90 research outputs found

    A computational group theoretic symmetry reduction package for the SPIN model checker

    Get PDF
    Symmetry reduced model checking is hindered by two problems: how to identify state space symmetry when systems are not fully symmetric, and how to determine equivalence of states during search. We present TopSpin, a fully automatic symmetry reduction package for the Spin model checker. TopSpin uses the Gap computational algebra system to effectively detect state space symmetry from the associated Promela specification, and to choose an efficient symmetry reduction strategy by classifying automorphism groups as a disjoint/wreath product of subgroups. We present encouraging experimental results for a variety of Promela examples

    The duplicube graph -- a hybrid of structure and randomness

    Full text link
    Connect two copies of a given graph GG by a perfect matching. What are the properties of the graphs obtained by recursively repeating this procedure? We show that this construction shares some of the structural properties of the hypercube, such as a simple routing scheme and small edge expansion. However, when the matchings are uniformly random, the resultant graph also has similarities with a random regular graph, including: a smaller diameter and better vertex expansion than the hypercube; a semicircle law for its eigenvalues; and no non-trivial automorphisms. We propose a simple deterministic matching which we believe could provide a derandomization.Comment: 27 pages, 6 figures. Comments welcome

    Optimal Permutation Routing for Low-dimensional Hypercubes

    Get PDF
    We consider the offline problem of routing a permutation of tokens on the nodes of a d-dimensional hypercube, under a queueless MIMD communication model (under the constraints that each hypercube edge may only communicate one token per communication step, and each node may only be occupied by a single token between communication steps). For a d-dimensional hypercube, it is easy to see that d communication steps are necessary. We develop a theory of “separability ” which enables an analytical proof that d steps suffice for the case d = 3, and facilitates an experimental verification that d steps suffice for d = 4. This result improves the upper bound for the number of communication steps required to route an arbitrary permutation on arbitrarily large hypercubes to 2d − 4. We also find an interesting side-result, that the number of possible communication steps in a d-dimensional hypercube is the same as the number of perfect matchings in a (d + 1)-dimensional hypercube, a combinatorial quantity for which there is no closed-form expression. Finally we present some experimental observations which may lead to a proof of a more general result for arbitrarily large dimension d. 2

    Automatic techniques for detecting and exploiting symmetry in model checking

    Get PDF
    The application of model checking is limited due to the state-space explosion problem – as the number of components represented by a model increase, the worst case size of the associated state-space grows exponentially. Current techniques can handle limited kinds of symmetry, e.g. full symmetry between identical components in a concurrent system. They avoid the problem of automatic symmetry detection by requiring the user to specify the presence of symmetry in a model (explicitly, or by annotating the associated specification using additional language keywords), or by restricting the input language of a model checker so that only symmetric systems can be specified. Additionally, computing unique representatives for each symmetric equivalence class is easy for these limited kinds of symmetry. We present a theoretical framework for symmetry reduction which can be applied to explicit state model checking. The framework includes techniques for automatic symmetry detection using computational group theory, which can be applied with no additional user input. These techniques detect structural symmetries induced by the topology of a concurrent system, so our framework includes exact and approximate techniques to efficiently exploit arbitrary symmetry groups which may arise in this way. These techniques are also based on computational group theoretic methods. We prove that our framework is logically sound, and demonstrate its general applicability to explicit state model checking. By providing a new symmetry reduction package for the SPIN model checker, we show that our framework can be feasibly implemented as part of a system which is widely used in both industry and academia. Through a study of SPIN users, we assess the usability of our automatic symmetry detection techniques in practice
    corecore