-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Ghent University Academic Bibliography

Framework Managing the Automated Construction and
Runtime Adaptation of Service Mashups

Anna Hristoskova, Bruno Volckaert, and Filip De Turck

Department of Information Technology, Ghent University - IBBT,
Gaston Crommenlaan 8 bus 201, B-9050 Ghent, Belgium
{Anna. Hri st oskova, Bruno. Vol ckaert,
Filip. DeTurck}@ nt ec. ugent. be
http://ww.ibbt. be/

Abstract. With an increased deployment of new software services, reusing ex-
isting ones as building blocks to create new service mashups offersilftgxip

the developer and accelerates the design process. In this way basiaessble

to create value at reduced development time and cost.

In order to allow for the automation of this emerging engineering methoglolog
the paper presents a framework for the construction of new applicatibmsut

the intervention of the ICT department. This framework offers the nieedpport
through the use of planning algorithms automatically combining semantically
enriched services into new mashups. The developed algorithms areizggotim
with runtime adaptation to changing user-context taking fully into account the
provided quality of service parameters of the available building blocks.

The enrichment of the available business services with semanticsniegsand
at-runtime composition are evaluated by means of a framework provédingn-
agement interface for an e-shop application.

1 Introduction

Instead of building self-contained silos, businesseskodkavn their applications in
independent components offering a scoped functionalityguspen coding and com-
munication standards. The creation of catalogues of réaisaimponents means agile
construction of new applications and faster adaptatiohé@hanging business environ-
ment. These service mashups combine functionality andeodfrtom existing sources,
creating greater value than the sum of the individual padiing components. Cur-
rently, Web services are the most adopted technologiesoftstructing mashups. De-
signed to support interoperable machine-to-machineant&m over a network, they
are capable of being accessed via standard protocols siBBAR over HTTP.
Service-Oriented Architectures [1] offer the advantageuiifling component-based
systems using Web services. In a dynamic environment wherddsired functional-
ity cannot always be predicted, all kinds of custom made amitipns can be built
from scratch meeting the users’ requests without the neembfdinuous interaction be-
tween users and developers. A computer-aided automatroagipis possible through
the adoption of ontologies and the Semantic Web [2] for théckment of services

https://core.ac.uk/display/55826197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

with machine-processable semantics. Specifications ssIW_-S [3] provide a se-
mantic description for Web services definimgputs,outputs,preconditions andffects
(IOPEs), and nonfunctional properties. Thanks to theseriii®ns a computer system
would be able to automatically combine services togetheciing a more sophisti-
cated task provided for the implementation of reasoningraatthing algorithms.

The proposed framework in this paper offers an environmarttie automatic con-
struction and execution of service mashups departing fraitedole functionality found
on the Web and within enterprises. It disposes of a userfagerfor the management
of semantically annotated services and the definition afsusequests (e.g. application
manager, end-user). Planning algorithms are designedhéocdnstruction of service
mashups solving these requests using the available resoiNovelty is the framework
enhancement with at-runtime adaptability anticipatingrafes (e.g. availability of new
services, resource and service failures) and resolvinigidegoints in the composition
through the use of control constructs and user-defined éssilogic rules.

The remainder of the paper presents in Section 2 the artiniéeaf the mashup cre-
ation and execution framework whose components are defail®ection 3. Following
is an evaluation of an e-shop management application iriddedt Section 5 gives a
discussion of the current research in this field. Finallg,rtrain conclusions are stressed
in Section 6 and new possibilities for enhancing the franrkvaoe explored.

2 Framework Architecture and Process Flow

Figure 1 presents the mashup creation and execution arthitedetailed in [4]. The
Configuration Frontend provides the application manager with a user interfacefer t
definition of requests (goals and business logic rules) hadianagement of the avail-
able services and their quality attributes. All requestshamdled by th€oordinator
which is based on a Microkernel pattern. It manages the cerepository, the gener-
ation of goals from users’ requests, the necessary confignsabefore processing of
the requests, and the communication of the mashup createxecution state back
to the Frontend.

