2 research outputs found

    Assessment of predictive models for chlorophyll-a concentration of a tropical lake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study assesses four predictive ecological models; Fuzzy Logic (FL), Recurrent Artificial Neural Network (RANN), Hybrid Evolutionary Algorithm (HEA) and multiple linear regressions (MLR) to forecast chlorophyll- a concentration using limnological data from 2001 through 2004 of unstratified shallow, oligotrophic to mesotrophic tropical Putrajaya Lake (Malaysia). Performances of the models are assessed using Root Mean Square Error (RMSE), correlation coefficient (r), and Area under the Receiving Operating Characteristic (ROC) curve (AUC). Chlorophyll-a have been used to estimate algal biomass in aquatic ecosystem as it is common in most algae. Algal biomass indicates of the trophic status of a water body. Chlorophyll- a therefore, is an effective indicator for monitoring eutrophication which is a common problem of lakes and reservoirs all over the world. Assessments of these predictive models are necessary towards developing a reliable algorithm to estimate chlorophyll- a concentration for eutrophication management of tropical lakes.</p> <p>Results</p> <p>Same data set was used for models development and the data was divided into two sets; training and testing to avoid biasness in results. FL and RANN models were developed using parameters selected through sensitivity analysis. The selected variables were water temperature, pH, dissolved oxygen, ammonia nitrogen, nitrate nitrogen and Secchi depth. Dissolved oxygen, selected through stepwise procedure, was used to develop the MLR model. HEA model used parameters selected using genetic algorithm (GA). The selected parameters were pH, Secchi depth, dissolved oxygen and nitrate nitrogen. RMSE, r, and AUC values for MLR model were (4.60, 0.5, and 0.76), FL model were (4.49, 0.6, and 0.84), RANN model were (4.28, 0.7, and 0.79) and HEA model were (4.27, 0.7, and 0.82) respectively. Performance inconsistencies between four models in terms of performance criteria in this study resulted from the methodology used in measuring the performance. RMSE is based on the level of error of prediction whereas AUC is based on binary classification task.</p> <p>Conclusions</p> <p>Overall, HEA produced the best performance in terms of RMSE, r, and AUC values. This was followed by FL, RANN, and MLR.</p

    Rule-based agents for forecasting algal population dynamics in freshwater lakes discovered by hybrid evolutionary algorithms

    No full text
    Copyright © 2007 Elsevier B.V. All rights reserved.In the context of this study two concepts were applied for the development of rule-based agents of algal populations: (1) rule discovery by means of a hybrid evolutionary algorithms (HEA) and rigorous k-fold cross-validation, and (2) rule generalisation by means of merged time-series data of lakes belonging to the same lake category. The rule-based agents developed during this study proved to be both explanatory and predictive. It has been demonstrated that the interpretation of the rules can be brought into the context of empirical and causal knowledge on chlorophyll-a dynamics as well as population dynamics of Microcystis and Oscillatoria under specific water quality conditions. The k-fold cross-validation of the agents based on measured data of each year of similar lakes revealed good forecasting accuracy resulting in r2 values ranging between 0.39 and 0.63. © 2007 Elsevier B.V. All rights reserved.Amber Welk, Friedrich Recknagel, Hongqing Cao, Wai-Sum Chan and Anita Talibhttp://www.elsevier.com/wps/find/journaldescription.cws_home/705192/description#descriptio
    corecore