6 research outputs found

    Quantifying Oil and Gas Industry Related Geohazard Using Radar Interferometry and Hydro-geomechanical Modeling

    Get PDF
    The Permian Basin, containing a large amount of oil and gas, has been intensively developed for hydrocarbon production. However, the hazards related to the oil and gas industry including surface deformation and the underlying mechanisms in this region have not been well known. My PhD study aims to monitor the geohazards in the Permian Basin and better comprehend the subsurface mechanisms with the aid of high-resolution and high-accuracy Interferometric Synthetic Aperture Radar (InSAR) images. Generally, as the pore pressure is influenced by wastewater injection/hydrocarbon production, the pressure changes can propagate to other surrounding underground and overlying rock/soil layers, resulting in surface deformation. The distribution and temporal development of the surface deformation can be obtained from InSAR processing and analysis. To reveal the underground geo-mechanical process responsible for the development of the surface deformation, numerical modeling based on poroelasticity is then applied to estimate the effective parameters (i.e., parameters inferred from the simulation) including depth and volume. This method is applied to three cases in West Texas. At a site in Reeves county, InSAR detects surface uplift up to 17 cm near a wastewater disposal well from 2007 to 2011. Results from both elastic and poroelastic models indicate that the effective injection depth is much shallower than reported. The most reasonable explanation is that the well was experiencing leakage due to casing failures and/or sealing problem(s). At a site in Winkler county, surface uplift and the follow-on recovery detected by InSAR from 2015 to 2020 can be attributed to nearby wastewater disposal. Bayesian inversion with the poroelastic models provides estimates of the local hydro-geomechanical parameters. The posterior distribution of subsurface effective volumes reveals under-reported volumes in the well near the deformation center. We also investigate a case of aseismic slip related to oil and gas activities. The combination of InSAR observation and poroelastic finite element models in three cases shows the capability to investigate the ongoing geohazards related to fluid injection and hydrocarbon production in the Permian Basin. This kind of study will be helpful to the decision-making of federal/local authorities to avoid future geohazards related to oil and gas activities

    SBAS Analysis of Induced Ground Surface Deformation from Wastewater Injection in East Central Oklahoma, USA

    No full text
    The state of Oklahoma has experienced a dramatic increase in the amount of measurable seismic activities over the last decade. The needs of a petroleum-driven world have led to increased production utilizing various technologies to reach energy reserves locked in tight formations and stimulate end-of-life wells, creating significant amounts of undesirable wastewater ultimately injected underground for disposal. Using Phased Array L-band Synthetic Aperture Radar (PALSAR) data, we performed a differential Synthetic Aperture Radar Interferometry (InSAR) technique referred to as the Small BAseline Subset (SBAS)-based analysis over east central Oklahoma to identify ground surface deformation with respect to the location of wastewater injection wells for the period of December 2006 to January 2011. Our results show broad spatial correlation between SBAS-derived deformation and the locations of injection wells. We also observed significant uplift over Cushing, Oklahoma, the largest above ground crude oil storage facility in the world, and a key hub of the Keystone Pipeline. This finding has significant implications for the oil and gas industry due to its close proximity to the zones of increased seismicity attributed to wastewater injection. Results southeast of Drumright, Oklahoma represent an excellent example of the potential of InSAR, identifying a fault bordered by an area of subduction to the west and uplift to the east. This differentiated movement along the fault may help explain the lack of any seismic activity in this area, despite the large number of wells and high volume of fluid injected

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research
    corecore