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Abstract

High-performance computing (HPC) systems keep growing in scale and heterogeneity to

satisfy the increasing need for computation, and this brings new challenges to the design of

Message Passing Interface (MPI) libraries, especially with regard to collective operations.

The implementations of state-of-the-art MPI collective operations heavily rely on syn-

chronizations, and these implementations magnify noise across the participating processes,

resulting in significant performance slowdowns. Therefore, I create a new collective com-

munication framework in Open MPI, using an event-driven design to relax synchronizations

and maintain the minimal data dependencies of MPI collective operations.

The recent growth in hardware heterogeneity results in increasingly complex hardware

hierarchies and larger communication performance differences. Hence, in this dissertation, I

present two approaches to perform hierarchical collective operations, and both can exploit

the different bandwidths of hardware in heterogeneous systems and maximizing concurrent

communications.

Finally, to provide a fast and accurate autotuning mechanism for my framework, I

design a new autotuning approach by combining two existing methods. This new approach

significantly reduces the search space to save the autotuning time and is still able to provide

accurate estimations.

I evaluate my work with microbenchmarks and applications at different scales. Mi-

crobenchmark results show my work speedups MPI Bcast and MPI Allreduce up to 7.34X

and 4.86X, respectively, on 4096 processes. In terms of applications, I achieve a 24.3%

improvement for Hovorod and a 143% improvement for ASP on 1536 processes as compared

to the current Open MPI.
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Chapter 1

Introduction

1.1 Motivation

Computation modeling and simulation were introduced two decades ago to save the

experimentation cost and speed up the research process by using computer systems. Due

to the limitations of memory and computing power of a single computer, scientists use

High-Performance Computing (HPC) systems to model complex problems and execute large

scale simulations in parallel. HPC systems are widely used in many scientific research

areas, such as biochemistry, chemistry, physics, and geography, and to satisfy the increasing

computational need of these research areas, HPC systems continue to grow in scale and

heterogeneity.

By equipping the co-processors and Graphics Processing Units (GPU), the computing

power of HPC systems grows rapidly. However, compared to the fast-growing computing

power, the speed of communication falls behind, which causes communication to become

the primary bottlenecks in many applications. Thus, it is crucial for communication

libraries to provide optimal performance to sustain parallel applications. The Message

Passing Interface (MPI) [26] is the most widely used communication standard in the HPC

community, providing various communication primitives to facilitate the development of

HPC applications.

Collective operations are one of the communication primitives available through the MPI

standard. These operations provide a means to perform communications between multiple

1



processes in a variety of communication patterns. As found in previous studies [50, 8],

collective operations are used in most MPI applications, and their cost becomes a major

factor in determining the performance and scalability of MPI applications. Hence, to achieve

good performance in MPI-based applications, MPI libraries must provide highly efficient

collective operations. However, with the increasing scale and complexity of HPC systems,

performance optimization becomes more challenging. Overall, there are three challenges

preventing collective operations from reaching optimal performance in large HPC systems:

propagation of noise, hardware heterogeneity and hierarchy, and parameter autotuning.

1.1.1 Propagation of Noise

In the early days, the term noise only refers to operating system noise, which is the

interference experienced by applications due to activities, such as cache misses, hardware

interrupts, and page faults, inside operating systems [9, 35, 23]. With the increase in system

size, noise is extended from operating system noise to the delays from other sources, including

fault tolerance [24, 42], in-situ analytics [46], and power management [27].

As suggested in previous research [35, 22], noise can dramatically slow down large-

scale parallel applications. The main reason for the slowdown is the propagation of noise

from one process to others through communications in between. Compared with point-

to-point communication operations, which involve only two processes, collective operations

can easily propagate noise from one process to all the processes that participated in the

communication. Therefore, even a little noise could be propagated via collective operations,

and then significantly decrease the performance of applications. Previous study [22] shows

that 2.5% noise can drop the performance of some applications more than 4× on 500 nodes

and 18× on 2500 nodes. Thus, it is crucial to identify the reason for noise propagation within

collective operations and to provide noise-resistant collective operations.

Usually, a collective operation consists of many fine-grained MPI one-sided or two-sided

communication routines. Carelessly handling the dependencies of these routines brings extra

synchronizations, and the extra synchronizations would propagate noise from one process to

the other processes. Therefore, to minimize the noise propagation and amplification, it is

important to identify and minimize unnecessary synchronizations in collective operations.

2



1.1.2 Hardware Heterogeneity and Hierarchy

Another important challenge as we approach larger scale machines is the increasing

resource heterogeneity and the more complex hardware hierarchy. A compute node on

such heterogeneous systems usually contains multiple CPU sockets that are connected

by high-speed inter-socket connections (e.g., Intel QPI or AMD Hyper-transport). Then,

several compute nodes are coupled together through the high-performance interconnects

and organized into racks, and finally the racks are combined into super-computers.

Benefiting from massive parallelism with low power consumption, HPC systems increas-

ingly incorporate accelerators (GPU, Intel KNL or specialized FPGA). Hence, more and

more applications, including traditional scientific applications [62, 65] and deep learning

applications [63], start to adopt accelerators to boost their performance. However, embracing

accelerators complicates the already complex architecture hierarchy, as accelerators are

connected via PCI Express bus or, in some cases, NVLink for NVIDIA GPUs.

All these advancements cause a drastic increase in performance and capability differences

between levels of the hardware hierarchy [44, 30]. The cost of the communications

between processes greatly varies depending on the physical distance and the types of

hardware between the processes. Thus, maintaining good communication performance

requires a holistic integration of process placements and architecture capabilities. Recent

advances in MPI collective implementations start to integrate hardware topology information

into collective operations [44, 36, 30] to achieve better performance. However, the

insufficient cooperation of the communications on different hardware levels (i.e., intra-

socket, inter-socket, PCI bridges and inter-node levels) leads to sub-optimal overlapping

of the communications. Also, the algorithms of collective operations are not adaptable to

various network conditions. This calls for a collaborative approach, between multiple levels of

collective algorithms, dedicated to holistically managing all levels of the hardware hierarchy.

1.1.3 Parameter Autotuning

Autotuning is a well-known technique used to automatically find the best parameters

(algorithms, segment sizes, etc.) of collective operations. It is a crucial feature for any

3



MPI collective framework as its accuracy of the selection of the best parameters directly

affects the performance of collective operations.

There exist two methods to perform autotuning. The first approach is searching through

the possible configurations of a collective operation. A naive implementation of this approach

is to do an exhaustive search of every possible configuration, which is the only guaranteed

way to find the best configuration. This method works well on small machines; however,

its huge search space limits its usage on modern large scale systems. To address this, some

efforts have been made to reduce the search space with heuristics [59, 20]. However, with

more heuristics, more assumptions are made to limit the search space, which could reduce

the accuracy of autotuning.

The second approach is using cost models [20, 50] to estimate the time of collective

operations and select configurations based on the estimations. Instead of directly measuring

the performance of whole collective operations, this method only needs to benchmark a few

key factors of systems, such as overhead, gap, bandwidth, and latency, which significantly

reduces the time it takes for autotuning. However, as stated in [20, 50], cost models are not

accurate enough to find the best configuration as they oversimplify modern heterogeneous

HPC systems. Hockney [33], LogP [13], LogGP [5], and PLogP [38] are four widely used

cost models to describe the communications in HPC systems, and they all assume the cost

of MPI point-to-point communications between any two processes is the same. But this

assumption is no longer valid on heterogeneous systems, where the cost of the point-to-

point communications varies a lot based on the locations of the participating processes.

SALAR [8] extends the LogGP model with different gaps (Gs) for different hardware to

model a hierarchical MPI Allreduce. But its gap is fixed for each level, which limits this

model to large messages when transferring one segment of the entire message can saturate

the network bandwidth.

Besides network heterogeneity, some other factors are not considered in these cost models,

such as the congestion on a busy process and the shared resources of the communications on

different hardware levels. The experiments in [32] suggest when one process communicates

with multiple processes concurrently, the congestion on that process would drastically

affect the overall communication performance. Previous research [7, 8, 17] assumes the

4



communications on different levels such as inter- and intra-node are totally independent when

modelling hierarchical collective operations. However, they are not perfectly overlapped

because of the shared resources such as memory buses, which is discussed in chapter 5.

Overall, neither of these methods works well on modern HPC systems. The first approach

can find the correct configurations, but it may take too much time on large scale machines;

while the second approach dramatically reduces the search time, but it is not accurate

because it misses a lot of factors. This calls for a new approach to perform parameter

autotuning, which can reduce the search space and find the best configurations accurately.

1.2 Contributions

In this dissertation, I divide my contributions into three parts (noise-resistant collective

operations, hierarchical collective operations, and autotuning of collective operations), with

each part addressing one of the challenges introduced in the previous section.

1.2.1 Noise-Resistant Collective Operations

To alleviate noise propagation, I propose “ADAPT,” a new event-driven collective framework

in Open MPI, which uses the completion of non-blocking point-to-point routines within

collective operations as events, and each event triggers a callback to allow the high-level

logic to issue dependent point-to-point routines. With the help of the event-driven design,

the synchronizations in collective operations are relaxed; and by relaxing synchronizations,

the ADAPT framework offers more potential to absorb system noise instead of propagating

or even amplifying it further. The detailed design and implementation are discussed in

chapter 3.

1.2.2 Hierarchical Collective Operations

To fully utilize the different characteristics of the hardware on each level of the hardware

hierarchy, and improve the performance of collective operations on modern HPC systems,
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I present two approaches to perform hierarchical collective operations, both utilizing the

hierarchical structure of HPC systems to optimize collective communications.

The first approach is combining the ADAPT framework with a carefully built topology-

aware tree. The event-driven design makes the ADAPT framework provides a lot

of opportunities to concurrently communicate over the hardware on different levels of

heterogeneous systems. This approach is introduced in chapter 4.

The downside of the first approach is that the ADAPT framework is based on MPI

point-to-point communications, which makes it unable to fully utilize the characteristics

of the hardware on each level of the hierarchy. For example, to transfer data from one

process to another process in the same node, a point-to-point communication needs two

memory copies, one from the source to a temporary buffer and one from the temporary

buffer to the destination; while with an one-sided communication, only one memory copy is

enough. To address this issue, I present another approach, “HAN,” a flexible hierarchical

collective framework in Open MPI in chapter 5. The HAN framework picks proper collective

frameworks as submodules to utilize the hardware specification of each level and combines the

collective operations from these submodules to perform hierarchical collective communication

operations with a task-based design.

1.2.3 Autotuning of Collective Operations

As seen from section 1.1.3, neither of the two existing autotuning methods (exhaustive search,

conventional cost model) works well independently; therefore, I design a new autotuning

approach by fusing these two methods to ensure a fast and accurate result. I create a novel

cost model based on benchmarking of several independent communication tasks and select

the best configuration with the help of the cost model. Compared with the exhaustive search,

since the benchmarking is performed on the tasks instead of a whole collective operation, this

method can reduce the search space significantly. And compared with the conventional cost

models, the new cost model is more accurate since it considers many more factors including:

• Different bandwidths on different levels;

• Changing gap with increasing message sizes;
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• Congestion on a process;

• Overlap rate of the communications on different levels;

All of these factors can affect the performance of collective operations, but they are hard to

model; while in the new autotuning approach, instead of modelling them, their influences

are directly measured on the tasks to provide better estimations.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows:

• Chapter 2 presents the background of this research. It introduces the MPI standard,

MPI collective communication operations, and one implementation of MPI standard

- Open MPI. In this chapter, I also review some previous work related to noise

propagation, hierarchical collective operations, and autotuning of collective operations.

• Chapter 3 first introduces a few state-of-the-art MPI implementations and shows

how noise is propagated through the dependencies in such implementations. Then

it presents and evaluates the design of a new collective framework, “ADAPT,” which

adopts an event-driven design to relax the unnecessary dependencies and alleviate noise

propagation.

• Chapter 4 shows the first approach I used to implement hierarchical collective

operations. I extend the ADAPT framework with a topology-aware communication tree

to utilize hardware topology information and maximize the concurrent communications

on different levels.

• Chapter 5 presents my second approach to perform hierarchical collective operations.

Compared with the first approach, this approach can better utilize the hardware

capability on each level and is more flexible to adapt to hardware updates. In this

chapter, I present ”HAN,” a new hierarchical autotuned collective framework in Open

MPI, which selects the suitable homogeneous collective communication modules as
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submodules for each hardware level, uses the collective operations from the submodules

as tasks, and organizes these tasks to perform efficient hierarchical collective operations.

• Chapter 6 introduces a new way to perform autotuning in the HAN framework. The

new approach merges two existing autotuning methods by using a novel cost model

based on the costs of tasks. It can significantly reduce the search space to save the

tuning time and provide accurate estimations.

• Chapter 7 concludes this dissertation and discusses some future directions.
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Chapter 2

Background and Literature Review of

Related Work

2.1 Overview

I discuss the background of this study in this chapter and review some related work. In

section 2.2, I introduce the MPI standard, MPI collective communication operations, and

the Open MPI library that is one implementation of the MPI standard and the foundation of

my work. Then, in section 2.3, section 2.4, and section 2.5, I review previous work related to

noise propagation in collective operations, hierarchical collective operations, and autotuning

of collective operations, respectively.

2.2 MPI

MPI stands for Message Passing Interface, which defines a library interface to describe the

communication in HPC systems. It is based on the message-passing parallel programming

model, where data needs to be moved between the address spaces of processes. MPI was first

introduced in 1993, and at that time it mainly focused on point-to-point communications.

Later, more functionalities were added to the MPI standard, such as collective operations,

remote-memory access operations, dynamic process creation, parallel I/O, etc. The latest
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version of the MPI standard (MPI-3.1) was published in June, 2015. In this dissertation, I

focus on the collective communication operations in MPI.

2.2.1 MPI Collective Communication Operations

Collective communication operations are communication routines that involve multiple

processes, in which all the participating processes need to call the function to execute the

collective operation.

A key argument of collective functions is a communicator that defines the group or groups

of the participating processes. Each process can belong to one or multiple communicators,

and it has an ID (rank) to identify itself in each communicator. The communicators can

be divided into two types: intra-communicators and inter-communicators, based on the

number of groups in a communicator. An intra-communicator contains a single group, while

an inter-communicator has a pair of groups. In this dissertation, I only consider the collective

operations on the intra-communicators. However, the idea of my framework can be applicable

to optimize other types of collective operations.

The common collective communication operations can be divided into three types:

1. One-to-all: this type of collective operation transfers data from one process to all the

processes in a communicator. It includes:

MPI Bcast. This operation broadcasts a message from the root to all the processes

in a communicator. After this operation, all the processes get the whole message.

