
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

E. Kranakis, D. Krizanc

Computing boolean functions on anonymous hypercube networks (Extended abstract)

Computer Science/ Department of Algorithmics & Architecture

Bib;1or•1eek .
Centrum voor WisluJ,' ;,Jen lnformatai

,ns/pr'1ar,>

Report CS-R9040 August

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum , which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.) .

Copyright © Stichting Mathematisch Centrum, Amsterdam

Computing Boolean Functions on Anonymous

Hypercube Networks

(Extended Abstract)

Evangelos Kranakis (l)

(eva@cwi.nl)

Danny Krizanc <2)

(krizanc@cs.rochester.edu)

(1) Centrum voor Wiskunde en Informatica (CWI)

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

(2) University of Rochester, Department of Computer Science

Rochester, New York, 14627, USA

Abstract

We study the bit-complexity (i.e. total number of bits transmitted) of com­
puting boolean functions on anonymous oriented hypercubes. We characterize the
class of boolean functions computable in the anonymous oriented hypercube as
exactly those boolean functions which are invariant under all bit-complement au­
tomorphisms of the hypercube and provide an algorithm for computing all such
functions with bit complexity O(N -log4 N). Thus among all studied oriented net­
works (rings, tori, etc) the hypercube seems to achieve "optimal" bit complexity
for a given number of nodes.

1980 Mathematics Subject Classification: 68Q99
CR Categories: C.2.1
Key Words and Phrases: Anonymous hypercube, boolean function, group
of automorphisms, labeled and unlabeled networks, oriented and unoriented net­
works, ring, symmetric boolean function, threshold function, torus.
Note: This paper will be submitted for publication elsewhere.

Report CS-R9040
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

1 Introduction

The problem of characterizing the computable boolean functions in a given network
of anonymous processors and of providing efficient algorithms for computing all such
functions in the network has been considered in the literature for the case of rings
[ASW85) and tori [BB89]. However, despite its versatility very little seems to be known
concerning the a.hove problem on the hypercube. The present paper is devoted to the
construction of a new efficient algorithm for the computation of boolean functions on
an oriented anonymous network consisting of ideHtical processing elements which are
connected in a hypercube topology. We show how to achieve bit complexity O(N-log4 N)
for the total number of bits transmitted in computing boolean functions on such a
network.

1.1 Assumptions

We make the following assumptions regarding the network and its processors:

1. the processors know the network topology and the size of the network (i.e., total
number of processors),

2. the processors are anonymous (i.e., they do not know either the identities of them-
selves or of the other processors),

3. the processors are identical (i.e., they all run the same algorithm),

4. the processors are deterministic,

5. the network is asynchronous,

6. the network is oriented (by orientation we mean a global, consistent labeling of the
network links),

7. the network links are FIFO.

1.2 Labeled and Oriented Hypercubes

Let Qn = (V, E) be the n-dimensional hypercube. The node set V consists of all bit
sequences (x1, ... , xn) of length n and the edge set E consists of all pairs of nodes
differing in exactly one component. By a labeling of Qn we understand a function that
for all nodes v E V, associates the values 1, 2, ... , n to the links incident with v. More
formally it is a function,£, on the set {(x,y),(y,x): {x,y} EE}, such that for each
node v E V the mapping u - £(v, u) is 1 - 1 on the set of neighbors u of v. Note that
in general£(u, v) f:- £(v, u). If Qn has an associated labeling£ then it is called a labeled
hypercube and is denoted by Qn[£]. Otherwise it is called an unlabeled hypercube. If
we want to emphasize that a certain labeling is known to all processors of the network
then we call the labeling an orientation.

A natural orientation of the hypercube is the following labeling £: the edge connect­
ing nodes x = (x1, ... , xn) and y = (Y1, ... , Yn) is labeled by i if and only if Xi f:- Yi, i.e.
£(x,y) = £(y,x) = i. In the sequel we will refer to a hypercube with this labeling as an
oriented hypercube.

