33 research outputs found

    Runtime MPI Correctness Checking with a Scalable Tools Infrastructure

    Get PDF
    Increasing computational demand of simulations motivates the use of parallel computing systems. At the same time, this parallelism poses challenges to application developers. The Message Passing Interface (MPI) is a de-facto standard for distributed memory programming in high performance computing. However, its use also enables complex parallel programing errors such as races, communication errors, and deadlocks. Automatic tools can assist application developers in the detection and removal of such errors. This thesis considers tools that detect such errors during an application run and advances them towards a combination of both precise checks (neither false positives nor false negatives) and scalability. This includes novel hierarchical checks that provide scalability, as well as a formal basis for a distributed deadlock detection approach. At the same time, the development of parallel runtime tools is challenging and time consuming, especially if scalability and portability are key design goals. Current tool development projects often create similar tool components, while component reuse remains low. To provide a perspective towards more efficient tool development, which simplifies scalable implementations, component reuse, and tool integration, this thesis proposes an abstraction for a parallel tools infrastructure along with a prototype implementation. This abstraction overcomes the use of multiple interfaces for different types of tool functionality, which limit flexible component reuse. Thus, this thesis advances runtime error detection tools and uses their redesign and their increased scalability requirements to apply and evaluate a novel tool infrastructure abstraction. The new abstraction ultimately allows developers to focus on their tool functionality, rather than on developing or integrating common tool components. The use of such an abstraction in wide ranges of parallel runtime tool development projects could greatly increase component reuse. Thus, decreasing tool development time and cost. An application study with up to 16,384 application processes demonstrates the applicability of both the proposed runtime correctness concepts and of the proposed tools infrastructure

    The MPI BUGS INITIATIVE: a Framework for MPI Verification Tools Evaluation

    Get PDF
    International audienceEnsuring the correctness of MPI programs becomes as challenging and important as achieving the best performance. Many tools have been proposed in the literature to detect incorrect usages of MPI in a given program. However, the limited set of code samples each tool provides and the lack of metadata stating the intent of each test make it difficult to assess the strengths and limitations of these tools. In this paper, we present the MPI BUGS INITIATIVE, a complete collection of MPI codes to assess the status of MPI verification tools. We introduce a classification of MPI errors and provide correct and incorrect codes covering many MPI features and our categorization of errors. The resulting suite comprises 1,668 codes, each coming with a well-formatted header that clarifies the intent of each code and specifies how to execute and evaluate it. We evaluated the completeness of the MPI BUGS INITIATIVE against eight stateof-the-art MPI verification tools

    Maximizing Communication Overlap with Dynamic Program Analysis

    Get PDF
    International audienceWe present a dynamic program analysis approach to optimize communication overlap in scientific applications. Our tool instruments the code to generate a trace of the application's memory and synchronization behavior. An offline analysis determines the program optimal points for maximal overlap when considering several programming constructs: nonblocking one-sided communication operations, non-blocking collectives and bespoke synchronization patterns and operations. Feedback about possible transformations is presented to the user and the tool can perform the directed transformations, which are supported by a lightweight runtime. The value of our approach comes from: 1) the ability to optimize across boundaries of software modules or libraries, while specializing for the intrinsics of the underlying communication runtime; and 2) providing upper bounds on the expected performance improvements after communication optimizations. We have reduced the time spent in communication by as much as 64% for several applications that were already aggressively optimized for overlap; this indicates that manual optimizations leave untapped performance. Although demonstrated mainly for the UPC programming language, the methodology can be easily adapted to any other communication and synchronization API

    Optimization of MPI Collective Communication Operations

    Get PDF
    High-performance computing (HPC) systems keep growing in scale and heterogeneity to satisfy the increasing need for computation, and this brings new challenges to the design of Message Passing Interface (MPI) libraries, especially with regard to collective operations.The implementations of state-of-the-art MPI collective operations heavily rely on synchronizations, and these implementations magnify noise across the participating processes, resulting in significant performance slowdowns. Therefore, I create a new collective communication framework in Open MPI, using an event-driven design to relax synchronizations and maintain the minimal data dependencies of MPI collective operations.The recent growth in hardware heterogeneity results in increasingly complex hardware hierarchies and larger communication performance differences.Hence, in this dissertation, I present two approaches to perform hierarchical collective operations, and both can exploit the different bandwidths of hardware in heterogeneous systems and maximizing concurrent communications.Finally, to provide a fast and accurate autotuning mechanism for my framework, I design a new autotuning approach by combining two existing methods. This new approach significantly reduces the search space to save the autotuning time and is still able to provide accurate estimations.I evaluate my work with microbenchmarks and applications at different scales. Microbenchmark results show my work speedups MPI_Bcast and MPI_Allreduce up to 7.34X and 4.86X, respectively, on 4096 processes.In terms of applications, I achieve a 24.3% improvement for Hovorod and a 143% improvement for ASP on 1536 processes as compared to the current Open MPI

    Doctor of Philosophy

    Get PDF
    dissertationAlmost all high performance computing applications are written in MPI, which will continue to be the case for at least the next several years. Given the huge and growing importance of MPI, and the size and sophistication of MPI codes, scalable and incisive MPI debugging tools are essential. Existing MPI debugging tools have, despite their strengths, many glaring de ficiencies, especially when it comes to debugging under the presence of nondeterminism related bugs, which are bugs that do not always show up during testing. These bugs usually become manifest when the systems are ported to di fferent platforms for production runs. This dissertation focuses on the problem of developing scalable dynamic verifi cation tools for MPI programs that can provide a coverage guarantee over the space of MPI nondeterminism. That is, the tools should be able to detect diff erent outcomes of nondeterministic events in an MPI program and enforce all those di fferent outcomes through repeated executions of the program with the same test harness. We propose to achieve the coverage guarantee by introducing efficient distributed causality tracking protocols that are based on the matches-before order. The matches-before order is introduced to address the shortcomings of the Lamport happens-before order [40], which is not sufficient to capture causality for MPI program executions due to the complexity of the MPI semantics. The two protocols we propose are the Lazy Lamport Clocks Protocol (LLCP) and the Lazy Vector Clocks Protocol (LVCP). LLCP provides good scalability with a small possibility of missing potential outcomes of nondeterministic events while LVCP provides full coverage guarantee with a scalability tradeoff . In practice, we show through our experiments that LLCP provides the same coverage as LVCP. This thesis makes the following contributions: •The MPI matches-before order that captures the causality between MPI events in an MPI execution. • Two distributed causality tracking protocols for MPI programs that rely on the matches-before order. • A Distributed Analyzer for MPI programs (DAMPI), which implements the two aforementioned protocols to provide scalable and modular dynamic verifi cation for MPI programs. • Scalability enhancement through algorithmic improvements for ISP, a dynamic verifi er for MPI programs
    corecore