
SCALABLE FORMAL DYNAMIC VERIFICATION

OF MPI PROGRAMS THROUGH DISTRIBUTED

CAUSALITY TRACKING

by

Anh Vo

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

August 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276264274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright c© Anh Vo 2011

All Rights Reserved



T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l  

STATEMENT OF DISSERTATION APPROVAL 

The dissertation of 

has been approved by the following supervisory committee members: 

, Chair 
Date Approved 

, Member 
Date Approved 

, Member 
Date Approved 

, Member 
Date Approved 

, Member 
Date Approved 

and by , Chair of

the Department of 

and by Charles A. Wight, Dean of The Graduate School. 

Anh Vo

Ganesh Gopalakrishnan 04/26/2010

Robert M. Kirby 04/18/2010

Bronis R. de Supinski 04/18/2010

Mary Hall 04/18/2010

Matthew Might 04/18/2010

Al Davis

School of Computing



ABSTRACT

Almost all high performance computing applications are written in MPI, which will

continue to be the case for at least the next several years. Given the huge and growing

importance of MPI, and the size and sophistication of MPI codes, scalable and incisive

MPI debugging tools are essential. Existing MPI debugging tools have, despite their

strengths, many glaring deficiencies, especially when it comes to debugging under the

presence of nondeterminism related bugs, which are bugs that do not always show up

during testing. These bugs usually become manifest when the systems are ported to

different platforms for production runs.

This dissertation focuses on the problem of developing scalable dynamic verification

tools for MPI programs that can provide a coverage guarantee over the space of MPI

nondeterminism. That is, the tools should be able to detect different outcomes of

nondeterministic events in an MPI program and enforce all those different outcomes

through repeated executions of the program with the same test harness.

We propose to achieve the coverage guarantee by introducing efficient distributed

causality tracking protocols that are based on the matches-before order. The matches-

before order is introduced to address the shortcomings of the Lamport happens-before

order [40], which is not sufficient to capture causality for MPI program executions due to

the complexity of the MPI semantics. The two protocols we propose are the Lazy Lamport

Clocks Protocol (LLCP) and the Lazy Vector Clocks Protocol (LVCP). LLCP provides

good scalability with a small possibility of missing potential outcomes of nondeterministic

events while LVCP provides full coverage guarantee with a scalability tradeoff. In practice,

we show through our experiments that LLCP provides the same coverage as LVCP.

This thesis makes the following contributions:

• The MPI matches-before order that captures the causality between MPI events in

an MPI execution.

• Two distributed causality tracking protocols for MPI programs that rely on the

matches-before order.

• A Distributed Analyzer for MPI programs (DAMPI), which implements the two



aforementioned protocols to provide scalable and modular dynamic verification for

MPI programs.

• Scalability enhancement through algorithmic improvements for ISP, a dynamic

verifier for MPI programs.

iv



For my parents



“The major difference between a thing that might go wrong and a thing
that cannot possibly go wrong is that when a thing that cannot possibly go
wrong goes wrong, it usually turns out to be impossible to get at or repair”

– Douglas Adams, Mostly Harmless



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Dynamic Verification for MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 MPI Matches-Before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Lazy Update Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Contributions to ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.4 DAMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Distributed Causality Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Lamport Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Vector Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The Message Passing Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Synchronous Point-to-Point Communication . . . . . . . . . . . . . . . . . . . 11
2.3.2 Asynchronous Point-to-Point Communication . . . . . . . . . . . . . . . . . . 14
2.3.3 Collective Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Nondeterminism in MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.5 Nonovertaking in MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.6 Common MPI Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.6.1 Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.6.2 Resource Leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.6.3 Erroneous Buffer Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.6.4 Type Mismatches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.7 The MPI Profiling Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Piggybacking in MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Buffer Attachment Piggybacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Separate Message Piggybacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Datatype Piggyback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



3. MPI MATCHES-BEFORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Our Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Issues Applying Happens-Before to MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Matches-Before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. CENTRALIZED DYNAMIC VERIFICATION FOR MPI . . . . . . . . . 35

4.1 ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1 The ISP Profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 The ISP Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 The POE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.4 ISP Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 ISP Scalability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 The Scalability Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Memory Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Improvements to POE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.3.1 Transitivity of Matches-Before . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3.2 Parallel-ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5. DISTRIBUTED DYNAMIC VERIFICATION FOR MPI . . . . . . . . . . 46

5.1 Lazy Lamport Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Clock Update Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.3 Match Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Lazy Vector Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.1 Handling Synchronous Sends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1.1 Piggyback Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.1.2 Algorithm Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 DAMPI: Distributed Analyzer for MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 DAMPI Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1.1 The DAMPI Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.1.2 The Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 Implementation Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2.1 Piggyback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2.2 DAMPI Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2.3 Error Checking Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2.4 The DAMPI Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.3 Evaluation of LLCP and LVCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.4 DAMPI Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.4.1 Full Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.5 Search Bounding Heuristics Evaluation . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.5.1 Loop Iteration Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.5.2 Bounded Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



6. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Debugging and Correctness Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.1 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.2 Correctness Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Verification Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Deterministic Replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.1.1 Static Analysis Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.1.2 Hybrid Programming Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ix



LIST OF FIGURES

1.1 MPI example to illustrate POE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 A distributed system using Lamport clocks . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 A distributed system using Lamport clocks . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 An MPI program calculating π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Deadlock due to send receive mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Head-to-head deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Deadlock due to collective posting order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Deadlock due to nondeterministic receive . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Resource leak due to unfreed request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Erroneous buffer reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Type mismatch between sending and receiving . . . . . . . . . . . . . . . . . . . . . . . 22

2.11 A simple PMPI wrapper counting MPI Send . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.12 Buffer attachment piggyback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.13 Separate message piggyback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.14 Separate message piggyback issue on the same communicator . . . . . . . . . . . 25

2.15 Separate message piggyback issue on different communicators . . . . . . . . . . . 26

2.16 Datatype piggyback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Wildcard receive with two matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Counterintuitive matching of nonblocking receive . . . . . . . . . . . . . . . . . . . . . 30

3.3 Nonovertaking matching of nonblocking calls . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Transitivity of matches-before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 ISP framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 MPI example to illustrate POE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Improvements based on transitive reduction . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Improvements made by data structures changes . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Improvements made by parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Late messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 An example illustrating LLCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



5.3 Omission scenario with LLCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Handling synchronous sends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 DAMPI framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 DAMPI library overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Packing and unpacking piggyback data - collective . . . . . . . . . . . . . . . . . . . . 57

5.8 Packing and unpacking piggyback data - point-to-point . . . . . . . . . . . . . . . . 58

5.9 Pseudocode for piggybacking in MPI Send . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.10 Pseudocode for piggybacking in MPI Isend . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.11 Pseudocode for piggybacking in MPI Recv . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.12 Pseudocode for piggybacking in MPI Irecv . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.13 Pseudocode for piggybacking in MPI Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.14 Wildcard receives with associated clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.15 Pseudocode for MPI Irecv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.16 Pseudocode for MPI Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.17 Pseudocode for CompleteNow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.18 Pseudocode for MPI Recv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.19 Pseudocode for ProcessIncomingMessage . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.20 Pseudocode for FindPotentialMatches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.21 Pseudocode for CompleteNow with probe support . . . . . . . . . . . . . . . . . . . . 67

5.22 MPI example with MPI ANY TAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.23 Pseudocode for the DAMPI scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.24 Bandwidth impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.25 Latency impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.26 Overhead on SMG2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.27 Overhead on AMG2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.28 Overhead on ParMETIS-3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.29 ParMETIS-3.1: DAMPI vs. ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.30 Matrix multiplication: DAMPI vs. ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.31 A simple program flow to demonstrate bounded mixing . . . . . . . . . . . . . . . . 84

5.32 Matrix multiplication with bounded mixing applied . . . . . . . . . . . . . . . . . . . 85

5.33 ADLB with bounded mixing applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



LIST OF TABLES

4.1 Comparison of POE with Marmot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Number of MPI calls in ParMETIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Statistics of MPI operations in ParMETIS-3.1 . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 DAMPI overhead: Large benchmarks at 1K processes . . . . . . . . . . . . . . . . . 80



ACKNOWLEDGMENTS

My research that led to this dissertation and this dissertation itself would not have

been possible without the advice and support from my friends, my family, the faculty of

the School of Computing, and our research collaborators. First and foremost, I would like

to thank my advisor, Professor Ganesh Gopalakrishnan, who I consider to be the best

advisor one could ever hope to have. His level of enthusiasm has inspired many students,

myself included, to be self-motivated and work hard to achieve the goals we have set for

ourselves. Thank you, Ganesh; I could not have done it without your support.

The dissertation would not have reached its current state without the suggestions of

Professor Robert M. Kirby, who is my coadvisor, Dr. Bronis de Supinski, Professor Mary

Hall, and Professor Matthew Might, who are my committee members. Thank you all of

you for your valuable input on my research and my dissertation.

During the course of my research on DAMPI, I probably maintained an average ratio

of about five bad ideas to one decent idea, and about five decent ideas to one good

(i.e., publishable) idea. Without the countless brainstorming sessions with our research

collaborators, Bronis de Supinski, Martin Schulz, and Greg Bronevetsky, whether at the

whiteboard or through emails, the bad ones would have been considered good, and vice

versa. Working with you has been an eye opening experience. I am especially grateful to

Bronis for his editing help with the papers, the proposal, and this dissertation itself.

My research began as a project to improve ISP, a dynamic code level model checker

for MPI. ISP is the work of Sarvani Vakkalanka, whom I had the pleasure of working

with for two years. She was one of the smartest and hardest working colleagues that I

have had. Her work on ISP inspired my research and I am thankful for that. I would

also like to express my gratitude to many of my colleagues, especially Michael Delisi,

Alan Humphrey, Subodh Sharma, and Sriram Aananthakrishnan, for their input and

contributions.

With a few exceptions, going to graduate school is usually demanding and stressful. I

would not have made it without the support of my family and my friends. My parents, my

sister, and my cousin and her family have always been my biggest supporters. I appreciate



that they always try to tactfully ask me how many years I have been in school instead

of asking me how many years I have left. I am especially indebted to my fiance, Phuong

Pham, for providing me the motivation and the encouragement I needed to finish the

dissertation work. I am also thankful to many good friends who have made my graduate

school experience memorable. My-phuong Pham, Linh Ha, Hoa Nguyen, Huong Nguyen,

Khiem Nguyen, Thao Nguyen, Huy Vo, and Trang Pham, thank you all.

Five years ago as I was pondering the decision on whether I should continue my

studying, it was my friend Khoi Nguyen who encouraged me to go for graduate school.

And until today I still remember the countless nights we stayed up together, each working

on our own projects and paper, even though we are several time zones apart. Khoi will

always have my gratitude.

xiv



CHAPTER 1

INTRODUCTION

It is undeniable that the era of parallel computing has dawned on us, regardless

of whether we are ready or not. In a recent report entitled The Future of Computing

Performance: Game Over or Next Level, the National Research Council states that “the

rapid advances in information technology that drive many sectors of the U.S. economy

could stall unless the nation aggressively pursues fundamental research and development

of parallel computing” [25]. Today supercomputers are becoming faster, cheaper, and

more popular. The last release of the Top500 list in November 2010 witnessed five new

supercomputers, which had not previously been on the list before, making it to the

top ten [16]. Future growth in computing power will have to come from parallelism,

from both the hardware side and the software side. Programmers who are used to

thinking and coding sequential software now have to turn to parallel software to achieve

the desired performance. Unfortunately, the transition from sequential programming to

parallel programming remains a challenge due to the complexity of parallel programming.

There are many different forms of parallelism in software, from multithreading to

message passing. This dissertation specifically focuses on message passing software,

especially those written in MPI (Message Passing Interface [28]). Today MPI is the

most widely used programming API for writing parallel programs that run on large

clusters. The ubiquity of MPI can be attributed to its design goals, which are flexibility,

performance, and portability. MPI accomplishes these goals by providing a very rich

semantics that incorporates the features of both asynchronous and synchronous systems.

Synchronous behavior is easy to use and understand, which allows developers to achieve

higher productivity, while asynchronous behavior allows for the highest performance.

Both of these properties are necessary for a ubiquitous standard.

Unfortunately, the performance and flexibility of MPI come with several debugging

challenges. MPI programs, especially under the presence of nondeterminism, are notori-

ously hard to debug. Nondeterminism bugs are difficult to catch because repeated unit



2

testing, which is the most commonly used method to test concurrent code, usually covers

only a small number of possible executions [73]. When the code enters production and

is deployed in different environments, the untested (buggy) path becomes manifest and

might cause the software to crash.

To highlight how difficult debugging can get with MPI, we consider a simple MPI

program shown in Figure 1.1, which contains a very subtle bug. In this program, the

asynchronous nondeterministic receive posted in process P1 can potentially match with

message sent by either P0 or P2. Under traditional testing, one may never successfully be

able to force P2’s message (which triggers ERROR) to match. While this option appears

impossible due to its issuance after an MPI barrier, it is indeed a possible match because

the MPI semantics allows a nonblocking call to pend until its corresponding wait is posted.

This example illustrates the need for more powerful verification techniques than ordinary

random testing on a cluster where, due to the absolute delays, P2’s match may never

happen (and yet, it may show up when the code is ported to a different machine).

Even though there are many techniques and tools that help developers discover

MPI nondeterminism errors, they basically fall into one of these three categories: static

methods, dynamic methods, and model checking. Static methods have the advantages of

being input-independent since they verify the program at the source code level. However,

they tend to provide too many false alarms, especially for a large code base, due to the

lack of runtime knowledge. Model checking methods are very powerful for small programs

in terms of verification coverage but they quickly become impractical for large software

due to the infeasibility of building models for such software. Dynamic methods such as

testing or dynamic verification are the most applicable methods for large MPI programs

since they produce no false alarms and also require little work from the tool users. This

dissertation focuses on applying formal techniques to create efficient and scalable dynamic

verification tools for MPI programs.

P0 P1 P2

Isend(to P1,22) Irecv(from:*,x) Barrier

Barrier Barrier Isend(to P1,33)

Wait() Recv(from:*,y) Wait()

if(x==33) ERROR

Wait()

Figure 1.1: MPI example to illustrate POE



3

1.1 Dynamic Verification for MPI

Most realistic MPI programs are written in Fortran/C/C++ and run on clusters with

thousands to hundreds of thousands of cores. These programs can have not only the

common C/C++/Fortran bugs such as memory leaks or buffer overflow, but also bugs

specific to MPI such as deadlocks or illegal buffer reuse. Earlier we presented a buggy

example involving a nondeterministic receive, which is troublesome for developers to

debug because the bugs appear intermittently and do not show up in all traces. Testing

tools for MPI such as Marmot [35] and Umpire [68] are unreliable for such bugs because

they only catch the bugs that appear in the testing run. In other words, they do not

provide any coverage guarantee over the space of nondeterminism.

The model checker MPI-SPIN [58] can provide a coverage guarantee for MPI ver-

ification. However, MPI-SPIN requires the users to build models manually using the

SPIN programming language for MPI programs and run the model checker to verify the

models. For realistic MPI programs containing hundreds of thousands of lines of code,

this requirement is unrealistic and renders this approach impractical.

While there exist dynamic verification tools for other types of parallel software such

as CHESS [46] or Verisoft [26], similar tools for MPI are still nonexistent.

1.2 Thesis Statement

Scalable, modular and usable dynamic verification of realistic MPI programs is novel

and feasible.

1.3 Contributions

1.3.1 MPI Matches-Before

We investigate the Lamport happens-before [40] order between events in a distributed

system and show that it is insufficient for capturing the full semantics of MPI executions.

More specifically, the reason is that the happens-before order relies on knowing when

an event finishes all its execution effects. However, obtaining such information for MPI

events is a challenging task since an MPI event can exist in many different states from

the point in time when the process invokes the MPI call to the point where the call

no longer has any effect on the local state. We show that either the point of issuing

or the point of completion is insufficient to order events in an MPI execution correctly,

which is counterintuitive to what most tool developers tend to think. To overcome these

limitations, we contribute the notion of matches-before which focuses on the matching



4

point of MPI events (intuitively, the matching point is the point when an operation

commits that it will finish according to the commitment).

1.3.2 Lazy Update Protocols

We introduce two fully distributed protocols, namely the Lazy Lamport Clocks Pro-

tocol (LLCP) and the Lazy Vector Clocks Protocol (LVCP). Both of these protocols

rely on the matches-before order to track causality between nondeterministic events in

MPI executions. While the vector clock-based protocol provides a complete coverage

guarantee, it does not scale as well as the Lamport clock-based protocol. We show

through our experiments that in practice, the Lamport clock protocol provides the same

coverage guarantee without sacrificing scalability.

1.3.3 Contributions to ISP

ISP is a formal dynamic verifier for MPI programs developed originally by Sarvani

Vakkalanka [64–66, 71]. ISP uses a centralized version of matches-before to achieve

verification coverage over the space of nondeterminism. My specific contributions to

ISP are as follows:

• Studying the scalability of ISP and making ISP scale to handle realistic MPI ap-

plications through various algorithmic improvements such as reducing ISP memory

footprint through data structure improvements, increasing speed up through the

use of better communication mechanisms, and parallelization of the ISP scheduler

with OpenMP [66,67,71,72].

• Interfacing with GEM [34] developers to make ISP a practical tool.

1.3.4 DAMPI

The lazy update algorithms provide the basis for developing scalable and portable

correctness checking tools for MPI programs. We demonstrate this by providing the

implementation for these algorithms through a new tool called DAMPI [69, 70], which

is a Distributed Analyzer for MPI programs. Similarly to ISP, DAMPI’s goals are to

verify MPI programs for common errors such as deadlocks, resource leaks over the space of

nondeterminism. In contrast with ISP, DAMPI is fully distributed and targets large scale

MPI programs that run on large clusters. The lazy update algorithms allow DAMPI to

provide coverage over the space of nondeterminism without sacrificing scalability. Further,

we implement several user configurable search bounding heuristics in DAMPI such as loop



5

iteration abstraction, which allows the user to specify the regions for which DAMPI should

bypass during the verification, and bounded mixing, which is a mechanism that allows

the user to limit the impact a nondeterministic choice has on subsequent choices. Both

of these heuristics aim to reduce the search space and provide the user with configurable

coverage.



CHAPTER 2

BACKGROUND

This chapter gives the background knowledge about causality tracking in distributed

systems in general, and MPI in particular.

2.1 Distributed Systems

While there are several possible ways to define what distributed systems are, we adapt

the definition from Coulouris [22], which defines a distributed system as a collection of

networked computers that communicate with each other through message passing only.

Since we mostly restrict our study to the software level, we find the concept of dis-

tributed programs more useful and applicable. A distributed program P is a collection of

processes P0, . . . , Pn communicating through message passing, running a common program

to achieve a common goal. It is important to note that this definition allows a distributed

program to run even on a single computer where each process Pi runs within its own

virtual address space provided by the host operating system. In the rest of the paper, we

shall use the term distributed system in place of distributed program.

2.2 Distributed Causality Tracking

The ordering of events is an essential part of our daily life. Consider the following

hypothetical example: Bob receives two undated letters from his father; one of which says

“Mom is sick” and the other says “Mom is well.” Since the letters are undated, Bob has

no way to reason about the current well-being of his mother. One apparent solution is for

Bob to pick up the phone and call his father to inquire about his mother’s status. However,

let us assume that in this hypothetical time and space, telephone communication does

not exist, which would also explain why Bob’s father sent him letters instead of calling.

With this constraint, one possible solution is for Bob’s father to write down the time from

his wristwatch to the end of each letter. In other words, he is attaching the physical clock

to each message that he sends to Bob.



7

This solution works fine if Bob’s father is the only one communicating with Bob. It is

not hard to imagine why this scheme would fail if another person, e.g., Bob’s sister, also

communicates with Bob. Assuming that instead of receiving two letters from his father,

Bob receives one from his father that says “Mom is sick” and one from his sister that says

“Mom is well.” If Bob’s sister uses her own wristwatch to timestamp her message to Bob

and her watch is not in synchronization with his father’s watch, the scheme still does not

allow Bob to order the events properly based on the received messages. He would not

be able to figure out whether his sister received a message from his father updating the

status of the mother (and told her to send a message to Bob) after his father had sent

him the message, or she simply visited the mother before she became ill. In other words,

the scheme does not fully capture the causal relation of the two messages.

In distributed systems, causality tracking is a major part of many problems, ranging

from the simplest problems of resource allocation and reservation to more complicated

problems such as checkpointing or deterministic replay. Many of these algorithms are used

in safety critical systems and faulty knowledge would have catastrophic consequences. We

now look at several ways that one can track causality in distributed systems and how they

can help Bob solve the problem of figuring out his Mom’s current health status.

2.2.1 Lamport Clocks

In 1978, Lamport invented a very simple yet effective mechanism to capture the total

order of events in distributed systems [40]. Instead of using physical clocks, process Pi

now has a function Ci(a) that returns a number C(a) for event a in Pi, and we shall call

this number a’s timestamp (or a’s clock). In other words, instead of associating physical

times to Pi’s events, the algorithm now associates logical times to them.

Assuming that sending and receiving messages are observable events in the system

and that local events follow program order, we describe the Lamport clocks algorithm

through a set of clock maintenance rules as follows:

• R1. Each process Pi maintains a counter Ci initialized to 0.

• R2. Pi increments Ci when event e occurs and associates e with the new clock. Let

Ci(e) denote this value.

• R3. Pi attaches (piggybacks) Ci whenever it sends a message m to Pj

• R4. When Pi receives m, it sets Ci greater than or equal to its present value and

greater than the clock it receives.



8

Figure 2.1 shows a message passing program with three processes implementing the

above Lamport Clock algorithm. Each event has an associated clock value and the

direction of the arrow indicates the direction of the message (i.e., a, c, e are the sending

events and b, d, f are the corresponding receiving events, respectively).

The above algorithm has two important properties:

• P1. If event a occurs before event b in Pi, then Ci(a) < Ci(b). This follows from

rule R2 above.

• P2. If a is the sending event of message m and b is the corresponding receiving

event of m, then Ci(a) < Ci(b). This follows from rule R3 and R4 above.