MPI Scatter. This operation scatters a message from the root to all the processes

in a communicator. Suppose the number of processes in a communicator is n, then

this message is split into n equal parts, and the process i gets the i-th part.

2. All-to-one: this type of collective operation transfers data from all the processes in a

communicator to one process. It includes:

MPI Reduce. This operation performs a global reduce operation (maximum,

minimum, sum, average, etc.), and returns the result of the reduction to the root

process. It is the inverse operation to MPI Bcast.
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MPI Gather. This operation gathers messages from all the processes in a

communicator to the root process. The root process receives these messages and stores

them in the same order as the ranks of the processes. This operation is the inverse

operation to MPI Scatter.

3. All-to-all: this type of collective operation transfers data from all the processes in a

communicator and stores the result back to all the processes.

MPI Barrier. This is a special kind of collective operation. It blocks the caller

processes until all the processes in a communicator enter the barrier function. This

operation is not used for message transmission, but synchronization.

MPI Allgather. This operation is similar to MPI Gather. It gathers messages from

all the processes in a communicator and returns the result to all the processes.

MPI Allreduce. This operation is similar to MPI Reduce. It performs a global

reduce operation and returns the result of the reduction to all the processes.

MPI Alltoall. In this operation, the message is divided into n equal segments,

where n is the number of participating processes. It transfers the i-th segment on

process j to the j-th segment on process i.

In the MPI collective operations introduced before, each process sends or receives the

same amount of data. This works for many cases, but some applications may require each

process in the MPI collective operation to transfer a different amount of data. Hence,

the variable-size-input or v-version MPI collectives are introduced, such as MPI Gatherv,

MPI Scatterv, MPI Allgatherv, and MPI Alltoallv.

While this study is generic and can be applied to other collective operations, I use

MPI Bcast and MPI Allreduce as examples to show the design of my collective frameworks.

2.2.2 The Open MPI Library

The Open MPI library [31] is the foundation of my work, and all my collective operation

frameworks introduced in this dissertation are implemented in Open MPI.
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Open MPI is an open source implementation of the MPI standard. It starts from a

merger of LAM/MPI [57], LA-MPI [6], FT-MPI [18], and PACX-MPI [28] code bases. It

is designed, developed, and maintained by an active community of volunteers that come

from both academia and industry. To make the Open MPI library well organized and easy

to extend, the community adopts a component architecture called the Modular Component

Architecture (MCA) to design Open MPI. There are three main components in Open MPI:

• Open MPI component (OMPI). This component contains the implementations of MPI

functions.

• Open Run Time Environment (ORTE). This component supports different back-end

run-time systems. Recently, it is replaced by PRRTE.

• Open Portable Access Layer (OPAL). This component glues the code of OMPI and

ORTE.

The collective operation frameworks belong to OMPI, and they are located at OMPI/COLL.

The following is a partial list of existing MPI collective frameworks in Open MPI:

• Base - the basic collective framework in Open MPI, containing the homogeneous

implementations of all the collective operations. For each collective operation, it

provides multiple algorithms.

• Tuned - an autotuned framework, which can automatically select the algorithm and

segment size in the Base framework.

• Libnbc - a collective framework that supports non-blocking collective operations.

• SM - a specialized intra-node collective framework, which can utilize the shared memory

space in a node to reduce the number of memory copies.

• CUDA - a framework that supports collective operations on GPU data.

Some of these frameworks are used as submodules in my design of hierarchical collective

operations, which is discussed in chapter 5.
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2.3 Noise Propagation

As presented in the introduction, with the increasing scale of HPC systems and more

potential sources of noise, finding a way to alleviate the effects of noise becomes a crucial

problem for large-scale parallel applications. There are two approaches to alleviate the effects

of noise in previous research. One way is to eliminate noise from the source, and another

way is to alleviate the propagation of noise.

2.3.1 Eliminate Noise from the Source

The first method for eliminating noise is to identify the source of the noise and remove the

noise from the source. For instance, noise introduced by operating systems can be reduced

by system designers. In [9], Beckman et al. investigate the noise introduced by operating

systems and demonstrate that synchronizing the noise can significantly reduce its negative

influence; and in [66], Yoshii et al. present a method that uses extremely large memory

pages available on PowerPC CPU to reduce system noise. With the increasing scale of

HPC systems, noise is extended from operating system noise to delays from other sources.

In [67], Zheng et al. minimize noise between a simulation and an in-situ analytics by using

fine-grained scheduling to get idle resources.

This method works well for certain types of noise; however, there exist many types of

noise that cannot be eliminated from the source, and hence some research try to alleviate

noise propagation.

2.3.2 Alleviate Noise Propagation

Typically, local noise is very small; however, it can greatly hurt the performance of large scale

applications. As demonstrated in [9] and [22], the main reason for significant slowdown from

noise is that the local noise is propagated and even amplified through collective operations.

Therefore, the second method to reduce the negative effects of noise is to alleviate noise

propagation in collective operations. Vishnoi et al. [60] show how system noise impacts the

performance of collective operations, and Widener et al. [64] introduce how non-blocking

collective operations have the potential to mitigate certain types of noise.
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Despite in-depth research on the causes and impacts of noise mentioned above, not many

previous work focus on reducing the noise propagation. My work is the first to focus on the

implementation of noise resistant MPI collective operations.

2.4 Hierarchical Collective Operations

2.4.1 Explore More Levels

To take advantage of the communication differences in the hardware hierarchy, some research

manages to minimize the data transfers on the slow communication channels by grouping

the processes based on their locations. MagPie [39] optimizes collective operations for wide

area systems, where the processes are grouped by clusters; while MPICH2 [68] groups the

processes by compute nodes to limit the number of inter-node communications. Later,

the groups are further divided to explore more levels of the hardware hierarchy [37]. In

MVAPICH2 [36, 58], the researchers add one more level to group the processes based on the

network switch information.

Some other research focuses on the strategies to select the leader of each group. Parsons

et al. [49] select the leader dynamically to overcome the imbalanced process arrival times,

and Bayatpour et al. [7] create multiple leaders to better explore the parallelism in networks

for MPI Allreduce. These methods provide better performance compared to the isotropic

approaches that assume the cost for any pair of processes is equal [30], but since they are not

able to overlap the communications on different levels, their performance for big messages

would be sub-optimal.

2.4.2 Communication Overlap

Some research manages to overlap the communications on two levels, intra-node and

inter-node. HierKNEM [45] makes intra-node communications asynchronous by offloading

its intra-node communications with KNEM [29]; while SALaR [8] implements an inter-

node allreduce with non-blocking one-sided communication routines to make its inter-node

communications asynchronous.
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The two new approaches presented in this dissertation are able to overlap the com-

munications on different levels. With a carefully built topology-aware tree, the ADAPT

framework supports three levels: inter-node, inter-socket, and intra-socket. Since the

ADAPT framework uses non-blocking point-to-point routines on all the levels, it can overlap

the communications on the three levels. As for the HAN framework, it currently supports

two levels: inter-node and intra-node. This framework makes its inter-node communications

asynchronous by using non-blocking collective operations.

Cheetah [30] uses a Directed Acyclic Graph (DAG) to describe hierarchical collective

operations, which is similar to the HAN framework. However, my framework provides two

major advantages over Cheetah. First, the HAN framework has a pipelining mechanism that

can overlap the communications on different levels, which is missed in Cheetah. Second,

Cheetah lacks an autotuning component. Without an autotuning component, its best

performance are difficult to be achieved on a given machine.

2.5 Autotuning of Collective Operations

There are many configurations, such as algorithms and segment sizes, in any framework

for collective operations. As suggested in previous research [59, 19], choosing the right

configurations is important for the performance of collective operations.

In previous research, many methods are created to tune a collective framework to find

the right configurations automatically. These methods can be divided into two categories:

offline tuning and online tuning. In offline tuning, autotuning happens before executing

applications; while in online tuning, collective frameworks tune themselves while applications

are running.

2.5.1 Offline Tuning

In [59], Vadhiyar et al. notice collective operations may not give good performance in all

situations. Hence, they perform an exhaustive search to find the best arguments for every

possible case and use the results to tune collective operations. It also provides some heuristic

ideas and multiple gradient descent methods to limit the search space. These heuristics are
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from different angles than my approach and can be combined with mine to further reduce

the testing time as discussed in chapter 6. The tuned [19] module is the current default

collective framework in Open MPI, its default decisions are made by running benchmarks

on a cluster of AMD64 processors with Gigabit Ethernet interconnects. Since HPC systems

have changed drastically, its default decisions are not optimized for modern hardware.

With the increasing scale of HPC systems, the search space of the exhaustive search

approach grows exponentially, making this approach unrealistic and resulting in researchers

trying to use cost models to guide the autotuning processes. In [50], Pješivac-Grbović et

al. try to use multiple models to estimate the cost of MPI Bcast. However, as the authors

point out in the paper, the models are not accurate enough to tune collective operations.

SALaR [8] improves the LogGP model with different gaps for different levels. However, even

though this model is more accurate than previous cost models for hierarchical collective

operations, it still can not find the best configuration directly. In the SALaR paper, the

authors only use the cost model to provide a starting point for its online tuning. Eller

et al. [17] further improve the accuracy of a postal model of MPI Allreduce by considering

network congestion, network distance, communication and computation overlap, and process

mappings. This model’s assumption of the perfect overlap of communications on different

levels and only supporting one algorithm make it not suitable for autotuning.

2.5.2 Online Tuning

Online tuning is another way to figure out the best configuration. It times collective

operations and changes the decision accordingly while MPI applications are running. STAR-

MPI [21] maintains a set of algorithms for each MPI collective operation. As an application

executes, STAR-MPI measures the performance of the algorithms and dynamically selects the

best algorithm for the application at runtime. SALaR [8] implements a two-level hierarchical

MPI Allreduce with a pipelined design. To find the best segment size in the pipelined design,

it adopts online tuning. SALaR keeps the latency, message size, and segment size of previous

calls to MPI Allreduce for each message range and uses a heuristic-based adaptive strategy

to find the best segment size for the new MPI Allreduce.
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In the two previous research, based on the initial guess, the time to find the best

configuration is uncertain; and both inevitably bring overhead, including the cost of timing

and maintaining the decision matrix online. These downsides can hurt the performance of

collective operations, which limits the application of this approach to the general case, and

that is why I choose to use offline tuning approach in this dissertation.
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Chapter 3

Noise Resistant Collective Operations

3.1 Overview

With the increasing scale of HPC systems, there are more and more sources of noise that

can impact the performance of applications. Even though local noise often causes very little

delay per process, such delays can affect the overall performance of applications significantly

when the noise is propagated to other processes through the communications between the

processes [35].

Compared to point-to-point communication routines, collective communications are more

easily affected by noise for two reasons. First, noise propagation increases with the number

of participants in collective communications. Since the number of processes is determined

by application developers, limiting the number of processes is not an option to reduce noise

propagation. Second, there are many dependencies in the implementations of collective

operations that allow noise to propagate.

In this chapter, I first identify the dependencies in the implementations of collectives

operations in mainstream MPI libraries and analyze how these dependencies propagate

noise in section 3.2. Then, I introduce the ADAPT collective operations framework in

section 3.3, which adopts an event-driven design to relax dependencies. Finally, I evaluate

the performance impact of noise on the ADAPT framework and other MPI libraries on three

clusters in section 3.4.
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Figure 3.1: Implementation of MPI Bcast using blocking point-to-point routines
(red: noise source; orange: affected routines; child num: number of childen of the process)

3.2 Existing Implementations

In general, the collective operations implemented in major MPI libraries are based on

point-to-point communication routines, either blocking or nonblocking. Carelessly managing

these point-to-point routines introduces unnecessary dependencies between them, and such

dependencies bring synchronizations between otherwise independent point-to-point routines.

As discussed in [35], noise on one process can delay other processes. For example, noise on

one process delays its point-to-point routines, and then delayed routines propagate noise to

other point-to-point routines via dependencies between them. Later, all the delayed point-

to-point routines stall other participating processes. In this fashion, noise is propagated from

a single process to the others and slows down the performance of entire collectives.

I analyze two implementations of MPI Bcast, one using blocking point-to-point routines

and one using nonblocking point-to-point routines, to identify hidden dependencies and

highlight their noise propagation patterns.

19



3.2.1 Collectives Using Blocking Point-to-Point Routines

Figure 3.1 presents a pipelined implementation of MPI Bcast using blocking point-to-point

routines, which can support any tree-based algorithms. In the figure, MPI Send(x,y) means

sending segment x to child y, and MPI Recv(x) means receiving segment x from the parent.

With pipelining, big messages are divided into several segments and propagated in order.

In this implementation, the root process issues an MPI Send for each of its children to

transfer a segment. After they are finished, the same procedure applies to the following

segments. Intermediate processes post an MPI Recv to receive a segment from their parent

and then issue multiple MPI Sends to send the received segment to their children. After

these MPI Sends are done, they start to receive the next segment until all segments are

processed. Leaf processes work similarly to intermediate processes without sending received

segments. Algorithm 1 shows the pseudocode of this implementation. In the pseudocode, P

means the current process, seg num means the number of segments, and child num means

the number of children of current process.

Algorithm 1: MPI Bcast using blocking point-to-point communication

Input: MPI Bcast(void *buff, int count, MPI Datatype datatype, int root,
MPI Comm comm)

1 if P is root then
2 for i← 0 to seg num− 1 do
3 for j ← 0 to child num− 1 do
4 MPI Send segment i to its child j;

5 else if P is leaf then
6 for i← 0 to seg num− 1 do
7 MPI Recv segment i from its parent;

8 else
9 for i← 0 to seg num− 1 do

10 MPI Recv segment i from its parent;
11 for j ← 0 to child num− 1 do
12 MPI Send segment i-1 to its child j;
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Figure 3.2: Noise propagation of dependencies
(red: noise source; orange: affected processes/point-to-point routines)

Since a blocking point-to-point communication routine involve synchronizations like

handshakes between the sender and the receiver, noise on any of these two processes

can slow down the blocking point-to-point routine and further delay the process on the

other side. When there are dependencies between the point-to-point routines, noise can be

propagated from one to the others, resulting in a slowdown of the entire collectives. In the

implementations of MPI Bcast using blocking point-to-point routines, I identify two kinds

of dependencies, which can propagate noise significantly:

• Data Dependency. If the input data of some point-to-point routines depends on the

output data of other point-to-point routines, then there is a data dependency between

them. Thus, they have to be executed in order to get the correct results. In the

implementations of MPI Bcast using blocking point-to-point routines, intermediate

processes have to receive one segment before sending it to their children. As in

figure 3.1, MPI Recv(i) must occur before MPI Send(i, m) (m ∈ [0 , child num − 1 ])

for any segment i. This dependency is necessary for the correctness of a MPI Bcast

operation. With data dependency, noise on intermediate processes can be propagated

to all their children. Figure 3.2.a represents the noise propagation pattern caused by

data dependency with a binomial tree MPI Bcast. If the noise on process d delays the

MPI Recv from b to d, then following MPI Send from d to g is delayed, leading to the

delay of g.
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• Synchronization Dependency. This kind of dependency is caused by the synchro-

nizations between point-to-point routines. A blocking point-to-point routine waits

until the operation is done, which naturally brings a hidden synchronization. Such

synchronization leads to a dependency between a blocking point-to-point routine and

all the future routines, which is called Synchronization Dependency.