The mashup composition and execution process is presentédure 2. Starting
from a semantic definition of a user-defined goaeavice mashujs constructed from
the available services by tiorkflow Reasoner. The inner planning algorithms and
semantic matching techniques of this module will be furthegailed in Section 3. Next

| Configuration Frontend |
T

Backed | Lo

Request Portal @ |(— —~| Request Scheduler $] - =< % - —)| Service Manager $] |

v T _———————= 7 Coordinator
| Workflow Reasoner] L Sl
1 2]

T
l
1
|
| Service Mapper $] |»— -1 Execution Environment

Execution Engine £] r T

Fig. 1. Main building blocks of the mashup creation and execution framework.

Semantic

goal
Business ¥
:io?'c Workflow
Fleg Reasoner

E ti - composition of
Request Portal xecution semantic types
Environment

- management of |« £ ¥
a single request =CEEEDE Service Mapper
mashup state LBl
- mapping to
concrete service
instances
¥
Execution
Engine
- execution of
service instances

1]
Mashup
execution

Fig. 2. Mashup creation, execution and runtime adaptation process for a tsguest.

the Service Mapper converts the constructed mashup into an executable prbgess
selecting the specifiservice instance®r each building block of the mashup [5] sat-
isfying the predefined quality of service constraints arglir@ments (execution time,
cost) and defining the necessary bindings between them. oegs is executed by
the Execution Engine handling the invocation workflow of the service instances by
forwarding the results to the right components. Bxecution Environment acts as a
storage for users’ requests, business logic rules (desérdce instances), inputs, re-
sults, execution state of the service mashup. The Reasndéfapper utilize this data
(e.g. intermediary results) to optimize the reasoning aagdping process of the service
mashup at design and runtime. The reasoning process iedivido two steps. First
through backward chaining a generic composition of sesviseconstructed specif-
ically resolving user-defined goals. A forward chaining qadure further tunes this
composition utilizing the stored data in the Environment.

5] htp/locainest8084rontencfrontendappletsp

Submit changes

eshop/Delivery.owsDelverySenice =
Start execution

Repeat service mapping

< - § i Stage: Service Mapping Graph

Fig. 3. Configuration Frontend, showing a composite mashup graph.

A Request Portalprovides a management interface keeping track of the whole p
cess for a single user’s request. It visualizes the serviashop, the utilized resources
for execution, and returns intermediary results via thenteod. The user interacts with
the system through the interface in Figure 3 where he cantheneonstructed mashup
and change the selected resources to his specific preference

3 Details of the Reasoning and Composition Process

This section focuses on the novel contributions of the fraark starting with a discus-
sion on the semantic grouping of equivalent service ingsrfollowing is an overview
of the matching possibilities between these building bdodkiring the composition
process. Furthermore, the actual composition procesgadetetogether with the at-
runtime reconfiguration and adaptation methods.

3.1 Semantic Description of Service Instances

A distinction is made between two types of building blocksdiby the presented frame-
work: concrete service instancasdabstract semantic types

Concrete services instancare the actual services executed on specific resources.
Eachservice instances provided with several QoS (Quality of Service) paranmseti-
scribing its properties. Examples include the averagedi@ttime, economic cost,
and availability. These QoS parameters are defined befodetiatheir values are dy-
namically adjusted based on previous invocations. ThussXample, the average ex-
ecution time is updated after the invocation of the servide QoS of a specific ser-
vice instance consists of a QoS Type, QoS Value, and QoS GatopaA QoS Type
can amongst others be the economic cost for executing aceethie execution time.
Each QoS Type has a QoS Value and a specific QoS Comparatoorfgracing the
actual QoS Values. This offers an application manager \Wwitpbssibility to extend the
framework with new QoS parameters and define customary césepaechniques.

In the presented framework, theservice instanceare enriched with semantic an-
notations using OWL-S. As several semantically equivatarvice instancegequiv-
alent IOPES) exist, their semantic interfaces are grouptxd singlesemantic type
thus reducing the search space of available instances xBorpe, multiple payment
services (bank transfer, Visa, PayPal) are grouped intsemantic payment type.