We are now ready to define the Lamport happens-before (→) relation for the set of

all events in a distributed system. Let eai be the ath event that occurs in process Pi,

send(Pi,m) be the event corresponding to sending message m to Pi, and recv(Pi) be the

event corresponding to the reception of m from Pi, → is defined as follows:

eai → ebj ⇔


(i = j ∧ a+ 1 = b) ∨
(i 6= j ∧ (eai = send(Pj ,m) ∧ ebj = recv(Pi,m))) ∨
(∃eck : eai → eck ∧ eck → ebj)

Using this definition of → and applying the two properties P1 and P2, we can see

that any distributed system implementing the Lamport clocks algorithm satisfies the

Clock Condition, which states: for any two events a and b, if a→ b then C(a) < C(b). It

is important to note that the converse of the clock condition is not always true. Consider

events e and c in Figure 2.1, while C(e) < C(c), we cannot conclude that e→ c. However,

we can infer that c could not have happened before e. While this inference is enough for

1a

2b 3c

4d

2e

5f

Figure 2.1: A distributed system using Lamport clocks



9

several applications, some of them do require a more meaningful answer (i.e., whether e

happens-before c, or e and c are simply concurrent events). We will now look at vector

clocks, a more powerful scheme of logical clocks that can address the aforementioned

deficiency of Lamport clocks.

2.2.2 Vector Clocks

Vector clocks have been used a long time before they are formally defined simultane-

ously and independently by Fidge [24] and Mattern [43]. For example, version vectors,

which are essentially vector clocks, were used to detect mutual inconsistency in distributed

systems [49].

Vector clocks address the limitation of Lamport clocks by maintaining a vector of

timestamps per process. That is, process Pi maintains a vector V Ci[0..n] where V Ci[j]

represents Pi’s knowledge about the current timestamp of Pj . We now describe the vector

clocks algorithms:

• R1. Each process Pi has a vector V Ci initialized to 0 (∀k ∈ {0..n} : V C[k] = 0).

• R2. Pi increments V Ci[i] when event e occurs and assigns e the new clock. Let

e.V C denote this value.

• R3. Pi attaches (piggybacks) Vi whenever it sends a message m to Pj . Let m.V C

denote this value.

• R4. When Pi receives m, it updates its vector clock as follows: ∀k ∈ {0..n}V Ci[k] =

max(V Ci[k],m.V C[k]).

We also need to define a way to compare vector clocks (which is not necessary for

Lamport clocks since we are only dealing with a single integer). Two vector clocks V Ci

and V Cj are compared as follows (we only show the case for <, the = case is trivial and

thus omitted, the > case is similar to that of <):

V Ci < V Cj ⇔ ∀k ∈ {0..n} : V Ci[k] ≤ V Cj [k] ∧ ∃l ∈ {0..n} : V Ci[l] < V Cj [l]

Earlier we mentioned the fact that the Lamport clocks algorithm cannot guarantee

the converse of the Clock Condition. The vector clocks algorithm effectively addresses

that deficiency, which means it satisfies the Strong Clock Condition: for any events a and

b: a→ b iff a.V C < b.V C (in contrast with Lamport clocks, which only guarantee that

if a→ b then a.LC < b.LC)

Figure 2.2 shows the same parallel program as Figure 2.1 using vector clocks instead

of Lamport clocks. Now consider events e and c, which have vector timestamps of [2, 0, 0]



10

and [1, 2, 0], respectively. Apparently, neither e→ c nor c→ e holds. In this case, e and

c are concurrent events.

Definition 2.1 Two events a and b are concurrent if a9 b ∧ b9 a

While vector clocks are useful in applications that require the knowledge of the events’

partial order, they have one major drawback: each message has to carry a vector of n

integers. As systems scale beyond thousands of processes, the impact on bandwidth

becomes significant. Unfortunately, under the worst case scenarios, the size limitation of

vector clocks is a necessary requirement [20]. Nonetheless, in systems where bandwidth

is a large concern, one can apply several compression schemes to reduce the size of the

vector clocks that are transmitted [31, 44, 60, 62]. The effectiveness of these schemes

are highly dependent on the communications pattern and also on the properties of the

communicating channels.

2.3 The Message Passing Interface

The Message Passing Interface (MPI) is a message-passing library interface specifica-

tion [28], designed to help programmers write high performance, scalable, and portable

parallel message passing programs. Today it is the de-facto API for writing programs

running on large clusters. A description of an MPI program can be found in the MPI

standard [28], which states:

An MPI program consists of autonomous processes, executing their own code, in
a MIMD style. The codes executed by each process need not be identical. The
processes communicate via calls to MPI communication primitives. Typically, each
process executes in its own address space, although shared-memory implementations

1,0,0a

1,1,0b 1,2,0c

1,2,1d

2,0,0e

2,2,2f

Figure 2.2: A distributed system using Lamport clocks



11

of MPI are possible. This document specifies the behavior of a parallel program as-
suming that only MPI calls are used. The interaction of an MPI program with other
possible means of communication, I/O, and process management is not specified.

A typical MPI program is written in C/C++/Fortran, compiled, and linked with an

MPI implementation. There exist many different MPI implementations [9, 11, 29], all of

which follow the specifications given in the standard.

An example of a typical MPI program is given in Figure 2.3. The program tries to

compute π as follows: each process tries to compute its own chunk based on the numerical

integration method, using the number of intervals it receives from the master through

MPI Bcast, which is a broadcasting call. The master would then collect the chunks to

calculate the final results of π through MPI Reduce, which is a reduction call.

To provide the maximum performance and portability, MPI supports a wide range of

communication modes including nonblocking communication, nondeterministic receives,

and a large number of collective calls. We will divide these communication calls into

three groups, namely asynchronous communication, synchronous communication, and

collective communication and describe them in Sections 2.3.1, 2.3.2, and 2.3.3.

2.3.1 Synchronous Point-to-Point Communication

The most basic form of MPI point-to-point communication is through the use of

synchronous communication. These calls usually implement some rendezvous protocol

where the receiver blocks until it starts to receive data from a matching sender. In the

case of a synchronous send, the sender blocks until it receives an acknowledgement from

the receiver that is has started the receiving process.

Synchronous communication offers several advantages. First, it is easier to use and

understand compared to asynchronous communication, which allows for higher produc-

tivity. Second, it can help prevent memory exhaustion by not requiring the MPI runtime

to provide message buffer. However, synchronous communication usually comes with

performance penalty due to the cost of synchronization, especially for applications that

communicate large messages infrequently. In order to address this problem, MPI offers

two alternatives: buffered communication and asynchronous communication.

Buffered communication allows the process to issue a sending request and continue

processing without waiting for the acknowledgement from the receiver. MPI programmers

can take advantage of buffered communication through one of these two methods:



12

#include "mpi.h"

#include <stdio.h>

#include <math.h>

int main( int argc, char *argv[] )

{

int n, myid, numprocs, i;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (1) {

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0)

break;

else {

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += (4.0 / (1.0 + x*x));

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

}

MPI_Finalize();

return 0;

}

Figure 2.3: An MPI program calculating π



13

• Allocate an explicit buffer and provide it to the MPI Bsend call through the use

of MPI Buffer attach. Note that the user can only attach one buffer per process

and the buffer can be used for more than one message. MPI Buffer detach can be

called later to force the delivery of all messages currently in the buffer.

• Take advantage of the MPI runtime’s buffer through the use of MPI Send. The user

buffer is available immediately after the call since MPI has copied the data into its

own buffer. However, it is generally unsafe to rely on the runtime to provide such a

buffer. In fact, the MPI standard does not mandate that the implementation should

provide any buffer (although most of them do in practice to improve performance).

If the runtime runs out of buffer space due to excessive pending communication,

MPI Send will block until more buffer space is available, or until the data has been

transmitted to the receiver side’s buffer (normally it only blocks until the user buffer

has been completely copied to the runtime’s buffer).

We now describe the syntax of MPI Ssend and MPI Recv, which are the two main

synchronous point-to-point operations.

• MPI Ssend(buffer,count,dtype,dest,tag,comm)

where buffer is a pointer to the data to be sent, dtype is the abstract type of

the data, count is the number of elements of type dtype in buffer, dest is the

destination process for this message, tag is an integer tag associated with this

message, and comm is the MPI communicator in which this event will take place

(a communicator is basically a group of processes created by the program; the

special MPI COMM WORLD is the default communicator for all processes). Note that

while MPI Send has the same blocking behavior as MPI Ssend, according to the

MPI standard, its behavior is asynchronous. That is, the call can return before a

matching receive is posted.

• MPI Recv(buffer,count,dtype,source,tag,comm,status)

where buffer is a pointer to the receiving buffer, dtype is the abstract type of the

data, count is the number of elements of type dtype expected to receive, source is

the process that is expected to deliver the message, tag is the integer tag associated

with the expected message, comm is the MPI communicator in which this event will

take place, and status is a data structure that can be used to get more information

about the received message. The receive is not required to fill the buffer (i.e., partial

receives are allowed), in which case the user can find out exactly how many elements



14

were received by calling MPI Get count or MPI Get elements. Note that it is an

MPI error to post a receive that does not have enough buffer space to receive an

incoming message.

2.3.2 Asynchronous Point-to-Point Communication

As mentioned earlier, synchronous communication offers robustness and predictability

of message delivery at the cost of program flexibility and performance. Many applications

exhibit a large degree of communication-computation overlap and thus would benefit from

having the ability to issue some communication requests, continue with local processing,

and process the results of those requests when the computation phase is over, with the

hope that the MPI runtime has sent/delivered the message during the computation phase.

MPI offers asynchronous point-to-point communication through the use of calls such

as MPI Isend and MPI Irecv. The process would provide a buffer, issue the call, ob-

tain a request handle from the runtime, and wait for the communication request to

finish later using either MPI Wait or MPI Test (or their variants such as MPI Waitall

or MPI Waitany). In the MPI 1.1 standard, the process cannot access the buffer while

the requests are still pending. This was later changed to read-only for pending sending

requests and no-access for pending receiving requests for MPI 2.2 and higher.

Similarly to MPI Send, the MPI runtime can (and often will) buffer the messages

sent by MPI Isend as long as the runtime’s buffer has enough space. In other words, the

corresponding call to MPI Wait simply indicates that the user data have been copied to the

runtime’s buffer and the process can now reuse the buffer associated with the MPI Isend.

Those applications that require a rendezvous semantics for such situations will have to use

MPI Issend where the corresponding MPI Wait will block until the receiver has started

to receive the data.

We now describe the syntax of MPI Isend, MPI Irecv and MPI Wait.

• MPI Isend(buffer,count,dtype,dest,tag,comm,req handle)

where req handle represents the communication handle returned by the MPI run-

time. All other arguments are similar to those of MPI Send.

• MPI Recv(buffer,count,dtype,source,tag,comm,req handle)

where req handle represents the communication handle returned by the MPI run-

time. All other arguments are similar to those of MPI Recv.

• MPI Wait(req handle,status)

where req handle is the communication request to be finished and status is where



15

the user can obtain more information about the communication request after it

finishes. Note that req handle is set to MPI REQUEST NULL once the communication

associated with this request completes. Invoking MPI Wait on MPI REQUEST NULL

causes no effect.

2.3.3 Collective Communication

As the name suggests, collective communication refers to MPI functions that require

the participation of all processes within a defined communicator. It is easy to think

of collective communications as a set of point-to-point operations; for example, the

MPI Bcast call can be decomposed into multiple MPI Send calls from the root to all other

processes in the communicator and multiple MPI Recv calls from the other processes

to receive the data from the root. In practice, however, collective operations are heavily

optimized by most implementations depending on the size of the messages and the network

structure. For example, the MPI Bcast call can use a tree-based algorithm to broadcast

the message efficiently [61].

While it is intuitive for developers to consider collective operations as having syn-

chronizing behavior, the implementation is often not required to provide such seman-

tics. There are only a few collective calls that have synchronization semantics such as

MPI Barrier while the rest are only required to block until they have fulfilled their roles

in the collective operation. For example, in an MPI Reduce call, after a process has sent

out its data to the reducing root, it can proceed locally without having to wait for the root

to receive all messages from other processes. However, the MPI standard does require

that all processes in the communicator execute the collective. Collective operations also

have additional requirements such as the sending/receiving buffers have to be precisely

specified (i.e., no partial receives allowed).

We now describe the syntax of the MPI Barrier call.

• MPI Barrier(comm)

where comm is the MPI communicator on which this process wants to invoke the

barrier call. The MPI standard requires that all processes in the communicator

participate in the barrier and that they all block until all processes have reached

this routine.



16

2.3.4 Nondeterminism in MPI

The MPI standard also allows some MPI calls to have nondeterministic behavior

to provide programmers with more flexibility and reduce coding complexity. There are

several nondeterministic constructs in MPI:

• Nondeterministic receives using MPI ANY SOURCE as their argument for the source

field. As the name suggests, these receives can accept any incoming messages

carrying a compatible tag and coming from senders within the same communicator.

We sometimes refer to nondeterministic receives as wildcard receives.

• Nondeterministic receives using MPI ANY TAG. In addition to MPI ANY SOURCE, a

receive call in MPI can also choose to accept messages carrying any tag (within

the same communicator and coming from a matching sender). A nondeterministic

receive can use both MPI ANY SOURCE and MPI ANY TAG, in which case it can accept

any incoming message from senders belonging to the same communicator. It is also

important to note that the communicator cannot be nondeterministic.

• The MPI Waitany call can complete any one of the request handles passed in as its

argument (the choice of this request can be arbitrary). Similarly, the MPI Waitsome

can complete any number of requests out of all request handles passed in as its

arguments (i.e., if there are n request handles to complete, there are 2n−1 possible

ways for MPI Waitsome to finish). Note that due to their highly nondeterministic

behavior, MPI Waitany is only occasionally used and MPI Waitsome is almost never

used.

• The MPI Startall call starts all persistent requests, which are communication

handles that can be reused over and over again until they are explicitly deallocated,

in any arbitrary order and different ordering might lead to different execution paths.

However, in practice, most MPI implementations start them in the order given by

the array of request handles.

• MPI Test and its variants MPI Testany, MPI Testall, MPI Testsome return whether

some pending communication requests have finished or not. If the pending requests

have finished, the MPI runtime deallocates the requests and set the flags. Since

communication completion depends not only on the order that the requests are

issued, but also on network routing, timing, and numerous system factors, the

flag returned by MPI Test is not guaranteed to be set at the same time between

multiple program executions with the same test harness. For example, during the



17

first run, the developer might observe that MPI Test sets the flag to true after five

invocations; yet during the next run for the same test harness, it sets the flag to

true after the seventh invocation. The only thing the MPI standard guarantees

is that if the process repeatedly invokes MPI Test in a busy-wait loop, the flag

eventually will be set, if both the receiver and the sender have already started

the receiving/sending calls (this is called the MPI progress-guarantee). Many large

programs use MPI Test in place of MPI Wait due to its nonblocking characteristic.

The program can periodically check whether some pending communication requests

have finished without having to block.

• Nondeterministic probes (MPI Probe or MPI Iprobe) using either MPI ANY SOURCE,

MPI ANY TAG, or both. Probes allow the process to check whether there are any

messages to receive without actually receiving the messages. In applications where

the receivers do not always know how large the incoming messages are, probes are

extremely useful. If there are ready-to-receive messages, the status field returned by

the probe allows the process to determine the exact size of the incoming messages,

and thus the process can now allocate just enough buffer to receive them. MPI Probe

behaves similarly to MPI Recv in the sense that it blocks until there are messages

to receive. In contrast, MPI Iprobe behaves similarly to MPI Test, which returns

immediately and sets the flag to true if there are messages to receive. As in the case

with MPI Test, MPI Iprobe also has progress-guarantee semantics. It is important

to note that if a program invokes a probe call with MPI ANY SOURCE and later issues

a receive with MPI ANY SOURCE, there is no guarantee that the receive would receive

the message probed earlier (unless there is only one possible message to receive).

2.3.5 Nonovertaking in MPI

The rich features and the enormous flexibility of MPI come with the cost of increased

complexity. In a program with asynchronous sends/receives interacting with synchronous

calls with some or all of them being nondeterministic, trying to determine which sending

event should match with each receiving event can be a challenging task. To facilitate the

matching of sends and receives, the MPI standard enforces the nonovertaking rule, which

states:

Messages are nonovertaking: If a sender sends two messages in succession to the
same destination, and both match the same receive, then this operation cannot
receive the second message if the first one is still pending. If a receiver posts two



18

receives in succession, and both match the same message, then the second receive
operation cannot be satisfied by this message, if the first one is still pending.

Intuitively, one can imagine the communication universe in MPI being split into multiple

FIFO channels. Two processes exchanging messages using the same tag within the same

communicator effectively are utilizing one of these FIFO channels. However, the relative

order of two messages from two different channels can be arbitrary. We will provide a

formal notion for this rule in Chapter 3.

2.3.6 Common MPI Errors

We provide several examples that illustrate the most common errors found in MPI

programs. They can be classified in these categories: deadlocks, resource leaks, erroneous

buffer reuse, and type mismatches. Some bugs can be caused by the use of MPI nonde-

terministic constructs as explained earlier in Section 2.3.4. That is, when a bug is caused

by nondeterminism, there are MPI program schedules that may not be executed under

conventional testing. We try to present a mixture of both nondeterministic bugs and

deterministic bugs through several examples.

2.3.6.1 Deadlock

Deadlock typically happens when there is a send and receive mismatch. That is, one

process tries to receive a message from a process that either has no intention to or is

not able to send the expected message. Figure 2.4 presents a simple program where each

process sends a message to P0, and P0 tries to receive from all other processes. However,

due to a programming bug, P0’s first receive call is expecting a message from P0 (itself),

which does not post any send to match that receive. Therefore, the execution deadlocks.

Figure 2.5 presents an unsafe program involving two processes sending messages

to each other (a head-to-head deadlock). The deadlock occurs when the size of the

buffer exceeds the amount of buffering the MPI runtime provides. The MPI standard

recommends against relying on the runtime buffer to achieve the program’s objective

if (rank != 0)

MPI_Send(sendbuf, count, MPI_INT, 0, 0, MPI_COMM_WORLD);

else

for (i = 0; i < proc_count; i++)

MPI_Recv(recvbuf+i, count, MPI_INT, i, 0, MPI_COMM_WORLD, status+i);

Figure 2.4: Deadlock due to send receive mismatch



19

if (rank == 0) {

MPI_Isend(buf, count, MPI_INT, 1, 0, MPI_COMM_WORLD, &h);

MPI_Wait(&h, &status);

MPI_Irecv(buf, count, MPI_INT, 1, 0, MPI_COMM_WORLD, &h);

MPI_Wait(&h, &status);

else if (rank == 1) {

MPI_Isend(buf, count, MPI_INT, 0, 0, MPI_COMM_WORLD, &h);

MPI_Wait(&h, &status);

MPI_Irecv(buf, count, MPI_INT, 0, 0, MPI_COMM_WORLD, &h);

MPI_Wait(&h, &status);

}

Figure 2.5: Head-to-head deadlock

since it limits program portability. It is unsafe because the MPI standard guarantees

that it will either deadlock or execute correctly. This communication pattern exists in

the Memory Aware Data Redistribution Engine (MADRE) [59], which is a collection

of memory aware parallel redistribution algorithms addressing the problem of efficiently

moving data blocks across nodes, and many others.

Figure 2.6 presents an example of an unsafe program in which two MPI processes

post MPI Barrier and MPI Bcast calls in a way that could potentially cause a deadlock.

Since the MPI standard does not require the implementations to provide synchronizing

semantics for MPI Bcast, it is possible (and likely in practice) that P0 does not have to

wait for P1 to post the corresponding MPI Bcast call before P0 can finish its MPI Bcast

call, which means that the execution does not deadlock. However, if an implementation

assumes synchronizing behavior for MPI Bcast, the execution deadlocks. This example

again shows that semantic deadlock need not imply observed deadlock.

Figure 2.7 presents a program that contains a nondeterminism deadlock. In this

example, P1 posts two receives, one of which is a wildcard while the other one is specifically

if (rank == 0)

MPI_Bcast(buffer, count, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);

else if (rank == 1)

MPI_Barrier(MPI_COMM_WORLD);

MPI_Bcast(buffer, count, MPI_INT, 0, MPI_COMM_WORLD);

Figure 2.6: Deadlock due to collective posting order



20

if (rank == 0) {

MPI_Send(buf, count, MPI_INT, 1, 0, MPI_COMM_WORLD);

}

else if (rank == 1) {

MPI_Recv(buf, count, MPI_INT, MPI_ANY_SOURCE, 0,

MPI_COMM_WORLD, &status);

MPI_Recv(buf, count, MPI_INT, 2, 0, MPI_COMM_WORLD);

}

else if (rank == 2) {

MPI_Send(buf, count, MPI_INT, 1, 0, MPI_COMM_WORLD);

}

Figure 2.7: Deadlock due to nondeterministic receive

matches a message from P2. However, since either send from P0 or P2 is eligible to match

the wildcard receive, the second receive from P1 will not have a matching send if the

wildcard receive matches the send from P2. During testing, a developer might observe

that the program runs fine during some executions and deadlocks during others.

2.3.6.2 Resource Leaks

There are many different types of resource leaks such as unfreed communicators, un-

freed types, and unfreed requests. We provide an example of a request leak in Figure 2.8.

In this program, the nonblocking request from P0 remains in the system since the program

never deletes it through a call to MPI Cancel, nor does it wait or test for the request’s

completion through a call to MPI Wait or MPI Test. Request leaks are a serious issue

for MPI programs as an excessive number of pending requests drastically degrades the

performance of the program or may crash a long running application.

In addition to having a request leak, this example also contains a different kind

of resource leaks: type leak. Both P0 and P1 fail to free newtype through a call to

MPI Type free. Imagine a program where this pattern is enclosed in a loop that creates

many different new MPI datatypes without freeing them; the resources associated with

the types never get freed and returned to the system, which in the long run might affect

the program’s performance or behavior (due to out of memory errors).

2.3.6.3 Erroneous Buffer Reuse

The MPI standard requires that the buffer associated with a nonblocking request not

be accessed by the process until the request has been waited or tested for completion.



21

if (rank == 0) {

MPI_Datatype new_type;

MPI_Type_contiguous(count, MPI_INT, &newtype);

MPI_Type_commit(&newtype);

MPI_Isend(buf, 1, newtype, 1, 0, MPI_COMM_WORLD, &h);

...

MPI_Finalize();

}

else if (rank == 1) {

MPI_Datatype new_type;

MPI_Type_contiguous(count, MPI_INT, &newtype);

MPI_Type_commit(&newtype);

MPI_Recv(buf, 1, newtype, 0, 0, MPI_COMM_WORLD, &status);

MPI_Finalize();

}

Figure 2.8: Resource leak due to unfreed request

Since MPI 2.2, this requirement is relaxed for nonblocking send operations with respect

to read access. That is, the process can read a buffer of a nonblocking send request before

the request completes (writing to the buffer is still prohibited). Violating this requirement

leads to undefined behavior. The program shown in Figure 2.9 presents a situation of

illegal buffer reuse in both the sender side and receiver side.