2

An automorphism of a network is a permutation of the node set of the network which
preserves both incidence and labeling. Let Aut(N) be the group of automorphisms of the
network N. It is clear that Aut(N) is a subgroup of the symmetric group of permutations
SN. A boolean function f E B N (the set of Boolean functions on N variables) is invariant
under a permutation a E SN if for all inputs x1, ... , XN,

We denote by S(f) the set of permutations in SN that leave f invariant. The auto­
morphism group of a network provides a necessary (but not always sufficient [YK88])
condition for a boolean function to be computable on the network. It is easy to show
that any boolean function f E B N computable on a network N is invariant under all
the automorphisms of the network. An automorphism ¢ of the network N is consistent
with a labeling£ if for any adjacent nodes?,Y, £(x,y) = £(</J(x),</J(y)). A labeling of
the edges of N is consistent with a group CJ ~ Aut(N) of automorphisms of N if any
automorphism cf; E G is consistent with £. We denote by Aut(N[£]) the group of auto­
morphisms of N that are consistent with £. In the same manner we can show that any
function computable on the network N[£] is invariant under the group of automorphisms
Aut(N[£]).

Of particular interest in the case of the oriented hypercube are the bit-complement
automorphisms that complement the bits of certain components, i.e. for any set S ~
{1, ... , n} let ¢s(x1, ... , xn) = (Y1, ... , Yn), where Yi = Xi + l, if i E S, and Yi = Xi
otherwise (here addition is modulo 2). Let Fn denote the group of bit-complement
automorphisms of Qn. It is easy to show the following:

Theorem 1.1 The group of automorphisms of the oriented hypercube Qn is exactly the
group Fn of bit-complement automorphisms. I

1.3 Related Literature

For any boolean function f on N variables let S(f) be the group of permutations that
leave f invariant on all inputs. For the case of the ring [ASW85] gives algorithms both
for the oriented and unoriented ring with bit complexity O(N2

). In the oriented case
they show that a boolean function f E BN is computable if and only if S(f) 2 CN,
while in the unoriented case if and only if S(f) 2 DN (where CN, DN are the cyclic
and dihedral groups on N letters, respectively). For the oriented torus [BB89] give an
algorithm with bit complexity O(Nl.5) and show that a boolean function f E BN is
computable if and only if S(f) 2 C../N ® C../N. A characterization of the computable
functions in a general anonymous network was given by [YK88] but their algorithm was
of exponential bit complexity. The first algorithm for general networks with polynomial
bit complexity was given by [KKvdB90]. Despite the strong interest in hypercubes
very little is known except for the case of computing symmetric functions. For this
case, [KKvdB90] gives two "general purpose" algorithms, one based on Markov chains
and having bit complexity 0(N • log4 N) and another taking advantage of the distance
regular topology of the hypercube and having bit complexity O(N • log3 N).

3

1.4 Outline and Results of the Paper

In this paper we develop a new efficient algorithm for computing all boolean functions
(which are computable in the hypercube) with bit complexity O(N -log4 N). In the first
part of the paper we concentrate on the prdblem of characterizing the class of boolean
functions which are computable on the oriented hypercube. This leads us to a simple
algorithm with bit complexity O(N2). In the second part of the paper we use ideas
of the first part and elementary results from group theory in order to develop a more
sophisticated algorithm with bit complexity 0(N · Iog4 N) . In addition we show that
symmetric functions on a oriented hypercube are computable in O(N -log2 N) bits Here
is a table comparing existing results on the complexity of computing boolean functions
on various anonymous networks.

Network Bit Complexity Paper
(Un)Oriented Rings O(N2

) [ASW85]
Oriented n-tori, n constant Q(Nl+l/n) [BB89]
Oriented hypercubes O(N - log4 N) This paper

2 Initial Algorithm

In this section we characterize the class of boolean functions which are computable in
the oriented hypercube in terms of its group of automorphisms and provide an algorithm
with bit complexity O(N2

) for computing all such functions. We can prove the following
theorem for the previously defined natural orientation of the hypercube.