The OWLS-MX Matchmaker [6] provides a partial solution testhroblem by com-
paring service inputs and outputs and assigning a score loaisthe semantic distance
between these concepts. As a truly equivalent match betihese service interfaces
cannot be expected, the services are grouped in a hierarémsbion. Although exhaus-
tive enough, the OWLS-MX solution lacks the ability to comgpaervice preconditions
and effects. Therefore, we extended this approach in ondéiduring the composition
of the service mashup the Workflow Reasoner is able to search $pecific group
of services producing required outputs and more impostaeftects (detailed in Sec-
tion 3.3). Afterwards the Service Mapper will select a cep@ndingservice instance
offering required QoS.

3.2 Semantic Match between Semantic Types

Semantic typeare compared and linked by the Workflow Reasoner in case afmimag
input-output and/or precondition-effect relations. Deglieg on the quality of the match
between their interfaces, control constructs are reqdoethe construction and more
importantly execution of more complex service mashupss Beiction gives special
attention to the use of 'IfThenElse’ and 'ForEach’ controhstructs of OWL-S.

Parametric Match As OWL-S is used for describing Web services, the servicetgpu
and outputs are expressed by OWL concepts. We define an infuttonatch between
services when an input and an output represent similar dentamcepts and as a result
the output of one of the services is used as input for the ofsatemonstrated in Figure
4(a), the output 'Body Temperature’ is interpreted as a bifidemperature’, matching
the measuring service to the service determining the pgativer.

We define different qualities of semantic matches betwegricgeinputs and out-
puts, some of which require additional control constructs:

— Exact. The service output exactly matches the semantic concepedfdrvice in-
put.

S: WebShopCat al ogue(O Product) -> S:Delivery(l:Product)

— Subsume.The output concept inherits from the input. This is a valid lower
quality match.

S: WebShopCat al ogue(O. Physi cal Product) -> S:Delivery(l:Product)

— Relaxed.The service input is more specific than the output concepticlvcase
this is not a valid match. It is nevertheless incorporatethéncomposition process
as a generic output can turn out to be a more specific indiV/after service execu-
tion. For instance, a shopping basket may consist of digitdlor physical products
in which case some products need to be downloaded and otblarsrdd. This is
resolved through the use of a repository describing prothdividuals and their
inheritance graph. In this case, the Workflow Reasoner add$TdenElse’ con-
struct between the matching services with an 'If’-conditan the specific product
type output.

S: WebShopCat al ogue(O Product) -> S:Delivery(l:Physical Product)

— List. The service output is a list of concepts matching the singleti concept. For

example, a shopping basket used as input for a service clgethe stock status

Measure Temperature @ Product P t 3
[p Q (roduct Paymen @
Output Effect
Body Temperature Product paid by Customer
Input Precondition
,,Temperaturg wProduct paid by Customer

[Fever Q ﬁ’roduct Delivery @
o &

(a) Input-Output match (b) Precondition-Effect match

Fig. 4. Semantic match between two service interfaces.

of each individual product. Here, a 'ForEach’ constructdded iterating over the
list of products. The specific match for each concept fronlitean be all of the
above éxact subsume relaxed).

S: WebShopCat al ogue(O Product Li st) -> S:Delivery(l:Physical Product)

Condition Match For the definition of the service preconditions and effectsuse
SWRL (Semantic Web Rule Language) [7] expressions and imgil{SWRLB) such
as comparisons. An SWRL expression consists of a propertyoaadr more argu-
ments (semantic OWL concepts). Examples includeJshCl ass with one argu-
ment, anCbj ect Pr oper t y with two argument§ aDat aPr oper t y with one ar-
gument and an RDF typea SWRLB primitive with one or more argumehtsVe define
a precondition-effect match when the result of the exeautiba service corresponds
to a condition required for the execution of another servidee effect in Figure 4(b)
of the product payment service realizes the payment camdftr the delivery of the
product to the customer.