2.3.6.4 Type Mismatches

MPI’s requirements for type matching between sending and receiving are very complex

because the standard supports many different methods to create new datatype. The

if (rank == 0) {

MPI_Isend(buf, 1, newtype, 1, 0, MPI_COMM_WORLD, &h);

buf = 1; /* illegal write to buffer before send request completes */

MPI_Wait(&h, &status);

}

else if (rank == 1) {

MPI_Irecv(buf, 1, newtype, 0, 0, MPI_COMM_WORLD, &h);

a = buf; /* illegal read from buffer before read request completes */

MPI_Wait(&h, &status);

}

Figure 2.9: Erroneous buffer reuse



22

flexibility limits the ability of the MPI runtime to perform strict type checking and

thus many erroneous type mismatches go uncaught during testing yet surface during

production runs. Figure 2.10 shows a program that should run correctly in most cases

but will produce an erroneous result when running in an environment where the two

nodes have different endianness.

2.3.7 The MPI Profiling Interface

Being an API used heavily in high performance computing where the users tend to

have strong interest in performing various analyses such as performance measurement

and data tracing, the MPI standard defines a profiling interface to facilitate such tasks.

The user can take advantage of the profiling interface by providing wrappers for those

MPI calls that they are interested in profiling (e.g., MPI Send). The wrapper would then

invoke the MPI calls from the runtime by issuing the corresponding PMPI calls (e.g.,

PMPI Send). Figure 2.11 shows a simple user wrapper that counts the number of times

MPI Send is invoked.

The major drawback of the profiling interface provided by the standard is that there

can be at most one active wrapper linked with the program. The PNMPI framework [53]

allows multiple MPI wrappers to be stacked on top of MPI programs.

2.4 Piggybacking in MPI

Piggybacking is the act of sending additional data (piggyback data) along with mes-

sages originated from the main application. Many distributed protocols and algorithms

rely on piggybacking support. For example, tracing libraries [39, 55], critical path anal-

if (rank == 0) {

int data = 5;

/* sending 4 bytes */

MPI_Send(&data, 4, MPI_BYTE, 1, 0, MPI_COMM_WORLD);

}

else if (rank == 1) {

int data;

/* receive one int */

MPI_Recv(&data, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

}

Figure 2.10: Type mismatch between sending and receiving



23

…
if (rank == 0) {

MPI_Send(…);
}
…

int MPI_Send(…){
send_counter++;
return PMPI_Send(…);

}

User code

Wrapper
Executable

Figure 2.11: A simple PMPI wrapper counting MPI Send

ysis [18], and application-level checkpointing protocol [52] all require piggyback data to

function correctly. In addition, causality tracking protocols such as Lamport clocks and

vector clocks that we mentioned earlier also require piggyback.

Unfortunately, the MPI standard, as of version 2.2, does not have any built-in pig-

gyback mechanism. Most tools have relied on ad hoc implementations to support piggy-

backing. We describe here several popular mechanisms of sending piggyback data, each

with its own advantages and disadvantages.

2.4.1 Buffer Attachment Piggybacking

Buffer attachment piggybacking, also called explicit packing piggybacking [51], is one

of the simplest approaches of piggybacking where the tool layer attaches the piggyback

data directly to the message buffer. This scheme involves using MPI Pack at the sender

side to pack the piggyback data together with the message data and using MPI Unpack at

the receiver side to separate the piggyback data from the main message. The piggyback

buffer can be attached at the beginning or at the end of the buffer. Figure 2.12 illustrates

the concept of buffer attachment piggybacking.

While this method is simple, it incurs very high overhead, especially in communication-

intensive programs, due to the excessive calls to MPI Pack and MPI Unpack. It is also



24

Piggyback Message Data

pb_buf stores piggyback

int MPI_Send(buf,…){
PACK pb_buf and buf into newbuf
return PMPI_Send(newbuf,…);

}

int MPI_Recv(buf,…) {
err = PMPI_Recv(newbuf,…);
UNPACK newbuf into pb_buf and buf
return err;

}

Wrapper – Piggyback Layer

Piggyback Message Data

Figure 2.12: Buffer attachment piggyback

not entirely clear how one would attach piggyback data to collective operations such as

MPI Reduce. Studies have also shown that this method of piggybacking has the highest

overhead in terms of bandwidth and latency [51]. There are currently several MPI tools

that use buffer attachment piggybacking [48].

2.4.2 Separate Message Piggybacking

As the name implies, this piggyback scheme involves sending the piggyback data as

a separate message, either right before or right after the message originated by the main

application. Figure 2.13 illustrates the concept.

The piggyback layer must pay special attention to nondeterministic asynchronous

Piggyback Message Data

pb_buf stores piggyback

int MPI_Send(buf,…){
PMPI_Send(pb_buf,…);
return PMPI_Send(buf,…);

}

int MPI_Recv(buf,…) {
PMPI_Recv(pb_buf,…);
return PMPI_Recv(buf,…);

}

Wrapper – Piggyback Layer

Piggyback Message Data

Figure 2.13: Separate message piggyback



25

wildcard receives since the sender of the message is not known at the time of issuing the

receives. In such cases, the request handle for the piggyback is usually posted at the time

of finishing the communication (e.g., MPI Wait) [51]. However, we can show that the

separate message piggybacking scheme as described does not correctly handle piggyback

in the presence of wildcard receives. Consider the example shown in Figure 2.14 where the

executed code shows all MPI calls being executed when the user code is linked together

with a piggyback layer implementing the two message protocol. We first consider the

case where the piggyback messages are transmitted over the same communicator with

the original messages. The starred and italicized text indicates the extra messages that

the piggyback layer inserts. Since they are from the same communicator, the piggyback

message of the first MPI Isend() ends up being received by the second MPI Irecv of

process P0, which is erroneous.

We now consider the case in which the piggyback layer transmits the piggyback

messages in a different communicator. This means for each communicator in the program,

it would need to create a corresponding shadow communicator to send piggyback data.

Consider the example shown in Figure 2.15, which is slightly different from the earlier

example (the MPI Wait calls are in different order with respect to the nonblocking sends).

In this example, pbcomm is the piggyback communicator corresponding to comm. It is

Process 0

Irecv (buf_1,from *,h1,comm);
Irecv (buf_2,from *,h1,comm);
Wait (h1,s1);
* Irecv (pb_buf1,s1.SOURCE,h1’,comm);
* Wait (h1’,s1’);
Wait (h2,s2);

Process 1

Isend (buf_1,to 0,h1,comm);
* Isend (pbbuf_1,to 0,h1’,comm);
Isend (buf_2,to 0,h2,comm);
* Isend (pbbuf_2,to 0,h2’,comm);
Wait (h1,s1); Wait (h1’,s1’);
Wait (h2,s2); Wait (h2’,s2’);

User code Executed code

Process 0

Irecv (buf_1,from *,h1,comm);
Irecv (buf_2,from *,h1,comm);
Wait (h1,s1);
Wait (h2,s2);

Process 1

Isend (buf_1,to 0,h1,comm);
Isend (buf_2,to 0,h2,comm);
Wait (h1,s1);
Wait (h2,s2);

Figure 2.14: Separate message piggyback issue on the same communicator



26

Process 0

Irecv (buf_1,from *,h1,comm);
Irecv (buf_2,from *,h2,comm);
Wait (h2,s2);  Wait for h2 before h1
* Irecv (pb_buf2,s2.SOURCE,h2’,pbcomm);
* Wait (h2’,s2’);
Wait (h1,s1);
* Irecv (pb_buf1,s1.SOURCE,h1’,pbcomm);
* Wait (h1’,s1’);

Process 1

Isend (buf_1,to 0,h1,comm);
* Isend (pb_buf1,to 0,h1’,pbcomm);
Isend (buf_2,to 0,h2,comm);
* Isend (pb_buf2,to 0,h2’,pbcomm);
Wait (h1,s1); Wait (h1’,s1’);
Wait (h2,s2); Wait (h2’,s2’);

User code Executed code

Process 0

Irecv (buf_1,from *,h1,comm);
Irecv (buf_2,from *,h1,comm);
Wait (h1,s1);
Wait (h2,s2);

Process 1

Isend (buf_1,to 0,h1,comm);
Isend (buf_2,to 0,h2,comm);
Wait (h1,s1);
Wait (h2,s2);

Figure 2.15: Separate message piggyback issue on different communicators

clear from the figure that the piggyback layer will end up associating the piggyback of

the second message to the first message, which is also erroneous. This is due to the fact

that one cannot post the piggyback receive requests immediately after the application

receive requests because the sender of the message received by a nonblocking wildcard

receive is not known until after the corresponding wait has completed.

Even with these shortcomings, separate message piggybacking remains a useful mech-

anism to attach and to receive piggyback data with collective operations. In fact, it is

currently the only known method of transmitting piggyback data with collective opera-

tions (short of modifying the MPI library or breaking up the collective operations into

point-to-point operations).

2.4.3 Datatype Piggyback

Another type of piggyback mechanism favored by many tools is datatype piggybacking

[50, 54]. In this scheme, a new datatype is created by MPI Type struct for every send

and receive operation. The new datatype combines a pointer to the main message buffer

and a pointer to the current piggyback buffer. Figure 2.16 illustrates the mechanism of

datatype piggybacking. In order to handle partial receives correctly, the piggyback data

should be placed before the message data.



27

Piggyback Message Data

pb_buf stores piggyback

int MPI_Send(buf,count,user_type,…){
Create datatype D from pb_buf and buf
return PMPI_Send(MPI_BOTTOM,1,D,…);

}

int MPI_Recv(buf,count,user_type,…) {
Create datatype D from pb_buf and buf
return PMPI_Recv(MPI_BOTTOM,1,D,…);

}

Wrapper – Piggyback Layer

Datatype D

Piggyback Message Data

Sending/Receiving
(MPI_BOTTOM,1,D) instead of 
(buffer,count,user_type)

Datatype D

Figure 2.16: Datatype piggyback

Datatype piggybacking offers a compromise between buffer attachment piggybacking

and separate message piggybacking. It does not suffer from the high bandwidth overhead

and it correctly addresses piggybacking for nondeterministic receives. However, it does

have several drawbacks: (i) moderate overhead due to excessive datatype creation (a new

datatype has to be created for every send and receive operation), (ii) it is very difficult

to implement piggyback for collective operations.



CHAPTER 3

MPI MATCHES-BEFORE

Using happens-before to track causality is an essential part of dynamic verification

for parallel programs in general and MPI programs in particular. Unfortunately, the

complex semantics of MPI allows many different types of interactions between events,

many of which cannot be captured sufficiently by the traditional Lamport happens-before

order that we discussed earlier. In this chapter we will discuss the issues of applying the

happens-before order to MPI programs and introduce the MPI matches-before order

which addresses the shortcomings.

3.1 Our Computational Model

A message passing program consists of sequential processes P0, P1, . . . , Pn communi-

cating by exchanging messages through some communication channels. The channels are

assumed to be reliable and to support the following operations:

• send(dest,T) - send a message with tag T to process dest. This operation has

similar semantics to the MPI Send, which means it has asynchronous behavior. That

is, the call can complete before a matching receive has been posted.

• ssend(dest,T) - the synchronous version of send. This call only returns when

the receiver has started to receive the message. In most MPI implementations,

the receiver sends an ack to the sender to indicate that it has begun the receiving

process.

• recv(src,T) - receive a message with tag T from process src. When src is

MPI ANY SOURCE (denoted as ∗), any incoming message sent with tag T can be

received (a wildcard receive).

• isend(dest,T,h) - the nonblocking version of send. The request handle h allows

the call to be awaited for completion later. Similar to send, this call has an

asynchronous behavior. The completion of the call (by a wait) only indicates that

the buffer can be safely reused.



29

• issend(dest,T,h) - the synchronous version of isend. The completion of this call

indicates that the receiver has started to receive the message.

• irecv(src,T,h) - the nonblocking version of recv. The request handle h allows

the call to be awaited for completion later.

• wait(h) - wait for a nonblocking communication request until it completes. Ac-

cording to MPI semantics, relevant piggyback information for a nonblocking receive

cannot be accessed until the wait call. Similarly, for a nondeterministic nonblocking

receive, the source field (identity of the sending process) can only be retrieved at

the wait.

• barrier - all processes have to invoke their barrier calls before any one process can

proceed beyond the barrier.

For illustrative purposes, we abstract away the buffer associated with all send and

receive events since it does not affect our algorithm. Further, we assume that all these

events happen in the same communicator and that MPI ANY TAG is not used. We also do

not consider collective operations other than MPI Barrier. Our implementation, however,

does take into account all these possibilities.

3.2 Issues Applying Happens-Before to MPI

We briefly go over how one might apply the traditional vector clocks algorithm to the

example in Figure 3.1 to conclude that the first wildcard receive in P0 can match either

send from P1 or P2 and also why the Lamport clocks algorithm fails to do so.

Assuming the first receive from P0 matches with the send from P1 and the second

receive from P0 matches with the send from P2, we want to know if the vector clocks

algorithm can determine whether the first receive from P0 could have received the message

sent from P2. Using the clock updating rules from the vector clocks algorithm described

earlier, P0’s first receive’s vector timestamp would be [1, 1, 0] while the send from P2

would have [0, 2, 2]. Clearly, the send and the receive are concurrent and thus, the send

is a potential match to the receive.

In contrast, if we apply the Lamport clocks algorithm to this example, P0’s first

receive event would have a clock of 1 while the send from P2 would have a clock of 3.

The algorithm could not determine whether the two events have any causal relationship.

Hence, it cannot safely flag the send from P2 as a potential match to the first receive from

P0. One can observe that the communication between P1 and P2 in this example has no



30

recv(*)
[1,1,0]

send(0)
[0,1,0]

send(2)
[0,2,0]

recv(1)
[0,2,1]

send(0)
[0,2,2]

recv(*)
[2,2,2]P0

P1

P2

Figure 3.1: Wildcard receive with two matches

effect on P0, yet the matching causes a clock increase which prevents the determination

at P0 of the causality between the first wildcard receive and P2’s send.

Now consider the example shown in Figure 3.2. Assuming the irecv by P1, denoted

as r, matches to the isend from P0, we will apply the vector clocks algorithm to figure out

whether the isend from P2 , denoted as s, can be safely flagged as a potential match to r.

By using the vector clock updating rules and considering barrier as a synchronization

event where all processes synchronize their clocks to the global maximum, the clocks for

r and s would be [1, 0, 0], and [1, 0, 1], respectively. This means r
hbVC−−−→ s and thus the

algorithm fails to recognize s as a potential match to r.

Clearly, the notion of happening and the corresponding happens-before order are

insufficient for capturing all behaviors of MPI programs. We need a new model that allows

us to completely capture the ordering of all events within an MPI program execution.

3.3 Matches-Before

We first consider the different possible states of an MPI operation op after a process

invokes op:

P0 P1 P2

Isend(to P1,22) Irecv(from:*,x) Barrier

Barrier Barrier Isend(to P1,33)

Wait() Recv(from:*,y) Wait()

if(x==33) ERROR

Wait()

Figure 3.2: Counterintuitive matching of nonblocking receive



31

• issued - op attains this state immediately after the process invokes it. All MPI calls

are issued in program order.

• matched - We define this state in Definition 3.1.

• returned - op reaches this state when the process finishes executing the code of op.

• completed - op reaches this state when op no longer has any visible effects on the

local program state. All blocking calls reach this state immediately after they return

while nonblocking calls reach this state after their corresponding waits return.

Of these, only the issued and matched states have significant roles in our algorithms;

nonetheless, we included all possible states for completeness. The matched state is central

to our protocols and is described in further details below.

Definition 3.1 An event e in an MPI execution attains the matched state if it satisfies

one of these conditions:

• e is an issued sending event of message m and the destination process has started to

receive m through some event e
′
. e is said to have matched with e

′
. The receiving

process is considered to have started the receive process when we can (semantically)

determine from which of the send events it will receive the data. The timing of the

completion of the receiving process is up to the MPI runtime and is not relevant to

this discussion. e and e
′
in this case are considered to be in a send-receive match-set.

• e is a receive event that marks the start of reception. If e is a wildcard receive, we

denote e.src as the process with which e matched.

• e is a wait(h) call whose pending receive request associated with h has been

matched. For an isend, the wait can attain the matched state upon completion

while the isend still has not matched (i.e., it is buffered by the MPI runtime). A

matched wait is the only element in its match-set (a wait match-set).

• e is a barrier and all processes have reached their associated barrier. e is said to have

matched with e
′

if they are in the same set of barriers. All participating barriers

are in the same match-set (a barrier match-set).

While it is straightforward to determine the matching point of synchronous calls recv,

and barrier, the situation is more complex when it comes to nonblocking calls. The

assumption that all nonblocking calls would attain the matched state exactly at their

corresponding wait calls is incorrect. We explained the situation with the isend call

earlier. Figure 3.3 shows another situation in which the first irecv call from process P2

can attain the matched state anywhere from its issuance to right before the recv call



32

returns (the arrow in the figure shows the interval during which the call can attain the

matched state), which could be much earlier than the completion of its corresponding

wait. This is due to the nonovertaking rule of the MPI standard.

Let E be the set of events produced in an execution, where each e ∈ E is a match

event as per Definition 3.1. We represent this execution as P = 〈E, mb−−→〉, where
mb−−→ is

the matches-before relation over E defined as follows. Consider two distinct events e1

and e2 in E; e1
mb−−→ e2 if and only if one of the following conditions holds:

• C1. e1 and e2 are two events from the same process where e1 is either a ssend,

recv, wait, or barrier, and e2 is issued after e1.

• C2. e1 is a nonblocking receive and e2 is the corresponding wait.

• C3. e1 and e2 are send events from the same process i with the same tag, targeting

the same process j and e1 is issued before e2. This is the nonovertaking rule of MPI

for sends. The sends can be either blocking/nonblocking.

• C4. e1 and e2 are receive events from the same process i with the same tag, either

e1 is a wildcard receive or both are receiving from the same process j, and e1 is

issued before e2. This is the nonovertaking rule of MPI for receives. The receives

can be blocking or nonblocking.

• C4′. e1 and e2 are receive events from the same process i in which e2 is a wildcard

receive; e2 is issued after e1, e2.tag = e1.tag, and e2.src = e1.src. C4′ is a special

case of C4 in which the
mb−−→ relationship between e1 and e2 can only be determined

after e2 attains the matched state.

• C5. e1 and e2 are from two different processes and there are events e3 and e4 such

that e1
mb−−→ e3, e4

mb−−→ e2, and furthermore e3 and e4 are in the same match-set, and

e3 is not a receive event (i.e., e3 is either a send, isend, or barrier). Figure 3.4

illustrates this transitivity condition. The two shaded areas in the figure show a

send-receive match-set and a barrier match-set while the dashed arrows show the

matches-before relationship between events in the same processes. Condition C5

P1
isend(0,h1)
barrier
send(0)
wait(h1)

P2
irecv(0,h2)
barrier
recv(0)
wait(h2)

Figure 3.3: Nonovertaking matching of nonblocking calls



33

send

recv e2

e1 barrier

barrier

barrier

e3

Figure 3.4: Transitivity of matches-before

allows us to infer that e1
mb−−→ e2 and e2

mb−−→ e3.

• C6. There exists an event e3 such that e1
mb−−→ e3 and e3

mb−−→ e2 (transitive order).

In Figure 3.4, condition C5 and C6 allow us to infer that e1
mb−−→ e3.

Corollary 3.1 If e1 and e2 are two events in the same match-set, neither e1
mb−−→ e2

nor e2
mb−−→ e1 holds.

Corollary 3.2 If e1 and e2 are two events in the same process and e1 is issued before

e2, then e2
mb−−→ e1 is false.

In addition to the
mb−−→ relationship for two events, we also define the

mb−−→ relationship

between X and Y where either X, Y , or both are match-sets. In which case, X
mb−−→ Y if

and only if one of the following conditions holds:

• C7. X is an event e1, Y is a send-receive match-set, e2 is the send event in Y , and

e1
mb−−→ e2.

• C8. X is an event e1, Y is either a barrier match-set or a wait match-set, for all

events e2 in Y : e1
mb−−→ e2.

• C9. X is a send-receive match-set, e1 is the receive event in X, Y is an event e2,

and e1
mb−−→ e2.

• C10. X is a send-receive match-set in which the send e1 is a synchronous send, e2

is the corresponding receive in the same match-set, Y is an event e3, and e1
mb−−→

e3 ∧ e2
mb−−→ e3.

• C11. X is a barrier match-set or a wait match-set and Y is an event e2, and there

exists some event e1 in X: e1
mb−−→ e2.

• C12. X and Y are both match-sets, there is some event e1 in X such that e1
mb−−→ Y .



34

Definition 3.2 Two events e1 and e2 are considered concurrent if they are not ordered

by
mb−−→. Let e1

mb
−�−→ e2 denote the fact that e1 is not required to match before e2; then e1

and e2 are concurrent if and only if e1
mb
−�−→ e2 ∧ e2

mb
−�−→ e1.

3.4 Discussion

We have provided the notion of matches-before, which allows us to correctly capture

the causality between events in an MPI execution. We have also defined the concept of

match-set, which treats the matching action between a send and a receive as a single event

itself. This is in contrast with most protocols based on the traditional Lamport clocks and

vector clocks, which consider the sending event to happens-before the receive event. In

the next chapter, we will introduce the Partial Order Avoid Elusive Interleavings (POE)

algorithm, which uses a centralized version of the matches-before order. This centralized

version of the matches-before order allows for easy implementation but it does not scale

well. We later introduce the lazy update algorithms that uses the matches-before order

introduced in this chapter as the basis to provide scalable causality tracking for MPI.



CHAPTER 4

CENTRALIZED DYNAMIC

VERIFICATION FOR MPI

Since we have adopted the matches-before relationship in place of the traditional

Lamport happens-before, we also need new clock updating algorithms that correctly

characterize the causality information between events in an MPI execution based on
mb−−→. In this chapter we present the first approach, which uses a centralized scheduler to

maintain a global view of all interactions between all MPI calls. This global view enables

the scheduler to maintain the matches-before relationship in order to determine whether a

nondeterministic event can have multiple different outcomes, and enforce those outcomes

through replay.

