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Abstract 

We study the bit-complexity (i.e. total number of bits transmitted) of com­
puting boolean functions on anonymous oriented hypercubes. We characterize the 
class of boolean functions computable in the anonymous oriented hypercube as 
exactly those boolean functions which are invariant under all bit-complement au­
tomorphisms of the hypercube and provide an algorithm for computing all such 
functions with bit complexity O(N -log4 N). Thus among all studied oriented net­
works (rings, tori, etc) the hypercube seems to achieve "optimal" bit complexity 
for a given number of nodes. 
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1 Introduction 

The problem of characterizing the computable boolean functions in a given network 
of anonymous processors and of providing efficient algorithms for computing all such 
functions in the network has been considered in the literature for the case of rings 
[ASW85) and tori [BB89]. However, despite its versatility very little seems to be known 
concerning the a.hove problem on the hypercube. The present paper is devoted to the 
construction of a new efficient algorithm for the computation of boolean functions on 
an oriented anonymous network consisting of ideHtical processing elements which are 
connected in a hypercube topology. We show how to achieve bit complexity O(N-log4 N) 
for the total number of bits transmitted in computing boolean functions on such a 
network. 

1.1 Assumptions 

We make the following assumptions regarding the network and its processors: 

1. the processors know the network topology and the size of the network (i.e., total 
number of processors), 

2. the processors are anonymous (i.e., they do not know either the identities of them-
selves or of the other processors), 

3. the processors are identical (i.e., they all run the same algorithm), 

4. the processors are deterministic, 

5. the network is asynchronous, 

6. the network is oriented (by orientation we mean a global, consistent labeling of the 
network links), 

7. the network links are FIFO. 

1.2 Labeled and Oriented Hypercubes 

Let Qn = (V, E) be the n-dimensional hypercube. The node set V consists of all bit 
sequences (x1, ... , xn) of length n and the edge set E consists of all pairs of nodes 
differing in exactly one component. By a labeling of Qn we understand a function that 
for all nodes v E V, associates the values 1, 2, ... , n to the links incident with v. More 
formally it is a function,£, on the set {(x,y),(y,x): {x,y} EE}, such that for each 
node v E V the mapping u - £( v, u) is 1 - 1 on the set of neighbors u of v. Note that 
in general£( u, v) f:- £( v, u ). If Qn has an associated labeling£ then it is called a labeled 
hypercube and is denoted by Qn[£]. Otherwise it is called an unlabeled hypercube. If 
we want to emphasize that a certain labeling is known to all processors of the network 
then we call the labeling an orientation. 

A natural orientation of the hypercube is the following labeling £: the edge connect­
ing nodes x = (x1, ... , xn) and y = (Y1, ... , Yn) is labeled by i if and only if Xi f:- Yi, i.e. 
£(x,y) = £(y,x) = i. In the sequel we will refer to a hypercube with this labeling as an 
oriented hypercube. 
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An automorphism of a network is a permutation of the node set of the network which 
preserves both incidence and labeling. Let Aut(N) be the group of automorphisms of the 
network N. It is clear that Aut(N) is a subgroup of the symmetric group of permutations 
SN. A boolean function f E B N ( the set of Boolean functions on N variables) is invariant 
under a permutation a E SN if for all inputs x1, ... , XN, 

We denote by S(f) the set of permutations in SN that leave f invariant. The auto­
morphism group of a network provides a necessary (but not always sufficient [YK88]) 
condition for a boolean function to be computable on the network. It is easy to show 
that any boolean function f E B N computable on a network N is invariant under all 
the automorphisms of the network. An automorphism ¢ of the network N is consistent 
with a labeling£ if for any adjacent nodes?,Y, £(x,y) = £(</J(x),</J(y)). A labeling of 
the edges of N is consistent with a group CJ ~ Aut(N) of automorphisms of N if any 
automorphism cf; E G is consistent with £. We denote by Aut(N[£]) the group of auto­
morphisms of N that are consistent with £. In the same manner we can show that any 
function computable on the network N[£] is invariant under the group of automorphisms 
Aut(N[£]). 