Theorem 2.1 On the oriented hypercube Qn of degree n and for any boolean function
f E B N, N = 2n, f is computable on the hypercube Q n if and only if f is invariant
under the bit-complement automorphisms of Qn . Moreover, the bit complexity of any
such computable function is O(N2

) .

Proof. The if part is easy. We need only prove the only if part. Let f E B N be invariant
under all bit-complement automorphisms of the hypercube. The algorithm proceeds by
induction on the dimension n of the hypercube. Intuitively, it splits the hypercube into
two n - l dimensional hypercubes. The first hypercube consists of all nodes with Xn = 0
and the second of all nodes with Xn = l. \ By the induction hypothesis the nodes of
t hese hypercubes know the entire input configuration of their corresponding hypercubes.
Every node in the hypercube with Xn = 0 is adjacent to unique node in the hypercube
with Xn = l. By exchanging their information all processors will know the entire input
configuration and hence they can all compute the value of f on the given input . More
formally, the algorithm is as follows. For any sequences of bits I, J let I J denote the
concatenation of l and J. Let 1; denote the input to processor p at the ith step of the
computation. Initially Ii is the input bit to processor p.

Algorithm for processor p:
initialize: Ii is the input bit to processor p;
for i := 0, ... , n - l do

send message 1; to p's neighbor q along the ith link
let 1~ be the message received by p from p's neighbor q along the ith link and

4

od;
Put Ji+l ·= Ji Ji. p . p q,

output J(I;:)

To prove the correctness of the algorithm it must be shown that all processors output
the same correct bit, i.e. for all processors p, q, J(I;:) = J(I;). Let IP = 1;: be the
sequence obtained by processor p at the nth stage of the above algorithm. Let p, q

be any two processors of the hypercube. Clearly, there is a unique bit-complement
automorphism¢ satisfying ¢(p) = q, namely¢= <Ps, where i ES if and only if Pi-/: qi.
Now it can be shown that this automorphism will map processor p's view of the input,
Ip, to the view of processor q, Iq· For any sequence bxbx, · · · of bits indexed by elements
x, x', ... E Qn define

</J(bxbx, · · ·) = b</>(x)b</>(x') · · · •

We can prove by induction on i ~ n = log N that ¢(I;) = J~(p)· This is clear for i = 0.
Assume th~ result true for i. Let p', q' be p's and q's neighbors along the ith edge,
respectively. Then by definition we have

i+ 1 i i i+ 1 i i IP = IPJP, and Iq = Iqlq,.

Since ¢; is a bit-complement automorphism and p, p' are connected via the ith edge it
follows that </J(p) = q and </J(p') = q'. Using the induction hypothesis ¢(I;) = J~(p) we
obtain

<t>U;+l) = <t>(I;)<t>(I;,) = I!I!(p') = 1;+1 = 1t:)
This completes the inductive proof. It follows now that ¢(Ip) = Iq which implies that
f(Ip) = J(Iq), since f is invariant under thE\ bit-complement automorphisms of Qn-

To study the bit complexity of the above algorithm, let T(N) be the number of
bits transmitted in order that at the end of the computation all the processors in the
hypercube know the input of the entire hypercube. By performing a computation on
each of the two n - 1-dimensional hypercubes we obtain that their nodes will know
the entire input corresponding to their nodes in T(N /2) bits. The total number of bits
transmitted in this case is 2 • T(N /2). The final exchange transmission consists of N /2
bits being transmitted by N /2 nodes to their N /2 corresponding other nodes, for a total
of 2 • N/2 • N/2 = N 2/2. Hence we have proved that T(N) ~ 2 · T(N/2) + N 2 /2. It
follows that T(N) ~ N 2

, as desired. I
Contrasting oriented and unlabeled hypercubes we have the following result.

Theorem 2. 2 For n ~ 2, there exist boolean functions f E B N, N = 2n, computable on
the oriented hypercube but not computable on the unlabeled hypercube Qn-

Proof. Define the boolean function f on inputs < bx : x E Qn > as follows. The value
of f is O if for all adjacent nodes x, y with edge labeled by 1, bx = by, otherwise it is
equal to 1. More formally,

!(b . V)-{ 0 ifYx,y(£(x,y) = 1 ⇒ bx= by)
<x.XE >- h. 1 ot erw1se.

