137,710 research outputs found

    Artificial intelligence approaches to software engineering

    Get PDF
    Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs

    Framework for a space shuttle main engine health monitoring system

    Get PDF
    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available

    AFTI/F-16 digital flight control system experience

    Get PDF
    The Advanced Flighter Technology Integration (AFTI) F-16 program is investigating the integration of emerging technologies into an advanced fighter aircraft. The three major technologies involved are the triplex digital flight control system; decoupled aircraft flight control; and integration of avionics, pilot displays, and flight control. In addition to investigating improvements in fighter performance, the AFTI/F-16 program provides a look at generic problems facing highly integrated, flight-crucial digital controls. An overview of the AFTI/F-16 systems is followed by a summary of flight test experience and recommendations

    Information Systems Development Methodologies Transitions: An Analysis of Waterfall to Agile Methodology

    Get PDF

    Control System Design Philosophy for Effective Operations and Maintenance

    Full text link
    A well-designed control system facilitates the functions of machine operation, maintenance and development. In addition, the overall effectiveness of the control system can be greatly enhanced by providing reliable mechanisms for coordination and communication, ensuring that these functions work in concert. For good operability, the information presented to operators should be consistent, easy to understand and customizable. A maintainable system is segmented appropriately, allowing a broken element to be quickly identified and repaired while leaving the balance of the system available. In a research and development environment, the control system must meet the frequently changing requirements of a variety of customers. This means the system must be flexible enough to allow for ongoing modifications with minimal disruptions to operations. Beyond the hardware and software elements of the control system, appropriate workflow processes must be in place to maximize system uptime and allow people to work efficiently. Processes that provide automatic electronic communication ensure that information is not lost and reaches its destination in a timely fashion. This paper discusses how these control system design and quality issues have been applied at the Thomas Jefferson National Accelerator Facility.Comment: ICALEPCS 200

    Reasoning and Improving on Software Resilience against Unanticipated Exceptions

    Get PDF
    In software, there are the errors anticipated at specification and design time, those encountered at development and testing time, and those that happen in production mode yet never anticipated. In this paper, we aim at reasoning on the ability of software to correctly handle unanticipated exceptions. We propose an algorithm, called short-circuit testing, which injects exceptions during test suite execution so as to simulate unanticipated errors. This algorithm collects data that is used as input for verifying two formal exception contracts that capture two resilience properties. Our evaluation on 9 test suites, with 78% line coverage in average, analyzes 241 executed catch blocks, shows that 101 of them expose resilience properties and that 84 can be transformed to be more resilient
    • …
    corecore