This chapter only summarizes some of the key concepts of ISP. My work on ISP has

mainly focused on improving ISP’s scalability and usability, for which I provide the details

in Section 4.2.

4.1 ISP

ISP, which stands for In-Situ Partial order, is a dynamic verifier for MPI programs

which is driven by the POE algorithm. ISP verifies MPI programs for deadlocks, resource

leaks, type mismatches, and assertion violations. ISP works by intercepting the MPI calls

made by the target program and making decisions on when to send these MPI calls to

the MPI runtime. This is accomplished by the two main components of ISP: the ISP

Profiler and the ISP Scheduler. Figure 4.1 provides the overview of the ISP tool.

4.1.1 The ISP Profiler

The interception of MPI calls is accomplished by compiling the ISP Profiler together

with the target programs source code. The profiler uses the MPI profiling interface

(PMPI). It provides its own version of MPI f for each corresponding MPI function f .

Within each of these MPI f , the profiler communicates with the scheduler using either



36

Source files

ISP Profiler

Executable
MPI_f

Scheduler
signals

MPI runtime

PMPI_f (w/ goahead 
signal from the Scheduler)

ISP

Figure 4.1: ISP framework

TCP sockets or Unix sockets to send information about the MPI call the process wants to

make. The profiler will then wait for the scheduler to make a decision on whether to send

the MPI call to the MPI library or to postpone it until later. When the permission to fire f

is given from the scheduler, the corresponding PMPI f will be issued to the MPI runtime.

Since all MPI libraries come with functions such as PMPI f for every MPI function f ,

this approach provides a portable and light-weight instrumentation mechanism for MPI

programs being verified.

4.1.2 The ISP Scheduler

The ISP scheduler carries out the verification algorithms. Since every process starts

executing with an MPI Init, every process invokes the MPI Init provided by the profiler.

This initialization phase of the profiler involves establishing a TCP connection with the

scheduler and communicating its process rank to the scheduler. The TCP connection is

used for all further communication between the process and the scheduler. The scheduler

maintains a mapping between the process rank and its corresponding TCP connection.

Once the connection with the scheduler is established, the processes execute a PMPI Init

into the MPI library. The processes finally return from the MPI Init of the profiler and

continue executing the program. Whenever a process wishes to execute an MPI function,

,- -
, 



37

it invokes the MPI f of the profiler, which communicates this information to the scheduler

over the TCP connection. The profiler does not always execute the PMPI f call into the

MPI library when it calls the profilers MPI f . For nonblocking calls like MPI Isend

and MPI Irecv, the profiler code sends the information to the scheduler and stores this

information in a structure in the profiler and returns. When the process executes a fence

instruction like MPI Wait, the scheduler makes various matching decisions and sends

a message to the process to execute the PMPI Isend (or other nonblocking functions)

corresponding to the Wait call. The MPI library is not aware of the existence of MPI Isend

until this time. Eventually, the scheduler sends a message to the process to execute the

PMPI Wait, at which time the process returns. It must be noted that the scheduler will

allow a process to execute a fence MPI function only when the Wait can complete and

hence return. Otherwise, the scheduler will detect a deadlock.

4.1.3 The POE Algorithm

The ISP scheduler implements the POE (Partial Order avoiding Elusive interleavings)

algorithm [65]. We first provide the intuition for the POE algorithm by considering the

example in Figure 4.2, which is the same crooked barrier example in Chapter 3. The

scheduler allows us to have the absolute control of the MPI runtime and gives us the

ability to only execute the MPI calls at our discretion as long as the MPI semantics is

preserved. In that case, instead of executing the matching between the isend of P0 and

the irecv of P1, we delay the irecv call and execute other MPI calls first, until the

process invoke some MPI calls f which requires that the irecv matches before it (e.g.,

the recv call in the example). Clearly, by delaying the irecv and executing the barrier

first, we can now see both of the isend’s coming from P0 and P2 as possible matches for

the irecv from P1. We now briefly describe the POE algorithm. The formal description

and the proof of correctness are available in [63].

The POE algorithm works as follows. There are two classes of statements to be exe-

cuted: (i) those statements of the embedding programming language (C/C++/Fortran)

that do not invoke MPI commands, and (ii) the MPI function calls. The embedding

statements in an MPI process are local in the sense that they have no interactions with

those of another process. Hence, under POE, they are executed in program order. When

an MPI call f is encountered, the scheduler records it in its state; however, it does not

(necessarily) issue this call into the MPI runtime. (Note: When we say that the scheduler



38

P0 P1 P2

Isend(to P1,22) Irecv(from:*,x) Barrier

Barrier Barrier Isend(to P1,33)

Wait() Recv(from:*,y) Wait()

if(x==33) ERROR

Wait()

Figure 4.2: MPI example to illustrate POE

issues/executes MPI call f , we mean that the scheduler grants permission to the process

to issue the corresponding PMPI f call to the MPI runtime.) This process continues until

the scheduler arrives at a fence, where a fence is defined as an MPI operation that cannot

complete after any other MPI operation following it. The list of such fences includes

all MPI blocking calls such as MPI_Wait, MPI_Barrier. When all processes reach their

fences, the POE algorithm now forms match-sets as described earlier in Chapter 3. Each

match-set is either a single big-step move (as in operational semantics) or a set of big-step

moves. A set of big-step moves results from dynamically rewriting a wildcard receive.

Each big-step move is a set of actions that are issued collectively into the MPI run-time

by the POE-scheduler (we enclose them in 〈〈..〉〉). In the example of Figure 4.2, these

are all possible match-sets. Note that we rewrite the wildcard into each specific process

according to the matching send.

• The set of big-step moves

{

〈〈 P0’s isend(to P1), P1’s irecv(from P0) 〉〉,

〈〈 P2’s isend(to P1), P1’s irecv(from P2) 〉〉,

}

• The single big-step move

〈〈 Barrier,Barrier,Barrier 〉〉

The POE algorithm executes all big-step moves (match sets). The execution of a

match-set consists of executing all of its constituent MPI operations (firing the PMPI

versions of these operations into the MPI runtime). The set of big-step moves (set of

match sets) is executed only when no ordinary big-step moves are left. In our example,

the big-step move of barriers is executed first. This priority order guarantees that a

representative sequence exists for each possible interleaving [65].

Once only a set of big-step moves are left, each member of this set (a big-step move)

is fired. The POE algorithm then resumes from the resulting state.



39

In our example, each big-step moves in the set

{

〈〈 P0’s isend(to P1), P1’s irecv(from P0) 〉〉,

〈〈 P2’s isend(to P1), P1’s irecv(from P2) 〉〉,

}

is executed, and the POE algorithm is invoked after each such big-step move.

Thus, one can notice that the POE scheduler never actually issues into the MPI

run-time any wildcard receive operations it encounters. It always dynamically rewrites

these operations into receives with specific sources, and pursues each specific receive

paired with the corresponding matching send as a match-set in a depth-first manner.

4.1.4 ISP Evaluation

We present an evaluation of ISP with Marmot [35], a popular MPI correctness checking

tool. Marmot detects deadlocks using a timeout mechanism. Marmot also uses the

MPI Profiling Interface to trap MPI calls. The timeout mechanism works by enforcing

an interval that represents Marmot’s estimate of the computation time between two

successive MPI calls. When a process does not execute any MPI call after the timeout

interval, Marmot signals a deadlock warning. For the experiment, we apply both ISP and

Marmot on the Umpire test suite [68] and report the results on selected benchmarks in

Table 4.1. The full set of experiments is also available [5].

Table 4.1 has three columns. The first column provides the Umpire benchmark

programs. The second column shows the result of running the Umpire benchmark on

Table 4.1: Comparison of POE with Marmot

Umpire Benchmark POE Marmot

any src-can-deadlock7.c Deadlock Detected Deadlock Caught in
2 interleavings 5/10 runs

any src-can-deadlock10.c Deadlock Detected Deadlock Caught in
1 interleaving 7/10 runs

basic-deadlock10.c Deadlock Detected Deadlock Caught in
1 interleaving 10/10 runs

basic-deadlock2.c No Deadlock Detected No Deadlock Caught
2 interleavings in 20 runs

collective-misorder.c Deadlock Detected Deadlock Caught in
1 interleaving 10/10 runs



40

ISP executing the POE algorithm. We show the number of interleavings generated by

POE. The last column shows the result of running the benchmark with Marmot. The

benchmark is run multiple times on Marmot to evaluate the effectiveness of Marmot’s

deadlock detection scheme. Since Marmot’s deadlock detection scheme relies on the

deadlock’s occurrence during a particular run, it cannot guarantee the detection of possible

deadlocks due to nondeterminism. The basic-deadlock2.c example presents a deadlock

scenario in which the deadlock only happens if the verification restricts the MPI Send

calls to having zero buffer space. Since POE is set to provide infinite buffering in this

experiment, we do not report the deadlock here. Upon setting the available buffer space

for MPI Send to 0, the deadlock is caught.

4.2 ISP Scalability Issues

While the centralized scheduler easily maintains a complete global picture that facil-

itates the state space discovery process, it limits scalability. When the number of MPI

calls becomes sufficiently large, the synchronous communication between the scheduler

and the MPI processes becomes an obvious bottleneck. This section details our efforts in

improving ISP’s scalability and the lessons learned throughout the process.

4.2.1 The Scalability Challenge

We attempted to apply ISP on ParMETIS [12], which is a hypergraph partition

library, to verify its routines for freedom of deadlocks as well as resource leaks. Verifying

ParMETIS is a challenging task, not only because of its scale (AdaptiveRepart, one

repartition routine provided by ParMETIS, has more than 12,000 lines of code between

itself and its helper functions), but also because of the enormous number of MPI calls

involved. In some of our tests, the number of MPI calls recorded by the ISP scheduler

exceeds 1.3 million. This class of applications stresses both the memory usage overhead

and the processing overhead of the scheduler.

Our attempt to improve ISP while working on the large code base of ParMETIS

introduced several challenges at a pragmatic level. Since we did not have another MPI

program debugger – and especially one that understands the semantics of our ISP sched-

uler that was itself being tweaked – we had to spend considerable effort employing low

level debugging methods based on printfs and similar methods.



41

4.2.2 Memory Consumption

In order to replay the execution of the processes and correctly skip over all previous

matching of sends/receives, ISP has to store all transitions (i.e., the MPI calls) for each

process. This consumes a considerable amount of memory. The problem was not very

apparent when we tested ISP with the Umpire test suite [68] and the Game of Life

program [65], which made fewer than a hundred MPI calls in our testing. In our several

first runs, ParMETIS exceeded all available memory allocations.

The problem was attributed to the storage taken by ISP’s Node structure which

maintains the list of transitions for each process. In addition, each transition maintained

a list of ancestors which grew quadratically. We will describe our approach to handling

this problem in Section 4.2.3.1.

Forming match sets is a central aspect of POE. One source of processing overheads in

match set formation was located to be the compiler’s inability to inline the .end() call

in loops such as this:

for (iter = list.begin(); iter != list.end();

iter++) {

... do something ...

}

Improvements at this level had marginal effects on ISP’s performance.

4.2.3 Improvements to POE

4.2.3.1 Transitivity of Matches-Before

It became obvious that searching through hundreds of thousands of matches-before

edges was having a huge effect on ISP’s performance. We either needed to store less

matches-before edges, or search through less matches-before edges. First, we exploit the

fact that ancestor is a transitive binary relation, and store only the immediate ancestor

relation. As the name suggests, immediate ancestor is the transitive reduction of the

ancestor relation – i.e., the smallest binary relation whose transitive closure is ancestor.

We then realized that the POE algorithm remained correct even if it employed immediate

ancestors in match-set formation. The intuitive reason for this lies in the fact that

whenever x is an ancestor of y and y is an ancestor of z, a match set involving y would

be formed (and fired) before one involving z is formed (and fired).



42

The graph in Figure 4.3 shows the improvement of ISP in handling ParMETIS after

switching over to the use of immediate ancestors. The testing setup we employed is

similar to the ptest script provided in ParMETIS 3.1 distribution. To be more specific,

our tests involve running rotor.graph, a file that represents a graph with about 100,000

nodes and 600,000 edges, through V3 RefineKWay, followed by a partitioning routine

called V3 PartKway, then the graph is repartitioned again with AdaptiveRepart. The

test completes by running through the same routine again with a different set of options.

All tests were carried out on a dual Opteron 2.8 GHz (each itself is a dual-core), with 4

GB of memory. We also show in Table 4.2 the number of MPI calls this test setup makes

(collectively by all processes) as the number of processes increases.

The comparison between the original ISP and the modified ISP (dubbed ISP v2 in

this study) shows a huge improvement in ISP’s processing time. In fact, without the use

of immediate ancestors, ISP was not able to complete the test when running with eight

processes. Even running one test for 4 processes already took well over a day! In contrast,

ISP v2 finishes the test for 4 processes in 34 minutes.

With the change over from ancestors to immediate ancestors, we also made additional

data structure simplifications, whose impact is summarized in the graph of Figure 4.4

(this version of ISP was termed ISP v3).

Even with these improvements, ISP was still taking considerable time to complete

0

400

800

1200

1600

2000

0 2 4 6 8

Ti
m
e 
(m

in
ut
es
)

Number of processes

ISP

ISP v2

Figure 4.3: Improvements based on transitive reduction



43

Table 4.2: Number of MPI calls in ParMETIS

num. of procs Total MPI calls

2 15,789
4 56,618
8 171,912
16 544,114
32 1,390,260

0

100

200

300

400

500

600

0 4 8 12 16 20 24 28 32

Ti
m
e 
(m

in
ut
es
)

Number of processes

ISP v2

ISP v3

Figure 4.4: Improvements made by data structures changes

model checking ParMETIS for 32 processes, which is almost ten hours. This led us to

consider parallelizing the search for ancestors.

4.2.3.2 Parallel-ISP

The discovery of where ISP spends most of its processing time leads us to the idea

of parallelizing ISP’s search for ancestors while building the match-sets. Recall that the

MPI calls made by each process of the target program are represented by transition lists.

The formation of match sets requires searching through all transition lists. Fortunately,

these searches are independent of each other, and can be easily parallelized. There are

several ways to parallelize this process: (i) make a distributed ISP where each ISP process

performs the search for each transition list, or (ii) create a multithreaded-ISP where each

thread performs the search, or (iii) use OpenMP to parallelize the search and let the



44

OpenMP run-time handle the thread creation. We opted for the OpenMP approach

due to the fact that the POE scheduler is implemented with many for loops – a good

candidate for parallelization using OpenMP.

We present the performance results of Parallel ISP vs. ISP v3 in Figure 4.5. Par-

allelization does not help ISP much when running with a small number of processes.

However, when we verify up to 16 and 32 processes, the benefits of parallelization becomes

more obvious (On average, Parallel-ISP was about 3 times faster than the serial ISP).

4.2.4 Discussion

Although ISP has been improved greatly to handle practical MPI programs. We

still notice that as the number of processes increases, the performance of ISP degrades

exponentially. We investigate the system load of ISP verifying ParMETIS with 32

processes and notice that the ISP Scheduler is taking almost all of the CPU time while

the MPI processes are just waiting for the responses from the scheduler. This shows

that ISP fails to exploit the distributed processing of all processes, which means it

will become infeasible to verify large MPI applications beyond a few dozen processes.

An early experimental version of ISP was developed in which MPI processes would be

launched on different hosts and communicate with the scheduler through TCP sockets.

The distributed launching mechanism effectively removes the resource constraints faced by

0

100

200

300

400

500

600

0 4 8 12 16 20 24 28 32

Ti
m
e 
(m

in
ut
es
)

Number of processes

ISP v3

Parallel ISP

Figure 4.5: Improvements made by parallelization



45

launching all MPI processes within one single machine. However, we have run experiments

that demonstrates that the main bottleneck lies in the scheduler and running the MPI

processes in a distributed environment does little in speeding up the verification. In the

next chapter we will present our distributed approach to address ISP’s scalability issues.



CHAPTER 5

DISTRIBUTED DYNAMIC

VERIFICATION FOR MPI

We have shown in the previous chapter that the centralized approach does not scale

well beyond a few dozen processes. In order to maintain good scalability, the verification

needs to exploit the processing power of all processes. In essence, a good algorithm has

to run the verification in distributed fashion and cannot rely on a centralized scheduler.

To this end, we propose two algorithms: the Lazy Lamport Clocks Protocol (LLCP) and

the Lazy Vector Clocks Protocol (LVCP). These are the design goals of the protocols.

• Scalable - Many MPI applications today require at least some scale in order to

run certain inputs due to memory size and other limits. Further, many bugs,

including nondeterminism related bugs, are only manifest when a problem is run

at large scale. Any protocol aiming at handling large scale MPI programs must be

scalable as well. LLCP is very scalable compared to LVCP as demonstrated by our

experimental results.

• Sound - We define a sound protocol to be one that does not force the match of

events that cannot match. Clearly, this is a crucial goal; an unsound protocol can

cause a deadlock in an otherwise deadlock-free MPI program! We argue that both

LLCP and LVCP are sound.

• Complete - While it is challenging to design a causality tracking protocol that is

both complete and scalable, we still want to have a protocol that is scalable and

maintains completeness in the most common usages. In all our testing with real

MPI programs, LLCP proved to be complete, that is we did not discover any extra

matches when we ran the same program under LVCP on the same test harness. If

completeness in all cases is a requirement, then LVCP should be used.



47

5.1 Lazy Lamport Clocks

5.1.1 Algorithm Overview

LLCP maintains the matches-before relationship between events by maintaining a

clock in each process and associates each event with a clock value in a way that can

help us order these events according to when they attain the matched state. Since the

matches-before relationship describes the ordering for events inside a process and across

processes, the algorithm needs to be able to offer such coverage. More specifically, given

a wildcard receive r from process Pi and a send s targeting Pi which did not match with

r, the protocol should allow us to figure out whether r and s have any matches-before

relationship between them. If, for example, the successful completion of r triggers the

issuance of s, then it is never the case that s could have matched with r. The intuitive way

to do this is to have the protocol maintain the clock such that if r triggers the issuance

of some event e, then it must be the case that the clock of r is smaller than the clock of

e. Basically this means all outgoing messages after r from Pi need to carry some clock

value (as piggyback data) higher than r.

The challenge of the protocol lies in the handling of nonblocking wildcard receives.

As explained earlier in the example in Figure 3.2, a nonblocking wildcard receive from

a process Pi could potentially be pending (not yet reach the matched state) until its

corresponding wait is posted. However, we have also shown in Figure 3.3 that such a

receive could also attain the matched state due to the nonovertaking semantics (which

could be earlier than the posting of the wait). The protocol needs to know precisely the

status of the receive to avoid sending the wrong piggyback data, which could lead to

incorrect matching decisions.

5.1.2 Clock Update Rules

We now describe the protocol in detail through a set of clock updating rules. For

simplicity, we assume the programs do not contain synchronous sends and discuss the

handling of synchronous sends in Section 5.2.1.

• R1. Each process Pi keeps a clock LCi, initialized to 0.

• R2. When a nonblocking wildcard receive event e occurs, assign LCi to e.LC and

add e to the set of pending receives: Pending ← Pending ∪ {e}.

• R3. When Pi sends a message m to Pj , it attaches LCi (as piggyback data) to m

(denoted m.LC).



48

• R4. When Pi completes a receive event r (either forced by a blocking receive or at

the wait of a nonblocking receive as in Figure 3.3), it first constructs the ordered set

CompleteNow as follows: CompleteNow = {e | e ∈ Pending ∧ e mb−−→ r}. The set

CompleteNow is ordered by the event’s clock, where CompleteNow[i] denotes the

ith item of the set and
∣∣CompleteNow∣∣ denotes the total items in the set. Intuitively,

this is the set of pending nonblocking receives that have matched before r due to the

MPI nonovertaking rule. Since they have all reached the matched status, we need to

update their clocks as well. Note that the ordering of the events in CompleteNow

is very important since all receives in CompleteNow are also
mb−−→ ordered by the

nonovertaking semantics themselves. We can update the clocks using the following

loop:

for i = 1 TO
∣∣CompleteNow∣∣ do

CompleteNow[i].LC = LCi

LCi ← LCi + 1

end for

Pending ← Pending \ CompleteNow

After this, the process associates the current clock with r: r.LC ← LCi and ad-

vances its clock to reflect the completion of a wildcard receive: LCi ← LCi+1. Note

that the clock assignment and advancement do not happen to those nonblocking

receives that have their clocks increased earlier due to the for loop above. We

can check this by detecting whether the current nonblocking receive is still in

the Pending set or not. Finally, the process compares its current clock with the

piggybacked data from the received message and updates LCi to m.LC if the current

clock is less than m.LC.

• R5. At barrier events, all clocks are synchronized to the global maximum of the

individual clocks.

5.1.3 Match Detection

Rules R2 and R4 form the lazy basis of the protocol in the sense that a nonblocking

wildcard receive r gets a temporary clock when it initially occurs in the process and gets

its final clock when it finishes (either by its corresponding wait or by another receive r′

for which r
mb−−→ r′).

Lemma 5.1 If e1
mb−−→ e2 then e1.LC ≤ e2.LC



49

Proof. We first consider the case when e1 and e2 are from the same process. Based

on our definition of matches-before, event e2 will always occur after event e1. Since our

algorithm never decreases the clock, it follows that e1.LC ≤ e2.LC.

Now assume e1 and e2 are events from two different processes. Based on the definition

of matches-before, there exist events e3 and e4 such that e1
mb−−→ e3, e4

mb−−→ e2, e3 and e4

are in a match-set, and e3 is either an isend, send, or barrier. We recursively apply

this process to (e1, e3) and (e4, e2) and construct the set S = s1, s2, .., sn in which s1 = e1,

sn = e2, and other elements are either events or match-sets that satisfy si
mb−−→ si+1. In

addition, s has to satisfy the following rule: for any pair of adjacent elements (si, si+1),

there does not exist any event e such that si
mb−−→ e and e

mb−−→ si+1. Note that the

construction of S is possible based on our definition of
mb−−→. Intuitively, S represents all

hops between e1 and e2 if one is to follow the
mb−−→ chain event by event.

Now consider any pair of events (si, si+1). They must be both events from the same

process, in which case si.LC ≤ si+1.LC, or either one has to be a match-set, or both are

match-sets, in which case our piggyback ensures that si.LC ≤ si+1.LC. Hence, the set S

has the property that s1.LC ≤ s2.LC ≤ .. ≤ sn.LC, which means e1.LC ≤ e2.LC.