Similar to the input-output match, different qualities efsantic matches between
service preconditions and effects are defined togethertiwittnecessary control con-
structs:

— Exact. The service effect exactly matches the SWRL expression septimg the
service precondition. A matching SWRL expression consisas equivalentprop-
erty andexactlymatching semantic concepts (arguments of the property).

S: CheckSt ock(E: Product 1nStock) -> S:Delivery(P:Product InStock)

— SubsumeThe effect property still matches the precondition propartd between
the semantic conceptssasbsumeamatch is defined. For an ObjectProperty only the
first argument can be a subtype, however if the property iméefas an inverse
property, the second is also a subtype as OWL concepts inheniroperties of the
super class.

S: CheckSt ock(E: Physi cal Product |nStock) -> S:Delivery(P:Product |nStock)

— Relaxed.This is similar to thesubsumeamatch, however one still needs to check if
the concepts can be subclassed after execution as is thendhsaelaxedinput-
output match.

S: CheckSt ock(E: Product 1 nStock) -> S:Delivery(P:Physical Product |nStock)

— Conditional. It should be noted that a service effect can be conditionelming
that depending on the service output a different effect ssibe. For example a
service checking the stock of a product can have as effettttb@roduct is in stock
if the stock status is true or not in stoifkfalse in which case an ordering service
is added to the composition before the actual delivery ofpttegluct. In this case
an 'lIfThenElse’ construct is added with the conditionalpuiton the effect as 'If’
statement. The following is an example of the conditionfdafof the CheckStock

service where the product is considered in stock if the sstatis is true:

<process: hasResul t >
<process:inCondition>
<expr: SWRL- Condi tion rdf:|D="Product|nStockCondition">

1 InStock(Product)

2 paidFor(Customer, Product)
% hasName(Customer, String)
4 equal(StockStatus, true)

swr | b: equal (eshop: st ockSt at us, rdf : bool ean(true))

</ expr: SWRL- Condi ti on>
</ process:inCondition>
<process: hasEf f ect >
<expr: SWRL- Expr essi on rdf: | D="Product | nSt ockEffect">

eshop: Product | nSt ock(eshop: Physi cal Product)

</ expr: SWRL- Expr essi on>
</ process: hasEf f ect >
</ process: hasResul t >

The matching strategies are used by the planning algoritirite Workflow Rea-
soner during the construction of the service mashup whevéicss are selected provid-
ing outputs and/or effects matching the required (serviga)ts and/or preconditions.

3.3 Workflow Reasoner based on HTN Planning

A Hierarchical Task Network (HTN) plan [8], [9] is a partiglbrdered graph of service
nodes. Each service defines a certain state (i.e. the owpdteffects of the service
execution) and the description of the overall state is ithsted in the graph. Services
of unordered nodes (in parallel paths) are executed simadtasly, through the use of
the 'Split+Join’ construct of OWL-S.

The Workflow Reasoner in this paper adopts the HTN planninthoaks by incor-
porating the semantic grouping and matching strategietu@ing the use of control
constructs) mentioned above. It is enhanced with runtimghoaadaptation using col-
lected data in the Execution Environment (Section 3.4).

Planning proceeds as follows: the user’s request goesghranexpansiorphase
followed by the actuatonstructionthrough semantic matching of services. The user-
defined requests, consisting of initial and goal stR@=| S+GS), are transformed into
provided inputs and valid preconditionsS=l +P) and required outputs and effects
(GS=0+E) resulting in an abstract semantic service descriptian (OPES). During
the expansion phaséhis abstract servicés split up in the outputs and effect®XE)
that need to be resolved and the inputs and preconditio¥i8)(that can be utilized for
this purpose. On one hand, an availabégnantic service (mashupan be matched to
the required interface immediately ending the composititage. On the other hand,
if no complete solution already exists, thenstruction phasgenerates a plan of ser-
vices using backward chaining strategy transforming thed giate into the initial state
(GS- >I S). The selected matching services are queued and resohaedneadth-first
fashion. The inputs and preconditions of the service on fah@queue are linked to
matching service outputs and effed®-E- >| +P) as described in Section 3.2. If neces-
sary control constructs are added depending on the quélibheonatch. It is important
to note that in case no matching services are found, an etémesmposition is pre-
sented and the incomplete inputs/preconditions are maifkezke are provided by the
application manager and/or new services are deployedffilinthe missing gaps.