This dependency brings unnecessary ordering of the routines and can propagate noise

from one process to other processes. As in figure 3.1, root and intermediate processes

always send a segment to child m before child n, for all m < n (i.e., MPI Send(0,0))

always before MPI Send(0,1), even though there is no data dependency between them.

Thus, if MPI Send(0, 0) is delayed (marked red), all the following MPI Sends and

MPI Recvs are affected (marked orange). Figure 3.2.b presents how noise is propagated

from one process to other processes as a result of this kind of dependency. If the noise

on process d delays the MPI Recv of segment 0 from b to d (MPI Recv(0)) on process

d), then MPI Send(0, d) on process b is also delayed since noise can be propagated

through blocking point-to-point routines, and thus the parent of process d, process b,

is delayed. Later, because of the synchronization dependency, the delay of MPI Send(0,

d) on process b affects the MPI Send(0, e) on process b, resulting in the delay of process

e, the sibling of process d. Therefore, a delayed process can affect its siblings and parent

in this case.

Based on the analysis above, both types of dependencies can propagate noise. Via

data dependency, noise on a process is unavoidably propagated to its children and further

to the grandchildren, and via the unnecessary synchronization dependency, noise on one

process is propagated to its parent and siblings. With the combination of these two types

of dependencies, after a few iterations, the noise on one process can be propagated to the

grandchildren, grandparents, and descendants of grandparents, and eventually, to all the

processes (figure 3.2.c). Therefore, this implementations of MPI Bcast using blocking point-

to-point routines is able to amplify noise.
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Figure 3.3: Implementation of MPI Bcast using nonblocking point-to-point routines
(red: noise source; orange: affected routines; child num: number of childen of the process)
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3.2.2 Collectives Using Nonblocking Point-to-Point Routines

An improvement over the previous implementation is using nonblocking point-to-point

routines (MPI Isend, MPI Irecv) instead of the blocking ones. Figure 3.3 presents a

pipelined implementation of MPI Bcast using nonblocking point-to-point routines, and this

implementation is the default implementation in Open MPI. In the figure, MPI Isend(x,y)

means sending segment x to child y, MPI Irecv(x) means receiving segment x from the

parent, and Wait(x) means waiting for segment x.

In this implementation, the root process issues multiple MPI Isends to send a segment

to all of its children and uses Waitall to wait for all these MPI Isends to finish. After these

MPI Isends are completed, the root process starts to send the next segment. Leaf processes

post two MPI Irecvs for the first two segments, but only waits for the first segment. When

it receives the first segment, it posts an MPI Irecv for the next segment and waits for the

second segment. Intermediate processes behave similarly to leaf processes except that they

need to send the received segment to its children in the same fashion as the root process.

The reason for the non-root processes post two MPI Irecvs instead of one is to handle out

of order segments. Pseudocode of this implementation is in algorithm 2.

Unlike blocking point-to-point communication routines, nonblocking point-to-point

routines are more noise resistant. In a nonblocking point-to-point routine, if one process

is delayed, the process on the other side is still able to progress other nonblocking

routines without hanging. Thus, in most cases, noise on one process is less likely to be

propagated to the other process via nonblocking point-to-point routines [35], except when

the other process has nothing to work but waits for the delayed nonblocking point-to-point

communication. Even though a nonblocking point-to-point routine has a higher potential to

absorb noise, in the implementation of MPI Bcast using nonblocking routines, there are still

dependencies that can propagate noise. The following describes the two dependencies and

noise propagation patterns in this implementation:

• Data Dependency. It is the same as the previous implementation using blocking

point-to-point routines, and this dependency is required for the correctness of a
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Algorithm 2: MPI Bcast using nonblocking point-to-point communication

Input: MPI Bcast(void *buff, int count, MPI Datatype datatype, int root,
MPI Comm comm)

1 if P is root then
2 for i← 0 to seg num− 1 do
3 for j ← 0 to child num− 1 do
4 MPI Isend segment i to its child j;

5 wait for all MPI Isends;

6 else if P is leaf then
7 MPI Irecv segment 0 from its parent;
8 for i← 1 to seg num− 1 do
9 MPI Irecv segment i from its parent;

10 wait for previous segment i-1 to arrive;

11 wait for the last segment to arrive;

12 else
13 MPI Irecv segment 0 from its parent;
14 for i← 1 to seg num− 1 do
15 MPI Irecv segment i from its parent;
16 wait for previous segment i-1 to arrive;
17 for j ← 0 to child num− 1 do
18 MPI Isend segment i-1 to its child j;

19 wait for all MPI Isends;

20 wait for the last segment to arrive;
21 for j ← 0 to child num− 1 do
22 MPI Isend of the last segment to its child j;

23 wait for all MPI Isends;

MPI Bcast operation. Therefore, like the previous implementation, the noise on

intermediate processes can be propagated to all their children with data dependency.

• Synchronization Dependency. As seen in figure 3.3, by using MPI Isends, data

movements from one process to all of its children become independent, and they can

be progressed in any order by MPI’s progress engine. However, the Waitalls and the

Waits act as synchronizations that order the point-to-point routines between them.

Thus, any delays to the Waitalls and the Waits can affect the following routines, which

causes this type of dependency can propagate noise to a process’s siblings and parent.
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For example, in figure 3.2, if the noise on process d delays the MPI Irecv of segment

0 from b to d (MPI Irecv(0) on process d), then process b is not delayed directly since

b can still progress other MPI Isend, such as MPI Isend(0, e) on process b. However,

because of the Waitall, process b can be affected if all other nonblocking point-to-point

routines are completed, except for the delayed one. In this case, the Waitall on process

b only waits for the delayed point-to-point routine, and hence, process b is delayed.

Later, because of synchronization dependency, the delay of Waitall on process b affects

the following MPI Isend(1, e) on process b, resulting in the delay of Wait(1) on process

e. Thus, process e, the sibling of process d, is also delayed.

With the combination of data dependency and synchronization dependency, noise

can be propagated to all the processes. Compared with the blocking point-to-point

implementation discussed before, this implementation of MPI Bcast is more tolerant to noise

since nonblocking routines offer out-of-order executions, instead of waiting for the delayed

point-to-point routines. However, the Waitall and the Wait in the nonblocking version still

bring heavy synchronizations, and thus this nonblocking version is not sufficient to absorb

noise and minimize noise propagation.

3.3 ADAPT: Event-Driven Design

3.3.1 Implementation of ADAPT

In this section, to better exploit the available parallelisms in collective operations and

minimize noise propagation, I present the ADAPT collective communication framework.

The key idea of the ADAPT framework is to design collective communications operations

with events and callbacks, which eliminates the need to wait for point-to-point routines to

complete. This type of programming model is called “event-driven.”

Event-driven programming is a long-existing programming model, and it is used to

solve various problems, including reducing the memory overhead in embedded systems [16],

achieving high throughput in server applications [48] and forming service objects across

mobile networks [14]. This model is also used to handle I/O operations (event-driven
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Figure 3.4: Implementation of MPI Bcast in ADAPT
(red: noise source; orange: affected routines; child num: number of childen of the process)
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I/O [10, 15]). Normally, I/O operations are extremely slow compared to the processing

of data. Therefore, the CPU’s computing power is wasted if it is blocked to wait for I/O

operations. Alternatively, with the event-driven design, instead of waiting for I/O operations,

CPU can continues to work on other jobs until it gets a notification of the completion of an

I/O operation.

In a typical event-driven program, there is an event loop to detect events, and when an

event occurs, the corresponding callback is triggered. In this way, the execution flow of a

program is determined by events and their callbacks. To implement events and callbacks,

the ADAPT framework is deeply integrated with the communication engine in Open MPI.

The completion of a nonblocking point-to-point routine is used as an event, which triggers a

callback contains a detailed analysis of the state of the collective algorithm, and if necessary,

the process posts new point-to-point routines to start the following data movements. One

thing worth mentioning is that the nonblocking point-to-point routines, where callbacks

are attached, are at a lower level than MPI Isend/MPI Irecv (shown as “Isend/Irecv” in

the following) since MPI Isend/MPI Irecv does not support callbacks. Instead of waiting for

each nonblocking point-to-point routine as in the previous implementation, I create a request

for each collective operation and do not mark it as complete until the collective operation

is finished. Therefore, Open MPI’s progress engine keeps progressing all the nonblocking

point-to-point routines until this request is completed.

The implementation of the MPI Bcast algorithm in the ADAPT framework is shown in

figure 3.4, and the pseudocode is presented in algorithm 3, algorithm 4 and algorithm 5.

Following the event-driven pattern, all segments are propagated to all processes via a series

of the Isends/Irecvs and their callbacks.

• Root: the root process posts N Isends to send the first N segments to each child,

then uses set Isend cb to attach a callback to each of these Isends. When any Isend is

completed, the corresponding Isend cb is called to post another Isend for sending the

next available segment.

• Non-root: a non-root process posts M Irecvs to receive the first M segments from its

parents and attaches callbacks to these Irecvs with set Irecv cb. When any Irecv is
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completed, the corresponding Irecv cb is called to post another Irecv for receiving the

next available segment. If the process is an intermediate process, besides receiving the

next available segment, it posts multiple Isends to send the received segment to its

children in Irecv cb.

Algorithm 3: ADAPT MPI Bcast Algorithm

Input: MPI Bcast(void *buff, int count, MPI Datatype datatype, int root,
MPI Comm comm)

1 create request;
2 create recved segs num;
3 create recv array[segs num];
4 create send array[child num];
5 if P is root then
6 recved segs num ← segs num;
7 for i← 0 to seg num− 1 do
8 recv array[i] ← i;

9 for j ← 0 to child num− 1 do
10 send array[i] ← N;

11 for i← 0 to N − 1 do
12 for j ← 0 to child num− 1 do
13 Isend segment i to its child j and attach send cb(j) to Isend;

14 else
15 recved segs num ← 0;
16 for i← 0 to seg num− 1 do
17 recv array[i] ← 0;

18 for j ← 0 to child num− 1 do
19 send array[i] ← 0;

20 for i← 0 to M − 1 do
21 Irecv segment i from its parent and attach recv cb(i) to Irecv;

22 wait(request);

In the ADAPT framework, I issue N Isends to a single child and M Irecvs from the

parent for multiple segments simultaneously to maximize the usage of the network resources

(discussed in the next chapter 4) and absorb noise (discussed in the next section 3.3.2).
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Algorithm 4: ADAPT MPI Bcast Algorithm (send cb)

Input: send cb(int child id)
1 if send array[child id] < recved segs num then
2 Isend segment recv array[send array[child id]] to the same child and attach

send cb(child id) to Isend;
3 send array[child id]++;

4 if P is root and has sent all the segments then
5 complete(request);

Algorithm 5: ADAPT MPI Bcast Algorithm (recv cb)

Input: recv cb(int seg id)
1 recved segs num++;
2 recv array[recved segs num-1] ← seg id;
3 if recved segs num + M - 1 < seg num then
4 Irecv segment recved segs num + M - 1 from the parent and attach

recv cb(recved segs num + M - 1) to Irecv;

5 for i← 0 to child num− 1 do
6 if recved segs num-1 = send array[i] then
7 Isend segment seg id to child i and attach send cb(i) to Isend;
8 send array[i]++;

9 if P is not root and has received all the segments then
10 complete(request);

Usually, M is set to be larger than N . This is because a problem of matching an Isend (of

a segment) to a corresponding Irecv. If the segment arrives on the receiver side before the

receiver posts a corresponding Irecv, the segment will be considered “unexpected.” In this

problem, MPI needs to store it into a temporary buffer and match it later when the receiver

posts the corresponding Irecv. This problem introduces significant latency, as the procedure

requires memory allocation and data copying; thus, it is very important to ensure an Irecv

is always posted before the arrival of its corresponding Isend. To address this issue, I need

to make sure M is bigger than N to minimize the chance of unexpected segments.
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3.3.2 Analysis of Dependencies in ADAPT

As discussed in section 3.2, in the existing implementations of MPI Bcast, there are

two types of dependencies: data dependency and synchronization dependency. In this

section, I demonstrate how the ADAPT framework relaxes synchronization dependencies

and minimizes noise propagation by making every segment and every child independent of

each other using the event-driven design.

• Data Dependency. In an MPI Bcast implementation, data dependency means any

process needs to receive the data before starting to send the data to its children.

ADAPT has this kind of dependency as the same as the previous implementations,

and this dependency is necessary for the correctness of a MPI Bcast operation.

• Synchronization Dependency. In the ADAPT framework, the completion of a

nonblocking point-to-point routine triggers a callback, and in the callback, the process

may post another nonblocking point-to-point routine. For example, on the root process,

Isend(N , 0) can only be issued after the earliest one of Isend(i, 0) (i ∈ [0 ,N − 1 ]) is

completed. This leads to a synchronization dependency between these two point-to-

point routines. However, this synchronization dependency can hardly propagate noise

because of the following two reasons.

First, in the ADAPT framework, segments can be handled in any order (segment

independence). I use the root process as an example to show the segment

independence. At the beginning of a MPI Bcast operation, all segments are put into

a virtual “segment pool.” The root process then posts N Isends to send the first N

segments to child 0 (Isend(i, 0) (i ∈ [0 ,N − 1 ])). If any of them is done, its callback

(Isend cb) issues another Isend to send the next available segment of the segment pool.

Thus, there are always N concurrent Isends between the root and each child. If any

Isend is delayed, segments can be re-balanced to other Isends. Therefore, the delay of

one segment can hardly delay the communication of other segments between the root

and one child; and thus, noise can be limited. Also, the receiving of the next segment

is decoupled with the sending of the current segment, which prevents the noise from

being propagated to a process’s grandparent.
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Second, each child can transfer data segments independently from each other (child

independence). In existing implementations of MPI Bcast, a process always waits

for a segment to be sent to all its children before transferring the next segment. While

in the ADAPT framework, every child keeps its own state and transfers data segments

independently. In this way, noise cannot be propagated to a process’s siblings. In

a word, segment independence absorbs the noise magnitude and child independence

limits the range of noise propagation, and thus the ADAPT framework can reduce

noise propagation.

