52,608 research outputs found

    Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution

    Get PDF
    Cloud controllers aim at responding to application demands by automatically scaling the compute resources at runtime to meet performance guarantees and minimize resource costs. Existing cloud controllers often resort to scaling strategies that are codified as a set of adaptation rules. However, for a cloud provider, applications running on top of the cloud infrastructure are more or less black-boxes, making it difficult at design time to define optimal or pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions often is delegated to the cloud application. Yet, in most cases, application developers in turn have limited knowledge of the cloud infrastructure. In this paper, we propose learning adaptation rules during runtime. To this end, we introduce FQL4KE, a self-learning fuzzy cloud controller. In particular, FQL4KE learns and modifies fuzzy rules at runtime. The benefit is that for designing cloud controllers, we do not have to rely solely on precise design-time knowledge, which may be difficult to acquire. FQL4KE empowers users to specify cloud controllers by simply adjusting weights representing priorities in system goals instead of specifying complex adaptation rules. The applicability of FQL4KE has been experimentally assessed as part of the cloud application framework ElasticBench. The experimental results indicate that FQL4KE outperforms our previously developed fuzzy controller without learning mechanisms and the native Azure auto-scaling

    mRUBiS: An Exemplar for Model-Based Architectural Self-Healing and Self-Optimization

    Full text link
    Self-adaptive software systems are often structured into an adaptation engine that manages an adaptable software by operating on a runtime model that represents the architecture of the software (model-based architectural self-adaptation). Despite the popularity of such approaches, existing exemplars provide application programming interfaces but no runtime model to develop adaptation engines. Consequently, there does not exist any exemplar that supports developing, evaluating, and comparing model-based self-adaptation off the shelf. Therefore, we present mRUBiS, an extensible exemplar for model-based architectural self-healing and self-optimization. mRUBiS simulates the adaptable software and therefore provides and maintains an architectural runtime model of the software, which can be directly used by adaptation engines to realize and perform self-adaptation. Particularly, mRUBiS supports injecting issues into the model, which should be handled by self-adaptation, and validating the model to assess the self-adaptation. Finally, mRUBiS allows developers to explore variants of adaptation engines (e.g., event-driven self-adaptation) and to evaluate the effectiveness, efficiency, and scalability of the engines

    MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation

    Full text link
    An architectural approach to self-adaptive systems involves runtime change of system configuration (i.e., the system's components, their bindings and operational parameters) and behaviour update (i.e., component orchestration). Thus, dynamic reconfiguration and discrete event control theory are at the heart of architectural adaptation. Although controlling configuration and behaviour at runtime has been discussed and applied to architectural adaptation, architectures for self-adaptive systems often compound these two aspects reducing the potential for adaptability. In this paper we propose a reference architecture that allows for coordinated yet transparent and independent adaptation of system configuration and behaviour

    Taming Uncertainty in the Assurance Process of Self-Adaptive Systems: a Goal-Oriented Approach

    Full text link
    Goals are first-class entities in a self-adaptive system (SAS) as they guide the self-adaptation. A SAS often operates in dynamic and partially unknown environments, which cause uncertainty that the SAS has to address to achieve its goals. Moreover, besides the environment, other classes of uncertainty have been identified. However, these various classes and their sources are not systematically addressed by current approaches throughout the life cycle of the SAS. In general, uncertainty typically makes the assurance provision of SAS goals exclusively at design time not viable. This calls for an assurance process that spans the whole life cycle of the SAS. In this work, we propose a goal-oriented assurance process that supports taming different sources (within different classes) of uncertainty from defining the goals at design time to performing self-adaptation at runtime. Based on a goal model augmented with uncertainty annotations, we automatically generate parametric symbolic formulae with parameterized uncertainties at design time using symbolic model checking. These formulae and the goal model guide the synthesis of adaptation policies by engineers. At runtime, the generated formulae are evaluated to resolve the uncertainty and to steer the self-adaptation using the policies. In this paper, we focus on reliability and cost properties, for which we evaluate our approach on the Body Sensor Network (BSN) implemented in OpenDaVINCI. The results of the validation are promising and show that our approach is able to systematically tame multiple classes of uncertainty, and that it is effective and efficient in providing assurances for the goals of self-adaptive systems

    AIOCJ: A Choreographic Framework for Safe Adaptive Distributed Applications

    Get PDF
    We present AIOCJ, a framework for programming distributed adaptive applications. Applications are programmed using AIOC, a choreographic language suited for expressing patterns of interaction from a global point of view. AIOC allows the programmer to specify which parts of the application can be adapted. Adaptation takes place at runtime by means of rules, which can change during the execution to tackle possibly unforeseen adaptation needs. AIOCJ relies on a solid theory that ensures applications to be deadlock-free by construction also after adaptation. We describe the architecture of AIOCJ, the design of the AIOC language, and an empirical validation of the framework.Comment: Technical Repor

    Session Types with Runtime Adaptation: Overview and Examples

    Full text link
    In recent work, we have developed a session types discipline for a calculus that features the usual constructs for session establishment and communication, but also two novel constructs that enable communicating processes to be stopped, duplicated, or discarded at runtime. The aim is to understand whether known techniques for the static analysis of structured communications scale up to the challenging context of context-aware, adaptable distributed systems, in which disciplined interaction and runtime adaptation are intertwined concerns. In this short note, we summarize the main features of our session-typed framework with runtime adaptation, and recall its basic correctness properties. We illustrate our framework by means of examples. In particular, we present a session representation of supervision trees, a mechanism for enforcing fault-tolerant applications in the Erlang language.Comment: In Proceedings PLACES 2013, arXiv:1312.221

    Unifying Runtime Adaptation and Design Evolution

    Get PDF
    International audienceThe increasing need for continuously available software systems has raised two key-issues: self-adaptation and design evolution. The former one requires software systems to monitor their execution platform and automatically adapt their configuration and/or architecture to adjust their quality of service (optimization, fault-handling). The later one requires new design decisions to be reflected on the fly on the running system to ensure the needed high availability (new requirements, corrective and preventive maintenance). However, design evolution and selfadaptation are not independent and reflecting a design evolution on a running self-adaptative system is not always safe. We propose to unify run-time adaptation and run-time evolution by monitoring both the run-time platform and the design models. Thus, it becomes possible to correlate those heterogeneous events and to use pattern matching on events to elaborate a pertinent decision for run-time adaptation. A flood prediction system deployed along the Ribble river (Yorkshire, England) is used to illustrate how to unify design evolution and run-time adaptation and to safely perform runtime evolution on adaptive systems
    corecore