3.4 Runtime Adaptation

An important aspect of the presented framework is the rumti@havior anticipating
changes (e.g. availability of new services, resource andcgefailures) and adapting

Execution Environment =]

Business logic Conditions Service -
rules o g
-

Lt State facts Conditions

Data facts Inputs

A
A

Outputs:

hhhhhh

Fig. 5. Inference through matching of service preconditions and inputs anchieg service ef-
fects and outputs.

each request to user-specific business logic rules. Figpiresents a feedback principle
where services are executed using inputs and conditions thhe Execution Environ-
ment and new service effects and outputs are produced ased &olthis Environment.
This results in a dynamic system where new knowledge isriefleat runtime.

Business Logic RulesThese rules, added offline or at runtime to the Execution-Envi
ronment, are used by the Workflow Reasoner and Service Mappelapt the generic
mashup from Section 3.3 to the users’ needs at design ancheurftor example, there
are several possibilities for product delivery servicesclwhwe define as a decision
point in the execution: a simple 'Delivery’ service, 'DadiyWithPaymentOnDelivery’
service, 'DeliveryToProxy’ service. At this point, the uses to select one of the pos-
sibilities. A business logic rule could be stating that tkéadlt service is the 'Delivery-
WithPaymentOnDelivery’.

Iterative Pruning Several mashup creation and execution iterations can lherpexd
before the final execution, in case the constructed mashahgs too complex (e.qg.
having too many branches, conditional paths, decisiontgpi@ur framework executes
parts of the mashup, while trying to preserve the currené sty evaluating only the
stateless services. The Execution Engine stores any iatkany results in the Execu-
tion Environment which are used to prune the mashup grapledniving the decision
points or conditional paths. The Workflow Reasoner colldatsneeded data in order to
reconfigure the service mashup and remove parts of the brgndfor example, if the
stock of the selected product is checked beforehand, ondexdade whether a product
ordering service is needed or it can be removed from the agrietl mashup.

Failure Recovery The current state is stored in a similar fashion in the ExenuEn-
vironment during the mashup execution. If a service failss used by the Workflow
Reasoner and Service Mapper to track the failed serviceshendurrent state of the
system. During recovery the Service Mapper will select #eraative service instance
equivalent to the failed one (same semantic group) and ptbadth execution. If no
alternative instance exists, the Workflow Reasoner willstarct an alternative service
composition replacing the failed point keeping in mind therent state of the exe-
cuted mashup. In case that also fails the user will be notifféabe specific component
problem.

4 E-Shop Workflow Design

The presented framework is evaluated by means of a managémerface for the
automatic construction and runtime adaptation of e-shpfiGgtions. An e-shop ontol-
ogy is created defining the concepts used for the annotafitirece-shop services in
OWL-S.

4.1 Design of an E-Shop Application

A sale consists of a customer buying one or more products. mkans that:

Trigger: A potential customer browses to the product catalogue oétbleop.
Initial state: The e-shop and customer info is known. This includes accofotma-
tion necessary to make payments to the e-shop.
Goal description: The composition is successfully executed, when the folignef-
fects are reached:
1. The customer ordered the product(s).
2. The customer paid for the product(s).
3. The product(s) was(were) delivered to the customer.
— Digital products, such as music and software, are downkbade
— Physical products are transported to the customer’s dgladdress or to
a proxy point of the customer’s choice.