Based on the above analysis, I conclude that, benefiting from the event-driven design, the

ADAPT framework relaxes synchronization dependencies and minimizes noise propagation.

3.3.3 Extend ADAPT to Other Collective Operations

From the three implementations of tree-based MPI Bcast mentioned in section 3.2 and

section 3.3, I notice that there is a common communication pattern: a process sends data

to its children or receives data from its parents, which is the basic building block of MPI

collective operations.

Algorithm 6: Blocking point-to-point Implementation

1 for i← 0 to k do
2 MPI Send(i)/MPI Recv(i);

In the implementation using blocking point-to-point routines, the basic building block can

be shown as algorithm 6, where k is the number of needed point-to-point routines. A similar

pattern appears in the implementation of collective operations in MPICH and MVAPICH.

In the implementation using nonblocking point-to-point routines, the basic building block

becomes algorithm 7; this pattern exists in MVAPICH and Open MPI. Compared with the

previous implementation, it provides more parallelism by adopting nonblocking point-to-

point routines, such as MPI Isend/MPI Irecv.
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Algorithm 7: Nonblocking point-to-point Implementation

1 for i← 0 to k do
2 MPI Isend(i)/MPI Irecv(i);

3 Waitall()

Algorithm 8: Adapt Implementation

1 for i← 0 to k do
2 Isend(i)/Irecv(i);
3 set Isend cb(i)/set Irecv cb(i);

The basic building block of ADAPT is algorithm 8, which uses non-blocking point-

to-point routines as same as algorithm 7. It provides parallelism to allow concurrent

communication and reduces synchronizations by removing the Waitall to alleviate noise

propagation.

For MPI Bcast algorithms that are not based on trees, the event-driven design can still

be used as long as the basic building blocks exist in the algorithms. For example, a scatter

followed by an allgather is a common algorithm to perform MPI Bcast for big messages.

In the scatter phase, a process may send data to multiple other processes, which is similar

to the MPI Bcast discussed above, and the same technique can be applied to it. For other

one-to-all, all-to-one and some all-to-all collectives, a process always need to send or receive

data from other processes. Therefore, the basic building block is a common part of various

collectives, and the event-driven design can be extended to them.

3.3.4 Support Different Collectives with Multiple Communication

Trees

In collective operations, the parents-children relationships form a communication tree. In

the ADAPT framework, the communication tree of a collective operation can be any type of

tree, e.g., a chain, binary tree, binomial tree, or other advanced trees [54]. The design

of the ADAPT framework allows most operations to be independent of the underlying
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communication tree. Therefore, it is easy to adapt the topology-aware trees, which are

created based on hardware topology, to boost performance, and this part is discussed in

chapter 4.

3.4 Evaluation

3.4.1 Experimental Setup

This section studies the performance impact of noise on the ADAPT framework and other

MPI libraries to demonstrate ADAPT’s noise absorption abilities. I use Intel MPI benchmark

(IMB) [1] to test the performance of the collective operations. The noise absorption ability

of the ADAPT framework is tested on three clusters:

• Saturn, a CPU cluster. In this section, node d00 to d15 are used, on which each node

has 2 Intel Xeon E5520 CPUs, and the nodes are connected by Infiniband.

• Cori, a CPU cluster, on which each node is equipped with 2 Intel Xeon E5-2689 v3

CPUs, and the nodes are connected by Cray Aries;

• Stampede2, a CPU cluster, on which each node is equipped with 2 Intel Xeon 8160

CPUs, and the nodes are connected by Intel Omni-Path.

3.4.2 Noise Impact

Noise Injection on Single Process

Figure 3.5 shows the performance of 4 MB MPI Bcast on 16 processes with one process per

node on Saturn. The x-axis represents the rank of participating processes, and the y-axis

represents the time of each process spent on the MPI Bcast. The orange line shows the

performance of the ADAPT framework, and the green line presents the performance of the

default Open MPI implementation that uses the nonblocking point-to-points routines. This

figure shows that even though using the same algorithm (binary tree), the ADAPT framework

can achieve better performance than the implementation using nonblocking point-to-point,

which is explained in the next chapter 4.3.
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To clearly show the effect of noise propagation, in the red bars and blue bars in figure 3.5,

I inject 1 ms noise on processes 6 using a method similar to [9]. Comparing the orange line

with the red bars and the green line with the blue bars, it is easy to observe that the delay

on process 6 is propagated to all the processes in the default Open MPI implementation,

while in the ADAPT framework, the noise only can reach the decedents (process 10 and 14)

of the delay processes. This result verifies the analysis in section 3.3.

Noise Injection on Multiple Processes

Figures 3.6 and figure 3.7 present the noise impact on the performance of MPI Bcast and

MPI Reduce operations in different MPI implementations on the Cori and the Stampede2

using 1024 and 1536 processes, respectively. In this experiment, message size is set to 4 MB to

allow enough segments to fill the pipeline and highlight the noise effects on performance. As

suggested in [35, 22], noise usually has greater impact on larger systems. To show the delays

of collective operations caused by noise with fewer processes, I use a method similar to the

one in [9] to inject noise. I randomly inject 0–10ms (average 5%) and 0–20ms (average 10%)

noise following a uniform distribution with a fixed frequency of 10 Hz, since low-frequency,

long-duration noise has great impact on performance [22]. In figure 3.6 and figure 3.7, the

blue bars show the average time to do a collective operation with no noise injected; the red

bars and the green bars present the time of that collective operation after 5% and 10% noise

injection, respectively; and numbers above red and green bars show the performance slow

down percentages.

In figure 3.7 after 10% noise injection, the slowdown of MVAPICH is 868%, which

is beyond the range of the Y-axis in the figure. MVAPICH’s MPI Reduce encounters

segmentation fault with IMB on Stampede2 when message size is 4MB, so there are no results

for the MPI Reduce operation. As seen in figure 3.6 and figure 3.7, benefiting from the event-

driven design, the ADAPT framework relaxes synchronization dependencies, and thus it is

largely unaffected by the noise as compared to other MPI libraries. As a result, the ADAPT

framework only slows down up to 24% and 16% on MPI Bcast and MPI Reduce with 10%

noise injected on both machines. The MPI Bcast and MPI Reduce of the default Open MPI

(OMPI-default) use non-blocking point-to-point routines, so as analyzed in section 3.2.2, it
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propagates noise because of the synchronization dependencies. Thus, it slows down up to

59% and 99% on MPI Bcast and MPI Reduce, respectively. Since Cray and Intel MPI are

not open-source, I do not know their detailed implementations, but Cray MPI slows down

up to 149% and 61%, and Intel MPI slows down 33% and 24%, both are less noise-resistant

than the ADAPT framework.

39



Chapter 4

Hierarchical Collective Operations -

Topology-Aware Tree

4.1 Overview

HPC systems are becoming more heterogeneous, resulting in an increasingly complex

hardware hierarchy. To fully utilize the different characteristics of the hardware on each level

of the hierarchy, and to improve the performance of collective operations on these systems,

hierarchical collective operations are proposed. The hierarchical collective operations can

utilize the hierarchical structure of HPC systems to optimize collective communications.

This chapter describes my first approach to implementing hierarchical collective oper-

ations. In this approach, I extend the ADAPT framework with a topology-aware tree to

handle the complex hardware hierarchy in heterogeneous systems. In section 4.2, I introduce

the idea and implementation of the topology-aware tree. Then in section 4.3, I explain why

the ADAPT framework can have the best performance compared to other implementations

with the same topology-aware tree. Finally, in section 4.4, I evaluate the performance of this

implementation of hierarchical collective operations with other MPI implementations.
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Figure 4.1: MPI Bcast with a binary tree (16 processes)

4.2 Topology-Aware Communication Tree

4.2.1 The Problems of Existing Tree-Based Algorithms

The default collective framework in Open MPI supports multiple tree-based algorithms for

each collective operation, and all these algorithms are designed and optimized based on

the assumption of the equal cost of MPI point-to-point communications between any two

processes. However, this assumption is not valid anymore because the cost of MPI point-

to-point routines on modern HPC systems varies hugely based on the placement of the

processes.

Figure 4.1 shows an example of MPI Bcast with a binary tree algorithm on 16 processes,

and figure 4.2 shows the placement of processes after mapping them to a actual machine,

which has two nodes, two sockets per node, and four cores per socket. After the processes

mapping, the 15 MPI point-to-point communication routines in figure 4.1 become 8 inter-

node point-to-point routines, 4 inter-socket point-to-point routines, and 3 intra-socket point-

to-point routines, which are shown in figure 4.2 as red arrows, green arrows, and black

arrows, respectively. Since the inter-node communication cost much more time than the

inter-socket communication and the inter-socket communication cost more time than the

intra-socket communication, to improve the performance, I rebuild the tree based on the

hardware topology to minimize the slow point-to-point routines (inter-node and inter-socket)
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Figure 4.2: Process placement with a binary tree
(16 processes, 2 nodes, 2 sockets per node, 4 cores per socket)

Figure 4.3: Process placement with a topology-aware tree
(16 processes, 2 nodes, 2 sockets per node, 4 cores per socket)
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and maximize the fast point-to-point routines (intra-socket). After the rebuilding, the new

communication tree, which is called a topology-aware communication tree, only has 1 inter-

node point-to-point routine, 2 inter-socket point-to-point routines, and 12 intra-socket point-

to-point routines, as shown in figure 4.3.

4.2.2 Build a Topology-Aware Tree

This section describes how to build such a topology-aware tree. The first step to build a

topology-aware tree is to get the placement of each process. To gather the hardware topology

information, each process in a given communicator firstly collects its placement using the

Portable Hardware Locality (hwloc) [11] framework. The hwloc software package provides an

abstraction of the hierarchical topology of modern architectures, including nodes, sockets and

cores. Because of the limitation of hwloc, I cannot get further network topology information

such as network switch or router. Hence, I only consider three hardware hierarchy levels in

this work: node level, socket level and core level and record the location of each process with

a topology tuple (Node ID, Socket ID, Core ID). After every process gathers its topology

tuple, all processes exchange their local information so that all of them have topology

information about other processes to form a topology table. Later, the topology table is

cached in memory, so that all following collective operations within the same or duplicated

communicator can directly use the cached topology table instead of gathering it again, no

matter what kind of collective operations they are.

Based on the topology table, a topology-aware tree can be built to perform collective

operations. At the core level, all processes belong to a socket form a group, which is called

a core group. As in figure 4.4, P0, P1, P2, and P3 are in the same core group. From each

core group, a socket leader is selected. In figure 4.4, I choose the process with the lowest

Core ID on the same socket as the socket leader. However other leader selection strategies

could also be used to further improve the performance, but it is out of the scope of this

dissertation. At the socket level, all socket leaders in the same node form a socket group.

As shown in figure 4.4, P0 and P4 belong to a socket group. Furthermore, a node leader

is selected among all the socket leaders in the same node, and all the node leaders form a
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node group, which includes P0, P8, and P16. In a word, each group has a leader, which is a

member of upper-level group.

To set up the root of a topology-aware tree, the topology-aware tree is re-shaped. In

figure 4.5, I assume process 14 is the root of a broadcast operation. In the root’s core group,

if the root is not a socket leader, I swap the socket leader with the root as swapping P14 and

P12. After that, if the root is not a node leader, the root’s whole socket is swapped with

node leader’s socket logically like swapping socket 3 and socket 2 in the tree. At last, if the

root of the broadcast operation is still not the root of the topology-aware tree, then at the

node level, I swap the root’s node with the first node in the tree. For example, in figure 4.5,

node 0 and node 1 is swapped in the last step.

4.3 ADAPT vs. Other Implementations

The collective operation implementations using blocking/non-blocking point-to-point rou-

tines, which are discussed in section 3.2, can support different kinds of tree-based

algorithms. Hence, it is possible to plug the topology-aware tree discussed above into these

implementations to make them topology-aware. Also, as discussed in section 3.3.4, the

ADAPT framework can also be plugged in with a topology-aware tree as well to improve its

performance.

After equipping with a topology-ware tree, the implementation using nonblocking point-

to-point routines performs better than the version using blocking point-to-point routines.

This is because the previous one can relax the dependencies and exploit more parallelism by

posting several MPI Isends to transfer data concurrently if the MPI Isends occupy different

hardware. For example, in a MPI Bcast using a topology-aware tree as in figure 4.4, P0

posts three MPI Isends to P1, P4, and P8, which occupy inter-node, inter-socket, and

intra-socket communication channels, respectively, and hence these MPI Isends can be

progressed independently at different speeds. However, the Waitall in the implementation

using nonblocking point-to-point routines forces these three MPI Isends to complete at the

same time, resulting they all run at the slowest speed of the three communications, which
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(2 sockets per node, 4 cores per socket)

46



is the inter-node communication. Therefore, this implementation can not fully utilize the

hardware.

The ADAPT framework removes the Waitall, so in the previous example, the three Isends

can be progressed independently, and data can be propagated at full bandwidth. Therefore,

the ADAPT framework is able to utilize the hardware more efficiently and provide a better

performance, which is shown in the next section.

4.4 Evaluation

4.4.1 Experimental Setup

This section evaluates the performance of topology-aware broadcast and reduce operations

in the ADAPT framework against state-of-the-art MPI implementations on two clusters:

• Cori, a CPU cluster, on which each node is equipped with 2 Intel Xeon E5-2689 v3

CPUs, and nodes are connected by Cray Aries;

• Stampede2, a CPU cluster, on which each node is equipped with 2 Intel Xeon 8160

CPUs, and nodes are connected by Intel Omni Path.

4.4.2 Performance of Different Topology-aware Algorithms

Figures 4.6 and figure 4.7 present the performance of the ADAPT framework (shown as

OMPI-adapt) with CPU data on Cori and Stampede2, compared with all the topology-

aware algorithms in Intel MPI. I also integrate the topology-aware communication tree to

the default collective module of Open MPI (shown as OMPI-default-topo) to demonstrate

that ADAPT is better at hardware resource utilization.

