14,255 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    System Support for Managing Invalid Bindings

    Full text link
    Context-aware adaptation is a central aspect of pervasive computing applications, enabling them to adapt and perform tasks based on contextual information. One of the aspects of context-aware adaptation is reconfiguration in which bindings are created between application component and remote services in order to realize new behaviour in response to contextual information. Various research efforts provide reconfiguration support and allow the development of adaptive context-aware applications from high-level specifications, but don't consider failure conditions that might arise during execution of such applications, making bindings between application and remote services invalid. To this end, we propose and implement our design approach to reconfiguration to manage invalid bindings. The development and modification of adaptive context-aware applications is a complex task, and an issue of an invalidity of bindings further complicates development efforts. To reduce the development efforts, our approach provides an application-transparent solution where the issue of the invalidity of bindings is handled by our system, Policy-Based Contextual Reconfiguration and Adaptation (PCRA), not by an application developer. In this paper, we present and describe our approach to managing invalid bindings and compare it with other approaches to this problem. We also provide performance evaluation of our approach

    MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation

    Full text link
    An architectural approach to self-adaptive systems involves runtime change of system configuration (i.e., the system's components, their bindings and operational parameters) and behaviour update (i.e., component orchestration). Thus, dynamic reconfiguration and discrete event control theory are at the heart of architectural adaptation. Although controlling configuration and behaviour at runtime has been discussed and applied to architectural adaptation, architectures for self-adaptive systems often compound these two aspects reducing the potential for adaptability. In this paper we propose a reference architecture that allows for coordinated yet transparent and independent adaptation of system configuration and behaviour

    Developing Real-Time Emergency Management Applications: Methodology for a Novel Programming Model Approach

    Get PDF
    The last years have been characterized by the arising of highly distributed computing platforms composed of a heterogeneity of computing and communication resources including centralized high-performance computing architectures (e.g. clusters or large shared-memory machines), as well as multi-/many-core components also integrated into mobile nodes and network facilities. The emerging of computational paradigms such as Grid and Cloud Computing, provides potential solutions to integrate such platforms with data systems, natural phenomena simulations, knowledge discovery and decision support systems responding to a dynamic demand of remote computing and communication resources and services. In this context time-critical applications, notably emergency management systems, are composed of complex sets of application components specialized for executing specific computations, which are able to cooperate in such a way as to perform a global goal in a distributed manner. Since the last years the scientific community has been involved in facing with the programming issues of distributed systems, aimed at the definition of applications featuring an increasing complexity in the number of distributed components, in the spatial distribution and cooperation between interested parties and in their degree of heterogeneity. Over the last decade the research trend in distributed computing has been focused on a crucial objective. The wide-ranging composition of distributed platforms in terms of different classes of computing nodes and network technologies, the strong diffusion of applications that require real-time elaborations and online compute-intensive processing as in the case of emergency management systems, lead to a pronounced tendency of systems towards properties like self-managing, self-organization, self-controlling and strictly speaking adaptivity. Adaptivity implies the development, deployment, execution and management of applications that, in general, are dynamic in nature. Dynamicity concerns the number and the specific identification of cooperating components, the deployment and composition of the most suitable versions of software components on processing and networking resources and services, i.e., both the quantity and the quality of the application components to achieve the needed Quality of Service (QoS). In time-critical applications the QoS specification can dynamically vary during the execution, according to the user intentions and the Developing Real-Time Emergency Management Applications: Methodology for a Novel Programming Model Approach Gabriele Mencagli and Marco Vanneschi Department of Computer Science, University of Pisa, L. Bruno Pontecorvo, Pisa Italy 2 2 Will-be-set-by-IN-TECH information produced by sensors and services, as well as according to the monitored state and performance of networks and nodes. The general reference point for this kind of systems is the Grid paradigm which, by definition, aims to enable the access, selection and aggregation of a variety of distributed and heterogeneous resources and services. However, though notable advancements have been achieved in recent years, current Grid technology is not yet able to supply the needed software tools with the features of high adaptivity, ubiquity, proactivity, self-organization, scalability and performance, interoperability, as well as fault tolerance and security, of the emerging applications. For this reason in this chapter we will study a methodology for designing high-performance computations able to exploit the heterogeneity and dynamicity of distributed environments by expressing adaptivity and QoS-awareness directly at the application level. An effective approach needs to address issues like QoS predictability of different application configurations as well as the predictability of reconfiguration costs. Moreover adaptation strategies need to be developed assuring properties like the stability degree of a reconfiguration decision and the execution optimality (i.e. select reconfigurations accounting proper trade-offs among different QoS objectives). In this chapter we will present the basic points of a novel approach that lays the foundations for future programming model environments for time-critical applications such as emergency management systems. The organization of this chapter is the following. In Section 2 we will compare the existing research works for developing adaptive systems in critical environments, highlighting their drawbacks and inefficiencies. In Section 3, in order to clarify the application scenarios that we are considering, we will present an emergency management system in which the run-time selection of proper application configuration parameters is of great importance for meeting the desired QoS constraints. In Section 4we will describe the basic points of our approach in terms of how compute-intensive operations can be programmed, how they can be dynamically modified and how adaptation strategies can be expressed. In Section 5 our approach will be contextualize to the definition of an adaptive parallel module, which is a building block for composing complex and distributed adaptive computations. Finally in Section 6 we will describe a set of experimental results that show the viability of our approach and in Section 7 we will give the concluding remarks of this chapter

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    A Framework for QoS-aware Execution of Workflows over the Cloud

    Full text link
    The Cloud Computing paradigm is providing system architects with a new powerful tool for building scalable applications. Clouds allow allocation of resources on a "pay-as-you-go" model, so that additional resources can be requested during peak loads and released after that. However, this flexibility asks for appropriate dynamic reconfiguration strategies. In this paper we describe SAVER (qoS-Aware workflows oVER the Cloud), a QoS-aware algorithm for executing workflows involving Web Services hosted in a Cloud environment. SAVER allows execution of arbitrary workflows subject to response time constraints. SAVER uses a passive monitor to identify workload fluctuations based on the observed system response time. The information collected by the monitor is used by a planner component to identify the minimum number of instances of each Web Service which should be allocated in order to satisfy the response time constraint. SAVER uses a simple Queueing Network (QN) model to identify the optimal resource allocation. Specifically, the QN model is used to identify bottlenecks, and predict the system performance as Cloud resources are allocated or released. The parameters used to evaluate the model are those collected by the monitor, which means that SAVER does not require any particular knowledge of the Web Services and workflows being executed. Our approach has been validated through numerical simulations, whose results are reported in this paper

    Reconfigurable Mobile Multimedia Systems

    Get PDF
    This paper discusses reconfigurability issues in lowpower hand-held multimedia systems, with particular emphasis on energy conservation. We claim that a radical new approach has to be taken in order to fulfill the requirements - in terms of processing power and energy consumption - of future mobile applications. A reconfigurable systems-architecture in combination with a QoS driven operating system is introduced that can deal with the inherent dynamics of a mobile system. We present the preliminary results of studies we have done on reconfiguration in hand-held mobile computers: by having reconfigurable media streams, by using reconfigurable processing modules and by migrating functions
    • …
    corecore