491 research outputs found

    Optimization of Efficiency and Energy Consumption in p-persistent CSMA-based Wireless LANs

    Get PDF
    Wireless technologies in the LAN environment are becoming increasingly important. The IEEE 802.11 is the most mature technology for Wireless Local Area Networks (WLANs). The limited bandwidth and the finite battery power of mobile computers represent one of the greatest limitations of current WLANs. In this paper we deeply investigate the efficiency and the energy consumption of MAC protocols that can be described with a p-persistent CSMA model. As already shown in the literature, the IEEE 802.11 protocol performance can be studied using a p-persistent CSMA model [Cal00]. For this class of protocols, in the paper we define an analytical framework to study the theoretical performance bounds from the throughput and the energy consumption standpoint. Specifically, we derive the p values (i.e., the average size of the contention window in the IEEE 802.11 protocol) that maximizes the throughput, poptCp^C_{opt}, and minimizes the energy consumption, poptEp^E_{opt}. By providing analytical closed formulas for the optimal values, we discuss the trade-off between efficiency and energy consumption. Specifically, we show that power saving and throughput maximization can be jointly achieved. Our analytical formulas indicate that the optimal pp values depend on the network configuration, i.e., number of active stations and length of the messages transmitted on the channel

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    Enabling Accurate Cross-Layer PHY/MAC/NET Simulation Studies of Vehicular Communication Networks

    Get PDF
    Vehicle-to-vehicle and vehicle-to-roadside communications is required for numerous applications that aim at improving traffic safety and efficiency. In this setting, however, gauging system performance through field trials can be very expensive especially when the number of studied vehicles is high. Therefore, many existing studies have been conducted using either network or physical layer simulators; both approaches are problematic. Network simulators typically abstract physical layer details (coding, modulation, radio channels, receiver algorithms, etc.) while physical layer ones do not consider overall network characteristics (topology, network traffic types, and so on). In particular, network simulators view a transmitted frame as an indivisible unit, which leads to several limitations. First, the impact of the vehicular radio channel is typically not reflected in its appropriate context. Further, interference due to frame collisions is not modeled accurately ( if at all) and, finally, the benefits of advanced signal processing techniques, such as interference cancellation, are difficult to assess. To overcome these shortcomings we have integrated a detailed physical layer simulator into the popular NS-3 network simulator. This approach aims to bridge the gap between the physical and network layer perspectives, allow for more accurate channel and physical layer models, and enable studies on cross-layer optimization. In this paper, we exemplify our approach by integrating an IEEE 802.11a and p physical layer simulator with NS-3. Further, we validate the augmented NS-3 simulator against an actual IEEE 802.11 wireless testbed and illustrate the additional value of this integration
    corecore