It is easy to see that f is kept invariant by all bit-complement automorphisms of Qn but
this is not true for any bit-permuting automorphism <Pu such that a(l) -=f 1 where

<Pu(X1, · · ·, Xn) = (Xu(l), · · ·, Xu(n))

5

since such an automorphism will also move the label. It follows that Fn ~ S(f), but
Fn · Pn Cl S(J), where S(J) is the group of permutations in SN that keep the boolean
function J invariant under all inputs. I

3 Main Algorithm

In this section we make several alterations to the previous algorithm and show how to
improve the complexity bound to O(N-log4 N), for each boolean function J E EN which
is computable in the hypercube. In all our subsequent discussions we use the notation
and terminology given in the previous section. As before the new algorithm is also
executed in n = Jog N steps, one step per dimension. However, now we take advantage
of the fact that the transmitted views 1; provide information to p about the rest of "its
hypercube". The main ingredients of the new algorithm are the following.

• We introduce a leader election mechanism which for each i ~ log N elects leaders
among the processors with lexicographically maximal view at the ith step of the
algorithm.

• We use elementary results from the theory of finite permutation groups [Wie64] in
order to introduce a coding mechanism of the views; leaders at the (i - 1)st step
exchange the encoded versions of their views 1;-1

; upon receipt of the encoded
view they recover the original view sent and elect new leaders for the ith step.

• The leader election and coding mechanisms help keep low the number of bits trans-
mitted during the i th step of the algorithm to 0(N • i3) bits.

The technical details of the above description will appear in the sequel. We begin with
some preliminary lemmas that will be essential in the proof of the main theorem.

Lemma 3.1 If IP= Iq then the hypercube as viewed from p is identical to the hypercube
as viewed from q. More formally, for each p let IP =< b"' : x E N >. If Ip = Iq and
<P = <Ps, where S = {i ~ n: Pi:/ qi}, then Vx E Qn(bx = bcf,(x))-

Proof. Indeed, notice that since q = </J(p)

which proves the result. I

Lemma 3. 2 Let I be a fixed sequence of bits of length 2n. Then the number of processors
p such that IP= I is either O or a power of 2. Moreover the set of processors p such that
IP = I can be identified with a natural group of bit-complement automorphisms.

Proof. Let .:J be the set of processors q sati~fying Iq = I and assume that .:J :/ 0. Let p
be an arbitrary but fixed element of .:J. It is clear that for each q E .:J there is a unique
bit-complement automorphism </Jq E Fn such that </Jq(P) = q. It follows that the set

9 = { </Jq : q E .:J}

6

is equipotent to J . It can be shown easily that

9 = { </> E Fn : </>(p) E :J}.

We now show that 9 is a subgroup of Fn. Assuming this it would follow from the well­
known theorem of Lagrange that the order of this group must divide the order of Fn
which is exactly 2n. Hence 191 is a power of 2. It remains to show that 9 is a subgroup
of Fn. We show that it is closed under composition. Let ¢, 'I/; E Q, i.e. by definition we
have that

\

Itf>(p) = 1,;,(p) = I.
Then we have that

1¢(,f,(v)) = ¢>(1,;,(p)) = ¢>(Iv) = ltf>(v) = I.

Since the identity element is in Q, it follows that the latter is a group. It also remains to
show that 9 is independent of the choice of the element p E :J. Indeed, let Q' be defined
like Q but using another element p' E J. Let 'I/; be a bit-complement automorphism such
that '1/;(p) = p'. Elementary calculations and the fact that Q is an abelian group show
that

This proves the first part of the lemma.
To prove the second assertion we note that Fn can be identified with an n-dimensional

vector space over the finite field Z2 = {O, 1} of two elements. The standard basis of this
vector space consists of the bit-complement automorphisms

<P{l}, <P{2}, · · ·, <P{n}·

Any other bit-complement automorphism ¢s can be written as the sum (which in this
case is the regular composition of functions) of the automorphisms <P{i}, where i E S.
As a vector subspace 9 has a base consisting of a fixed number of bit-complement
automorphisms. This proves the lemma. I

Clearly the group 9 defined in lemma 3.2 depends on the string J. However we avoid
mentioning it explicitely in Q in order to avoid unnecessary notational complications.