Lemma 5.2 Assuming r is either a blocking receive or a nonblocking receive that is

not pending, if r
mb−−→ e then r.LC < e.LC.

Proof. If e is an event in the same process with r then rule R2 and R4 ensure that

r.LC < e.LC. If e is not in the same process with r then based on the definition of
mb−−→,

there must be an event f from the same process with r such that r
mb−−→ f ∧ f mb−−→ e,

which means r.LC < f.LC and by Lemma 5.1, f.LC ≤ e.LC. Thus, r.LC < e.LC.

We now introduce the concept of late messages, which is essential for the protocol to

determine if an incoming send can match an earlier wildcard receive. One can think of

late messages as in-flight messages in the sense that these messages have already been

issued at the point when a receive reaches the matched state. Consider the MPI program

shown in Figure 5.1. The first wildcard receive of P1 matched with the send from P0

while the second wildcard receive matches the send from P2. The clock value associated

with each event according to our protocol is displayed in the square bracket. The shaded

area represents the set of all events that are triggered by r (i.e., for all events e in that

shaded area, r
mb−−→ e). The message from P2 was not triggered by the matching of the

first wildcard receive in P1, despite being received within the shaded area. We call the

message from P2 a late message. At the reception of late messages, the protocol checks



50

barrier
[1]

recv(*)
[0]

recv(*)
[1]

send(1)
[0]

send(1)
[0]

P0

P1

P2

barrier
[1]

barrier
[1]

Figure 5.1: Late messages

whether they can be potential matches for receives that have matched earlier (in this

figure, the late message from P2 is a potential match).

Definition 5.1 A message m originating from process m.src with timestamp m.LC

is considered late with respect to a wildcard receive event r (which earlier did not match

with m.src) iff m.LC ≤ r.LC. If message m is late with respect to r, it is denoted as

late(m, r).

We are now ready to devise the match detection rule:

Theorem 5.3 An incoming send s carrying message m with tag τ that is received

by event r′ in process Pi is a potential match to a wildcard receive event r with tag τ

issued before r′ if (m.LC < r′.LC ∧ late(m, r))

Proof. In order to prove that s is a potential match of r, we prove that s and r are

concurrent, which means: r
mb
−�−→ s ∧ s

mb
−�−→ r. First we notice that r

mb−−→ r′, which means

r cannot be a pending event (due to rule R4). In addition, we also have r.LC ≥ s.LC

since s is a late message. Using the contrapositive of Lemma 5.2, we infer that r
mb
−�−→ s.

It is also the case that s
mb
−�−→ r because if s

mb−−→ r, it must be the case that s
mb−−→ r′

due to the transitive order rule of matches-before. This violates Corollary 3.1 which says

that two events in the same match-set are not ordered by
mb−−→.

Let us now revisit the crooked barrier example introduced earlier in Figure 3.2 and

show how the protocol applies (Figure 5.2 shows the same example with the clock values

at the end of the execution). Using the LLCP clock update rules, the clock for the irecv

by P1 has a clock of 0 when it is issued and P1 adds this recv to Pending. The barrier

calls synchronize all clocks to the global maximum, which is 0. At the recv call, P1



51

barrier
[0]

irecv(*)
[0]

recv(*)
[1]

isend(1)
[0]

isend(1)
[0]

P0

P1

P2

barrier
[0]

barrier
[0]

wait
[2]

wait
[0]

wait
[0]

Figure 5.2: An example illustrating LLCP

applies rule R4 and constructs the CompleteNow set which consists of the irecv. Upon

the completion of this step, the irecv has a clock of 0 and the recv has a clock of 1.

Assuming that the isend from P0 matches with the irecv, the recv call will match with

the isend from P2. The message from P2 carries piggyback data of 0 and is flagged

as a late message with respect to the irecv and is detected as a potential match (per

Theorem 5.3).

It is important to note that the theorem only applies one way. That is, there might

be potential matches that the LLCP misses. Consider the example in Figure 5.3 where

it is easy to see by manual inspection that the send from P0 is a potential match of the

wildcard receive from P2 (assuming the P2’s recv matches with P1’s send). However,

the LLCP would fail to detect such a match since at the time of receiving P0’s send, the

clock of P0’s send is 1, which is the same as the clock of P2’s recv(0), and it does not

satisfy the condition of Theorem 5.3.

This issue again reflects the disadvantage of Lamport clocks when there are multiple

concurrent sources of nondeterminism. In general, omissions might happen when there are

multiple sources of nondeterminism and processes for which the clocks are out of synchro-

nization communicating with each other. Fortunately, this situation rarely happens in

practice because most MPI programs have well-established communication patterns that

do not have cross communications between groups of processes that generate relevant

events before clock synchronization takes place. We will present our extension of LLCP

to vector clocks that will address MPI programs with subtle communication patterns for

which LLCP might not recognize all matches.



52

send(0)
[0] recv(*)

[0]

send(2)
[0]

recv(*)
[0]P0

P1

P2

recv(0)
[1]

send(2)
[1]

Figure 5.3: Omission scenario with LLCP

5.2 Lazy Vector Clocks

LLCP can be extended to use vector clocks. In the case of vector clocks, the rules

remain similar while taking into account the fact that we are working with a vector of

clocks (e.g., instead of incrementing a single clock, Pi now increments V Ci[i]). We shall

now prove the updated lemmas and theorems that are based on LVCP.

Lemma 5.4 Assuming r is either a blocking receive or a nonblocking receive that is

not pending in Pi: r
mb−−→ e⇔ r.V C[i] < e.V C[i].

Proof. The proof for r
mb−−→ e ⇒ r.V C[i] < e.V C[i] is similar to the LLCP case and

is omitted. We will now prove the converse.

Observe that in the LVCP, the only process that might increment V C[i] is Pi (this is

the fundamental difference between Lamport clock and vector clocks - which is also why

the converse of this lemma does not hold for Lamport clocks). Thus, e is either an event

that occurs in Pi after r completes (which is the point where V Ci[i] becomes greater

than r.V C[i]) or an event in another process that receives the piggybacked V Ci[i] from

Pi (either directly or indirectly via another process).

If e is an event that occurs in Pi after r completes and r is a blocking receive, we

clearly have r
mb−−→ e due to the definition of

mb−−→. On the other hand, if r is a nonblocking

receive, Pi will increase its clock (i.e., V C[i]) only in one of these scenarios:

• The corresponding wait for r is posted and r is still pending before the wait call.

• A blocking receive r′ which satisfies r
mb−−→ r′ is posted and r is still pending before

r′.

• A wait for a nonblocking receive r′ which satisfies r
mb−−→ r′ is posted and r is still

pending before r′.



53

Notice that in all of these scenarios, we need a blocking operation b such that r
mb−−→ b to

increase the clock of Pi. If e.V C[i] ≥ r.V C[i], it must be the case that e occurs after b.

Hence, b
mb−−→ e and by the transitive order rule, r

mb−−→ e.

Using the updated definition of late message (Definition 5.1) where m.LC ≤ r.LC

is replaced by m.V C[i] ≤ r.V C[i], we now prove the LVCP matching theorem, which is

stated as follows:

Theorem 5.5 An incoming send s carrying message m with tag τ being received by

event r′ in process Pi is a potential match to a wildcard receive event r with tag τ issued

before r′ if and only if (m.V C[i] < r′.V C[i] ∧ late(m, r)). In other words, all potential

matches are recognized and there are no omissions.

Proof. The proof for the if part is similar to the LLCP proof and is omitted. We

now prove the converse, which can be alternatively stated as: if r
mb
−�−→ s ∧ s

mb
−�−→ r then

m.V C[i] < r′V C[i] ∧ late(m, r).

First we notice that due to the nonovertaking rule, r
mb−−→ r′, which gives us r.V C[i] <

r′.V C[i] according to Lemma 5.4. Now applying Lemma 5.4 to r
mb
−�−→ s, we obtain

m.V C[i] ≤ r.V C[i], which means m.V C[i] < r′.V C[i] ∧ late(m, r) (note that m.V C[i] is

the same as s.V C[i] since m.V C[i] is the piggybacked value attached to the message).

5.2.1 Handling Synchronous Sends

We briefly describe our approach to handle synchronous sends in MPI. Recall that

a synchronous send s returns only when the corresponding receive call r has started to

receive the message. Essentially, this means that if for any MPI events e, f such that

s
mb−−→ e and r

mb−−→ f , then s
mb−−→ f and r

mb−−→ e.

5.2.1.1 Piggyback Requirements

Sending and receiving piggyback data for synchronous call is challenging and de-

pendent on the MPI implementation. We have so far experimented with MPICH2 in

which the sender of the synchronous call sends a Request-To-Send (RTS) packet to the

receiver and waits for a Clear-To-Send (CTS) packet from the receiver indicating that the

receiver is ready for the receiving process. We add a special field in the CTS packet to

store the piggyback data and extract it on the sender side. Other MPI implementations

use some similar rendezvous protocols and the same modifications can be applied. While

such modifications can potentially limit portability, our experiments show that few MPI



54

applications use synchronous sends and for those that do, their communication patterns

do not require this scheme of piggyback.

5.2.1.2 Algorithm Extension

We discuss the algorithm extension for the case of LLCP and omit the case of LVCP

due to similarity. Consider the case where a synchronous send s matches with a receive r;

the following extensions are made to the clock updating rules described in Section 5.1.2:

• Before s returns, it extracts the piggybacked clock c coming from the receiver’s side

from the CTS packet. If the receive that matches with s is a wildcard receive, it

increments c by 1. Finally, it updates its clock to c if c is greater than its current

clock. Intuitively, this rule ensures that any event e such that s
mb−−→ e will have a

higher clock than r.

• When the receiver side starts receiving the message from a synchronous send (by

sending a CTS packet), we take no action if the receive is blocking receive; otherwise,

if it is a nonblocking wildcard receive we add it into the set MatchedWithSsend. If

a pending receive is in this set, any incoming message with a higher clock than the

receive’s clock at the time it is issued will not be counted as a potential match. This

rule allows other eligible sends that are concurrent with the receive to be considered

as potential matches.

The example in Figure 5.4 illustrates the extensions to handle synchronous sends. The

extensions would allow LLCP to identify the send from P0 correctly as a potential match

and dismiss the send from P3 as a potential match.

5.3 DAMPI: Distributed Analyzer for MPI

DAMPI (Distributed Analyzer for MPI) is the first dynamic MPI verifier that offers

meaningful scalability: users can verify MPI codes within the parallel environment in

which they develop and optimize them. In order to provide coverage over the nonde-

terminism space, DAMPI implements both LLCP and LVCP as its core modules and

allows the users to use either protocol, depending on their needs. Many other optional

error checking modules such as deadlock detection or resource leak detection are also

available. In addition, DAMPI offers several search bounding heuristics that allow the

user to focus the verification to regions of interests. We also report experimental results

that demonstrate that DAMPI provides scalable, user-configurable coverage.



55

irecv(*)
[0]

send(1)
[0]

P0

P1

P2
ssend(1)
[1]

recv(2)
[1]

P3

ssend(3)
[1]

recv(3)
[1]

recv(0)
[0]

send(1)
[1]

Figure 5.4: Handling synchronous sends

5.3.1 DAMPI Framework Overview

DAMPI has two main components: the DAMPI library, which is linked with the

program to provide the MPI executable, and the scheduler, which provides the non-

determinism coverage by restarting the processes to explore all possible interleavings.

Figure 5.5 describes the overall framework of DAMPI.

5.3.1.1 The DAMPI Library

The DAMPI library is essentially a collection of several PNMPI [53] modules providing

core functionalities such as
mb−−→ tracking or piggyback and several other optional error

Executable

Proc
Proc
……
Proc

Alternate 
Matches

MPI runtime

MPI 
Program

DAMPI ‐ PnMPI
modules

Schedule 
Generator

Epoch
Decisions

Rerun

DAMPI – Distributed Analyzer for MPI

Figure 5.5: DAMPI framework



56

checking modules such as deadlock detection or resource leak tracking. Figure 5.6 provides

an overview of the DAMPI library. The decision to implement DAMPI services as PNMPI

modules offers several advantages:

• Switching between different core services does not require recompilation. For ex-

ample, to switch from using LLCP to using LVCP only requires the modification of

the PNMPI configuration file

• Turning on and off error checking modules also does not require recompilation. This

is especially helpful during debugging sessions in which the users want to focus on

several types of errors.

• Integration with other PNMPI modules is possible and does not require the module

developers to understand the detail of DAMPI.

5.3.1.2 The Scheduler

The scheduler operates in a postmortem manner and is responsible for replaying

MPI programs according to the information collected by the MPI processes. In an MPI

program where there are multiple possible outcomes due to nondeterminism, each process

collects the information pertaining to those outcomes and outputs it to a database. The

scheduler retrieves the information from the database and replays the program through

the MPI runtime. During the replay process, the scheduler keeps collecting and processing

information output by the processes to determine if a particular replay might lead to

Status module

Request module

Communicator module

Type module

Deadlock module

DAMPI ‐ PnMPI
modules

Core Module

Optional Error Checking Module

Piggyback (LLCP or LVCP)

DAMPI driver (LLCP or LVCP)

Figure 5.6: DAMPI library overview



57

additional executions.

5.3.2 Implementation Detail

5.3.2.1 Piggyback

The piggyback module implements piggybacking using a mixed scheme of both sep-

arate message piggybacking and datatype piggybacking. In particular, point-to-point

messages rely on datatype piggybacking while collective messages use two message pig-

gybacking. This mixed scheme of piggybacking allows us to achieve high performance

without increasing code complexity (recall our discussion earlier in Chapter 2 that other

than two message piggybacking, all other methods do not offer a simple mechanism to

send piggyback data with collective calls). We use a single 32-bit integer per process to

store the Lamport clock for LLCP. For LVCP, we use a vector of 32-bit integers for which

the size of the vector equals the number of processes in the execution. These clock values

are piggybacked on every outgoing message and are accessible on the receiving side after

the calls attain the complete state.

Figure 5.7 provides the pseudocode for collectives under LLCP. Although different

collective calls might have slightly different piggybacking schemes we only display the

pseudocode for piggybacking inside an MPI Barrier call and an MPI Bcast call for sim-

plicity. Our implementation, however, does classify each collective properly based on their

behaviors and executes the appropriate piggybacking scheme.

MPI Barrier(In:comm)

in buf : int[piggyback size], out buf : int[piggyback size]
out buf ← piggyback buffer
PMPI Allreduce(out buf, in buf, piggyback size,MPI INT,MPI MAX, comm)
PMPI Barrier(comm)

piggyback buffer ← in buf

MPI Bcast(In:buf,count,dtype,root,comm)

temp buf ← piggyback buffer
PMPI Bcast(temp buf, piggyback size,MPI INT,root, comm)
if myrank 6= root then
piggyback buffer ← max(piggyback buffer, temp buf)

end if
PMPI Bcast(buf, count, dtype, root, comm)

Figure 5.7: Packing and unpacking piggyback data - collective



58

Figure 5.8 provides the pseudocode for packing and unpacking piggyback data using

the datatype piggybacking mechanism in which both the sending and the receiving side

invoke the same procedure for packing and unpacking the piggyback data. On the sender

side, the piggyback data are copied to a temporary buffer whose address is passed to the

datatype construction. On the receiver side, the piggyback data are copied over to the

temporary buffer during the receiving process and later is appended to the status field

so that it can be accessed by other modules.

Figure 5.9 and 5.10 provide the pseudocode for handling the piggyback data in

MPI Send and MPI Isend, respectively.

Figure 5.11, 5.12, and 5.13, illustrate the handling of piggyback data for MPI Recv,

MPI Irecv, and MPI Wait, respectively. All these calls use the status field to attach their

piggyback data so that other DAMPI layers can access the data. For simplicity purposes,

we omit the detail of how we attach the data to the status. Note that for the MPI Irecv

call, the piggyback data are not accessible until the corresponding wait is posted.

Pack Unpack(In:buf,count,in dtype,temp pb; Out:out dtype)

lens[2] : int, addr[2] : MPI Aint, types[2] : MPI Datatype
temp pb← piggyback buffer
types[0]← MPI INT
lens[0]← piggyback size
MPI Address(temp pb, addr[0])
types[1]← in dtype
lens[1]← count
MPI Address(buf, addr[1])
MPI Type struct(2, lens, addr, types, out dtype)
MPI Type commit(out dtype)

Figure 5.8: Packing and unpacking piggyback data - point-to-point

MPI Send(In:buf,count,dtype,dest,tag,comm)

{Assume temp buf is allocated on heap}
temp buf : int[piggyback size]
packed dtype : MPI Datatype

Pack Unpack(buf, count, dtype, temp buf, packed dtype)
PMPI Send(MPI BOTTOM,1, new dtype, dest, tag, comm)
MPI Type free(packed dtype)

Figure 5.9: Pseudocode for piggybacking in MPI Send



59

MPI Isend(In:buf,count,dtype,dest,tag,comm; Out:request)

temp buf : int[piggyback size]
packed dtype : MPI Datatype

Pack Unpack(buf, count, dtype, temp buf, packed dtype)
PMPI isend(MPI BOTTOM,1, new dtype, dest, tag, comm,new request)
{Store temp buf and packed type}
StoreTemporaryVar(..)

Figure 5.10: Pseudocode for piggybacking in MPI Isend

MPI Recv(In:buf,count,dtype,dest,tag,comm; Out:status)

temp buf : int[piggyback size]
pack dtype : MPI Datatype

Pack Unpack(buf, count, dtype, temp buf, new dtype)
PMPI Recv(MPI BOTTOM,1, new dtype, dest, tag, comm, status)
MPI Type free(packed dtype)
AttachPBToStatus(temp buf, status)

Figure 5.11: Pseudocode for piggybacking in MPI Recv

MPI Irecv(In:buf,count,dtype,dest,tag,comm; Out:request)

temp buf : int[piggyback size]
pack dtype : MPI Datatype

Pack Unpack(buf, count, dtype, temp buf, new dtype)
PMPI Irecv(MPI BOTTOM,1, new dtype, dest, tag, comm, request)
StoreTemporaryVar(..)

Figure 5.12: Pseudocode for piggybacking in MPI Irecv

MPI Wait(In:request; Out:request,status)

if (Request is a Send) then
PMPI Wait(request, status)
{Free temporary buffer and datatype stored earlier}
FreeTemporaryVar(..)

else
PMPI Wait(request, status)
AttachPBToStatus(..)

{Free temporary buffer and datatype stored earlier}
FreeTemporaryVar(..)

end if

Figure 5.13: Pseudocode for piggybacking in MPI Wait



60

5.3.2.2 DAMPI Driver

The driver is the central component of DAMPI. It is responsible for maintaining the

logical clocks of the process and keeping track of the
mb−−→ relationship between MPI calls.

The core function of the driver is to detect alternative matches for nondeterministic

receives. Each driver (LLCP or LVCP) passes and receives the logical clocks to and from

the piggyback module, respectively. Since the driver module and the piggyback module

work tightly together, the LLCP driver module must be used together with the LLCP

piggyback module. The situation is similar for the case of LVCP. Incorrect pairing of the

driver module and the piggyback module may result in undefined behavior. At the end

of the execution, all information necessary for the scheduler to determine whether replays

are necessary is written into a database. In the current version of DAMPI, we choose to

gather all data to a particular node (MASTER NODE) and output the data as a single

file. During replay, the driver reads in a decision database output earlier by a replay

scheduler and enforces wildcard matching based on the database. Currently, the driver

checks whether it is in replay mode (GUIDED MODE) by either detecting the presence

of the decision database or checking an environment variable’s value.

We describe in detail how the driver implements LLCP to detect potential matches

by walking through the pseudocode of MPI Irecv and MPI Wait (the pseudocode for

MPI Recv is also provided for reference). We shall use Figure 5.14, which contains the

skeleton of a simple MPI program, to explain various concepts in our implementation.

Figure 5.14 has two special columns on the left that provide the clocks and the associated

event numbers of the wildcard receives. The clock information reflects the final clock

assignment (i.e., after execution completes) while the event number indicates the order of

the wildcard receives with respect to other wildcard receives issued in the same process.

For example, event number 4 indicates that this wildcard receive is the 4th wildcard receive

eventNo clock P0 P1 P2

0 0 irecv(*,tag=2,h0) send(0,tag=2) send(0,tag=3)

1 2 irecv(*,tag=3,h1) send(0,tag=3) send(0,tag=2)

2 1 recv(*,tag=2)

3 3 recv(*,tag=3)

wait(h0)
wait(h1)

Figure 5.14: Wildcard receives with associated clocks



61

issued in this process. Since P0 is the only process that is issuing wildcard receives in this

example, all clocks and event numbers pertain to the wildcard receives in P0 only.

Upon invoking the MPI Irecv call (Figure 5.15), the process checks whether it should

process this call under replay mode or not. Normally, all processes start in SELF RUN

mode during the first interleaving and run in GUIDED RUN under subsequent replays.

However, the scheduler only enforces the replay up until some certain point (which

MPI Irecv(In:buf,count,dtype,src,tag,comm; Out:request)

1: if curr clock > last guided clock then
2: running mode← SELF RUN
3: end if
4: if src =MPI ANY SOURCE then
5: if running mode = GUIDED RUN then
6: {Read decision database to know who to receive from}
7: temp src← forced map[eventNo]
8: if temp src 6= NULL then
9: PMPI Irecv(buf, count, dtype, temp src, tag, comm, request)

10: else
11: {This means this Irecv’s clock is beyond our last guided clock}
12: PMPI Irecv(buf, count, dtype, src, tag, comm, request)
13: event list.add(eventNo)
14: end if
15: {Ending clock is MAX for Irecv, src will be updated later}
16: RecordEvent(eventNo, curr clock,MAX CLOCK, count, dtype,
17: src, tag, comm, 0)
18: else {SELF RUN}
19: PMPI Recv(buf, count, dtype, src, tag, comm, status)
20: event list.add(eventNo)
21: RecordEvent(eventNo, curr clock,MAX CLOCK, count, dtype,
22: status.SOURCE, tag, comm, 0)
23: end if
24: Pending.add(eventNo)
25: request2clock[request]← curr clock
26: request2event[request]← eventNo
27: eventNo← eventNo+ 1
28: else {Deterministic Irecv}
29: PMPI Recv(buf, count, dtype, src, tag, comm, status)
30: request2clock[request]← curr clock
31: request2event[request]← eventNo
32: end if

Figure 5.15: Pseudocode for MPI Irecv



62

is denoted as the last guided clock in the pseudocode) due to its Depth-First-Search

algorithm. That is, for the first replay, the scheduler will set last guided clock to the

largest clock value recorded and force the wildcard receive associated with that clock

to match with a different sender while forcing all other wildcard receives to match the

same senders that they match with during the previous run. Assuming the execution

corresponding to the alternate matching does not result in any new interleavings, the

scheduler will now set last guided epoch to the next highest clock and repeat the process.