The figures show that the Intel MPI performs much better on Stampede2 than Cori,

and this may be because the underlying interconnects of Stampede2 is Intel Omni Path,

whereas Intel MPI has its own optimizations for its hardware. Even so, on both machines,

the topology-aware MPI Bcast of the ADAPT framework performs the best over others for

big messages. When messages are smaller than 1 MB, the ADAPT framework’s MPI Bcast
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is a little slower than Intel MPI on Stampede2; the reason for that is the topology-aware

algorithms in the ADAPT framework require enough segments to fulfill the pipeline. On

the MPI Reduce with large messages, ADAPT performs better than most topology-aware

algorithms in Intel MPI, except Shumulin’s. A possible reason for the better performance

of Shumulin’s algorithm is it may be optimized for Intel Omni-Path since the performance

of Shumulin’s on Cori (without Omni-Path) is much slower than on Stampede2 (with Omni

Path).

Comparing OMPI-adapt and OMPI-default-topo, even though they have the same

topology-aware communication tree, ADAPT still performs 20% better than the default

framework in Open MPI since the ADAPT framework is able to support independent

communications over different hardware. Overall, the ADAPT framework eliminates

boundaries between different levels in the hardware hierarchy and supports independent

communications, and hence it can fully utilize hardware resources and deliver better

performance than most topology-aware MPI implementations, especially for big messages.

4.4.3 Performance of MPI Implementations

To study the overall impact of the combination of the event-driven design and the topology-

aware tree in the ADAPT framework, two types of experiments are performed: first, the total

number of processes is fixed and I test the performance for different message sizes; second,

I look at the strong scalability, which measures the performance by varying the number of

processes with a fixed message size.

Figure 4.8 and figure 4.9 present the time of MPI Bcast and MPI Reduce of the ADAPT

framework compared with other state-of-the-art MPI implementations with different message

sizes on the Cori and Stampede2. Cray MPI does not support Omni-Path interconnects, so it

is not tested on Stampede2. Similarly, MVAPICH does not support Cray Aries interconnects,

so it is not tested on Cori. The default collective module in Open MPI is the Tuned module,

which can switch algorithms based on different message sizes. This is shown as the green lines

in figure 4.8, where the algorithm used by the default framework in Open MPI is changed

after 256KB. In the ADAPT framework, both MPI Bcast and MPI Reduce are pipelined

algorithms, in which messages are split into several segments. To better understand this
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performance graph, I adopt the Hockney’s cost model [33] to model the cost of collective

operations. This model assumes that the time to send a message of size m between two

nodes is T = α + βm, where α is the latency (or startup time) per message, independent of

message size, and β is the transfer time per byte or reciprocal of network bandwidth. As for

MPI Reduce, I assume that the time spent in computation on data in a message of size m is

γm, where γ is computation time per byte. Therefore, the entire time of sending a message

of size m between two processes is T = α + βm + γm.

A perfect pipeline needs to meet two criteria: a large enough segment size and a sufficient

number of segments. If the segment size is too small, message latency as α in the Hockney’s

model becomes dominant, preventing the full utilization of network bandwidth. If there are

not enough segments, the pipeline initialization time becomes predominant, and hence the

overall performance is affected. It is difficult for small messages to meet both criteria, and this

means the ADAPT framework could show lesser improvement over other implementations

when the messages are small. On large messages, the benefit of concurrent communications

in the ADAPT framework becomes the dominant factor. On Cori, ADAPT provides 10×,

10×, and 1.6× speedup against OMPI-default, Intel MPI, and Cray MPI for MPI Bcast

and 5×, 2× and 1.5× speedup for MPI Reduce when the message size is 4MB. On the

same message sizes on Stampede2, compared with OMPI-default, Intel MPI and MVAPICH,

ADAPT achieves 2.8×, 1.3× and 4.6× speedup for MPI Bcast. ADAPT’s MPI Reduce is

slower than Intel MPI’s on Stampede 2, and the reason is explained in the previous section.

Scalability is another important factor of MPI libraries. Figure 4.10 shows the

performance of strong scaling for MPI Bcast and MPI Reduce operations with 4MB messages

on Cori. In this experiment, the ADAPT framework uses the chain algorithm as the

communication tree for all groups in the topology-aware tree based on [50]. Since the

ADAPT framework allows concurrent communications over independent hardware, the

cost of MPI Bcast and MPI Reduce can be calculated through the longest chain in the

communication tree.

Based on the Hockney’s Model, the cost of chain is T = (P + ns − 2 )× (α + βm), where

P is the number of processes participating in a collective operation, and ns is the number of

segments. If the message size is large enough to ignore the cost of pipeline initialization, the
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cost of the chain algorithm can be treated as T = ns × (α + βm). Thus, theoretically, the

performance of the chain algorithm does not depend on the number of processes within the

chain. Therefore, as seen in figure 4.10, the time of ADAPT’s MPI Bcast and MPI Reduce

does not increase significantly with the number of processes, and the operations tend to

be stable as the number of nodes increases. Compared with other MPI implementations,

the ADAPT framework consistently achieves the best strong scalability, thanks to its event-

driven design and the topology-aware communication tree.
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Chapter 5

Hierarchical Collective Operations -

Combine Specialized Modules

5.1 Overview

As introduced in the previous chapter, combining the topology-aware tree and the event-

driven collective framework can maximize the communication overlap on different levels.

However, this approach fails to fully utilize the hardware capability on each level, since both

the topology-aware tree and the event-driven framework are based on MPI point-to-point

communication routines even for intra-node communication. Typically, in a point-to-point

communication, there are two memory copies, one from a send buffer to a temporary buffer,

and another one from the temporary buffer to a receive buffer, however this is not optimal

for intra-node communication.

The processes in a node share the same memory space, so if a collective framework

can utilize that, then it only needs one memory copy to directly move the data from

the source to the destination. Hence, to improve the performance of intra-node MPI

collective operations, it is crucial to have specialized collective frameworks that can utilize

the shared memory space among participating processes. Besides the specialized modules

using the shared memory space in a computing node, the collective operations on other

hardware need specialized modules as well. For example, GPU collective operations are

very different from the conventional CPU collective operations since GPUs are typically
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connected via PCI-E or NVLink. Hence, specialized GPU collective modules are required

and introduced [61, 47] to achieve decent performance on GPUs. The same goes for the

inter-node level, where the communications go through the interconnects. As demonstrated

in [54], the collective operations on this level need to leverage the full-duplex mode of the

network to fully utilize the bandwidth. Moreover, if the network switch level information

is available, collective operations can be further optimized [36, 58] using that information.

Once specialized modules on each level of the hardware are implemented, I can combine

the collective operations from these specialized modules to perform hierarchical collective

operations.

This chapter introduces my second approach to perform hierarchical collective operations.

It is divided into two sections. In section 5.2, I introduce some specialized modules in Open

MPI; and in section 5.3, I present present “HAN,” a new hierarchical autotuned collective

framework in Open MPI, which selects the suitable homogeneous collective communication

modules as submodules for each hardware level, uses the collective operations from the

submodules as tasks, and organizes these tasks to perform efficient hierarchical collective

operations. With a task-based design, the tasks with different implementations can be easily

swapped to adapt to new networks, which makes the HAN framework not only suitable for

current machines but also adapted to the fast-changing HPC systems.

5.2 Specialized Modules in Open MPI

Picking suitable modules for each level is the first part of this implementation of hierarchical

collective operations. To utilize the shared memory space among the processes in the same

node, my second approach breaks the hierarchical collective operations into two levels (inter-

node and intra-node); and hence, I need to find proper modules on these two levels.

5.2.1 Inter-Node Modules

As discussed in the introduction, overlapping the collective communication on different levels

is an important factor to the performance of hierarchical collective operations. To attain the

overlap of inter- and intra-node communications, my design relies on non-blocking collective
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operations for inter-node communications, as discussed in section 2.4. In the current Open

MPI, there are two existing collective communication modules that support non-blocking

collective operations: (1) Libnbc [34], a default legacy module, and (2) ADAPT, the previous

introduced framework with an event-driven design. These two modules can be selected to

perform inter-node collective operations in this design.

5.2.2 Intra-Node Modules

As for intra-node collective operations, Open MPI provides two modules, SM and SOLO.

SM is a module that utilizes shared memory buffers to communicate with other processes,

and SOLO is an experimental module, which utilizes MPI one-sided communication.

Figure 5.1 shows the performance of intra-node MPI Bcast on 20 processes in the same

computing node. This experiment is on Saturn, which is a small scale machine at Innovative

Computing Laboratory (ICL). The computing node used in this test has two Haswell E5-

2650 processors, and each processor has ten cores. The tested message sizes cover a long

range, from 512 bytes to 4 MB. The red bars show the performance of the SOLO module,

the blue bars show the performance of the SM module, and the orange bars represent the

performance of the default module in Open MPI. Both the SM module and the SOLO module

have better performance than the default module in Open MPI on all message sizes, which

shows the benefits of utilizing the shared memory space. Comparing red bars and blue bars,

the SOLO module has worse performance than the SM module on small messages. It needs

500% time of the SM module on 512 bytes messages. However, with the increasing message

size, the performance gap of the SOLO module and the SM module decreases. When the

message size is 262144 bytes (256 KB), the SOLO module starts to be faster than the SM

module; and eventually, the SOLO module only needs 71% time of the SM module to do an

intra-node MPI Bcast on 4 MB message.

Figure 5.2 and figure 5.3 show the performance of intra-node MPI Reduce and MPI Allreduce

on 20 processes in the same computing node, respectively. The computing node used in this

test is the same as the previous experiment of the intra-node MPI Bcast. The SOLO module

has the worst performance on small messages for both MPI Reduce and MPI Allreudce. It

is even slower than the default module in Open MPI that using point-to-point routines.
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Figure 5.1: Performance of Intra-node MPI Bcast (20 processes, Saturn)
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Figure 5.4: The reduction phase of MPI Reduce and MPI Allreduce in the SOLO module

With the increase of the message size, the performance of the SOLO module increases as

well, resulting in the SOLO module becomes the fastest module among all the three tested

modules when the message size is between 16384 bytes (16 KB) and 4191304 bytes (4MB).

The reason for such performance is the SOLO module always segmentizes the message, and

this is not optimal for small message.

The implementations of MPI Reduce and MPI Allreduce in the SOLO module have two

phases: reduction phase and distribution phase. In the reduction phase, the processes copy

the data to a shared memory buffer, which can be accessed for all the processes in the

same node and perform reduction operation there concurrently. When the reduction phase

is finished, the final result of the MPI Reduce and MPI Allreduce is located at the shared

memory buffer. Then in the distribution phase, this final result is copied back to the root

process in MPI Reduce or to all the processes in MPI Allreduce. Among these two phases,

the reduction phase is the most time-consuming part.

Figure 5.4 shows the algorithm of the reduction phase with u processes. The reduction

phase needs u iterations, and the message is divided into u segments. At each iteration, each

segment is accessed by one process on the shared memory buffer. At iteration 0, process 0
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Figure 5.5: Memcpy bandwidth on Saturn

accesses the segment 0 on the shared memory buffer, and it copies its segment 0 from the

local buffer to the shared memory buffer. At that time, the segment 0 on the shared memory

buffer contains the data of process 0, which is copied at the previous iteration; hence, process

u−1 performs a reduction operation on segment 1 between the shared memory buffer and its

local buffer. In the following iterations, each process accesses segment 0, in turn, to reduce

its data to the shared memory buffer, and after u−1 iterations, the segment 0 on the shared

memory buffer contains the first part of the final result. The same algorithm applies for

other segments, as shown in figure 5.4, and at the end of the reduction phase, each segment

on shared memory buffer contains a part of the final result.

By using the pipelining technique, this method allows all the processes to access the

shared memory space concurrently to fully utilize the memory bandwidth. At each iteration,

all processes participate in the collective operation, and no process is idle. For example, at

iteration 0, all the processes copy its segment i to the shared memory buffer, as shown in the

first row in figure 5.4. However, using the pipelining technique has some limitations. One of

them is that the segment size cannot be too small.

Figure 5.5 shows the memcpy bandwidth on a computing node of Saturn using

netpipe [56], and it suggests the memcpy bandwidth grows with the increasing message size.

It also shows that the messages need to be big enough to reach high memcpy bandwidth,

and for small messages, the memcpy bandwidth is very low. As shown in figure 5.5, when
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the message size is 16 bytes, the memcpy bandwidth is 23 Gbps, which is only about 6%

of the memcpy bandwidth of 8 KB messages. So if the segment size in the SOLO module

is too small, the cost of transferring these segments becomes too high, which hurts the

performance of the collective operations, and this could explain the performance issue of the

SOLO module on small messages.

Both the SOLO module and the SM module take advantage of the shared memory space.

However, from the above analysis, due to the differences in algorithms and implementations,

the SM module exhibits better performance with smaller messages while the SOLO module

performs significantly better for larger ones.

5.3 Combine Specialized Modules - HAN: Task-Based

Design

After selecting proper modules, the next step is to combine them, which requires a new

hierarchical collective operation framework. Two crucial factors are considered when

implementing the new hierarchical collective operations framework.

First, communications on one level need to overlap with the ones on other levels, especially

for large messages. From the hardware perspective, the data transfer on different levels can

be mostly independent of each other naturally since they mainly occupy different hardware

devices. However, in software implementations, some problems such as lacking enough

segmentation or sharing software resources would limit the communication overlap; thus,

those problems need to be avoided.

Second, to meet the requirement of the fast-changing hardware, a hierarchical collective

framework needs to be flexible enough to adapt to new architecture easily. In the inter-

node level, various interconnects have been introduced with different network topologies

such as hypercube [4], polymorphic-torus [43], fat-tree [41], dragonfly [40]. Inside a node,

with adopting co-processors such as GPUs, how these computing units are connected varies

drastically. For example, the Summit machine at ORNL utilizes the NVLink as the
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interconnects between CPU/GPUs and GPUs, which is totally different from conventional

PCI-Express in terms of topology, latency, and bandwidth.

To address these problems, I present “HAN” (Hierarchical AutotuNed), a flexible

hierarchical collective framework in Open MPI, which uses the existing homogeneous

collective modules of Open MPI as its submodules, and combines them to perform

hierarchical collective operations. It provides three features to address the factors discussed

before. First, it picks proper collective frameworks as submodules to utilize the hardware

specification of each level. Second, it adopts the pipelining technique to provide the

capability of overlapping the communications of different levels. Last, it can easily switch

out submodules to adapt to hardware updates with its task-based design.

The HAN framework groups processes based on their physical locations, and hence divides

collective operations into two levels: inter- and intra-node. In the inter-node level, each node

selects one process (node leader) to exchange messages across nodes, while in the intra-

node level, all the processes, including node leaders and the other processes, participate in

their local communications. It is noticed that the design of HAN is applicable to multiple

topology levels. If there are N levels, processes are divided into N groups. However, limited

to the topology information obtained, I use two levels to demonstrate the design of HAN.