Lemma 3.3 If 191 = 21 then I can be coded with a string of length 2n-l and l bit­
complement automorphisms.

Proof (Outline). We continue using the notation of lemma 3.2. The group g defined
above has a natural action on the hypercube Qn. For each x E Qn let x 9 be the orbit of
x under Q, i.e.

x 9 = {</>(xy: ¢ E Q}.

For each x the stabilizer 9x of Q under x is the identity group, where the stabilizer group
[Wie64] is defined by

9x = {<PE 9 : </>(x) = X }.

By the well-known stabilizer theorem [Wie64]

7

Since 19., I = l we obtain that all the orbits of 9 have exactly the same size, namely
191 = 21, and since IQnl = 2n, there are exactly

pairwise disjoint orbits.
The above discussion gives rise to the following "coding" algorithm which can be

applied by the processors concerned in order to code the given configuration I with a
new (generally shorter) string. Each processor that knows J can execute the following
"coding algorithm" (i.e. processor p applies this algorithm to the string I= 1;).

Coding Algorithm:
Input: I =< b., : x E Qn > is the given configuration, where bx is the bit corre­

sponding to processor x .

l. Compute the group 9 of bit-complement aut omorphisms ¢ such that

Vp E Qn(Ip = I ⇒ lrf>(p) = I).
Assume that l is such that 191 = 21.

2. Compute a set of l generators, i.e. bit-complement automorphisms ¢1, ... , ¢1 which
generate the group 9.

3. Compute the set of orbits of 9 in its natural action on Qn . There are 2n-l such
orbits. For each orbit the processors choose a representative of the orbit in some
canonical way, say lexicographically minimal; let x(l), x(2), ... , x(2n-l) be the rep­
resentatives chosen. Next the processor arranges them in increasing order according
to the lexicographic order -<, i.e. x(l) -< x(2) -< . . . -< x(2n-1) .

4. The code of I is defined to be the sequence < I'; ¢1, ¢2, .. . , ¢1 >, where I' is the
sequence of bits of length i given by

J' := bx(l)bx(2) · • · bx(2"-')

and

¢1, ¢2, · · · , ¢1

is a sequence of bit-complement automorphisms generating the group Q.

Output: < I'; ¢1, ¢2, ... , ¢1 >. \
It remains to prove that a processor can reconstruct I from its encoding. To do this

it executes the following decoding algorithm.
Decoding Algorithm:
Input: < I'; ¢1, ¢2, ... , ¢1 >, where J' is a string of length 2n-l and ¢1, (P2, ... , ¢1 are

bit-complement automorphisms.

1. Let g be the group generated by these automorphisms. Compute the set of orbits
of 9 in its natural action on Qn. There are 2n-! such orbits. For each orbit choose
as representative of the orbit the lexicographically minimal string in the orbit. Let
x(l), x(2), ... , x(2n- 1

) be the representatives chosen. Next the processor arranges
them in increasing order according to the lexicographic order -<, i.e. x(l) -< x(2) -<
... -< x(2n-l).

8

2. The previous coding algorithm guarantees that I' = bx(l)bx(2) · · · bx(2n.-1). Hence we
can "fill-in" the remaining bits to form the string I since bx = by for x, y in the
same orbit.

Output: I.
Indeed, by definition of the group 9 we have that for all ¢ E 9, ¢(I) = l. Hence by

lemma 3.1
Vx E Qn V</J E p (bx = b,p(x)),

where l =< bx : x E Qn >. This explains why the decoding algorithm works. The rest
of the details are left to the reader. I

Now we can prove the following theorem which significantly improves the upper
bound of theorem 2.1.

