474 research outputs found

    Lifecycle Management of Automotive Safety-Critical Over the Air Updates: A Systems Approach

    Get PDF
    With the increasing importance of Over The Air (OTA) updates in the automotive field, maintaining safety standards becomes more challenging as frequent incremental changes of embedded software are regularly integrated into a wide range of vehicle variants. This necessitates new processes and methodologies with a holistic view on the backend, where the updates are developed and released

    C-FLAT: Control-FLow ATtestation for Embedded Systems Software

    Full text link
    Remote attestation is a crucial security service particularly relevant to increasingly popular IoT (and other embedded) devices. It allows a trusted party (verifier) to learn the state of a remote, and potentially malware-infected, device (prover). Most existing approaches are static in nature and only check whether benign software is initially loaded on the prover. However, they are vulnerable to run-time attacks that hijack the application's control or data flow, e.g., via return-oriented programming or data-oriented exploits. As a concrete step towards more comprehensive run-time remote attestation, we present the design and implementation of Control- FLow ATtestation (C-FLAT) that enables remote attestation of an application's control-flow path, without requiring the source code. We describe a full prototype implementation of C-FLAT on Raspberry Pi using its ARM TrustZone hardware security extensions. We evaluate C-FLAT's performance using a real-world embedded (cyber-physical) application, and demonstrate its efficacy against control-flow hijacking attacks.Comment: Extended version of article to appear in CCS '16 Proceedings of the 23rd ACM Conference on Computer and Communications Securit

    Secure entity authentication

    Get PDF
    According to Wikipedia, authentication is the act of confirming the truth of an attribute of a single piece of a datum claimed true by an entity. Specifically, entity authentication is the process by which an agent in a distributed system gains confidence in the identity of a communicating partner (Bellare et al.). Legacy password authentication is still the most popular one, however, it suffers from many limitations, such as hacking through social engineering techniques, dictionary attack or database leak. To address the security concerns in legacy password-based authentication, many new authentication factors are introduced, such as PINs (Personal Identification Numbers) delivered through out-of-band channels, human biometrics and hardware tokens. However, each of these authentication factors has its own inherent weaknesses and security limitations. For example, phishing is still effective even when using out-of-band-channels to deliver PINs (Personal Identification Numbers). In this dissertation, three types of secure entity authentication schemes are developed to alleviate the weaknesses and limitations of existing authentication mechanisms: (1) End user authentication scheme based on Network Round-Trip Time (NRTT) to complement location based authentication mechanisms; (2) Apache Hadoop authentication mechanism based on Trusted Platform Module (TPM) technology; and (3) Web server authentication mechanism for phishing detection with a new detection factor NRTT. In the first work, a new authentication factor based on NRTT is presented. Two research challenges (i.e., the secure measurement of NRTT and the network instabilities) are addressed to show that NRTT can be used to uniquely and securely identify login locations and hence can support location-based web authentication mechanisms. The experiments and analysis show that NRTT has superior usability, deploy-ability, security, and performance properties compared to the state-of-the-art web authentication factors. In the second work, departing from the Kerb eros-centric approach, an authentication framework for Hadoop that utilizes Trusted Platform Module (TPM) technology is proposed. It is proven that pushing the security down to the hardware level in conjunction with software techniques provides better protection over software only solutions. The proposed approach provides significant security guarantees against insider threats, which manipulate the execution environment without the consent of legitimate clients. Extensive experiments are conducted to validate the performance and the security properties of the proposed approach. Moreover, the correctness and the security guarantees are formally proved via Burrows-Abadi-Needham (BAN) logic. In the third work, together with a phishing victim identification algorithm, NRTT is used as a new phishing detection feature to improve the detection accuracy of existing phishing detection approaches. The state-of-art phishing detection methods fall into two categories: heuristics and blacklist. The experiments show that the combination of NRTT with existing heuristics can improve the overall detection accuracy while maintaining a low false positive rate. In the future, to develop a more robust and efficient phishing detection scheme, it is paramount for phishing detection approaches to carefully select the features that strike the right balance between detection accuracy and robustness in the face of potential manipulations. In addition, leveraging Deep Learning (DL) algorithms to improve the performance of phishing detection schemes could be a viable alternative to traditional machine learning algorithms (e.g., SVM, LR), especially when handling complex and large scale datasets

    A Hierarchical Architectural Framework for Securing Unmanned Aerial Systems

    Get PDF
    Unmanned Aerial Systems (UAS) are becoming more widely used in the new era of evolving technology; increasing performance while decreasing size, weight, and cost. A UAS equipped with a Flight Control System (FCS) that can be used to fly semi- or fully-autonomous is a prime example of a Cyber Physical and Safety Critical system. Current Cyber-Physical defenses against malicious attacks are structured around security standards for best practices involving the development of protocols and the digital software implementation. Thus far, few attempts have been made to embed security into the architecture of the system considering security as a holistic problem. Therefore, a Hierarchical, Embedded, Cyber Attack Detection (HECAD) framework is developed to provide security in a holistic manor, providing resiliency against cyber-attacks as well as introducing strategies for mitigating and dealing with component failures. Traversing the hardware/software barrier, HECAD provides detection of malicious faults at the hardware and software level; verified through the development of an FPGA implementation and tested using a UAS FCS

    Cybersecurity: Past, Present and Future

    Full text link
    The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.Comment: Author's copy of the book published under ISBN: 978-620-4-74421-

    Platform Embedded Security Technology Revealed

    Get PDF
    Computer scienc
    corecore