The HAN framework uses a task-based interface to organize and overlap the commu-

nications of different levels. It utilizes the pipelining technique [29], breaking the message

down into smaller segments and sending them out in order, to increase the opportunity

of overlapping communications. In the HAN framework, communications of segments are

performed via tasks. To perform a hierarchical collective operation, each task contains one

or more collective operations from different submodules on different levels. With the task-

based design, the underlying submodules used for collective operations are interchangeable,

allowing the HAN framework to easily adopt new submodules.

In the following sections, I use MPI Bcast and MPI Allreduce as examples to demonstrate

how I design the MPI one-to-all and all-to-all collective operations in the HAN framework.
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5.3.1 MPI Bcast

MPI Bcast is a widely used one-to-all collective operation, which propagates data from

the root process to other processes within an MPI communicator. Figure 5.6 shows the

implementation of MPI Bcast in the HAN framework. From the root, each segment firstly

goes through an inter-node broadcast (ib) to reach the node leaders; then, each node leader

issues an intra-node broadcast (sb, s stands for shared memory) to distribute the segment

to the other local processes. Since the ib and sb mainly occupy different hardware, these two

broadcasts have the potential to overlap. To maximize this overlap, three types of tasks are

defined in our implementation:

• Task ib(i) represents an inter-node broadcast of segment i.

• Task sbib(i) includes an intra-node broadcast of segment i− 1 received in the previous

iteration and an inter-node broadcast of segment i.

• Task sb(i) represents an intra-node broadcast of segment i.

64



Assuming there are u segments in total. With the task-based design, to perform a hierarchical

MPI Bcast, node leaders execute ib(0), sbib(1), sbib(2), ... sbib(u − 1) and sb(u − 1), and

the other processes execute sb(0), ... sb(u− 1), as in figure 5.6. This design is also shown in

figure 5.7, which gives an example of MPI Bcast on two nodes and p processes per node. At

iteration 0, only node leaders participate in MPI Bcast, and each of them executes a ib(0).

At iteration i, node leaders execute sbib(i) and the other processes execute sb(i−1). Finally,

at iteration u, all the processes execute sb(u− 1) to transfer the last segment.

The Cost Model

To find the best configuration of MPI Bcast in the HAN framework, it is crucial to have

an accurate cost model. In the cost model, I consider the cost of a collective operation

to be the longest time among all processes since the time for each process to finish the

collective operation may be different depends on the implementations. This definition has

been used by multiple cost models [12, 50], and it is the maximum value reported by Intel

MPI Benchmark (IMB) [1] and OSU Benchmark [2].

The cost of MPI Bcast is computed by aggregating the cost of each timestep in figure 5.6,

so the time spent in node leader processes is:

max
i

(Ti(ib(0)) + Ti(sbib(1)) + ...+ Ti(sbib(u− 1)) + Ti(sb(u− 1))) (5.1)

and the time spent in non-node leader processes is:

max
i

(Ti(ib(0)) + Ti(sb(1)) + ...+ Ti(sb(u− 1)), (5.2)

where u is the total number of segments. T (t) is used to represent the cost of task t on

each process, so Ti(ib(0)) means the cost of task ib(0) on the process i. Usually, the cost

of sbib(x) is larger than sb(x) since it has one more inter-node MPI Ibcast to do; therefore,

comparing equation 5.1 and 5.2, I use the cost of node leader process (equation 5.1) as the

cost of MPI Bcast.
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Since ib(0) is the first task, I assume each process issues it simultaneously. Hence, its

cost can easily be measured by a simple benchmark shown in algorithm 9. The blue bars

in figure 5.8 and figure 5.9 show the performance of ib(0) on each node leader with rank 0

as the root process, when transferring 64 KB and 2 MB segments on 6 nodes with different

configurations. From it, two following things can be observed:

1. different submodules and algorithms behave differently;

2. every node leader finishes ib at a different time.

Algorithm 9: Benchmark for ib(0)/sb(0)

Output: result
1 result = 0;
2 for i = 0 to num iters-1 do
3 MPI Barrier();
4 t0 = MPI Wtime();
5 ib(0)/sb(0);
6 t1 = MPI Wtime();
7 result = result + t1 - t0;

8 result = result / num iters;

The last task sb(u − 1) only contains an intra-node broadcast, which is independent of

the processes on the other nodes. Since segment size is the same among all the segments, I

use Ti(sb(0)) to represent Ti(sb(u− 1)). The cost of sb(0) can be measured as same as ib(0),

and the results are shown as the orange bars in figure 5.8 and figure 5.9.

Ti(sbib(1)) + ... + Ti(sbib(u − 1)) contributes to the major cost of MPI Bcast when the

number of segments (u) is big enough. To get an accurate estimation of this part, there are

two essential factors to be taken into consideration.

1. The first factor is the overlap of ib and sb. The ib mainly operates on the interconnects

between nodes, while the sb communicates over the memory bus, which means these

two broadcasts can overlap to some degree. In this way, Ti(sbib(x)) should be less than

Ti(ib(x)) + Ti(sb(x)) for any process i. Previous research [8, 17] assumes the overlap
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Figure 5.8: Cost of tasks (ib, sb, sbib) on NaCl (0 is the root), SM module
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Figure 5.9: Cost of tasks (ib, sb, sbib) on NaCl (0 is the root), SOLO module
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Algorithm 10: Benchmark for sbib(1)

Output: result
1 result = 0;
2 for i = 0 to num iters-1 do
3 MPI Barrier();
4 ib(0);
5 t0 = MPI Wtime();
6 sbib(1);
7 t1 = MPI Wtime();
8 result = result + t1 - t0;

9 result = result / num iters;

of the communications on different levels is perfect, which suggests Ti(sbib(x)) =

max(T (ib(x)), T (sb(x))). However, it is not always the case. The overlap might not

be perfect because of the following two reasons:

(a) the ib needs to push the data back to memory which could compete with the sb

for the memory bus;

(b) from the implementation perspective, in single-threaded MPI, these two broad-

casts share the same CPU resource to progress, which could affect the performance

of both when they are running simultaneously.

The blue, orange and green bars in figure 5.8 and figure 5.9 show the cost of task ib(0),

sb(0) and concurrent sb(0) with ib(0) (issue a non-blocking ib with an sb simultaneously

and wait for them to complete), respectively. These two figures suggest that the overlap

rate also depends on submodules. In figure 5.8, the submodule used to do sb is the

SM module. We can observe that the green bar of each node leader is close to the

sum of its blue bar and orange bar, which suggests the intra-node broadcast in the SM

module does not overlap well with inter-node collective operations. While in figure 5.9,

I use the SOLO module to perform the sb. When using the SOLO module, the overlap

between ib and sb is much more significant, but still not perfect.
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Figure 5.10: Overlap Rate of Concurrent Intra-node and Inter-node Collective Operations
(6 nodes, 12 ppn, SM module)

To quantify the overlap of ib and sb, I define the overlap rate of an intra-node collective

operation and an inter-node collective operation as listed below:

max(0,min(1, (t inter + t intra− t total)/min(t inter, t intra))) (5.3)

In the above equation, t inter is the cost of an inter-node collective operation, t intra

is the cost of an intra-node collective operation, and t total is the overall time of these

two operations when they are issued simultaneously.

Figure 5.10 shows the overlap rate of ib and sb on each node leader, with ib using

Libnbc and sb using the SM module. The figure shows that the overlap rates are very

low on the node leaders. The minimal overlap rate is on node leader 1 (0%), and the

maximum is on node leader 4 (6%). The overlap rates are much higher when using

the SOLO module, as presented in figure 5.11, all node leaders have more than 80%

overlap. Even though the overlap rates of the SOLO module are very high, it can not

reach 100%. Thus, neither max(Ti(ib(x), Ti(sb(x))) nor Ti(ib(x)) + Ti(sb(x)) can be

used to represent Ti(sbib(x)) in an accurate cost model.

2. The second factor is the operations happened before each sbib need to be considered

to obtain an accurate cost of sbib since each sbib is issued at a different timestamp
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Figure 5.11: Overlap Rate of Concurrent Intra-node and Inter-node Collective Operations
(6 nodes, 12 ppn, SOLO module)

on each process. The blue bars in figure 5.8 and figure 5.9 show the cost of ib(0), the

operation before sbib(1), on different node leaders. As seen in the figure, no matter

what submodules are used, the node leader processes finish the task ib(0) at different

timestamps. Hence, to simulate the different starting time of sbib(1), an ib(0) is issued

before it using the benchmark in algorithm 10, and the results of this benchmark is

shown as the red bars in figure 5.8 and figure 5.9. The performance differences between

red bars and blue bars in the figures prove the importance of the previous tasks since

the only difference between the two is whether there is an ib(0) before timing the task

sbib(1). Therefore, to get the accurate cost of sbib(1), task ib(0) needs to be executed

before the timing, and to get the accurate cost of sbib(2), task ib(0) and sbib(1) need

to be performed. In this way, to calculate Ti(sbib(1)) + ...+Ti(sbib(u− 1)), we need to

know the cost of sbib(i) where 1 ≤ i ≤ u− 1, and to get the cost of each sbib(i), all the

previous tasks from ib(0), sbib(1) to sbib(i − 1) need to be executed. This procedure

is highly expensive and contains a lot of redundant tasks.

Figure 5.12 shows the cost of sbib(i) where 1 ≤ i ≤ 8 with different algorithms and

submodules on node leader 0. All the sub-figures in the figure show a similar trend that

after the first few tasks, the cost of sbib is stabilized. This is because when executing

the first few sbibs, the pipeline of sbib is not constructed, which could leads to some
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Figure 5.12: Cost of tasks on one node leader on NaCl (64 nodes, 12 ppn)
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delays. Once the pipeline is fully constructed, the cost of sbib is stabilized. To save the

time of the benchmarking and avoid repeatedly executing tasks, I use the stabilized

cost (sbib(s)) times u − 1 to estimate the time of Ti(sbib(1)) + ... + Ti(sbib(u − 1)).

Therefore, equation 5.1 can turn into:

max
i

(Ti(ib(0)) + (u− 1)Ti(sbib(s)) + Ti(sb(u− 1))) (5.4)

Model Validation

Figure 5.13 shows the comparison of the estimated time mathematically calculated from the

cost model and the actual time of doing a 4MB MPI Bcast on 64 nodes with 12 processes

per node with different combinations of submodules, algorithms, and segment sizes. The

experiment is conducted on NaCl, which has 66 compute nodes connected by Infiniband

QDR, and each node has two 2.8GHz Intel Xeon X5660 and 12 GB memory. As seen in the

figure, the cost model is accurate in most cases. Even though in the cases where the prediction

is not that accurate, such as when segment size is 16KB in figure 5.13.e and figure 5.13.f, the

trends of the estimated and actual time still match well, and that can help to find the best

configuration of MPI Bcast. When comparing the cost of MPI Bcast of all configurations,

the best configuration estimated by the cost model and the actual best configuration are the

same, which is to use 128KB segment size with the binary algorithm in ADAPT for inter-

node communication and the SOLO submodule for intra-node communication. It shows

that the cost model can be used for the autotuning component of the HAN framework, and

I discuss the details of autotuning in the next chapter.

5.3.2 MPI Allreduce

In this section, as an example of all-to-all collective operations, I introduce the implemen-

tation of MPI Allreduce in the HAN framework. As seen in figure 5.14, a hierarchical

MPI Allreduce requires four steps to transfer one segment:

1. intra-node reduction (sr),

2. inter-node reduction (ir),
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Figure 5.13: Performance of MPI Bcast on 64 nodes with the combinations of different
submodules on NaCl
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Figure 5.14: Design of MPI Allreduce in HAN
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3. inter-node broadcast (ib),

4. intra-node broadcast (sb).

In the implementation of MPI Bcast, I have discussed how my design overlaps the

collective operations of different levels (i.e. ib with sb); additionally, if the interconnects

are full-duplex, a collective operation can overlap with another one within the same level.

For example, ir and ib can be overlapped if they are on different directions of the same

inter-node network. The comparison of the performance of ib, ir, and concurrent ib and ir

of different submodules and algorithms is shown in figure 5.15, and it suggests a high degree

of overlap. To maximize the opportunity of such overlap, when it is possible to specify the

algorithm, the HAN framework selects the same algorithm with the same root to perform ir

and ib; if not, the overlap opportunity is up to the inter-node submodule. Considering both

kinds of overlap, I define the following tasks in the MPI Allreduce:

• Tasks sr(i) and sb(i) represent an sr and an sb of segment i, respectively.

• Task irsr(i) includes an ir of segment i− 1 and an sr of segment i.

• Task ibirsr(i) contains an ib of segment i − 2, an ir of segment i − 1 and an sr of

segment i.

• Task sbibirsr(i) is consisted of an sb of segment i− 3, an ib of segment i− 2, an ir of

segment i− 1 and an sr of segment i.

• Task sbibir(i) includes an sb of segment i − 2, an ib of segment i − 1 and an ir of

segment i.

• Task sbib(i) contains an sb of segment i− 1 and an ib of segment i.

• Task sbsr(i) is only executed in non-node leader processes. It receives reduced segment

i− 3 from its leader process via an sb, and then reduce segment i to its leader process

with an sr.

An example of the MPI Allreduce on two nodes is shown in figure 5.16, with p processes per

node. At iteration 0, all the processes execute sr(0); at iteration 1, node leaders execute
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Figure 5.16: An Example of MPI Allreduce on two nodes

irsr(1), and the other processes execute sr(1); and at iteration 2, node leaders execute

ibirsr(2), and the other processes execute sr(2). From iteration 3 to iteration u − 1, node

leaders execute sbibirsr(i) and the other processes execute sbsr(i), where 3 ≤ i ≤ u − 1.

Then at the last three iterations, node leaders execute sbibir(u−1), sbib(u−1), and sb(u−1),

while the other processes execute sb(u− 3), sb(u− 2), and sb(u− 1).

The Cost Model

Similar to MPI Bcast, I estimate sbibirsr(3) + sbibirsr(4) + ... + sbibirsr(u − 1) with the

stabilized cost of sbibirsr (Ti(sbibirsr(s))). In this way, the cost of MPI Allreduce is:

max
i

(Ti(sr(0)) + Ti(irsr(1)) + Ti(ibirsr(2)) + (u− 3) ∗ Ti(sbibirsr(s))

+Ti(sbibir(u− 1)) + Ti(sbib(u− 1))) + Ti(sb(u− 1))
(5.5)

Then I use similar benchmarks as in algorithm 9 and algorithm 10 to measure the cost

of the tasks. Task ibirsb(u− 1) and sbib(u− 1) are issued after u− 3 times of task sbibirsr;

however, when benchmarking them, it is not realistic to repeat sbibirsr u−3 times. Instead,
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I modify algorithm 10 to keep running sbibirsr until every process reaches a relatively stable

state before measuring ibirsb(u− 1) and sbib(u− 1).