Theorem 3.1 There is an algorithm for computing every boolean function f E B N

{which is invariant under all bit-complement automorphisms} on the oriented hypercube
Qn, N = 2n, with bit complexity 0(N • log4 N).

Proof (Outline). For each fixed string x = Xi+l · · · Xn of bits of length n - i let

Qi(x) = {u1 · · •uix: u1, ... ,ui E {0, l}}.

For each processor p represented by the sequence p1 · · · Pn of bits the ith hypercube of p
is defined to be Qi(Pi+l · · · Pn)- Clearly we have that

Initially, 1i = "input bit to processor p" and each processor declares itself leader of
its 0-dimension hypercube Q0 (p) = {p }. The leaders at the ith step of the algorithm
are among those processors whose "view" 1; of their ith hypercube is lexicographically
maximal among the set of strings 1; with q an active leader (defined below). Assume by
induction that we have elected leaders for the (i - 1)th stage of the algorithm and that
each processor has a path to such a leader along its hypercube with edges _::; i - 1. We
show how to extend these assumptions to the ith stage of the algorithm. Thus the ith
stage of the new algorithm consists of the following steps.

1. The leader-processors send their encoded views of their hypercube to their neigh­
bors along the ith dimension.

2. The processors of the opposite hypercube receiving the views route them to their
leaders. (All the processors know routes to their leaders along their hypercube;
hence they can transmit the view received along such a route, say the lexico­
graphically minimal one.) Leaders that receive such encoded views become "active
leaders" ; they decode the messages aS in lemma 3.3 compute the corresponding
views of their neighbors along their ith edge and append it to their own view thus
forming views at step i. To compute the view of their neighbors along their ith
edge each leader f executes the following algorithm

(a) Let f's neighbor along the ith edge be p and let 1 .:S k1 , ... , kr .:S i - 1 be a
path along p's subcube leading to a leader f.' in this subcube (by the leader
position algorithm and the induction hypothesis we can assume that such a
path is known to p). By the previous argument the view 1;;-1 off.' is known
to f. Now f requests this path from its neighbor p.

9

< 211 processor::, < 211 leaders

< 210 leaders < 210 processors

Figure 1: Exchange of Views among Leaders in Hypercube Q,(x)

(b) Since <P{ki, ... ,kr}(l') =pit is clear that l can compute p's view via the identity

3. Active leaders send an "Active Leader" message to all their edges labeled ~ i - 1
in order to inform the rest of the processors they are active (this is similar to the
leader position algorithm below) . New leaders can now be elected among the active
leaders which have lexicographically maximal view. These leaders use the coding
algorithm previously described in order to code their views. They also inform the
rest of the processors of the hypercube Qi(x) of their position in the hypercube
(see leader-position algorithm below).

4. Return to 1 and iterate, for i = 1, 2, ... , log N.

The above algorithm is depicted in figure 1.
To inform the rest of the processors of their position the leaders execute the following

algorithm.
Leader-position Algorithm

1. Initialize L := LEADER.

2. For j = 0 to i do

(a) send L to all neighbors in subcube

(b) processor receiving L via edge labeled k appends k to L, i.e. L :=< L, k >.

After i steps the processors will receive paths, like

indicating that a leader can be found along the path indicated by the sequence

The total bit complexity of this algorithm is 0(2i . i3).

Now we estimate the bit complexity of the algorithm. The coding and decoding
algorithms are "internal" and do not contrjbute anything to the total bit complexity.
Suppose there are ~ 21 leaders elected at the ith step of the algorithm, there exists

a message w of length i-1 and a sequence of l ~ i bit-complement automorphisms of
the hypercube Qi which "code" the view 1;. Since only the leaders transmit messages
at the ith step while the rest of the processors are "routing" messages to the leaders
(processors are always at a distance ~ i from a leader, since the diameter of the ith
hypercube is i), the total bit complexity a~ the ith step of the algorithm is 0(2i • i3

)

(since each encoded view consists of at most' i bit-complement automorphisms and each
bit-complement automorphism can be coded with i bits). Clearly this algorithm is
applied to 2n-i subcubes simultaneously. Since the algorithm is iterated log N times it
follows that the bit complexity of the new algorithm is

logN

L 2n-i · O(i · i3
) = O(N -log4 N).

i=l

This proves the theorem. I

·4 Symmetric Functions

For the case of symmetric functions the algorithm given in section 2.1 may be modified
to achieve an even better bit complexity.