We describe the scheduler in detail in Section 5.3.2.4.

If the receive is a wildcard receive and it is running under GUIDED RUN, the process

reads the decision database output by the scheduler to determine with which process it

should match (line 7). Since a nonblocking receive can attain the matched state at various

points from the issuance point to the wait posting point, it is possible for a nonblocking

call associated with a clock smaller than last guided clock to have a larger final clock. For

example, consider the particular replay of the program in Figure 5.14 where the scheduler

is trying to enforce a different matching for the third receive (i.e., recv(*,tag=2)). The

second receive (i.e., irecv(*,tag=3,h1)) is issued with a clock value of 0 but has a final

clock value of 2, which is larger than the value of last guided clock, which is 1. Thus, the

second receive will not have its match recorded in the decision database and the search

would return NULL (line 10). In contrast, the first receive has a final clock value of 0,

which is smaller than last guided clock and should have its matching sender recorded in

the decision database (line 8). In the case where the process is running under SELF RUN,

the information associated with the receive and other bookkeeping data are recorded (line

21-27).

When the wait for a nonblocking receive completes (Figure 5.16), the following actions

are taken if the request was for a wildcard receive:

• Update the source field in the event database (line 5)

• Complete all pending receives that have matched before this one according to rule

R4 of LLCP (line 9). The procedure CompleteNow handles this task. We have

already explained in detail this concept earlier in the discussion of LLCP in Section

5.1. The pseudocode for this procedure is provided in Figure 5.17 for reference.

• Update the final clock of the receive if necessary.

Finally, the wait extracts the piggybacked clock from the incoming message and uses the

clock information to determine whether the incoming message can be a potential match



63

MPI Wait(In:request; Out:request,status)

1: PMPI Wait(request, status)
2: if Request is a receive then
3: if Request is for ANY SOURCE then
4: this event← request2event[request]
5: eventmap[this event].src← status.MPI SOURCE
6: {Can’t have potential matches from the same process}
7: eventmap[this event].potential matches.remove(status.MPI SOURCE)
8: CompleteNow(..)
9: {Update the clock if necessary}

10: if eventmap[this event].end clock = MAX CLOCK then
11: eventmap[this event].end clock ← curr clock
12: curr clock ← curr clock + 1
13: end if
14: end if
15: {The Piggyback module attached piggyback data to status}
16: incoming ← GetP iggybackFromStatus(status)
17: ProcessIncomingMessage(..)
18: end if

Figure 5.16: Pseudocode for MPI Wait

CompleteNow(In:status,comm,eventNo)

1: this event← eventmap[eventNo]
2: for i = 0 to Pending.size() do
3: {Get all receives that matched before this event}
4: if eventmap[Pending[i]]

mb−−→ this event then
5: eventmap[Pending[i]].end clock ← curr clock
6: curr clock ← curr clock + 1
7: Pending.remove(i)
8: end if
9: end for

Figure 5.17: Pseudocode for CompleteNow

to previously issued receives.

Figure 5.18 describes the algorithm for the MPI Recv call, which is similar to the

combined effect of irecv and wait.

Figure 5.19 provides the pseudocode for the procedure ProcessIncomingMessage, which

processes an incoming message to determine if it is a potential match for other receives.

The procedure begins by inspecting the list of all pending receives to see if the incoming



64

MPI Recv(In:buf,count,dtype,src,tag,comm; Out:status)

if curr clock > last guided clock then
running mode← SELF RUN

end if
if src =MPI ANY SOURCE then

if running mode = GUIDED RUN then
{Read decision database to know who to receive from}
src = forced map[eventNo]
PMPI Recv(buf, count, dtype, src, tag, comm, status)
{Complete the receives that matched earlier due to nonovertaking}
CompletePendingIrecv(status, comm, eventNo)

else
PMPI Recv(buf, count, dtype, src, tag, comm, status)
CompletePendingIrecv(status, comm, eventNo)
event list.add(eventNo)
RecordEvent(eventNo, curr clock, count, dtype,

status.SOURCE, tag, comm, 0)
end if
eventNo← eventNo+ 1
curr clock ← curr clock + 1

else
PMPI Recv(buf, count, dtype, src, tag, comm, status)
CompletePendingIrecv(status, comm, eventNo)

end if

Figure 5.18: Pseudocode for MPI Recv



65

ProcessIncomingMessage(In:eventNo,incoming clock,request,status,comm)

1: {Check the pending receives for possible matches}
2: for i = 0 to Pending.size() do
3: e← eventmap[Pending[i]]
4: if eventNo > Pending[i]∧e.comm = comm∧(e.tag = status.MPI TAG∨e.tag =

MPI ANY TAG) then
5: {If it did not match earlier, it is eligible}
6: if e.src 6= status.MPI SOURCE then
7: e.potential matches.add(status.MPI SOURCE)
8: {Exit after the first match due to nonovertaking}
9: break

10: end if
11: end if
12: end for
13: {Update the clock if necessary}
14: if curr clock ≤ incoming clock then
15: curr clock ← incoming clock
16: else
17: {This one might be a late message}
18: {Case: blocking recv}
19: if request = NULL then
20: posted clock ← curr clock − 1
21: {Look between posted clock to incoming clock for matches}
22: else
23: {Case: nonblocking recv}
24: {Try to find out when this irecv posted}
25: if eventNo ∈ event list then
26: {Wildcard case}
27: posted clock ← eventmap[eventNo].end clock
28: else
29: {Deterministic case}
30: posted clock ← request2clock[request]
31: end if
32: end if
33: FindPotentialMatches(status.MPI SOURCE, status.MPI TAG, comm,
34: posted clock, incoming clock, eventNo)
35: end if

Figure 5.19: Pseudocode for ProcessIncomingMessage



66

message can match any of them. If so, the procedure adds the sender of the message to

the list of possible matches (line 2-12). Then, it updates the process’ current clock if the

piggybacked clock has a higher value. Otherwise, if the piggybacked clock is less than

the current clock, we further process the message to determine if it is a late message.

Recall from Theorem 5.3 that a message matching r′ is a potential match to a receive r

issued before r′ if it has a clock smaller than or equal to r′ clock (which is posted clock

in the pseudocode) and less than r clock. Thus, the procedure only inspects those events

whose final clocks are between the message clock and r′ clock (line 19-34). The detailed

check for a message’s eligibility (as a potential match) is performed by the procedure

FindPotentialMatches. The logic behind this procedure is self-explanatory and thus

omitted. We provide the pseudocode for this procedure in Figure 5.20 for reference.

We now describe how DAMPI handles probe calls. In an MPI execution, the processes

can check for the presence of incoming messages and their associated characteristics with-

out actually receiving them through probing operations. Probing is useful in situations

where the users do not know the size of the incoming messages in advance and do not

want to risk underallocating the receiving buffer, which might result in an error. Another

FindPotentialMatches(In:src,tag,comm,posted clock,incoming clock,eventNo)

1: for i = 0 to event list.size() do
2: e← eventmap[event list[i]]
3: flag ← true
4: flag ← flag ∧ e.end clock ≥ incoming clock
5: flag ← flag ∧ e.end clock < posted clock
6: flag ← flag ∧ e.end clock > last guided clock
7: flag ← flag ∧ e.end clock 6= MAX CLOCK
8: flag ← flag ∧ event list[i] ≤ eventNo
9: flag ← flag ∧ (e.tag = tag||e.tag = MPI ANY TAG)

10: flag ← flag ∧ (e.comm = comm)
11: if flag then
12: if src 6= e.src ∧ src /∈ e.potential matches then
13: e.potential matches.add(src)
14: end if
15: else if e.end clock < incoming clock ∨ e.end clock <= last guided clock then
16: break
17: end if
18: end for

Figure 5.20: Pseudocode for FindPotentialMatches



67

option is to overallocate the receiving buffer but this might be undesirable in systems

with memory constraints.

MPI supports two different methods of probing and we describe how DAMPI handles

them.

• MPI Probe is a blocking probe, which behaves similarly to MPI Recv in the sense that

it blocks until there is at least a matching incoming message. Further, MPI Probe

can also use MPI ANY SOURCE as its source argument and thus can be a source of

nondeterminism. DAMPI handles MPI Probe similarly to MPI Recv with several

minor differences as follows. First of all, MPI Probe does not actually receive

the message and thus there is no piggybacked data to deal with. Second, the

successful completion of MPI Probe only indicates that there is at least one message.

Therefore, DAMPI only updates the first pending receive in the CompleteNow set.

Figure 5.21 provides the updated pseudocode of the procedure CompleteNow with

support for probing.

• MPI Iprobe is a nonblocking probe which returns a boolean flag to indicate whether

there is a message to receive or not. This is in contrast with MPI Probe, which

returns only when there is a message to receive. DAMPI only processes MPI Iprobe

when the variable flag is set to true, in which case it is treated similarly to MPI Probe.

We briefly describe how DAMPI handles MPI ANY TAG since the usage of MPI ANY TAG

creates another difficulty with respect to nondeterminism coverage. Consider the example

in Figure 5.22 in which the second nonblocking wildcard receive from P0 uses MPI ANY TAG,

CompleteNow(In:status,comm,eventNo,isProbe)

1: this event← eventmap[eventNo]
2: for i = 0 to Pending.size() do
3: {Get all receives that matched before this event}
4: if eventmap[Pending[i]]

mb−−→ this event then
5: eventmap[Pending[i]].end clock ← curr clock
6: curr clock ← curr clock + 1
7: Pending.remove(i)
8: if isProbe then
9: break

10: end if
11: end if
12: end for

Figure 5.21: Pseudocode for CompleteNow with probe support



68

P0 P1 P2

irecv(*,tag=3,h0) send(0,tag=3) recv(0,tag=100)

irecv(*,tag=*,h1) send(0,tag=3) send(0,tag=3)

recv(*,tag=2) send(0,tag=2)

send(2,tag=100)

wait(h0)
wait(h1)

Figure 5.22: MPI example with MPI ANY TAG

which is denoted as *. Manual inspection allows us to conclude that this program is

actually deterministic; that is, each wildcard receive has exactly one possible match.

However, without special handling of MPI ANY TAG, both LLCP and LVCP will incorrectly

deduce that the call send(0,tag=3) from P2 is a potential match to the first wildcard

receive of P0. The reason is that at the point of completing the blocking wildcard receive

in P0, we do not know the exact tag of the message received by the irecv(*,tag=*,h1)

call from P0. Without the tag information, the algorithm cannot determine whether the

irecv(*,tag=3,h0) call is required to match before the call with MPI ANY TAG. Therefore,

we need a mechanism to obtain the tag of a nonblocking receive using MPI ANY TAG when

the algorithms determine that such a receive has already attained the matched state. We

address this problem by using the operation MPI Request get status, which allows us

to obtain the status of a nonblocking call without destroying its request handle. Once

we determine that a nonblocking receive using MPI ANY TAG has matched, we simply do

a busy-wait loop with MPI Request get status to obtain the status, which allows us to

figure out the tag information.

5.3.2.3 Error Checking Modules

DAMPI provides several error checking modules that provide correctness checks for

deadlock and resource leaks. We briefly summarize these modules here.

• Deadlock detection: DAMPI provides a lightweight timeout-based deadlock detec-

tion module. During the initialization phase (MPI Init), each process spawns a new

thread that communicates with other threads from other processes to determine

when the processes have entered a deadlock scenario. The threads use MPI to com-

municate themselves and thus the module requires MPI THREAD MULTIPLE support

from the MPI runtime to operate. Since we only focus on MPI-related deadlock,



69

the threads conclude that the execution has deadlocked if and only if all processes

have not returned from some MPI calls, and they also have not progressed since

the last time the threads synchronized. The time interval between two successive

synchronization points can be fine-tuned by the user. In our experiments, this

simple scheme is very effective in practice and scalable. If absolute soundness

guarantee is required for deadlock detection, a more precise scheme such as the

Wait-For-Graph approach [32] should be adapted. However, such approach would

not scale as well as our proposed scheme.

• Resource leaks: We use a simple counting mechanism to keep track of nonblocking

requests and user-defined communicators to detect whether all requests have been

finished and all communicators have been freed.

5.3.2.4 The DAMPI Scheduler

We implement the scheduler based on the concept of the ISP scheduler [63]. The

main difference is that the DAMPI scheduler operates postmortem and does not interact

with the processes while they execute. Thus, it is very scalable and easy to parallelize.

Figure 5.23 provides the pseudocode for the scheduler. For simplicity, we omit the

pseudocode of several auxiliary procedures and only provide the pseudocode for the main

procedure, ExploreInterleavings. The functionalities of the auxiliary procedures are

summarized here.

• parseProcessOutput reads in the output from the processes and stores the clock

information as well as the last clock value, which is the largest clock value recorded

by all processes. Note that since MPI Finalize acts as a synchronization point for

all processes, this largest clock value should be the same for all processes. The

last clock value is denoted as last clock. The scheduler stores each clock value as a

mapping between the clock and its possible outcomes. Consider the situation where

a wildcard receive carrying an event number e from P0 matches with a message

sent from P1 in clock c and lists P2 as a potential match. The scheduler stores

such information as {c → (e, [1, 2])}. The first number in the bracket represents

the match that the process observes during the last execution while the rest are the

potential matches. Note that the processes only record those wildcard receives that

have at least one potential match. parseProcessOutput returns true if there are

potential matches discovered during the execution, otherwise it returns false.



70

ExploreInterleavings()

1: if parseProcessOutput() = false then
2: {There is only one interleaving possible}
3: return
4: end if
5: last guided clock ← last clock − 1
6: while last guided clock ≥ 0 do
7: if hasPotentialMatches(last guided clock) then
8: for all m ∈ getMatches(last guided clock) do
9: interleavings[last guided clock].push(m)

10: end for
11: foundExtraMatches← false
12: while interleavings[last guided clock].size() 6= 0 do
13: outputToDecisionDatabase(interleavings[last guided clock].pop())
14: restartTheProcess()

15: {See if there are new matches}
16: if parseProcessOutput() then
17: foundExtraMatches← true
18: {DFS - Need to process new matches first}
19: break
20: end if
21: end while
22: if foundExtraMatches then
23: last guided clock ← last clock − 1
24: continue
25: end if
26: {Done with this clock}
27: cleanUp(last guided clock)
28: end if
29: last guided clock ← last guided clock − 1
30: end while

Figure 5.23: Pseudocode for the DAMPI scheduler

• hasPotentialMatches returns true if the given clock is associated with a wildcard

receive that has at least one potential match.

• getMatches extracts the mapping mentioned earlier to build all possible matching

for a wildcard receive and returns a list of matching pairs. Each matching pair has

a wildcard receive and the potential match that should be forced during the next

run.

• outputToDecisionDatabase outputs all information necessary to replay up to the

given clock number. For example, to force a receive with a clock value of 5 to match



71

with a different sender, it is necessary to force all previous receives for which their

clocks are smaller than 5 to match with the same senders that they match with

during the previous interleaving.

• restartProcess restarts the processes.

• cleanUp removes the information pertaining to a particular clock value to release

the memory back to the OS.

We now describe scheduler (Figure 5.23). When the scheduler is first invoked, it

parses the output from the processes to determine whether replays are necessary. If the

processes do not detect any potential matches to any wildcard receives (or there are no

wildcard receives), no further replay is necessary and the scheduler terminates (line 1-3).

On the other hand, if there are potential matches for wildcard receives detected, the

procedure parseProcessOutput stores all clock values and the information pertaining to

the wildcard receives associated with those clocks, which include the event numbers,

the senders with which the receives match, and the potential senders that they can

match. Then, the scheduler starts by processing the data associated with each clock value,

starting with the last clock value, to construct the possible matching for that clock value.

Each possible matching will result in a new interleaving and is pushed to interleavings

(line 9), which is a mapping between a clock value and all possible interleavings associated

with that clock. Once all interleavings for a given clock are stored in interleavings, each

possible matching is written to a decision database (line 13), which can be either a file

or a relational database (currently we use files). Upon restart, the processes will force

all matches according to the decision database, up to the value of last guided clock (line

14). If the processes discover more potential matches during replays, the scheduler will

process those new matches and force new replays to explore them (line 16-25). Finally,

the scheduler terminates when it has explored all possible interleavings.

5.3.3 Evaluation of LLCP and LVCP

We evaluate the performance of the two protocols that DAMPI provides (LLCP and

LVCP). In particular, we are interested in the scalability and the accuracy of the protocols.

To evaluate the scalability, we link the driver module and the piggyback module for LLCP

and LVCP, respectively, to DAMPI and apply DAMPI to several benchmarks to measure

the bandwidth, latency, and slowdown. Since we have already proved that LVCP is sound

and complete, we evaluate the accuracy of LLCP by manual comparison of the results of

LLCP to LVCP to determine if both protocols discover the same set of matches.



72

5.3.3.1 Experiment Setup

We run our benchmarks on the Atlas cluster available at Lawrence Livermore National

Laboratory, which is a Linux-based cluster with 1152 compute nodes, 8 cores, and 16GB

of memory per node. All experiments were compiled and run under MVAPICH2-1.5 [9]

with 8 tasks per node.

First, we report the latency and bandwidth impact of the two protocols. For latency

testing, we use the OSU multipair latency benchmark [9] and report the latency result for

4-byte messages as the number of processes increases. These small messages represent the

class of messages where latency impact is most significant. For bandwidth testing, we use

a simple ping-pong test between two processes in the system, while others sit idle. While

typical bandwidth tests report the bandwidth as the message size grows, such tests do not

take into account the number of processes in the system and thus do not provide a good

way to judge the impact of the protocols. Thus, we report the message sizes where the

system achieves half of the peak bandwidth for the bandwidth testing (the R/2 value).

Figures 5.24 and 5.25 summarize our bandwidth and latency testing results, re-

0

5000

10000

15000

20000

25000

64 128 256 512 1024

M
e

ss
ag

e
 S

iz
e

 

Number of Processes 

Original

LLCP

LVCP

Figure 5.24: Bandwidth impact



73

0

5

10

15

20

25

30

35

40

64 128 256 512 1024

La
te

n
cy

 (
m

ic
ro

 s
e

co
n

d
s)

 

Number of Processes 

Latency for 4-byte Messages 

Original

LLCP

LVCP

Figure 5.25: Latency impact

spectively. Note that higher bars denote worse performance in our graphs since they

correspond to longer latencies and to larger message sizes to achieve the same bandwidth.

The results show that both protocols have manageable latency at lower process counts

but the impact of vector clocks becomes much more significant as the system scales up

while LLCP maintains nearly constant latency penalties throughout the entire range. At

1024 processes, the latency of messages under LLCP increases by only 10% compared

to the original, uninstrumented messaging while it increases 240% under LVCP. Both

protocols achieve essentially the same peak bandwidth as uninstrumented messaging but

reduce the bandwidth achieved at intermediate message sizes. Importantly, this impact

is more pronounced with LVCP and increases with increasing process count, while the

impact of LLCP is independent of the process count.

Latency and bandwidth do not always translate to overhead since programs typically

do not spend 100% of their CPU time exchanging messages. Therefore, we evaluate

the performance of three scientific MPI applications: ParMETIS, a parallel hypergraph

partitioning library [12]; AMG2006, an algebraic multigrid solver for unstructured mesh

available from the ASC Sequoia benchmark [13]; and SMG2000, a semicoarsening multi-

grid solver from the ASCII Purple benchmark [15]. All of these applications are designed

to run at very large scale. We run ParMETIS using the supplied testing parameters, both



74

AMG2006 and SMG2000 with a 6 × 6 × 6 grid as input, with the number of processes

ranging from 64 to 1024 (8 processes per node). We report the average result from given

runs. ParMETIS and SMG2000 do not have any nondeterministic receives and thus the

results reflect the overhead of checking for common MPI errors (e.g., resource leaks). For

AMG2006, which has both wildcard probes as well as wildcard receives, we report the

performance for the first run, which reflects the overhead of tracking of wildcard events

and checking for errors. The results of AMG2006 under LLCP and LVCP are identical

even though AMG2006 has multiple processes issuing wildcard receives, which reiterates

that for most practical applications, omissions do not occur under LLCP.

Figures 5.26 and 5.27 summarize the overhead evaluation for SMG2000 and AMG2006,

which display similar trends where LVCP remains competitive with LLCP until the

system goes to 1024 processes, and we expect the overhead to become worse as the

size of the vector clocks grows. We also notice several interesting cases where LLCP has

0

0.2

0.4

0.6

0.8

1

1.2

1.4

64 128 256 512 1024

Sl
o

w
d

o
w

n
 

Number  of Processes 

SMG2000 

Original

LLCP

LVCP

Figure 5.26: Overhead on SMG2000



75

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

64 128 256 512 1024

Sl
o

w
d

o
w

n
 

Number of Processes 

AMG2006 

Original

LLCP

LVCP

Figure 5.27: Overhead on AMG2006

negative overhead (i.e., it runs faster with extra processing), probably due to the extra

payload affecting the communication patterns and resulting in better optimization from

the MPI runtime.

Figure 5.28 provides the overhead evaluation for ParMETIS, which issues almost 550

million messages (compared to AMG at 200 million and SMG2000 at 40 million) under

our experiment with 1024 processes; over 98% of these messages are between 4-256 bytes

and thus, the verification suffers a high latency penalty caused by the transmission of the

vector clocks.

One issue worth noting but not conveyed from the figures is the memory overhead

associated with LVCP. For each relevant event, a vector clock must be kept in order to

track the causality of the event, which results in a very large amount of memory being

used for bookkeeping, especially when the programs have many wildcards and run at large

scale. For example, AMG2006 generated about 1800 wildcard events per process (1024

processes total), which results in about 7 Gigabytes of extra memory (collectively) to



76

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

64 128 256 512 1024

Sl
o

w
d

o
w

n
 

Number of Processes 

ParMETIS-3.1.1 

Original

LLCP

LVCP

Figure 5.28: Overhead on ParMETIS-3.1.1

keep track of vector clocks. As we scale the programs to much larger scale, this memory

overhead becomes prohibitively expensive.