Model Validation

Figure 5.17 compares the time of MPI Allreduce estimated by the cost model against the

actual time. Similar to MPI Bcast, with the estimated time, I can estimate the optimal

configuration for MPI Allreduce on a 4MB message is to use 1MB segments with the

binary algorithm in ADAPT for inter-node communications and use the SOLO framework

as submodule for intra-node communications. It exactly matches the best configuration of

the actual time.

79



8K 16K 32K 64K 128K 256K 512K 1M 2M
Segment Size (bytes)

0

20

40

60

80

100

Ti
m

e 
(m

s)

a. Libnbc/SM, 4MB message

8K 16K 32K 64K 128K 256K 512K 1M 2M
Segment Size (bytes)

0

20

40

60

80

100

Ti
m

e 
(m

s)

b. Libnbc/SOLO, 4MB message

8K 16K 32K 64K 128K 256K 512K 1M 2M
Segment Size (bytes)

0

20

40

60

80

100

Ti
m

e 
(m

s)

c. ADAPT(binary)/SM, 4MB message

8K 16K 32K 64K 128K 256K 512K 1M 2M
Segment Size (bytes)

0

20

40

60

80

100

Ti
m

e 
(m

s)

d. ADAPT(binary)/SOLO, 4MB message

8K 16K 32K 64K 128K 256K 512K 1M 2M
Segment Size (bytes)

0

20

40

60

80

100

Ti
m

e 
(m

s)

e. ADAPT(chain)/SM, 4MB message

8K 16K 32K 64K 128K 256K 512K 1M 2M
Segment Size (bytes)

0

20

40

60

80

100

Ti
m

e 
(m

s)

f. ADAPT(chain)/SOLO, 4MB message

Estimated Actual

Figure 5.17: MPI Allreduce on 64 nodes with combination of different submodules on NaCl
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Chapter 6

Autotuning of Collective

Communication Operations

6.1 Overview

Some submodules in the HAN framework, such as ADAPT, provide different algorithms

for each type of collective operation. For example, MPI Ibcast in ADAPT contains multiple

algorithms, such as chain, binary tree, and binomial tree. For each algorithm, the underlying

configurations, such as segment size, can also affect the performance of the operations. As

demonstrated in previous research [59, 19], the performance penalty is huge for collective

operations choosing incorrect configurations. Therefore, to achieve decent performance,

an autotuning component is needed in the HAN framework to search for the optimal

configuration.

This chapter introduces the autotuning component in the HAN framework, which merges

two existing autotuning methods by using a novel cost model based on the costs of tasks

introduced in chapter 5. The experiments in this chapter show that the autotuning

component is able to significantly reduce the search space and provide accurate estimations.

In section 6.2, I present the design of the autotuning component and prove its effectiveness;

and in section 6.3, I evaluate the autotuned HAN framework on two clusters.
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Table 6.1: Inputs of Automatic Tuning

Symbol Description

n Number of Nodes
p Number of Processes per Node
m Message Size
t Collective Operation Type (Bcast, Reduce, ...)

6.2 Task-Based Autotuning

Because of the high cost of exhaustive search and the low accuracy of the conventional cost

models introduced in chapter 1, I create a task-based autotuning approach using new cost

models based on the empirical costs of tasks. Costs of tasks are obtained by benchmarking

submodules. Since submodules are tightly coupled in the HAN framework, testing the

performance of an individual submodule is not sufficient to represent the overall performance.

To accurately estimate the performance, I benchmark the submodules when they are working

together and use these results in the cost model, introduced in chapter 5, to estimate the

cost of a collective operation and perform autotuning.

The goal of autotuning is to find the best configuration (submodules, algorithms, segment

sizes, etc.) for any given input. Generally, there are two steps in autotuning:

1. The first step is to find the optimal configuration for some inputs to generate a lookup

table. As shown in table 6.1, an input contains four entries: number of nodes n, number

of processes per node p, message size m, and the collective operation type t. The output

entries of the lookup table are shown in table 6.2. Usually, m is continuous, but it is

impractical to test every message size; thus, most approaches use discrete message sizes

such as 4B, 8B, 16B, 32B, ... to sample the continuous value and form a search space.

The same sampling method can be applied to other entries such as n and p.

2. The second step is to use the lookup table from the previous step to generate decisions

for any inputs (n, p, m and t). As message sizes in the lookup table are not continuous,

if the input message size falls between two message sizes in the lookup table, the

autotuning process needs to find the optimal configuration for it.
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Table 6.2: Available configurations in the HAN module (MPI Bcast and MPI Allreduce,
iralg and irs are only used for MPI Allreduce)

Symbol Description

fs Segment Size in the HAN module
imod submodule used for inter-node
smod submodule used for intra-node
ibalg Inter-node Bcast Algorithm if supported
iralg Inter-node Reduce Algorithm if supported
ibs Inter-node Bcast Segment Size if supported
irs Inter-node Reduce Segment Size if supported

Some previous research focuses on the second step, where many methods such as quadtree

encoding [52], decision trees [51] have been studied to improve its accuracy. However, the

first step, which takes a major part of the time and is the foundation to ensure the accuracy

of the second step, has not been well studied. Hence, in this dissertation, I focus on the first

step to minimize the cost of autotuning and improve its accuracy.

The most straightforward approach to do the first step is to perform an exhaustive

search for each input in table 6.1, which tests every possible configuration and then find

the fastest one. Take MPI Bcast for an example. Assume the sizes of the search spaces of

messages, segment sizes, nodes, processes per node are, M , S, N , and P , respectively, and

the total selections of algorithms are A (including submodules × algorithms per submodule).

Exhaustive search needs to run all possible combinations of S and A for each input in M , N ,

and P , pick the fastest result and record the segment size and algorithm in the lookup table

for that input. Therefore the size of the whole search space is M × S × N × P × A. Since

an MPI Bcast has to be run for every search, the total searching needs to run MPI Bcast

M ×S×N ×P ×A times, which is a highly expensive process. The orange bar in figure 6.1

shows the cost of autotuning on NaCl with exhaustive search, which takes around 48 hours.

The purple, brown, and orange bars in figure 6.2 show the median, average, and best cost

of MPI Bcast and MPI Allreduce of all possible configurations, using exhaustive search.

All autotuning experiments are conducted on NaCl other than larger-scale machines used

in section 6.3, as the exhaustive search cannot complete within a job limitation on those

83



Exhaustive search Heuristics Cost Model Cost Model+Heuristics
0

10

20

30

40

50

Ti
m

e 
(h

ou
rs

)

Figure 6.1: Time of total searches of MPI Bcast and MPI Allreduce on Nacl

machines. As seen in the figure, both the median and average time are much higher than

the best, which indicates the importance of finding the optimal configuration.

With the cost model introduced in section 5.3, the task-based autotuning approach only

needs to measure the cost of each task and use its cost to calculate the overall cost of a

collective operation. As every task operates on one segment, the search space needed for

one task are S, N , P , and A. Suppose there are T types of tasks (3 for MPI Bcast and 7

for MPI Allreduce); therefore, the size of the whole search space of my approach becomes

T × S × N × P × A. For different message size M , the cost of tasks are reused; hence,

compared to the previous approach, the task-based autotuning is able to reduce message

size M , which is one of the largest search spaces, to a constant T . Besides the smaller search

space, the cost of performing each search is also much shorter since tasks are just a part of

the whole MPI collective operations. Also, the cost of tasks can be reused for different types

of collective operations, such as the task sbib is in both implementations of MPI Bcast and

MPI Allreduce. With these improvements, the cost of autotuning is significantly reduced.

As the red bar in the figure 6.1, the task-based autotuning, reduces the cost of search by 77%

as compared to the exhaustive search. Even though with much fewer searches, my approach

can still estimate the optimal configuration accurately. The red bars in figure 6.2 show the

best performance of MPI Bcast and MPI Allreduce with the configurations estimated by

the task-based cost model. The results indicated that the task-based autotuning approach

produces a similar configuration to the actual best configuration obtained by an exhaustive

search (orange bars).
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Figure 6.2: Performance of MPI Bcast and MPI Allreduce on 64 nodes with different
configurations of sub-modules on NaCl

As previous research [50, 59] suggests, using heuristics is an effective way to reduce the

search space. In the HAN framework, with my understanding of the submodules and the

algorithms, I create multiple heuristic strategies. For example, one of the heuristics is to

only use the SOLO submodule when the segment size is big than 512 KB since I know the

SM submodule generally has better performance than the SOLO for small messages. Besides

limiting the selections of submodules, the algorithm selections are also limited heuristically.

An example is the chain algorithm in ADAPT can perform well only when there are enough

segments for pipelining, so the chain algorithm is only used when there are more than eight

segments. The blue bars in figure 6.1 shows the searching time on NaCl of just using the

heuristics, which takes 26.8% time of the exhaustive search. Heuristics can be combined with

cost model by using heuristic methods on the benchmarking of tasks, to further reduce the

search space. The time is shown as the green bars in figure 6.1, which only takes 4.3% time

of the exhaustive search. However, by using heuristic approaches, additional assumptions

are made to narrow down the search space, which might result in lower accuracy of selecting

the best configurations. The blue and green bars in figure 6.2 show the results of adding

heuristics, suggesting that heuristics produce less accurate results compared to the original
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approach in the HAN framework. To balance the search speed and accuracy, the HAN

framework provides an option for users to enable or disable the heuristics based on their

needs.

In conclusion, while can select the good configurations, with the help of the cost model,

the autotuning component in the HAN framework can greatly reduce the time spends on

searching the optimal configurations.

6.3 Evaluation

6.3.1 Experimental Setup

In this section, I evaluate the autotuned HAN framework on two high-performance

computers: Shaheen II and Stampede2, and compare it with other state-of-the-art MPI

implementations using benchmarks and applications.

Shaheen II is a Cray XC40 system equipped with dual-socket Intel Haswell 16 cores CPUs

running at 2.3GHz and 128GB 2300MHz DDR4 memory. The interconnects is Cray Aries

with Dragonfly topology. On Stampede2, I use the Intel Skylake compute nodes; each node

has 48 cores with two sockets, and 192GB 2.67GHz DDR4 memory. The nodes are connected

via the Intel Omni-Path network.

The HAN framework is implemented on top of Open MPI 4.0.0. Hence, for fair

comparisons, it is compared with the default module of Open MPI 4.0.0 on both machines.

It is noticed that the default module is tuned with conventional methods [19], and the

HAN framework is tuned with the task-based autotuning approach. Additionally, the HAN

framework is compared with the system built-in Cray MPI 7.7.0 on Shaheen II, and Intel

MPI 18.0.2 and MVAPICH2 2.3.1 on Stampede2.

6.3.2 Benchmark Results

IMB [1] is used to compare the HAN framework against other MPI implementations using

MPI Bcast and MPI Allreduce, representing two widely used communication patterns: one-

to-all and all-to-all. I experiment on two types of message sizes: small and large. The range

86



of small message experiments is up to 128K, which represents message sizes in most scientific

applications. Experiments on large messages start from 128KB to 128MB, which represents

message sizes in applications processing a large amount of data such as machine learning

and data analytics.

MPI Bcast

Figure 6.3 presents the time of MPI Bcast with 4096 processes on Shaheen II. Even though

both HAN and the default framework in Open MPI are tuned, HAN still outperforms the

default framework in Open MPI significantly: up to 4.72x and 7.35x speed up on small

and large messages, respectively, thanks to the task-based hierarchical implementation and

accurate cost models.

However, the HAN framework is slightly slower than Cray MPI on small messages. To

better understand the performance gap, I measure the point-to-point communication perfor-

mances of both Open MPI and Cray MPI using Netpipe [56]. In most MPI implementations,

collective communications rely on the underlying point-to-point routines to transfer data

between processes; therefore, the performance of point-to-point communications directly

impacts the speed of collective communications. As seen in figure 6.4, when the message size

is between 512B and 2MB, Open MPI has less bandwidth comparing to Cray MPI especially

for the messages range from 16KB to 512KB, which could explain the performance differences

for the small message on figure 6.3. On larger message sizes, Open MPI and Cray MPI both

reach the same peak point-to-point communication performance; and in these cases, the

HAN framework outperforms Cray MPI up to 2.32x thanks to the communication overlap

of different hardware levels.

Figure 6.5 exhibits the performance of MPI Bcast with 1536 processes on Stampede2.

On this machine, the HAN framework gives the best performance on both small and large

messages. It achieves up to 1.15X, 2.28X, 5.35X speedup on small messages, and up to

1.39X, 3.83X, 1.73X speed up on large messages against Intel MPI, MVAPICH2, and default

Open MPI, respectively.
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Figure 6.3: Performance MPI Bcast ( Shaheen II, 4096 processes)
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MPI Allreduce

Figure 6.6 and figure 6.7 present the cost of MPI Allreduce with 4096 processes on Shaheen

II and 1536 processes on Stampede2, respectively. Compared with the default Open MPI,

my design shows significant improvements in all cases. Compared with other state-of-the-

art MPI implementations, the HAN framework shows some improvements with larger size

messages. On Shaheen II, the HAN framework shows better performance than Cray MPI

after the message size is larger than 2MB and eventually achieves up to 1.12X speedup. On

Stampede2, my design is the fastest when message size is between 4MB and 64 MB, and

afterward, it gives similar performance as MVAPICH2, but still faster than others.

Besides the point-to-point communication performance discussed in the previous section,

another important factor that affects the performance of MPI Allreduce is the cost of

reduction operations. Among the four submodules currently used in the HAN framework,

only SOLO and ADAPT utilize AVX instructions [25] to boost the performance of reduction

operations. However, the designs of these two submodules lead to high overhead on small

messages. Hence, HAN selects Libnbc and SM to perform MPI Allreduce on small messages;

unfortunately, neither of them supports AVX instruction, leading to sub-optimal performance

as compared to other MPI implementations. It shows the limitation of my design as the HAN

framework relies on its submodules’ performance. That being said, the HAN framework can

adopt new submodules very easily. Hence, in future work, I plan to provide more optimized

submodules to further improve the overall performance.

6.3.3 Application Results

In this section, I evaluate the autotuned HAN framework with two applications on

Stampede2.