4.2 Construction of the E-Shop Workflow

For each required input and condition of an e-shop serviwe Workflow Reasoner
matches a corresponding service output and effect cotisiguen e-shop workflow. It
keeps track of the conditional paths so that during the cocisbn of the executable
process the Service Mapper will add, if required, contraistnucts. Figure 6 presents
the workflow of the different e-shop services from selectmpayment and delivery of
the products. The effect of the selection is implied by thgpotof the 'WebShopCat-
alogue’, which represents a list of selected products.dfdirstomer fails to select one
or more products, the execution of the composition is prarmegt ended, otherwise a

START:
User browses
to web shop

Web Shop
Catalogue

Delivery To Proxy .
Proxy Payment H e]_
END:

Paid and
Delivered ‘

Delivery)—

ForEach
product

Delivery +
Payment

Nothing bought

Payment

Download

Fig. 6. Constructed e-shop workflow with the use of control constructs.

'ForEach’ construct iterates over each product. A decigiihhenElse’ construct) is
made whether the product is in stock or should be orderedvelll by 'Payment’ and
'Delivery’. A Delivery methodis added having as result one or more payment and de-
livery options ('Choice’ construct) through which, accirgl to the configurable rules,
the purchase is made. This result is not known at compositiom but can be defined
through business logic rules by the user, being a custonmean ershop manager. If the
result is a specific delivery method defined by the e-shop gemthe purchase is made
in that way. If it is more than one, the customer chooses astadbthe possibilities
and the execution path depends on his decision. The resthlisahteractive choice is
not always known at composition time: the customer makesoicetafter being pre-
sented with the different execution paths. Consequetityetshop workflow exposes
a decision point where the correct branch is chosen at rentind followed during
execution.

Service Grouping and Composition Performance For testing purposes, the e-shop
mashup in Figure 6 was designed, consisting of 6 levels diineaf maximum 3 ser-
vices, and 10 different available service nodes multiptigdd semantically equivalent
services per node. The composition time of the Workflow Reaswas evaluated for
growing number of equivalent services with or without seevgrouping. The results
are presented in Table 1 including the time needed to loadi damup) the services in
the repository. During the loading of the first service dgdizm, several other ontolo-
gies need to be loaded like the OWL-S Profile, Process, andn@nog ontologies, the
specific use case E-Shop ontology, the SWRL rules ontolo@ese this is done, the
only lost time is during the semantic matching of the seriniterfaces in order to group
the equivalent services. Therefore while the differende/ben service loading with or
without grouping grows up to a second, the composition tiritout grouping grows
exponentially as all available services are consideredtferworkflow construction.
With grouping only the groups of equivalent services aresared.

4.3 Runtime Adaptation of the E-Shop Workflow

This section details the runtime behaviour of the framevawrklescribed in Section 3.4
for the e-shop workflow.

Table 1. Comparison of the e-shop composition time with or without service grouping

Service loading (ms) Composition time (ms)

Without Grouping|| With Grouping|| Without Grouping|| With Grouping

Services 7| o 7 o 7| o 7 o
1| 739 15| 818 36 906 49| 8921 283

2| 1122 89|| 1470Q 80|| 2523 51 9152 185

3|| 1452 49| 2253 61| 4956 62 9341 128

4| 1875 118| 3077 74| 9436 143 9656 249

5| 2127 57|| 3928 31| 15169 3271 10269 105

Business Logic RulesIn order to execute the e-shop workflow, the e-shop manager
needs to define business logic rules expressing which 'Patyaned 'Delivery’ method
should be chosen or the customer should choose from thedffarssibilities. On one
hand the design time configuration by the e-shop managereddfie workflow perma-
nently. On the other hand the choice made by the customenglinvocation requires
at-runtime adaptation. Once this choice is made, the ré@gqmocess automatically
configures the workflow through the removal of the decisiomtpand the selection

of only one 'Payment’ and 'Delivery’ path. For example if odefines 'Payment fol-
lowed by Delivery’ all the other options such as 'Payment aiiiery’ and 'Delivery

to Proxy’ are discarded from the workflow.

Iterative Pruning The e-shop workflow is further pruned through the executibn o
the effectless services. Depending on their output, fudkeisions are made, reducing
the execution paths. For example, by executing the 'WebShtglogue’ service, the
Workflow Reasoner decides whether there are any selectddgisoand if they are dig-
ital or physical. Then, the 'CheckStock’ service verifiesatiter the physical products
if any are in stock. This way the 'Download’ or 'Delivery’ afai 'Order’ services are
automatically removed.