Of particular interest in the case of the oriented hypercube are the bit-complement 
automorphisms that complement the bits of certain components, i.e. for any set S ~ 
{1, ... , n} let ¢s(x1, ... , xn) = (Y1, ... , Yn), where Yi = Xi + l, if i E S, and Yi = Xi 
otherwise (here addition is modulo 2). Let Fn denote the group of bit-complement 
automorphisms of Qn. It is easy to show the following: 

Theorem 1.1 The group of automorphisms of the oriented hypercube Qn is exactly the 
group Fn of bit-complement automorphisms. I 

1.3 Related Literature 

For any boolean function f on N variables let S(f) be the group of permutations that 
leave f invariant on all inputs. For the case of the ring [ASW85] gives algorithms both 
for the oriented and unoriented ring with bit complexity O(N2

). In the oriented case 
they show that a boolean function f E BN is computable if and only if S(f) 2 CN, 
while in the unoriented case if and only if S(f) 2 DN (where CN, DN are the cyclic 
and dihedral groups on N letters, respectively). For the oriented torus [BB89] give an 
algorithm with bit complexity O(Nl.5 ) and show that a boolean function f E BN is 
computable if and only if S(f) 2 C../N ® C../N. A characterization of the computable 
functions in a general anonymous network was given by [YK88] but their algorithm was 
of exponential bit complexity. The first algorithm for general networks with polynomial 
bit complexity was given by [KKvdB90]. Despite the strong interest in hypercubes 
very little is known except for the case of computing symmetric functions. For this 
case, [KKvdB90] gives two "general purpose" algorithms, one based on Markov chains 
and having bit complexity 0( N • log4 N) and another taking advantage of the distance 
regular topology of the hypercube and having bit complexity O(N • log3 N). 
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1.4 Outline and Results of the Paper 

In this paper we develop a new efficient algorithm for computing all boolean functions 
( which are computable in the hypercube) with bit complexity O(N -log4 N). In the first 
part of the paper we concentrate on the prdblem of characterizing the class of boolean 
functions which are computable on the oriented hypercube. This leads us to a simple 
algorithm with bit complexity O(N2). In the second part of the paper we use ideas 
of the first part and elementary results from group theory in order to develop a more 
sophisticated algorithm with bit complexity 0( N · Iog4 N) . In addition we show that 
symmetric functions on a oriented hypercube are computable in O(N -log2 N) bits Here 
is a table comparing existing results on the complexity of computing boolean functions 
on various anonymous networks. 

Network Bit Complexity Paper 
(Un)Oriented Rings O(N2

) [ASW85] 
Oriented n-tori, n constant Q(Nl+l/n) [BB89] 
Oriented hypercubes O(N - log4 N) This paper 

2 Initial Algorithm 

In this section we characterize the class of boolean functions which are computable in 
the oriented hypercube in terms of its group of automorphisms and provide an algorithm 
with bit complexity O(N2

) for computing all such functions. We can prove the following 
theorem for the previously defined natural orientation of the hypercube. 

Theorem 2.1 On the oriented hypercube Qn of degree n and for any boolean function 
f E B N, N = 2n, f is computable on the hypercube Q n if and only if f is invariant 
under the bit-complement automorphisms of Qn . Moreover, the bit complexity of any 
such computable function is O(N2

) . 

Proof. The if part is easy. We need only prove the only if part. Let f E B N be invariant 
under all bit-complement automorphisms of the hypercube. The algorithm proceeds by 
induction on the dimension n of the hypercube. Intuitively, it splits the hypercube into 
two n - l dimensional hypercubes. The first hypercube consists of all nodes with Xn = 0 
and the second of all nodes with Xn = l. \ By the induction hypothesis the nodes of 
t hese hypercubes know the entire input configuration of their corresponding hypercubes. 
Every node in the hypercube with Xn = 0 is adjacent to unique node in the hypercube 
with Xn = l. By exchanging their information all processors will know the entire input 
configuration and hence they can all compute the value of f on the given input . More 
formally, the algorithm is as follows. For any sequences of bits I, J let I J denote the 
concatenation of l and J. Let 1; denote the input to processor p at the ith step of the 
computation. Initially Ii is the input bit to processor p. 

Algorithm for processor p: 
initialize: Ii is the input bit to processor p; 
for i := 0, ... , n - l do 

send message 1; to p's neighbor q along the ith link 
let 1~ be the message received by p from p's neighbor q along the ith link and 
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od; 
Put Ji+l ·= Ji Ji. p . p q, 

output J(I;:) 

To prove the correctness of the algorithm it must be shown that all processors output 
the same correct bit, i.e. for all processors p, q, J(I;:) = J(I;). Let IP = 1;: be the 
sequence obtained by processor p at the nth stage of the above algorithm. Let p, q 

be any two processors of the hypercube. