23 research outputs found

    SDP Relaxation with Randomized Rounding for Energy Disaggregation

    Get PDF
    We develop a scalable, computationally efficient method for the task of energy disaggregation for home appliance monitoring. In this problem the goal is to estimate the energy consumption of each appliance over time based on the total energy-consumption signal of a household. The current state of the art is to model the problem as inference in factorial HMMs, and use quadratic programming to find an approximate solution to the resulting quadratic integer program. Here we take a more principled approach, better suited to integer programming problems, and find an approximate optimum by combining convex semidefinite relaxations randomized rounding, as well as a scalable ADMM method that exploits the special structure of the resulting semidefinite program. Simulation results both in synthetic and real-world datasets demonstrate the superiority of our method

    SDP Relaxation with Randomized Rounding for Energy Disaggregation

    Get PDF
    We develop a scalable, computationally efficient method for the task of energy disaggregation for home appliance monitoring. In this problem the goal is to estimate the energy consumption of each appliance over time based on the total energy-consumption signal of a household. The current state of the art is to model the problem as inference in factorial HMMs, and use quadratic programming to find an approximate solution to the resulting quadratic integer program. Here we take a more principled approach, better suited to integer programming problems, and find an approximate optimum by combining convex semidefinite relaxations randomized rounding, as well as a scalable ADMM method that exploits the special structure of the resulting semidefinite program. Simulation results both in synthetic and real-world datasets demonstrate the superiority of our method

    Structured Dictionary Learning for Energy Disaggregation

    Full text link
    The increased awareness regarding the impact of energy consumption on the environment has led to an increased focus on reducing energy consumption. Feedback on the appliance level energy consumption can help in reducing the energy demands of the consumers. Energy disaggregation techniques are used to obtain the appliance level energy consumption from the aggregated energy consumption of a house. These techniques extract the energy consumption of an individual appliance as features and hence face the challenge of distinguishing two similar energy consuming devices. To address this challenge we develop methods that leverage the fact that some devices tend to operate concurrently at specific operation modes. The aggregated energy consumption patterns of a subgroup of devices allow us to identify the concurrent operating modes of devices in the subgroup. Thus, we design hierarchical methods to replace the task of overall energy disaggregation among the devices with a recursive disaggregation task involving device subgroups. Experiments on two real-world datasets show that our methods lead to improved performance as compared to baseline. One of our approaches, Greedy based Device Decomposition Method (GDDM) achieved up to 23.8%, 10% and 59.3% improvement in terms of micro-averaged f score, macro-averaged f score and Normalized Disaggregation Error (NDE), respectively.Comment: 10 Page

    Subtask Gated Networks for Non-Intrusive Load Monitoring

    Full text link
    Non-intrusive load monitoring (NILM), also known as energy disaggregation, is a blind source separation problem where a household's aggregate electricity consumption is broken down into electricity usages of individual appliances. In this way, the cost and trouble of installing many measurement devices over numerous household appliances can be avoided, and only one device needs to be installed. The problem has been well-known since Hart's seminal paper in 1992, and recently significant performance improvements have been achieved by adopting deep networks. In this work, we focus on the idea that appliances have on/off states, and develop a deep network for further performance improvements. Specifically, we propose a subtask gated network that combines the main regression network with an on/off classification subtask network. Unlike typical multitask learning algorithms where multiple tasks simply share the network parameters to take advantage of the relevance among tasks, the subtask gated network multiply the main network's regression output with the subtask's classification probability. When standby-power is additionally learned, the proposed solution surpasses the state-of-the-art performance for most of the benchmark cases. The subtask gated network can be very effective for any problem that inherently has on/off states

    Sequence-to-point learning with neural networks for nonintrusive load monitoring

    Get PDF
    Energy disaggregation (a.k.a nonintrusive load monitoring, NILM), a single-channel blind source separation problem, aims to decompose the mains which records the whole house electricity consumption into appliance-wise readings. This problem is difficult because it is inherently unidentifiable. Recent approaches have shown that the identifiability problem could be reduced by introducing domain knowledge into the model. Deep neural networks have been shown to be a promising approach for these problems, but sliding windows are necessary to handle the long sequences which arise in signal processing problems, which raises issues about how to combine predictions from different sliding windows. In this paper, we propose sequence-to-point learning, where the input is a window of the mains and the output is a single point of the target appliance. We use convolutional neural networks to train the model. Interestingly, we systematically show that the convolutional neural networks can inherently learn the signatures of the target appliances, which are automatically added into the model to reduce the identifiability problem. We applied the proposed neural network approaches to real-world household energy data, and show that the methods achieve state-of-the-art performance, improving two standard error measures by 84% and 92%

    Non-intrusive load monitoring for multi-objects in smart building

    Get PDF
    The rapidly expansion of Internet of Things (IoT) has ignited renewed interest in energy disaggregation via nonintrusive load monitoring (NILM). Compared to the more frequent NILM approach of training one model for each appliance, this paper proposes a multi-label learning approach based on the widely cited sequence2point convolutional neural network (CNN). Using the smart meter readings collected in an office building, we demonstrate the accuracy and practicality of the proposed network compared to start-of-the-art one-to-one NILM models

    A generic optimisation-based approach for improving non-intrusive load monitoring

    Get PDF
    The large-scale deployment of smart metering worldwide has ignited renewed interest in electrical load disaggregation, or non-intrusive load monitoring (NILM). Most NILM algorithms disaggregate one appliance at a time, remove the estimated appliance contribution from the total load, and then move on to disaggregate the next appliance. On one hand, this is efficient since multi-class classification is avoided and analytical models for each appliance can be developed independently of other appliances with the benefit of being transferred to unseen houses that have different sets of appliances. On the other hand, however, these methods can significantly under- or over- estimate the total consumption since they do not minimise the difference between the measured aggregate load and the sum of estimated individual loads. Motivated by minimising the latter difference without losing the benefits of existing NILM algorithms, we propose novel post-processing approaches for improving the accuracy of existing NILM. This is posed as an optimisation problem to refine the final NILM result using regularisation, based on the level of confidence in the original NILM output. First, we propose a heuristic method to solve this (combinatorial) boolean quadratic problem through relaxing zero-one constraint sets to compact zero-one intervals. Convex-based solutions, including norm-1, norm-2 and semi-definite programming-based relaxation, are proposed trading off accuracy and complexity. We demonstrate good performance of the proposed post-processing methods, applicable to any event-based NILM, compared with 4 state-of-the-art benchmarks, using public REFIT and REDD electrical load datasets
    corecore