Failure Recovery During the e-shop execution state information is recordexhse of

a resource or service failure. For instance simultanedodlye execution of the prod-
uct 'Payment’, the 'Order’ service fails. The Service Mapp&l select anequivalent
ordering service instanceeplacing the failed one. Afterwards the Execution Engine
will avoid a repeated 'Payment’ execution. On the other hént equivalent ordering
service instance is found, the Workflow Reasoner will reqpé the original mashup
constructing an alternative solution for the product orttgrtreating the 'Payment’ re-
guirements as already met and thus as part of the initiad.stat

5 Related Work

Today a number of popular workflow standards and implemiemzt[10], such as
BPMN, BPELAWS, XLANG, WSFL, still exhibit several shortcorgst no automatic
or dynamic deployment support, limited reliability guatees.

In [11] a predefined OWL-S workflow is first translated in SHOR@tax and then
HTN planning is executed. SHOP2 does not support an outpwtegs and OWL-S'’s
'Split’ and 'Split+Join’ control constructs so the systemmed not handle concurrency.
OWLS-Xplan [12] constructs a service sequence, as opposadrashup graph, us-
ing an ontological definition of the initial and the requestmal state. However, be-
fore planning, the OWL-S 1.1 service descriptions are firaveated to corresponding
PDDL 2.1 (Planning Domain Definition Language) descripgiarich could raise per-
formance issues. The PDDL planner is in turn a linear STRIBBn@r extended with
HTN planning.

Several research projects some of which within the Europsaon Sixth and Sev-
enth Framework Programme aim at creating platforms suimgpthe creation, man-
agement and execution of service mashups. Reservoir [b3bioes virtualization and

grid computing creating distributed service-orientedasfructures. Platforms like IN-
FRAWEBS [14] and Amigo [15] propose approaches, in which trecess of find-
ing appropriate services is guided by algorithms for deamsitipn of user goals into
sub-goals and discovering the existing services able tsfgaihese sub-goals without
further planning. MashWeb [16] and SOA4All [17] focus on threation of data flows
controlling the output-input flows and workflows controfiithe execution sequence of
the services.

The presented framework in this article constructs sermeshups starting from
initial and goal state through matching of service effezteqjuired preconditions. Plan-
ning is immediately performed in OWL-S, adopting the rictmesthe OWL-S control
constructs such as 'Split+Join’, 'IfThenElse’, 'ForEachChoice’. The framework is
designed in a way that different Workflow Reasoners, QoS-aBarvice Mappers and
Execution Engines are easily plugged in just by extendipgékpective interfaces. Late
binding is used to select the services offering the desire8 €@r execution. Several
(partial) iterations of mashup configuration and execusicmpossible as intermediary
results are used as feedback to further tune the serviceumashlesign and runtime.
The use of business logic rules defined by the user enabkeefuuning and personal-
ization of his requests.

6 Conclusions and Future Work

This paper focuses on the design of a framework for the aut@anagement of
new applications through dynamic composition and exenubibthe building blocks
of service mashups. Based on semantic descriptions of Weltag, reasoning algo-
rithms are developed for automatically composing new sermashups realizing de-
fined goals. These algorithms define a planning system usingat constructs based
on the quality of the match between the semantic serviceS. €mstraints and re-
quirements are satisfied through late binding to specificiaeinstances. The system
responds dynamically at runtime to changing context suateasbusiness logic, new
services, failure or overload of network elements or sesidn e-shop case is im-
plemented evaluating the proposed framework and illiatyahe workflow execution
optimizations.

In the future the planning and execution framework will béeexied with a dis-
tributed deployment component which will execute the défe service instances mak-
ing optimal use of the available resources. Furthermootnigues will be studied to
take into account trends in user and resource behavior,derdo optimally design
context-aware service mashups.