ASP

ASP [53] solves the all-pairs-shortest-path problem with a parallel implementation of the

Floyd-Warshall algorithm. Processes take turns to act as the root, and broadcast a row of
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Figure 6.8: Performance of Horovod on Stampede2

the weight matrix to others, followed by computation, which causes MPI Bcast to be the

most time-consuming part of ASP.

Table 6.3 presents the time of the first 1536 iterations in ASP on 1536 processes when the

matrix size is 1M. I choose the first 1536 iterations to minimize the testing time but still cover

all the possible cases by making sure each process acts as the root process once. The HAN

framework achieves 1.16X, 2.68X, and 4.28X speed up against Intel MPI, MVAPICH2, and

the default Open MPI for the communication cost in ASP and reduces the communication

percentage from 50.24% (Intel MPI), 69.29% (MVAPICH2), 81.77% (default Open MPI) to

46.41%.

Horovod

Horovod [55] is a distributed training framework that uses MPI Allreduce to average

gradients. I use tf cnn benchmarks [3] with synthetic datasets to train AlexNet on

Stampede2, and the performance is shown in figure 6.8. Due to a configuration problem,

Table 6.3: Performance of ASP (1536 processes, 1M Matrix)

Intel MVAPICH2 Default OMPI HAN

Comm (s) 10.44 24.12 38.52 8.99
Total (s) 20.78 34.81 47.11 19.37
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I only manage to run Intel MPI 17.0.3, default Open MPI 4.0.0 and the HAN framework.

Compared to other MPI implementations, my design gains more improvement with a higher

number of processes. It eventually becomes 24.30% faster than default Open MPI, and 9.05%

faster than Intel MPI on 1536 processes.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The scientific computing community’s increasing computational need demands more powerful

HPC systems, and the increasing scale and complexity of these HPC systems bring new

challenges to the design of MPI libraries, especially with regard to implementations of MPI

collective operations.

The first challenge is propagation of noise. Initially, noise only means operating system

noise such as the delay caused by page faults, interrupts, and the scheduler. Later, its

definition is extended to the delay from other sources like fault tolerance, in-situ analytics,

and power management. The slowdown caused by the noise on one process typically is very

small, but the noise can be propagated and even amplified with MPI collective operations

to cause a huge slowdown. Moreover, this slowdown grows with the number of processes in

the MPI collective operations and becomes a major bottleneck in large scale applications as

suggested in [22, 60]. Thus, with the increasing scale of HPC systems, how to prevent the

propagation of noise is a great challenge in implementations of MPI collective operations.

The second challenge is the complex hardware hierarchy on modern HPC systems. For

instance, a modern HPC system could consist of thousands of computing nodes connected

via high speed interconnects, such as Infiniband. Each computer node could be equipped

with several multi-core CPUs or GPUs, while CPUs are connected with each other via

memory bus or inter-socket networks such as Intel QPI and AMD HyperTransport, and
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GPUs are connected as peripheral devices via PCI-Express or NVLink. The communications

on these hardware have significant different performances, and hence, in implementations of

MPI collective operations, it is crucial to find a way to minimize the slow communication,

maximize the fast communication and overlap the communications on different hardware.

The third challenge is autotuning of MPI collective operations. In Open MPI, many MPI

collective operation frameworks have been implemented to support different functionalities

and optimize collective operations from different angles, and each framework provides a set of

configurations, such as algorithms and segment sizes, to tune its performance. As suggested

in [59, 19], the performance penalty of choosing the incorrect modules and configurations

could be significant, and hence, autotuning is introduced to select the optimal configurations

for a given collective operation automatically. The most challenging part of autotuning is to

get or estimate the cost of collective operations with possible configurations, which can be

done using either empirical benchmarks or cost models. However, using benchmarks could

take too much time on large clusters, and the traditional cost models are not accurate on

the modern heterogeneous HPC systems.

To address these three challenges, in this dissertation, I design and implement two

collective operations frameworks and an autotuning component in Open MPI.

First, I theoretically analyzed the causes of noise propagation in existing MPI libraries,

which are unnecessary synchronizations. To minimize synchronizations, I present “ADAPT,”

a collective communication framework based on the event-driven design. Through events

and callbacks, the ADAPT framework is able to relax the synchronization dependencies

and maintain the minimal data dependencies, which is able to provide more tolerance to

system noise. Also, I extend the ADAPT framework with topology-aware trees to exploit the

parallelism of heterogeneous architectures. I demonstrate experimentally that the ADAPT

framework is less affected by noise as compared to other state-of-the-art MPI libraries and

it outperforms most state-of-the-art MPI libraries on heterogeneous architectures, especially

for large messages.

Second, to further improve the performance of hierarchical collective operations and

provide a flexible design to meet the fast-changing hardware, I present ”HAN,” a task-based

hierarchical autotuned collective communication framework in Open MPI, which divides any
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hierarchical collective communication into a set of tasks. The main benefits of the task-based

design are:

1. it selects suitable submodules to utilize hardware features;

2. it provides more opportunities to overlap communications;

3. it minimizes the effort of updating submodules to adapt to new hardware.

I also develop an autotuning component with a novel cost model in the HAN framework,

which can significantly reduce the tuning cost and provide an improved accuracy compared

to previous approaches. The experiments in two large scale HPC systems demonstrate

the HAN framework outperforms other state-of-the-art MPI implementations in most cases

in both benchmarks and applications, providing highly efficient and portable collective

communication operations.

7.2 Future Work

To further improve the performance of MPI collective operations, I am considering following

two possible directions.

• The first direction is to move the execution of collective operations in NIC. The ADAPT

framework I presented in chapter 3 and chapter 4 utilizes an event-driven design to

relax the synchronizations in existing implementations of collective operations. The

events and callbacks in the ADAPT framework are tracked by the progress engine in

Open MPI, which occupies a CPU. To reduce the CPU usage in the communication,

I am looking at methods to move the progress engine from CPU to NIC, which could

result in lower overhead and better overlap rate.

• The second direction is to improve the submodules in the HAN framework. As

suggested in section 6.3, the performance of the HAN framework is limited by

its submodules’ performance. Therefore, to boost the upper bound of the HAN

framework, I need to improve the submodules. In the submodules used for inter-node

communications, I plan to integrate the network switch level information to minimize

97



the inter-switch communication and improve their performance. As for intra-node

communication, HPC systems are increasingly equip with accelerators, such as GPUs,

to have more parallelism with lower power consumption. Hence, I plan to extend

the HAN framework with specialized GPU collective operation submodules to support

hierarchical collective operations on GPU clusters.

With the increasing scale of HPC systems and the fast-growing computing power,

communication becomes the major bottlenecks in many HPC applications. The knowledge I

gained during this study and the concepts used in this dissertation are not limited to the MPI

community. Thus, the outcome of this dissertation, including theories and implementations,

can be extended to optimize communications for other programming models of the HPC

community. One potential target is the communication in task-based runtime systems. Task-

based runtime systems adopt a data-flow programming model and divide an algorithm into

computation (tasks) and communication (dependencies among tasks). Since these systems

are able to hind the complex hardware hierarchy from users and provide efficient resource

management, task-based runtime systems become more and more popular for developing

applications on modern HPC systems. In task-based runtime systems, tasks need to

send/receive data to/from other tasks on local or remote compute nodes. Some of these

communications follow the same pattern as MPI collective communications, and hence, the

optimization methods in the dissertation can be significantly beneficial for communication

as well as the overall performance of task-based runtime systems.
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[54] Sanders, P., Speck, J., and Träff, J. L. (2009). Two-tree Algorithms for Full Bandwidth

Broadcast, Reduction and Scan. Parallel Comput., 35(12):581–594. 33, 54

[55] Sergeev, A. and Balso, M. D. (2018). Horovod: fast and easy distributed deep learning

in tensorflow. 93

[56] Snell, Q. O., Mikler, A. R., and Gustafson, J. L. (1996). Netpipe: A network protocol

independent performance evaluator. In in IASTED International Conference on Intelligent

Information Management and Systems. 60, 87

[57] Squyres, J. M. and Lumsdaine, A. (2003). A component architecture for lam/mpi. In

Dongarra, J., Laforenza, D., and Orlando, S., editors, Recent Advances in Parallel Virtual

Machine and Message Passing Interface, pages 379–387, Berlin, Heidelberg. Springer

Berlin Heidelberg. 12

[58] Subramoni, H., Potluri, S., Kandalla, K., Barth, B., Vienne, J., Keasler, J., Tomko, K.,

Schulz, K., Moody, A., and Panda, D. K. (2012). Design of a Scalable InfiniBand Topology

Service to Enable Network-topology-aware Placement of Processes. In Proceedings of

the International Conference on High Performance Computing, Networking, Storage and

Analysis, SC ’12, pages 70:1–70:12. 14, 54

[59] Vadhiyar, S. S., Fagg, G. E., and Dongarra, J. (2000). Automatically tuned collective

communications. In SC ’00: Proceedings of the 2000 ACM/IEEE Conference on

Supercomputing, pages 3–3. 4, 15, 81, 85, 96

[60] Vishnoi, N. K. (2007). The Impact of Noise on the Scaling of Collectives: The Nearest

Neighbor Model, pages 476–487. Springer. 13, 95

106



[61] Wang, H., Potluri, S., Luo, M., Singh, A. K., Sur, S., and Panda, D. K. (2011).

MVAPICH2-GPU: optimized GPU to GPU communication for InfiniBand clusters.

Computer Science - Research and Development, 26(3):257. 54

[62] Wang, L., Wu, W., Xu, Z., Xiao, J., and Yang, Y. (2016). Blasx: A high performance

level-3 blas library for heterogeneous multi-gpu computing. In Proceedings of the 2016

International Conference on Supercomputing, page 20. 3

[63] Wang, L., Ye, J., Zhao, Y., Wu, W., Li, A., Song, S. L., Xu, Z., and Kraska, T. (2018).

Superneurons: Dynamic gpu memory management for training deep neural networks. In

Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’18, pages 41–53, New York, NY, USA. ACM. 3

[64] Widener, P. M., Levy, S., Ferreira, K. B., and Hoefler, T. (2016). On Noise and the

Performance Benefit of Nonblocking Collectives. Int. J. High Perform. Comput. Appl.,

30(1):121–133. 13

[65] Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., and Dongarra, J. (2015). Hierarchical

dag scheduling for hybrid distributed systems. In 2015 IEEE International Parallel and

Distributed Processing Symposium, pages 156–165. 3

[66] Yoshii, K., Iskra, K., Naik, H., Beckmanm, P., and Broekema, P. C. (2009).

Characterizing the Performance of Big Memory on Blue Gene Linux. In 2009 ICPP

Workshops, pages 65–72. 13

[67] Zheng, F., Yu, H., Hantas, C., Wolf, M., Eisenhauer, G., Schwan, K., Abbasi, H., and

Klasky, S. (2013). Goldrush: Resource efficient in situ scientific data analytics using fine-

grained interference aware execution. In 2013 SC - International Conference for High

Performance Computing, Networking, Storage and Analysis (SC), pages 1–12. 13

[68] Zhu, H., Goodell, D., Gropp, W., and Thakur, R. (2009). Hierarchical Collectives in

MPICH2, pages 325–326. Springer Berlin Heidelberg, Berlin, Heidelberg. 14

107



Vita

Xi Luo was born in Nanjing, Jiangsu, China, in December 22, 1988. After completing his

education at Jinling High School in 2007, he entered Sichuan University and received his

Bachelor’s degree in Computer Science in 2011. In 2014, after finishing his Master’s degree

in Computer Science at Stevens Institute of Technology, he was enrolled in the Ph.D. program

in Computer Science at the University of Tennessee, Knoxville. During his studies, he worked

as a graduate research assistant at the Innovative Computing Laboratory (ICL) under the

supervision of Dr. Jack Dongarra and Dr. George Bosilca. His research interests are focused

on high-performance computing, with a concentration on MPI collective operations. While

pursuing his doctoral degree, Xi completed an internship at Oak Ridge National Lab in the

summer of 2017 under the guidance of Dr. Dali Wang. Xi Luo is expected to receive his

Doctor of Philosophy degree in Computer Science in May 2020.

108


	Optimization of MPI Collective Communication Operations
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Propagation of Noise
	1.1.2 Hardware Heterogeneity and Hierarchy
	1.1.3 Parameter Autotuning

	1.2 Contributions
	1.2.1 Noise-Resistant Collective Operations
	1.2.2 Hierarchical Collective Operations
	1.2.3 Autotuning of Collective Operations

	1.3 Dissertation Outline

	2 Background and Literature Review of Related Work
	2.1 Overview
	2.2 MPI
	2.2.1 MPI Collective Communication Operations
	2.2.2 The Open MPI Library

	2.3 Noise Propagation
	2.3.1 Eliminate Noise from the Source
	2.3.2 Alleviate Noise Propagation

	2.4 Hierarchical Collective Operations
	2.4.1 Explore More Levels
	2.4.2 Communication Overlap

	2.5 Autotuning of Collective Operations
	2.5.1 Offline Tuning
	2.5.2 Online Tuning


	3 Noise Resistant Collective Operations
	3.1 Overview
	3.2 Existing Implementations
	3.2.1 Collectives Using Blocking Point-to-Point Routines
	3.2.2 Collectives Using Nonblocking Point-to-Point Routines

	3.3 ADAPT: Event-Driven Design
	3.3.1 Implementation of ADAPT
	3.3.2 Analysis of Dependencies in ADAPT
	3.3.3 Extend ADAPT to Other Collective Operations
	3.3.4 Support Different Collectives with Multiple Communication Trees

	3.4 Evaluation
	3.4.1 Experimental Setup
	3.4.2 Noise Impact


	4 Hierarchical Collective Operations - Topology-Aware Tree
	4.1 Overview
	4.2 Topology-Aware Communication Tree
	4.2.1 The Problems of Existing Tree-Based Algorithms
	4.2.2 Build a Topology-Aware Tree

	4.3 ADAPT vs. Other Implementations
	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 Performance of Different Topology-aware Algorithms
	4.4.3 Performance of MPI Implementations


	5 Hierarchical Collective Operations - Combine Specialized Modules
	5.1 Overview
	5.2 Specialized Modules in Open MPI
	5.2.1 Inter-Node Modules
	5.2.2 Intra-Node Modules

	5.3 Combine Specialized Modules - HAN: Task-Based Design
	5.3.1 MPI_Bcast
	5.3.2 MPI_Allreduce


	6 Autotuning of Collective Communication Operations
	6.1 Overview
	6.2 Task-Based Autotuning
	6.3 Evaluation
	6.3.1 Experimental Setup
	6.3.2 Benchmark Results
	6.3.3 Application Results


	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Vita

