393 research outputs found

    WxBS: Wide Baseline Stereo Generalizations

    Full text link
    We have presented a new problem -- the wide multiple baseline stereo (WxBS) -- which considers matching of images that simultaneously differ in more than one image acquisition factor such as viewpoint, illumination, sensor type or where object appearance changes significantly, e.g. over time. A new dataset with the ground truth for evaluation of matching algorithms has been introduced and will be made public. We have extensively tested a large set of popular and recent detectors and descriptors and show than the combination of RootSIFT and HalfRootSIFT as descriptors with MSER and Hessian-Affine detectors works best for many different nuisance factors. We show that simple adaptive thresholding improves Hessian-Affine, DoG, MSER (and possibly other) detectors and allows to use them on infrared and low contrast images. A novel matching algorithm for addressing the WxBS problem has been introduced. We have shown experimentally that the WxBS-M matcher dominantes the state-of-the-art methods both on both the new and existing datasets.Comment: Descriptor and detector evaluation expande

    Automated Top View Registration of Broadcast Football Videos

    Full text link
    In this paper, we propose a novel method to register football broadcast video frames on the static top view model of the playing surface. The proposed method is fully automatic in contrast to the current state of the art which requires manual initialization of point correspondences between the image and the static model. Automatic registration using existing approaches has been difficult due to the lack of sufficient point correspondences. We investigate an alternate approach exploiting the edge information from the line markings on the field. We formulate the registration problem as a nearest neighbour search over a synthetically generated dictionary of edge map and homography pairs. The synthetic dictionary generation allows us to exhaustively cover a wide variety of camera angles and positions and reduce this problem to a minimal per-frame edge map matching procedure. We show that the per-frame results can be improved in videos using an optimization framework for temporal camera stabilization. We demonstrate the efficacy of our approach by presenting extensive results on a dataset collected from matches of football World Cup 2014

    Heel strike detection based on human walking movement for surveillance analysis

    Get PDF
    Heel strike detection is an important cue for human gait recognition and detection in visual surveillance since the heel strike position can be used to derive the gait periodicity, stride and step length. We propose a novel method for heel strike detection using a gait trajectory model, which is robust to occlusion, camera view, and low resolution. When a person walks, the movement of the head is conspicuous and sinusoidal. The highest point of the trajectory of the head occurs when the feet cross (stance) and the lowest point is when the gait stride is the largest (heel strike). Our gait trajectory model is constructed from trajectory data using non-linear optimisation. Then, the key frames in which the heel strikes take place are calculated. A Region Of Interest (ROI) is extracted using the silhouette image of the key frame as a filter. For candidate detection, Gradient Descent is applied to detect maxima which are considered to be the time of the heel strikes. For candidate verification, two filtering methods are used to reconstruct the 3D position of a heel strike using the given camera projection matrix. The contribution of this research is the first use of the gait trajectory in the heel strike position estimation process and we contend that it is a new approach for basic analysis in surveillance imagery

    SiLK -- Simple Learned Keypoints

    Full text link
    Keypoint detection & descriptors are foundational tech-nologies for computer vision tasks like image matching, 3D reconstruction and visual odometry. Hand-engineered methods like Harris corners, SIFT, and HOG descriptors have been used for decades; more recently, there has been a trend to introduce learning in an attempt to improve keypoint detectors. On inspection however, the results are difficult to interpret; recent learning-based methods employ a vast diversity of experimental setups and design choices: empirical results are often reported using different backbones, protocols, datasets, types of supervisions or tasks. Since these differences are often coupled together, it raises a natural question on what makes a good learned keypoint detector. In this work, we revisit the design of existing keypoint detectors by deconstructing their methodologies and identifying the key components. We re-design each component from first-principle and propose Simple Learned Keypoints (SiLK) that is fully-differentiable, lightweight, and flexible. Despite its simplicity, SiLK advances new state-of-the-art on Detection Repeatability and Homography Estimation tasks on HPatches and 3D Point-Cloud Registration task on ScanNet, and achieves competitive performance to state-of-the-art on camera pose estimation in 2022 Image Matching Challenge and ScanNet

    Object recognition using multi-view imaging

    No full text
    Single view imaging data has been used in most previous research in computer vision and image understanding and lots of techniques have been developed. Recently with the fast development and dropping cost of multiple cameras, it has become possible to have many more views to achieve image processing tasks. This thesis will consider how to use the obtained multiple images in the application of target object recognition. In this context, we present two algorithms for object recognition based on scale- invariant feature points. The first is single view object recognition method (SOR), which operates on single images and uses a chirality constraint to reduce the recognition errors that arise when only a small number of feature points are matched. The procedure is extended in the second multi-view object recognition algorithm (MOR) which operates on a multi-view image sequence and, by tracking feature points using a dynamic programming method in the plenoptic domain subject to the epipolar constraint, is able to fuse feature point matches from all the available images, resulting in more robust recognition. We evaluated these algorithms using a number of data sets of real images capturing both indoor and outdoor scenes. We demonstrate that MOR is better than SOR particularly for noisy and low resolution images, and it is also able to recognize objects that are partially occluded by combining it with some segmentation techniques

    Leveraging 3D City Models for Rotation Invariant Place-of-Interest Recognition

    Get PDF
    Given a cell phone image of a building we address the problem of place-of-interest recognition in urban scenarios. Here, we go beyond what has been shown in earlier approaches by exploiting the nowadays often available 3D building information (e.g. from extruded floor plans) and massive street-level image data for database creation. Exploiting vanishing points in query images and thus fully removing 3D rotation from the recognition problem allows then to simplify the feature invariance to a purely homothetic problem, which we show enables more discriminative power in feature descriptors than classical SIFT. We rerank visual word based document queries using a fast stratified homothetic verification that in most cases boosts the correct document to top positions if it was in the short list. Since we exploit 3D building information, the approach finally outputs the camera pose in real world coordinates ready for augmenting the cell phone image with virtual 3D information. The whole system is demonstrated to outperform traditional approaches on city scale experiments for different sources of street-level image data and a challenging set of cell phone image
    • …
    corecore