7 Acknowledgment

This work is partly funded by WTEPIus, an IBBT GBO project oe tiefinition of an
open architecture that allows the creation, sharing angosition of service mashups,
seamlessly combining functionality found on the Web, theegarise or within the
'walled garden’ of the telecom operator.

References

1. Papazoglou, M. P, Traverso, P., Dustdar, S., LeymanneFic®-Oriented Computing: State
of the Art and Research Challenges, IEEE Computer Society, vol14Qgp. 38—45, (2007).

2. Berners-Lee, L., Hendler, J., Lassila, O. : The Semantic Webew Rorm Of Web Content
That Is Meaningful To Computers Will Unleash A Revolution Of New Pdfisés, Journal
of the Scientific American, vol. 284(5), pp. 34-43, (2001).

3. OWL-S, http://mww.w3.0org/Submission/OWL-S/ [Online].

4. Hristoskova, A., Volckaert, B., De Turck, F., Dhoedt, B.: Desajra Framework for Au-
tomated Service Mashup Creation and Execution Based on SemanticnRea2010 The
Fifth International Conference on Internet and Web Applications amdics (ICIW 2010),
pp. 149-154.

5. Avellino, G., Boniface, M., Cantalupo, B., Ferris, J., MatskanisMitchell, B., Surridge, M.:
A Dynamic Orchestration Model for Future Internet Applications, Setwiave 2008, LNCS,
vol. 5377, pp. 266—274, Springer, Heidelberg (2008).

6. Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Seiliseovery with OWLS-
MX, In Proceedings of 5th International Conference on Autonomagerds and Multi-Agent
Systems, AAMAS 2006.

7. SWRL, http://www.w3.0org/Submission/SWRL/ [Online].

8. Nau, D., Au, T., llghami, O., Kuter, U.,. Murdock, J, Wu, D.,ivan, F.: SHOP2: An HTN
planning system, Journal of artificial intelligence research, vol. 2@¢1)379-404, (2003).

9. Hristoskova, A., Volckaert, B., De Turck, F.: Dynamic CompositirSemantically Anno-
tated Web Services through QoS-Aware HTN Planning Algorithms, Pdinge of the Fourth
International Conference on Internet and Web Applications and Ssr¢i€IW 2009), pp.
377-382.

10. Van der Aalst, W. M. P., Dumas, M., ter Hofstede, A. H. M.: Wetviee composition lan-
guages: Old wine in new bottles, Proceeding of the 29th EUROMICRO @amde: New
Waves in System Architecture, pp. 298-305, (2003).

11. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planfiargveb service composition
using SHOP2, Journal of Web Semantics, vol. 1(4), pp. 377-3964{2

12. Klusch, M., Gerber, A., Schmidt, M.: Semantic Web Service Caitipo Planning with
OWLS-Xplan, Proceedings of the First International AAAI Fall Symiposon Agents and
the Semantic Web, (2005).

13. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, Karente, I|., Montero, R.,
Wolfsthal, Y., Elmroth, E., Caceres, J., others: The RESERVOIR&Add Architecture for
Open Federated Cloud Computing, IBM Systems Journal, vol. 53@09(2

14. Agre, G., Marinova, Z.: An INFRAWEBS Approach to Dynamic Guosition of Semantic
Web Services, Cybernetics and Information Technologies, vol. gfL¥5-61, (2007).

15. Valle, M., Ramparany, F., Vercouter, L.: Dynamic service cositpn in ambient intelli-
gence environments: a multi-agent approach, Proceeding of theBtirespean Young Re-
searcher Workshop on Service-Oriented Computing, (2005).

16. Pfeffer, H.: A Underlay System for Enhancing Dynamicity within Weéashups, Interna-
tional Journal On Advances in Software, vol. 2(1), pp. 63-75, €200

17. Lecue, F., Delteil, A., Leger, A.: Towards a Semantic State Trans®ystem for Automated
Generation of Data Flow in Web Service Composition, In Internationalnidwaf Semantic
Computing (IJSC), vol. 3(4), pp. 499-526, (2009).

