299 research outputs found

    Wireless Energy Harvesting with Amplify-and-Forward Relaying and Link Adaptation under Imperfect Feedback Channel

    Get PDF
    Energy harvesting is an alternative approach to extend the lifetime of wireless communications and decrease energy consumption, which results in fewer carbon emissions from wireless networks. In this study, adaptive modulation with EH relay is proposed. A power splitting mechanism for EH relay is used. The relay harvests energy from the source and forwards the information to the destination. A genetic algorithm (GA) is applied for the optimisation of the power splitting ratio at the relays. Two scenarios are considered namely, perfect and imperfect feedback channels. Results show that the spectral efficiency (SE) degradation, which is due to an imperfect feedback channel, was approximately 14% for conventional relays. The use of energy harvesting results in a degradation in the performance of SE of approximately 19% in case of a perfect feedback channel. Finally, an increase in the number of energy harvesting relays enhances the SE by 22%

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Integrated Data and Energy Communication Network: A Comprehensive Survey

    Get PDF
    OAPA In order to satisfy the power thirsty of communication devices in the imminent 5G era, wireless charging techniques have attracted much attention both from the academic and industrial communities. Although the inductive coupling and magnetic resonance based charging techniques are indeed capable of supplying energy in a wireless manner, they tend to restrict the freedom of movement. By contrast, RF signals are capable of supplying energy over distances, which are gradually inclining closer to our ultimate goal – charging anytime and anywhere. Furthermore, transmitters capable of emitting RF signals have been widely deployed, such as TV towers, cellular base stations and Wi-Fi access points. This communication infrastructure may indeed be employed also for wireless energy transfer (WET). Therefore, no extra investment in dedicated WET infrastructure is required. However, allowing RF signal based WET may impair the wireless information transfer (WIT) operating in the same spectrum. Hence, it is crucial to coordinate and balance WET and WIT for simultaneous wireless information and power transfer (SWIPT), which evolves to Integrated Data and Energy communication Networks (IDENs). To this end, a ubiquitous IDEN architecture is introduced by summarising its natural heterogeneity and by synthesising a diverse range of integrated WET and WIT scenarios. Then the inherent relationship between WET and WIT is revealed from an information theoretical perspective, which is followed by the critical appraisal of the hardware enabling techniques extracting energy from RF signals. Furthermore, the transceiver design, resource allocation and user scheduling as well as networking aspects are elaborated on. In a nutshell, this treatise can be used as a handbook for researchers and engineers, who are interested in enriching their knowledge base of IDENs and in putting this vision into practice

    Wireless transmission protocols using relays for broadcast and information exchange channels

    No full text
    Relays have been used to overcome existing network performance bottlenecks in meeting the growing demand for large bandwidth and high quality of service (QoS) in wireless networks. This thesis proposes several wireless transmission protocols using relays in practical multi-user broadcast and information exchange channels. The main theme is to demonstrate that efficient use of relays provides an additional dimension to improve reliability, throughput, power efficiency and secrecy. First, a spectrally efficient cooperative transmission protocol is proposed for the multiple-input and singleoutput (MISO) broadcast channel to improve the reliability of wireless transmission. The proposed protocol mitigates co-channel interference and provides another dimension to improve the diversity gain. Analytical and simulation results show that outage probability and the diversity and multiplexing tradeoff of the proposed cooperative protocol outperforms the non-cooperative scheme. Second, a two-way relaying protocol is proposed for the multi-pair, two-way relaying channel to improve the throughput and reliability. The proposed protocol enables both the users and the relay to participate in interference cancellation. Several beamforming schemes are proposed for the multi-antenna relay. Analytical and simulation results reveal that the proposed protocol delivers significant improvements in ergodic capacity, outage probability and the diversity and multiplexing tradeoff if compared to existing schemes. Third, a joint beamforming and power management scheme is proposed for multiple-input and multiple-output (MIMO) two-way relaying channel to improve the sum-rate. Network power allocation and power control optimisation problems are formulated and solved using convex optimisation techniques. Simulation results verify that the proposed scheme delivers better sum-rate or consumes lower power when compared to existing schemes. Fourth, two-way secrecy schemes which combine one-time pad and wiretap coding are proposed for the scalar broadcast channel to improve secrecy rate. The proposed schemes utilise the channel reciprocity and employ relays to forward secret messages. Analytical and simulation results reveal that the proposed schemes are able to achieve positive secrecy rates even when the number of users is large. All of these new wireless transmission protocols help to realise better throughput, reliability, power efficiency and secrecy for wireless broadcast and information exchange channels through the efficient use of relays

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Spectral-energy efficiency trade-off of relay-aided cellular networks

    Get PDF
    Wireless communication networks are traditionally designed to operate at high spectral e ciency with less emphasis on power consumption as it is assumed that endless power supply is available through the power grid where the cells are connected to. As new generations of mobile networks exhibit decreasing gains in spectral e ciency, the mobile industry is forced to consider energy reform policies in order to sustain the economic growth of itself and other industries relying on it. Consequently, the energy e ciency of conventional direct transmission cellular networks is being examined while alternative green network architectures are also explored. The relay-aided cellular network is being considered as one of the potential network architecture for energy e cient transmission. However, relaying transmission incurs multiplexing loss due to its multi-hop protocol. This, in turn, reduces network spectral e ciency. Furthermore, interference is also expected to increase with the deployment of Relay Stations (RSs) in the network. This thesis examines the power consumption of the conventional direct transmission cellular network and contributes to the development of the relay-aided cellular network. Firstly, the power consumption of the direct transmission cellular network is investigated. While most work considered transmitter side strategies, the impact of the receiver on the Base Station (BS) total power consumption is investigated here. Both the zero-forcing and minimum mean square error weight optimisation approaches are considered for both the conventional linear and successive interference cancellation receivers. The power consumption model which includes both the radio frequency transmit power and circuit power is described. The in uence of the receiver interference cancellation techniques, the number of transceiver antennas, circuit power consumption and inter-cell interference on the BS total power consumption is investigated. Secondly, the spectral-energy e ciency trade-o in the relay-aided cellular network is investigated. The signal forwarding and interference forwarding relaying paradigms are considered with the direct transmission cellular network taken as the baseline. This investigation serves to understand the dynamics in the performance trade-o . To select a suitable balance point in the trade-o , the economic e ciency metric is proposed whereby the spectral-energy e ciency pair which maximises the economic pro tability is found. Thus, the economic e ciency metric can be utilised as an alternative means to optimise the relay-aided cellular network while taking into account the inherent spectral-energy e ciency trade-o . Finally, the method of mitigating interference in the relay-aided cellular network is demonstrated by means of the proposed relay cooperation scheme. In the proposed scheme, both joint RS decoding and independent RS decoding approaches are considered during the broadcast phase while joint relay transmission is employed in the relay phase. Two user selection schemes requiring global Channel State Information (CSI) are considered. The partial semi-orthogonal user selection method with reduced CSI requirement is then proposed. As the cooperative cost limits the practicality of cooperative schemes, the cost incurred at the cooperative links between the RSs is investigated for varying degrees of RS cooperation. The performance of the relay cooperation scheme with di erent relay frequency reuse patterns is considered as well. In a nutshell, the research presented in this thesis reveals the impact of the receiver on the BS total power consumption in direct transmission cellular networks. The relayaided cellular network is then presented as an alternative architecture for energy e cient transmission. The economic e ciency metric is proposed to maximise the economic pro tability of the relay network while taking into account the existing spectral-energy e ciency trade-o . To mitigate the interference from the RSs, the relay cooperation scheme for advanced relay-aided cellular networks is proposed
    • …
    corecore