One way to tackle the memory overhead as well as the bandwidth overhead of vector

clocks is to use compressed vector clocks [31, 60]. Some of the proposed schemes are

not directly applicable to MPI due to the special requirements on the runtime (e.g.,

first-in-first-out channels [60]). Nonetheless, the efficiency of these schemes are highly

dependent on the communication patterns and all of them require more local memory

storage (compared to traditional vector clocks) for bookkeeping. As supercomputers be-

come larger and employ more and more cores, the amount of memory available to each core

becomes smaller and the additional memory overhead might prevent the applications from

running. Furthermore, all compressed vector clocks schemes require variable piggyback

information being sent every time, including at collective calls. Since most MPI runtimes

do not yet support native piggybacking, implementing a variable piggybacking layer forces

the developer to use explicit buffer packing, which greatly increases performance overhead.



77

In addition, one would need to break collective calls into pair-wise in such a piggyback

scheme and thus forfeit all existing MPI collective optimizations (the alternative would

be to always piggyback all the vector clocks for collective).

5.3.4 DAMPI Performance Evaluation

As discussed earlier, LLCP maintains soundness and completeness in most practical

situations and scales much better than LVCP. We further evaluate the performance of

DAMPI compared to ISP to show that DAMPI provides comparable coverage over the

space of nondeterminism while achieving greater scalability. We also experiment with

different interleaving reduction heuristics which are described below.

Our evaluation uses these benchmarks:

• An MPI matrix multiplication implementation, matmult;

• ParMETIS-3.1 [12], a fully deterministic MPI-based hypergraph partition library;

• Benchmarks from the NAS Parallel Benchmarks (NAS-PB) 3.3 [10];

• Benchmarks from the SpecMPI2007 [14] suites; and

• The Adaptive Dynamic Load Balancing (ADLB) library [42].

Our ParMETIS, NAS-PB and SpecMPI tests measure DAMPI’s overheads and target

evaluation of its local error (e.g., request leaks or communicator leaks) checking capa-

bilities. In matmul, we use a master-slave algorithm to compute A × B. The master

broadcasts the B matrix to all slaves and then divides up the rows of A into equal ranges

and sends one to each slave. The master then waits (using a wildcard receive) for a slave to

finish the computation. It then sends the slave another range rj . This benchmark allows

us to study the bounded mixing heuristic in detail with a well-known example. We also

evaluate the bounded mixing heuristic with ADLB, a relatively new load balancing library

that has significant nondeterminism and an aggressively optimized implementation. In

our previous experiments using ISP, we could not handle ADLB even for the simplest of

verification examples. We now discuss our results under various categories.

5.3.4.1 Full Coverage

Figure 5.29 shows the superior performance of DAMPI compared to that of ISP

running with Parmetis, which makes about one million MPI calls at 32 processes. As

explained earlier, due to its centralized nature, ISP’s performance quickly degrades as

the number of MPI calls increases, while DAMPI exhibits very low overhead. In fact, the



78

4 8 12 16 20 24 28 32
0

50

100

150

200

ISP
DAMPI

Number of Processes

Ti
m

e 
in

 s
ec

s

Figure 5.29: ParMETIS-3.1: DAMPI vs. ISP

overhead of DAMPI on ParMETIS is negligible until the number of processes becomes

large (beyond 1K processes).

In order to understand the reasons behind the significant improvement of DAMPI

over ISP better, we log all MPI communication operations that ParMETIS makes (see Ta-

ble 5.1). We do not log local MPI operations such as MPI Type create or MPI Get count.

We classify the operations as Send-Recv, Collective or Wait. Send-Recv includes all

point-to-point MPI operations, Collective includes all collective operations, and Wait

includes all variants of MPI Wait (e.g., Waitall).

Although the total number of MPI operations grows by a factor of 2.5 on average as

the number of the processes increases, the total number of MPI operations per process

only grows by a factor of 1.3 on average. In effect, the number of MPI operations that



79

Table 5.1: Statistics of MPI operations in ParMETIS-3.1

MPI Operation Type procs=8 16 32 64 128

All 187K 534K 1315K 3133K 7986K

All per proc. 23K 33K 41K 49K 62K

Send-Recv 121K 381K 981K 2416K 6346K

Send-Recv per proc 15K 24K 31K 38K 50K

Collective 20K 36K 63K 105K 178K

Collective per proc 2.5K 2.2K 2.0K 1.6K 1.4K

Wait 47K 118K 272K 612K 1463K

Wait per proc 5.8K 7.3K 8.5K 9.6K 11K

the ISP scheduler must handle increases almost twice as fast as the number of MPI

operations that each process in DAMPI must handle as the number of processes increases

(due to the DAMPI’s distributed nature). Each type of MPI operation behaves similarly,

especially the collective calls, for which the number of operations per process decreases

as the number of processes increases. In addition to the increasing workload placed on

the ISP scheduler, the large number of local MPI processes also stresses the system as

a whole, which explains the switching from linear slowdown to exponential slowdown

around 32 processes. We also experimented with the distributed version of ISP that

allows the processes to be launched on different nodes but that version actually performs

even worse compared to the local version ISP. The data further confirm our observation

that the centralized scheduler is ISP’s biggest performance bottleneck.

To evaluate the overhead of DAMPI further, we apply DAMPI on a range of medium

to large benchmarks, including the NAS-NPB 3.3 suite and several codes from the

SpecMPI2007 suite. We run the experiments on an 800 node, 16 cores per node Opteron

Linux cluster with an InfiniBand network running MVAPICH2 [9]. Each node has 30GB

of memory shared between all cores. We submit all experimental runs through the Moab

batch system and use the wall clock time as reported by Moab to evaluate the performance

overhead. Table 5.2 shows the overhead of running DAMPI with 1024 processes.

In Table 5.2, the R* column gives the number of wildcard receives that DAMPI

analyzed while C-leak and R-leak indicate if we detected any unfreed communicators and

pending requests (not completed before the call to MPI Finalize).

Next we evaluate the tools’ efficiency in processing the interleavings by applying the

tools to matmul and measure how long it takes for DAMPI and ISP to explore through

the possible different interleavings of matmul. Our experiments show that DAMPI can



80

Table 5.2: DAMPI overhead: Large benchmarks at 1K processes

Program Slowdown Total R* C-Leak R-Leak

ParMETIS-3.1 1.18x 0 Yes No

104.milc 15x 51K Yes No

107.leslie3d 1.14x 0 No No

113.GemsFDTD 1.13x 0 Yes No

126.lammps 1.88x 0 No No

130.socorro 1.25x 0 No No

137.lu 1.04x 732 Yes No

BT 1.28x 0 Yes No

CG 1.09x 0 No No

DT 1.01x 0 No No

EP 1.02x 0 No No

FT 1.01x 0 Yes No

IS 1.09x 0 No No

LU 2.22x 1K No No

MG 1.15x 0 No No

offer coverage guarantees over the space of MPI nondeterminism while maintaining vastly

improved scalability when compared to ISP – the current state-of-the-art dynamic formal

verifier for MPI programs. We attribute this improvement in handling interleavings to the

lack of synchronous communication within DAMPI. All extra communication introduced

by DAMPI is done through MPI piggyback messages, which has been shown to have very

low overhead [51]. Figure 5.30 summarizes our experiments.

However, näıvely approaching the exponential space of interleavings in heavily non-

deterministic programs is not a productive use of verification resources. We now present

several heuristics implemented in DAMPI that can allow the user to focus coverage to

particular regions of interest, often exponentially reducing the exploration state space.

5.3.5 Search Bounding Heuristics Evaluation

Full coverage over the space of MPI nondeterminism is often infeasible, even if desir-

able. Consider an MPI program that issues N wildcard receives in sequence, each with

P potential matching senders. Covering this program’s full state space would require a

verifier to explore PN interleavings, which is impractical even for fairly small values (e.g.,

P = N = 1000). While these interleavings represent unique message matching orders,

most cover the same (equivalent) state space if the matching of one wildcard receive is

independent of other matches. Consider these common communication patterns:



81

250 500 750 1000
0

600

1200

1800

2400

3000

3600

4200

4800

5400

6000

ISP
DAMPI

Number of Interleavings

Ti
m

e 
in

 s
ec

s

Figure 5.30: Matrix multiplication: DAMPI vs. ISP

• A master/slave computation in which the master receives the computed work from

the slaves and stores it in a vector indexed by the slave’s rank;

• A series of computational phases in which processes use wildcard receives to ex-

change data and then synchronize.

Both patterns do not require that we explore the full state space. Clearly, the order of

posting the master’s receives does not affect the ending state of the program. Similarly,

while the order of message matching within a single phase of the second pattern might

lead to different code paths within a phase, the effect is usually limited to that particular

phase.

Recognizing such patterns is a challenge for a dynamic verifier such as DAMPI, which

has no knowledge of the source code. Further, complicated looping patterns often make



82

it difficult to establish whether successive wildcard receives are issued from within a loop.

Similarly, an MPI Allreduce or an MPI Barrier does not necessarily signal the end of

a computation phase. Thus, it is valuable to capitalize on the knowledge of users who

can specify regions on which to focus analysis. Such hints can significantly improve the

coverage of interesting interleavings by a tool such as DAMPI. We now discuss our two

complementary search bounding techniques, loop iteration abstraction and bounded mixing

search.

5.3.5.1 Loop Iteration Abstraction

Many programs have loops with a fixed computation pattern that a verifier can safely

ignore. By turning off interleaving exploration for nondeterministic matches occurring

within such loops, DAMPI can explore other nondeterministic matches more thoroughly.

To use this feature in DAMPI, the user must insert MPI Pcontrol calls at the begin-

ning and end of loops that should not be explored. Upon logging these MPI Pcontrol calls,

DAMPI pursues only the matches it discovers during SELF RUN, and avoids exploring

alternative matches. Despite its simplicity, loop iteration abstraction can substantially

reduce the iteration space that DAMPI must explore. In the future we will build static

analysis based instrumentation facilities to semi-automate this heuristic.

5.3.5.2 Bounded Mixing

Many search bounding techniques exist. Bounded model checking [2] unravels the

state space of a system to a finite depth. This heuristic suits hardware systems for which

reachability graphs are considerably smaller than in software.

Context bounding [45] is much more practical in that it does not bias the search

towards the beginning of state spaces. In effect, it runs a program under small preemption

quotas. More specifically, special schedulers allow preemption two or three times anywhere

in the execution. However, the scheduler can only employ a small fixed number of

preemptions, after which it can switch processes only when they block.

While preemption bounding is powerful for shared memory concurrent programs based

on threads, it is only marginally useful for message passing programs. In message passing,

simple preemption of MPI processes is highly unlikely to expose new bugs (as explained

earlier, one must take active control over their matchings). Also most preemptions of

MPI programs prove useless since context-switching across deterministic MPI calls does



83

not reduce the state space. We have invented bounded mixing, a new bounding technique

that is tailor-made to how MPI programs work.

The intuition behind bounded mixing can be explained as follows: we have observed

that each process of an MPI program goes through zones of computation. In each

zone, the process exchanges messages with other processes and then finishes the zone

with a collective operation (e.g., a reduction or barrier). Many such sequential zones

cascade along – all starting from MPI_Init and ending in MPI_Finalize. In many MPI

programs, these zones contain wildcard receives, and cascades of wildcard receives quickly

end up defining large (exponential) state spaces. Figure 5.31 depicts an abstraction of

this pattern. In this figure, A is a nondeterministic operation (e.g., a wildcard receive),

followed by a zone followed by a collective operation. B then starts another zone and the

pattern continues. If each zone contains nondeterministic operations, then the possible

interleavings is exponential in the number of zones (no interleaving explosion occurs if all

zones contain only deterministic operations).

We intuitively believe that zones that are far apart usually do not interact significantly.

We define the distance between two zones by the number of MPI operations between

them. The intuition behind this statement is that each zone receives messages, responds,

and moves along through a lossy operation (e.g., a reduction operation or a barrier). In

particular, conditional statements coming later are not dependent on the computational

results of zones occurring much earlier.

Based on these empirical observations above, bounded mixing limits the exploration of

later zones to e.g., representative paths arriving at the zone instead of exploring all paths

arriving at the zone. Thus, we explore the zones beginning at C only under the leftmost

path A,B,C. We do not explore the zones beginning at C under all four paths. This

example is actually bounded mixing with a mixing bound of k = 2 (the zones beginning

at C and E are allowed to “mix” their states, and so do the zones beginning at C and D).

We also allow the zones beginning at B and C to mix their states. Finally, we will allow

the zones beginning at A and B to mix their states.

Setting mixing bounds results in search complexity that grows only as the sum of

much smaller exponentials. Using our example program with PN possible interleavings

earlier, a k = 0 setting will result in P ∗N interleavings while a k = unbounded setting

will result in full exploration. Bounded mixing in DAMPI provides knobs that designers

can set for various regions of the program: for some zones, they can select high k values



84

Figure 5.31: A simple program flow to demonstrate bounded mixing

while for others, they can select low values, which supports a selectively focused search.

We now briefly explain how we implemented bounded mixing in DAMPI. Suppose the

search is at some clock s, and suppose s has several as yet unexplored potential matches

but all subsequent clocks of s have been explored.

Then, the standard algorithm will: (i) pursue the unexplored option at s, and (ii) re-

cursively explore all paths below that option. In bounded mixing search, we will: (i) pursue

the unexplored option at s, and (ii) recursively explore all paths below that option up to

depth k. Thus, if B’s right-hand side entry has not been explored, and if k = 2, then we

will (i) descend via the right-hand side path out of B, and (ii) go only two steps further

in all possible directions. After those k steps, we simply let the MPI runtime determine

wildcard receive matching.

To evaluate bounded mixing, we first show the effects of bounded mixing on our small

and simple application: matmul. Figure 5.32 shows the results of applying several different

values of k. As expected, bounded mixing greatly reduces the number of interleavings

that DAMPI explores. However, our heuristic has another subtle yet powerful advantage:

the number of interleavings increases in a linear fashion when k increases. Thus, users

can slowly increase k should they suspect that the reaching effect of a matching receive

is further than they initially assumed.

We also apply bounded mixing to the Asynchronous Dynamic Load Balancing (ADLB)

library [42]. As the name suggests, ADLB is a highly configurable library that can run

with a large number of processes. However, due to its highly dynamic nature, the degree



85

2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

1600

K = 0
K = 1
K = 2
No Bounds

Number of Processes

N
um

be
r o

f I
nt

er
le

av
in

gs

Figure 5.32: Matrix multiplication with bounded mixing applied

of nondeterminism of ADLB is usually far beyond that of a typical MPI program. In

fact, verifying ADLB for a dozen processes is already impractical, let alone for the scale

at which DAMPI targets. Figure 5.33 shows very encouraging results of verifying ADLB

with various values of k.

In summary, bounded mixing is a promising scheme to reduce the search space by

prioritized replaying the executions in which nondeterminism has bounded impact. As

we have shown, different values of the bounding factor k have great impact on the number

of interleavings explored. Each MPI application likely requires a different k to achieve

the required coverage, which we plan on exploring as our future work.

t 

r 
~ 

'V-

r 'V ........ 

: i • 

",'V 

: 

... ... 
'V ... 

---./ 
7 

,..'V 

: ! 



86

4 8 12 16 20 24 28 32
0

10000

20000

30000

40000

50000

60000

K = 0
K = 1
K = 2

Number of Processes

N
um

be
r o

f I
nt

er
le

av
in

gs

Figure 5.33: ADLB with bounded mixing applied



CHAPTER 6

RELATED WORK

Discovering bugs in parallel programs is a very challenging task. The gigantic code

size and large degree of complexity of most real-life parallel applications usually render

conventional debugging methods such as gdb [4] or printf impractical. Fortunately,

there has been an enormous amount of research effort spent on creating tools specialized

in debugging these kinds of applications, largely due to the increased availability and

popularity of large clusters. We provide a quick summary of these tools and their

functionalities. We group them into three major categories: MPI testing and debugging

tools, MPI verification tools, and deterministic replay tools. Note that several works

might fit into more than one category, but we will nonetheless attempt to categorize

them based on their most popular usages.

6.1 Debugging and Correctness Checking

This category includes all MPI debuggers and correctness checking tools. We further

split this category up into debuggers and correctness checking tools. Debuggers only

provide a debugging interface and do not offer any error checking capabilities while most

correctness checking tools do not allow the developers to interact with the MPI processes

while they are running.

6.1.1 Debugging

Tools like DDT [1] and Totalview [17, 27] are often regarded as the gdb for MPI

programs. In fact, DDT attaches gdb instances to running MPI processes to provide

debugging capabilities. These tools allow the users to step through MPI programs as

they would with a normal C/C++ program. The users are provided with a host of useful

debugging tools such as breakpoints insertion, procedures stepping, viewing the values

of a variable across multiple processes, and obtaining stack traces. However, like gdb,

they do not provide any correctness checking and only serve as debugging IDEs. As these



88

tools do not require the recompilation or relinking of the source code, they are usually

the only choices available if the user does not have access to the source.

6.1.2 Correctness Checking

MPI correctness checking tools are those that run the MPI programs and check for

runtime errors that occur during that run. This is usually accomplished by recompilation

and/or relinking the program. Since these tools are typically not aware of the alternative

outcomes due to MPI nondeterminism, their abilities to detect MPI errors heavily depend

on the errors that actually occur with a test harness. In other words, nondeterminism

induced bugs will still pose a challenge for these tools. One standard approach is to

run the program with the same test harness as many times as the computing resources

permit. Unfortunately, studies have shown this technique to be rather ineffective [73].

The above study also shows that random delay might help in the case of nondeterminism,

but coverage is not guaranteed, however.

To the best of our knowledge, these are currently the only MPI correctness tool

available:

• Umpire [68], developed at the Lawrence Livermore National Laboratory (LLNL)

by Jeffrey Vetter and Bronis de Supinski, is one of the first correctness checking

tools for MPI. Despite not being actively maintained, Umpire remains a useful

tool for many MPI programmers. Umpire does not require recompilation of the

MPI programs being checked, but it does require relinking the MPI programs

with its MPI profiling interface. At runtime, each MPI program launches several

threads that communicate with the Umpire manager thread about the processes’

MPI activities. The communication between the manager and the error checking

threads rely on MPI itself, which means Umpire requires the MPI runtime to

support MPI THREAD MULTIPLE. Umpire separates MPI error checks into local checks

and global checks in which local checks include unfinished communication requests,

unfreed communicators, uncommitted types, and bad arguments while global checks

include deadlocks and type mismatche. In the most widely available Umpire version,

deadlock checking is done through a simple dependency graph mechanism. A

new deadlock detection mechanism that is based on Wait-For-Graphs and provides

better scalability has been implemented as an experimental project for Umpire [32].

• MPI-CHECK [41] works only with MPI Fortran 90 programs. An experimental



89

C/C++ version exists but is no longer in active development. Unlike Umpire, MPI-

CHECK does not rely on the MPI profiling interface. Instead, MPI-CHECK in-

struments the source code of the program to replace MPI calls with MPI-CHECK’s

own versions. During the parsing of the source code, MPI-CHECK also checks the

program for usage errors (e.g., using a negative number for the destination field in

MPI Send). During execution, the MPI processes sends information of the execution

to a centralized manager through the use of TCP sockets. MPI-CHECK can detect

common errors such as deadlock, type mismatches between sends and receives, and

under-allocated message buffer).

• Marmot [35,36] is an MPI checker that offers similar functionalities to Umpire. The

checker uses the MPI profiling interface to intercept MPI calls and analyze them at

runtime. The error checking consists of local checks and global checks, similarly to

those of Umpire. Each processes handles the local checks such as resource leaks and

passes along the data to a debug server, which is a separate MPI process (Marmot

requires one extra process to run the debug server), for global error checking such as

deadlocks. In contrast with the previous tools, Marmot uses a simple timeout-based

deadlock detection scheme that has low overhead but can potentially produce false

alarms. Marmot has extensive integration capabilities with other GUI tools to help

the user visualize the checking results. Currently, Marmot has integrations with

the following tools: Cube [6], DDT, Microsoft Visual Studio [8], Eclipse [3], and

Vampir. In addition, Marmot can also detect a small number of OpenMP usage

errors.

• MPIDD [30] only offers deadlock detection capabilities. It uses a centralized ap-

proach in which a separate MPI process acts as a manager and communicates

with other processes through TCP socket calls and builds a dependency graph

based on the data that it receives from the processes. The tool uses a standard

Depth-First-Search cycle detection algorithm to detect deadlock during runtime.

• MPIRace-Check [48] is an MPI checker that focuses on message race detection for

MPI programs with nondeterministic receives. This is similar to DAMPI’s ability to

detect all possible outcomes of nondeterministic receives. However, unlike DAMPI,

MPIRace-check does not include any mechanism to replay the execution to cover

the detected races. MPIRace-check uses a version of eager vector clocks discussed

earlier in Section 3.2 as their central algorithm to detect message races. We have



90

shown earlier that this algorithm terminates the effect of nonblocking wildcard

receives too early and leads to omissions. MPIRace-check also does not have the

required scalability and robustness to handle large MPI programs as of this writing.

• The Intel Message Checker (IMC) [23] is an MPI checker that provides postmortem

analysis of the errors that it detected during program execution. IMC has three

main components: the Trace Collector, which intercepts MPI calls using the stan-

dard MPI profiling interface to collect information such as input parameters and

message buffer checksum; the Analyzer Engine, which reads the trace files from

the Trace Collector and analyzes them for MPI errors; and finally the Visualizer,

which interprets the output from the Analyzer and allows the user to navigate to the

errors. IMC detects common MPI errors such as deadlock, unsafe buffer access (i.e.,

accessing the buffer of a pending communication request), and type mismatches.

The major drawback of this approach is that if a critical MPI error occurs and the

program crashes, the behavior of the Trace Collector is undefined, which means the

user might not get the trace files.

• The Intel Trace Analyzer and Collector (TAC) [47] is built on top of IMC and

designed to work with Intel MPI. Unlike IMC, TAC does not rely on postmortem

analysis. Similarly to Marmot and Umpire, TAC distinguishes between local checks

and global checks. The local checks return not only the line number in the source

code but also provide a full stack trace. In contrast with how most tools handle

global checks, TAC handles global checks in a distributed fashion and does not

rely on a centralized approach. Instead, each process creates different TCP-based

communication channels with all other processes and communicates with them

through a predefined API. This mechanism allows TAC to detect deadlock as well

as type mismatches. However, this independent communication layer potentially

limits the scalability of the tool.

6.2 Verification Tools

To the best of our knowledge, ISP and DAMPI are the only two tools that offer

verification coverage for MPI programs over the space of nondeterminism. In other words,

these are the only tools that explore the possible executions of MPI applications to detect

MPI errors. Both tools also offer heuristics to limit the search space.

