicle-observations
http://dx.doi.org/10.1093/comjnl/42.2.100
http://dx.doi.org/10.1145/1807167.1807320
http://dx.doi.org/10.1145/1807167.1807320
http://dx.doi.org/10.1145/1807167.1807320
http://dx.doi.org/10.1145/2902251.2902294
http://dx.doi.org/10.14778/2732977.2732996
http://dx.doi.org/10.14778/2732977.2732996
http://dx.doi.org/10.1145/3035918.3058748
http://dx.doi.org/10.1145/342009.335450
http://dx.doi.org/10.1145/872757.872822
http://dx.doi.org/10.1145/2882903.2882940
http://dx.doi.org/10.1145/2465351.2465355
http://dx.doi.org/10.1007/s00778-002-0085-6
http://dx.doi.org/10.1007/s00778-002-0085-6
http://dx.doi.org/10.2200/S00703ED1V01Y201602DTM043
http://dx.doi.org/10.2200/S00703ED1V01Y201602DTM043
http://dx.doi.org/10.1145/1055558.1055601
http://dx.doi.org/10.1145/3035918.3064049
http://dx.doi.org/10.1145/3035918.3064049
http://dx.doi.org/10.1145/1559845.1559889
http://dx.doi.org/10.14778/2977797.2977802
http://dx.doi.org/10.1145/3299869.3324957
http://dx.doi.org/10.1145/3299869.3324957
http://dx.doi.org/10.1145/3299869.3324957
http://dx.doi.org/10.1145/3183713.3196909
http://dx.doi.org/10.1145/3183713.3196909
http://dx.doi.org/10.1145/3299869.3319860
http://dx.doi.org/10.14778/3342263.3342644
http://dx.doi.org/10.14778/3342263.3342644
http://dx.doi.org/10.14778/3368289.3368296
https://arxiv.org/abs/1901.05152v1
https://data.gov.uk/dataset/52e1e2ab-5687-489b-a4d8-b207cd5d6767/roadside-survey-of-vehicle-observations
https://data.gov.uk/dataset/52e1e2ab-5687-489b-a4d8-b207cd5d6767/roadside-survey-of-vehicle-observations
https://data.gov.uk/dataset/52e1e2ab-5687-489b-a4d8-b207cd5d6767/roadside-survey-of-vehicle-observations
https://data.gov.uk/dataset/52e1e2ab-5687-489b-a4d8-b207cd5d6767/roadside-survey-of-vehicle-observations
http://dx.doi.org/10.1093/comjnl/42.2.100
http://dx.doi.org/10.1145/1807167.1807320
http://dx.doi.org/10.1145/1807167.1807320
http://dx.doi.org/10.1145/1807167.1807320
http://dx.doi.org/10.1145/2902251.2902294
http://dx.doi.org/10.14778/2732977.2732996
http://dx.doi.org/10.14778/2732977.2732996
http://dx.doi.org/10.1145/3035918.3058748
http://dx.doi.org/10.1145/342009.335450
http://dx.doi.org/10.1145/872757.872822
http://dx.doi.org/10.1145/2882903.2882940
http://dx.doi.org/10.1145/2465351.2465355
http://dx.doi.org/10.1007/s00778-002-0085-6
http://dx.doi.org/10.1007/s00778-002-0085-6
http://dx.doi.org/10.2200/S00703ED1V01Y201602DTM043
http://dx.doi.org/10.2200/S00703ED1V01Y201602DTM043
http://dx.doi.org/10.1145/1055558.1055601
http://dx.doi.org/10.1145/3035918.3064049
http://dx.doi.org/10.1145/3035918.3064049
http://dx.doi.org/10.1145/1559845.1559889
http://dx.doi.org/10.14778/2977797.2977802
http://dx.doi.org/10.1145/3299869.3324957
http://dx.doi.org/10.1145/3299869.3324957
http://dx.doi.org/10.1145/3299869.3324957
http://dx.doi.org/10.1145/3183713.3196909
http://dx.doi.org/10.1145/3183713.3196909
http://dx.doi.org/10.1145/3299869.3319860
http://dx.doi.org/10.14778/3342263.3342644
http://dx.doi.org/10.14778/3342263.3342644
http://dx.doi.org/10.14778/3368289.3368296
https://arxiv.org/abs/1901.05152v1

1901.05152v1, 2019. DOI: 10.1145/3299869.3300088.

Yang Cao received the B. Sc. degree from
Beihang University, China. He received
the Ph.D. degree from University of Edin-
burgh, UK. He is a faculty member in the
School of Informatics, University of Edin-
burgh, UK. He is the recipient of SIG-
MOD Research Highlight ward 2018, SIG-
MOD Best Paper ward 2017, and Mi-
crosoft Research Asia Fellowship. His re-

search has been invited to publish in TODS special issues on
“Best of SIGMOD 2017” and “Best of PODS 2016”, and in the
Computer Journal special issue on “Best of BICOD 2015”.
 His research interests include query processing, graph data
management and distributed databases.
 E-mail: yang.cao@ed.ac.uk (Corresponding author)
 ORCID iD: 0000-0001-7984-3219

Wen-Fei Fan received the B. Sc. degree
and M.Sc. degree from Peking University
China. He received the Ph. D. degree from
University of Pennsylvania, USA. He is the
Chair of Web Data Management at the
University of Edinburgh, UK, the Chief
Scientist of Shenzhen Institute of Comput-
ing Science, and the Chief Scientist of
Beijing Advanced Innovation Center for

Big Data and Brain Computing, China. He is a Fellow of the
Royal Society (FRS), a Fellow of the Royal Society of Edin-
burgh (FRSE), a Member of the Academy of Europe (MAE), an
ACM Fellow (FACM), and a Foreign Member of Chinese
Academy of Sciences. He is a recipient of Royal Society Wolfson
Research Merit Award in 2018, ERC Advanced Fellowship in
2015, the Roger Needham Award, UK in 2008, Yangtze River
Scholar, China in 2007, the Outstanding Overseas Young Schol-
ar Award, China in 2003 , the Career Award, USA in 2001, and
several Test-of-Time and Best Paper Awards USA (Alberto O.
Mendelzon Test-of-Time Award of ACM PODS 2015 and 2010,
Best Paper Awards for SIGMOD 2017, VLDB 2010, ICDE 2007
and Computer Networks 2002).
 His research interests include database theory and systems, in
particular big data, data quality, data sharing, distributed query
processing, query languages, recommender systems and social
media marketing.
 E-mail: wenfei@inf.ed.ac.uk
 ORCID iD: 0000-0001-5149-2656

Teng-Fei Yuan received the B.Eng. de-
gree from Shandong University China. He
is Ph.D. degree cadidate in LFCS, School
of Informatics, University of Edinburgh
UK.
 His research interest is development of
BEAS, a system for bounded evaluation of
SQL queries.
 Email: tengfei.yuan@ed.ac.uk

Y. Cao et al. / Bounded Evaluation: Querying Big Data with Bounded Resources 25

https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088
https://arxiv.org/abs/1901.05152v1
http://dx.doi.org/10.1145/3299869.3300088