Theorem 4.1 On the oriented hypercube Qn, every symmetric function can be computed
in O(N • log2 N) bits. Moreover the threshold function Thk can be computed in O(N •
log N - log k) bits, where k ~ N .

Proof. The idea of the proof of theorem 2.1 can be used to compute the threshold
function Thk. We employ exactly the same algorithm, however in this case, the processors
need only transmit the minimum between k and the number of ls they have encountered
so far, which requires at most log k bits. Consequently we obtain the inequality T(N) ~
2. T(N /2) + N · log k. It follows that T(N) ~ N · log N · log k, as desired. Symmetric
functions are handled in the same way. In each stage the processors transmit the exact
number of ls encountered. I

Clearly, the above can be used to compute the OR of N variables in O(N · log N)
bits. The same bit comple)city holds for the parity function by just remembering wether
the number of ls is even or odd. The lower bound proof given in [ASW85] may be
modified to show that any symmetric function requires 0(N · log N) bits to compute
on the hypercube. Thus the algorithm of \heorem 4.1 is optimal to within a factor of
O(log N) for arbitrary symmetric functions and is exactly optimal for the functions ORN
and parity.

5 Conclusion and Further Work

In this paper we developed an efficient algorithm for computing all computable boolean
functions on the anonymous, oriented hypercube with bit complexity O(N - log4 N). For
the case of symmetric functions this may be improved to 0(N • log2 N) bits. Little
seems to be known for the unlabeled, anonymous hypercube, except for the results of
[KK vdB90] which gives algorithms computing symmetric functions with bit complexity
O(N · log3 N) and arbitrary functions with bit complexity O(N4

- log4 N).

11

Our algorithm was based on the coding-decoding mechanism of the views. In turn,
the efficiency of this mechanism was based on the fact that that every permutation group
g has O(log JQJ) generators. Thus it is possible to extend our main theorem to abelian
groups. Furthermore, in the oriented torus on N = mn nodes, composed of oriented
rings of size m there is an algorithm for computing all computable boolean functions
with bit complexity O(N1+2/n • log4 N/ log3 m). Applications of this technique to more
general anonymous Caley graphs are investigated in [KK90].

6 Acknowledgements

We are grateful to L. Meertens, J. Tromp and P. Vitanyi for many fruitful conversations

References

[ASW85] C. Attiya, M. Snir, and M. Warmuth. Computing on an anonymous ring.
In 4th Annual ACM Symposium on Principles of Distributed Computation,
pages 196 - 203, 1985.

[BB89] P. W. Beame and H. L. Bodlaender. Distributed computing on transitive
networks: The torus. In B. Monien and R. Cori, editors, 6th Annual Sympo­
sium on Theoretical Aspects of Computer Science, STAGS, pages 294-303.
Springer Verlag Lecture Notes in Computer Science, 1989.

[KK90] E. Kranakis and D. Krizanc. Computing boolean functions on Caley graphs,
1990. In preparation.

[KKvdB90] E. Kranakis, D. Krizanc, and J. van der Berg. Computing boolean functions
on anonymous networks. In M. S. Paterson, editor, Proceedings of !GALP
90, volume 443. Springer Verlag Lecture Notes in Computer Science, 1990.

[Wie64] H. Wielandt. Finite Permutation Groups. Academic Press, 1964.

[YK88] M. Yamashita and T. Kameda. Computing on an anonymous network. In 7th
Annual A CM Symposium on Principles of Distributed Computation, pages
J 17 - 130, 1988.

12