MPI-SPIN [56, 57] is a model checker based on SPIN that exhaustively explores all



91

interleavings of a nondeterministic MPI programs and verifies it for common MPI errors.

However, being a traditional model checker, MPI-SPIN operates on a user-built model

of the MPI program instead of the application itself. Thus, it severely restricts the

applicability of the tools to small MPI programs. The vast size of practical MPI programs

and their complexity make the task of manual model building impractical.

Outside of the MPI application domain, many verification tools exist for multithreaded

program such as Inspect [75,76] and CHESS [7]. Inspect systematically explores different

interleavings of a C multithreaded program and verifies the program for concurrency bugs

such as data races and deadlocks. Inspect relies on dynamic partial order reduction as

well as symmetry to reduce the number of interleavings. CHESS is another multithreaded

verifier that works for .NET code. Similarly to Inspect, CHESS uses a scheduler-based

approach to explore different interleavings. However, the CHESS scheduler employs a

large number of search strategies aiming at finding bugs within the least number of

executions. One such strategy is the context bounded search approach that bounds the

number of preemptions that the scheduler allows. Our bounded mixing search strategy

is inspired by this scheme. However, in the multithreaded space, this approach turns out

to be very powerful since most of the concurrency bugs can be caught with a very low

number of preemptions.

6.3 Deterministic Replay

The difficulty of debugging programs under the presence of nondeterminism has trig-

gered many research efforts in deterministic replay, not just for multithreaded programs

but for MPI programs as well. Deterministic replay, when used together with a parallel

debugger, facilitates the process of bug tracking. In addition to debugging, determin-

istic replay has many other usages including fault tolerance, performance analysis, and

intrusion detection.

For MPI applications, deterministic replay is a straightforward process where the MPI

process writes the information of the current run, including outcomes of nondeterministic

receives, to a trace file and a replay engine uses that to replay the program. In practice,

the amount of logged data varies between the different tools and is highly dependent on

their approaches. Data-replay tools [19,21] do not require all processes to participate in

the replay since the trace files contain all data necessary to replay. This approach is useful

in situations in which computing resources are expensive, which makes the requirement



92

of having all processes available for replaying infeasible. The major drawback of this

approach is that the trace data could be very large, especially for programs that exchange

huge amounts of data. Order-replay tools [37,38] address the problem of large trace files

by logging only the control information related to each message (e.g., for an MPI Send,

it would log the destination process, the message checksum, the number of elements, the

tag, the communicator). However, all processes must participate in the replaying phase.

MPIWiz [74] offers a compromise between order-replay and data-replay by grouping MPI

processes into subgroups and only recording the data exchange between the groups.

Deterministic replay becomes a lot more complicated for multithreaded programs

because it requires tracking read and write accesses to all shared variables as well as

enforcing the same order of accesses by the threads during replays. Since tracking every

access to shared data is expensive, many approaches rely on hardware modifications. The

Rerun [33] tool, for example, requires several hardware counters to record reads, writes,

and Lamport timestamps. The Lamport timestamps allow Rerun to correctly enforce the

thread access order during replay.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The MPI standard offers a rich set of features such as nonblocking primitives and

nondeterministic constructs that help developers write better high performance applica-

tions. These features, however, complicate the task of large-scale debugging, especially

over the space of nondeterminism, which requires causality tracking. Traditional causality

tracking algorithms, such as Lamport clocks and vector clocks, are usually not sufficient

to handle such complex semantics. In this dissertation, we investigate the insufficiency

of the Lamport happens-before order and propose the distributed MPI matches-before

order which provides the basis for new distributed algorithms that can correctly track

causality in MPI executions. To this end, we provide two logical clock protocols that can

realize and maintain matches-before order among MPI events in an MPI execution. The

first protocol is the Lazy Lamport Clocks Protocol (LLCP), which provides very good

scalability with a small possibility of having omissions. The second protocol is the Lazy

Vector Clocks Protocol (LVCP), which provides full coverage guarantee at the cost of a

scalability tradeoff. In practice, we show through our experiments that LLCP provides

the same coverage as LVCP.

Both protocols are implemented in our tool Distributed Analyzer for MPI (DAMPI).

DAMPI implements many correctness checking modules for MPI programs and is driven

by either LLCP or LVCP to provide correctness checking over the space of nondetermin-

ism. To reduce the verification time for large programs further, we implement several

heuristics that allow the user to tune the coverage to regions of interest. We evaluate

DAMPI against ISP, another dynamic verifier for MPI that implements a centralized

scheme of MPI matches-before, using large MPI programs such as the SpecMPI2007

benchmarks and the NAS PB benchmarks. The evaluation shows that DAMPI provides

scalable and modular verification for large scale MPI programs.



94

7.1 Future Research Directions

7.1.1 Static Analysis Support

While search bounding heuristics are useful in reducing the number of interleavings

explored by dynamic schedulers, they are still restricted by the information obtained

during runtime. For example, given a trace from process P0 showing five successive

wildcard receives, it is difficult to distinguish between a wildcard receive invoked five

times in five different procedures and a wildcard receive being invoked five times within

a loop. Our loop abstraction iteration heuristics allow the user to exclude certain loops

from the verification, but we rely on the assumption that the user has enough knowledge

of the code to accomplish this task. Static analysis might automate this process and

in some cases, might even detect several common errors such as buffer reuse or type

mismatches before dynamic analysis takes place.

7.1.2 Hybrid Programming Support

Supercomputers with multicore nodes are becoming increasingly popular since we are

likely at the limit of our technological capabilities to increase the computing power of any

one processor. In fact, none of the big CPU vendors have any single core processor on

their roadmaps for the foreseeable future. While recent MPI implementations do exploit

multicore chips by using shared memory as their communication channel for processes

mapped to different cores on the same processor, the performance is still nowhere close to

multithreading. In order to exploit the computing power of multicore chips, programmers

must rely on threads, whether explicitly through pthreads or OpenMP, or implicitly

through libraries such as TBB. Threading and message passing create debugging chal-

lenges that are even more difficult than the scenarios that we have described. In addition

to MPI-related bugs, we now also must consider data races caused by threads and the

possibilities of threads making MPI calls. Even if we assume threads to not make

MPI calls and focus our effort only on MPI related bugs, the challenge of ensuring the

same order of threads interaction remains so that we can get the correct replay up to

the point where we want to enforce the alternative choice of an MPI nondeterministic

event, which likely would require the cooperation of both an MPI scheduler and a thread

scheduler. With the promising future of hybrid programming and the diversity of hybrid

programming models, research into extending DAMPI to handle hybrid programs will be

a valuable contribution.



REFERENCES

[1] Allinea DDT. http://www.allinea.com/products/ddt/.

[2] Bounded Model Checking for ANSI-C. http://www.cprover.org/cbmc/.

[3] Eclipse. http://www.eclipse.org/.

[4] The GNU Debugger. http://www.gnu.org/software/gdb/.

[5] ISP Test webpage. http://www.cs.utah.edu/formal_verification/ISP_Tests/.

[6] Kojack CUBE. http://icl.cs.utk.edu/kojak/cube.

[7] Microsoft CHESS. http://research.microsoft.com/en-us/projects/chess/.

[8] Microsoft Visual Studio. http://www.microsoft.com/visualstudio/en-us/.

[9] MPI-2 over InfiniBand. http://mvapich.cse.ohio-state.edu/.

[10] The NAS Parallel Benchmarks. http://www.nas.nasa.gov/Resources/Software/
npb.html.

[11] OpenMPI: Open Source High Performance Computing. http://www.openmpi.org/.

[12] ParMETIS. http://glaros.dtc.umn.edu/gkhome/views/metis.

[13] The Sequoia Benchmarks. https://asc.llnl.gov/sequoia/benchmarks.

[14] The SPECMPI2007 Benchmarks. http://www.spec.org/mpi.

[15] The ASCI Purple Benchmark. https://asc.llnl.gov/computing_resources/

purple/archive/benchmarks/.

[16] Top500 Supercomputing Sites. http://www.top500.org.

[17] TotalView Software. http://www.roguewave.com/products/totalview.

[18] Barnes, B. J., Rountree, B., Lowenthal, D. K., Reeves, J., de Supinski,
B., and Schulz, M. A regression-based approach to scalability prediction. In
Proceedings of the 22nd Annual International Conference on Supercomputing (New
York, NY, USA, 2008), ICS ’08, ACM, pp. 368–377.

[19] Bouteiller, A., Bosilca, G., and Dongarra, J. Retrospect: Deterministic
replay of MPI applications for interactive distributed debugging. In Recent Advances
in Parallel Virtual Machine and Message Passing Interface, F. Cappello, T. Herault,
and J. Dongarra, Eds., vol. 4757 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2007, pp. 297–306.



96

[20] Charron-Bost, B. Concerning the size of logical clocks in distributed systems.
Information Processing Letters 39 (July 1991), 11–16.

[21] Clémençon, C., Fritscher, J., Meehan, M. J., and Rühl, R. An imple-
mentation of race detection and deterministic replay with MPI. In Proceedings of
the First International Euro-Par Conference on Parallel Processing (London, UK,
1995), Euro-Par ’95, Springer-Verlag, pp. 155–166.

[22] Coulouris, G., Dollimore, J., and Kindberg, T. Distributed Systems—
Concepts and Design, 2nd Ed. Addison-Wesley Publishers Ltd., 1994, ch. 17,
pp. 517–544.

[23] DeSouza, J., Kuhn, B., de Supinski, B. R., Samofalov, V., Zheltov, S.,
and Bratanov, S. Automated, scalable debugging of MPI programs with Intel R©
message checker. In International Workshop on Software Engineering for High
Performance Computing Applications (SE-HPCS) (2005), pp. 78–82.

[24] Fidge, C. J. Timestamps in message-passing systems that preserve the partial
ordering. In Proceedings of the 11th Australian Computer Science Conference (St
Lucia, Australia, 1988), ACSC ’88, University of Queensland, pp. 56–66.

[25] Fuller, S. H., and Millett, L. I. The Future of Computing Performance: Game
Over or Next Level? The National Academy Press, Washington, DC, USA, 2011.

[26] Godefroid, P., Hanmer, B., and Jagadeesan, L. Systematic software testing
using VeriSoft: An analysis of the 4ess heart-beat monitor. Bell Labs Technical
Journal 3, 2 (April-June 1998).

[27] Gottbrath, C. Eliminating parallel application memory bugs with TotalView. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (New York, NY,
USA, 2006), SC ’06, ACM.

[28] Gropp, W., Lusk, E., Doss, N., and Skjellum, A. A high-performance,
portable implementation of the MPI message passing interface standard. Parallel
Computing 22, 6 (Sept. 1996), 789–828.

[29] Gropp, W. D., and Lusk, E. User’s Guide for MPICH, a Portable Implemen-
tation of MPI. Mathematics and Computer Science Division, Argonne National
Laboratory, 1996. ANL-96/6.

[30] Haque, W. Concurrent deadlock detection in parallel programs. International
Journal in Computer Applications 28 (January 2006), 19–25.

[31] Hélary, J.-M., Raynal, M., Melideo, G., and Baldoni, R. Efficient causality-
tracking timestamping. IEEE Transactions on Knowledge and Data Engineering 15
(September 2003), 1239–1250.

[32] Hilbrich, T., de Supinski, B. R., Schulz, M., and Müller, M. S. A graph
based approach for MPI deadlock detection. In Proceedings of the 23rd International
Conference on Supercomputing (New York, NY, USA, 2009), ICS ’09, ACM, pp. 296–
305.



97

[33] Hower, D. R., and Hill, M. D. Rerun: Exploiting episodes for lightweight
memory race recording. SIGARCH Computer Architecture News 36 (June 2008),
265–276.

[34] Humphrey, A., Derrick, C., Gopalakrishnan, G., and Tibbitts, B. GEM:
Graphical explorer of MPI programs. In 39th International Conference on Parallel
Processing Workshops (September 2010), ICPPW ’10, pp. 161 –168.

[35] Krammer, B., Bidmon, K., Müller, M., and Resch, M. Marmot: An MPI
analysis and checking tool. In Parallel Computing - Software Technology, Algorithms,
Architectures and Applications, F. P. G.R. Joubert, W.E. Nagel and W. Walter, Eds.,
vol. 13 of Advances in Parallel Computing. North-Holland, 2004, pp. 493 – 500.

[36] Krammer, B., and Resch, M. M. Correctness checking of MPI one-sided
communication using Marmot. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface (EuroPVM/MPI), LNCS 4192 (2006), pp. 105–114.

[37] Kranzlmüller, D., Löberbauer, M., Maurer, M., Schaubschläger, C.,
and Volkert, J. Automatic testing of nondeterministic parallel programs. In
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications - Volume 2 (Las Vegas, NV, USA, 2002), PDPTA ’02,
CSREA Press, pp. 538–544.

[38] Kranzlmüller, D., Schaubschläger, C., and Volkert, J. An integrated
Record&Replay mechanism for nondeterministic message passing programs. In Pro-
ceedings of the 8th European PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface (London, UK, 2001),
Springer-Verlag, pp. 192–200.

[39] Kranzlmüller, D., and Volkert, J. NOPE: A nondeterministic program eval-
uator. In Proceedings of the 4th International ACPC Conference Including Special
Tracks on Parallel Numerics and Parallel Computing in Image Processing, Video
Processing, and Multimedia: Parallel Computation (London, UK, 1999), ParNum
’99, Springer-Verlag, pp. 490–499.

[40] Lamport, L. Time, clocks and the ordering of events in distributed systems.
Communications of the ACM 21, 7 (July 1978), 558–565.

[41] Luecke, G., Chen, H., Coyle, J., Hoekstra, J., Kraeva, M., and Zou,
Y. MPI-CHECK: A tool for checking Fortran 90 MPI programs. Concurrency and
Computation: Practice and Experience 15 (2003), 93–100.

[42] Lusk, R., Pieper, S., Butler, R., and Chan, A. Asynchronous dynamic load
balancing. http://www.cs.mtsu.edu/~rbutler/adlb/.

[43] Mattern, F. Virtual time and global states of distributed systems. In Proceedings
Workshop on Parallel and Distributed Algorithms (North-Holland / Elsevier, 1989),
pp. 215–226.

[44] Meldal, S., Sankar, S., and Vera, J. Exploiting locality in maintaining poten-
tial causality. In Proceedings of the 10th Annual ACM Symposium on Principles of
Distributed Computing (New York, NY, USA, 1991), PODC ’91, ACM, pp. 231–239.



98

[45] Musuvathi, M., and Qadeer, S. Iterative context bounding for systematic testing
of multithreaded programs. ACM SIGPLAN Notices 42, 6 (2007), 446–455.

[46] Musuvathi, M., and Qadeer, S. Fair stateless model checking. In PLDI ’08:
Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA, 2008), ACM, pp. 362–371.

[47] Ohly, P., and Krotz-vogel, W. Automated MPI correctness checking What if
there was a magic option? In Proceedings of the 8th LCI International Conference on
High-Performance Clustered Computing (South Lake Tahoe, CA, USA, May 2007),
LCI’07, pp. 19–25.

[48] Park, M.-Y., Shim, S., Jun, Y.-K., and Park, H.-R. MPIRace-Check:
Detection of message races inMPIprograms. In Advances in Grid and Pervasive
Computing, vol. 4459 of Lecture Notes in Computer Science. 2007, pp. 322–333.

[49] Parker, D. S., Popek, G. J., Rudisin, G., Stoughton, A., Walker, B. J.,
Walton, E., Chow, J. M., Edwards, D., Kiser, S., and Kline, C. Detection
of mutual inconsistency in distributed systems. IEEE Transactions on Software
Engineering 9 (May 1983), 240–247.

[50] Schulz, M. Extracting critical path graphs from MPI applications. In Cluster
Computing, 2005. IEEE International (Boston, MA, USA, September 2005), pp. 1
–10.

[51] Schulz, M., Bronevetsky, G., and de Supinski, B. R. On the performance
of transparent MPI piggyback messages. In Proceedings of the 15th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface (Berlin, Heidelberg, 2008), Springer-Verlag, pp. 194–
201.

[52] Schulz, M., Bronevetsky, G., Fernandes, R., Marques, D., Pingali, K.,
and Stodghill, P. Implementation and evaluation of a scalable application-
level checkpoint-recovery scheme forMPIprograms. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing (Washington, DC, USA, 2004), SC ’04,
IEEE Computer Society, pp. 38–.

[53] Schulz, M., and de Supinski, B. R. PnMPI tools: A whole lot greater than
the sum of their parts. In Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing (New York, NY, USA, 2007), SC ’07, ACM, pp. 30:1–30:10.

[54] Shende, S., Malony, A. D., Morris, A., and Wolf, F. Performance profiling
overhead compensation for MPI programs. In PVM/MPI (2005), B. D. Martino,
D. Kranzlmüller, and J. Dongarra, Eds., vol. 3666 of Lecture Notes in Computer
Science, Springer, pp. 359–367.

[55] Shende, S. S., and Malony, A. D. The Tau parallel performance system.
International Journal on High Performance Computer Applications 20 (May 2006),
287–311.

[56] Siegel, S. F. MPI-Spin web page. http://vsl.cis.udel.edu/mpi-spin, 2008.



99

[57] Siegel, S. F., and Avrunin, G. Verification of MPI-based software for scientific
computation. In International SPIN Workshop on Model Checking Software (Apr.
2004), pp. 286–303.

[58] Siegel, S. F., Mironova, A., Avrunin, G. S., and Clarke, L. A. Using
model checking with symbolic execution to verify parallel numerical programs. In
Proceedings of the ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2006, Portland, Maine, USA, July 17–20, 2006 (2006), L. L.
Pollock and M. Pezzé, Eds., ACM, pp. 157–168.

[59] Siegel, S. F., and Siegel, A. R. MADRE: The Memory-Aware Data Redis-
tribution Engine. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 15th European PVM/MPI User’s Group Meeting, Proceedings
(2008), A. Lastovetsky, T. Kechadi, and J. Dongarra, Eds., vol. 5205 of LNCS,
Springer.

[60] Singhal, M., and Kshemkalyani, A. An efficient implementation of vector
clocks. Information Processing Letters 43, 1 (1992), 47 – 52.

[61] Sun, Y., Lin, X., Ling, Y., and Li, K. Broadcast on clusters of SMPs with
optimal concurrency. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications - Volume 4 (Las Vegas, NV,
USA, 2002), PDPTA ’02, CSREA Press, pp. 1558–1564.

[62] Torres-Rojas, F. J., and Ahamad, M. Plausible clocks: Constant size logical
clocks for distributed systems. In Proceedings of the 10th International Workshop
on Distributed Algorithms (London, UK, 1996), Springer-Verlag, pp. 71–88.

[63] Vakkalanka, S. Efficient dynamic verification algorithms for MPI applications.
PhD thesis, University of Utah, Salt Lake City, Ut, USA”, 2010.

[64] Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R. M., Thakur,
R., and Gropp, W. Implementing efficient dynamic formal verification methods
for MPI programs. In EuroPVM/MPI (2008).

[65] Vakkalanka, S., Gopalakrishnan, G., and Kirby, R. M. Dynamic verifica-
tion of mpi programs with reductions in presence of split operations and relaxed
orderings. In Proceedings of the 20th International Conference on Computer Aided
Verification (Berlin, Heidelberg, 2008), CAV ’08, Springer-Verlag, pp. 66–79.

[66] Vakkalanka, S., Vo, A., Gopalakrishnan, G., and Kirby, R. M. Reduced
execution semantics of MPI: From theory to practice. In International Symposium
on Formal Methods (FM) (2009), pp. 724–740.

[67] Vakkalanka, S., Vo, A., Gopalakrishnan, G., and Kirby, R. M. Precise
dynamic analysis for slack elasticity: Adding buffering without adding bugs. In
Proceedings of the 17th European MPI Users’ Group Meeting Conference on Recent
advances in the Message Passing Interface (Berlin, Heidelberg, 2010), EuroMPI’10,
Springer-Verlag, pp. 152–159.

[68] Vetter, J. S., and de Supinski, B. R. Dynamic software testing of MPI
applications with Umpire. In Proceedings of the 2000 ACM/IEEE Conference on



100

Supercomputing (CDROM) (Washington, DC, USA, 2000), Supercomputing ’00,
IEEE Computer Society.

[69] Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B. R. d.,
Schulz, M., and Bronevetsky, G. A scalable and distributed dynamic formal
verifier for MPI programs. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis
(Washington, DC, USA, 2010), SC ’10, IEEE Computer Society, pp. 1–10.

[70] Vo, A., and Gopalakrishnan, G. Scalable verification of MPI programs. In
24th IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2019, Atlanta, Georgia, USA, 19-23 April 2010 - Workshop Proceedings (2010),
IEEE, pp. 1–4.

[71] Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R. M.,
and Thakur, R. Formal verification of practical MPI programs. In Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (New York, NY, USA, 2009), PPoPP ’09, ACM, pp. 261–270.

[72] Vo, A., Vakkalanka, S. S., Williams, J., Gopalakrishnan, G., Kirby,
R. M., and Thakur, R. Sound and efficient dynamic verification of MPI programs
with probe non-determinism. In EuroPVM/MPI (2009), pp. 271–281.

[73] Vuduc, R., Schulz, M., Quinlan, D., de Supinski, B., and Sornsen, A.
Improving distributed memory applications testing by message perturbation. In
Proceedings of the 2006 workshop on Parallel and distributed systems: testing and
debugging (New York, NY, USA, 2006), PADTAD ’06, ACM, pp. 27–36.

[74] Xue, R., Liu, X., Wu, M., Guo, Z., Chen, W., Zheng, W., Zhang, Z., and
Voelker, G. MPIWiz: Subgroup reproducible replay of MPI applications. In
Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (New York, NY, USA, 2009), PPoPP ’09, ACM, pp. 251–260.

[75] Yang, Y., Chen, X., Gopalakrishnan, G., and Kirby, R. M. Distributed
dynamic partial order reduction based verification of threaded software. In Proceed-
ings of the 14th International SPIN Conference on Model Checking Software (Berlin,
Heidelberg, 2007), Springer-Verlag, pp. 58–75.

[76] Yang, Y., Chen, X., Gopalakrishnan, G., and Wang, C. Automatic discovery
of transition symmetry in multithreaded programs using dynamic analysis. In
Proceedings of the 16th International SPIN Workshop on Model Checking Software
(Berlin, Heidelberg, 2009), Springer-Verlag, pp. 279–295.


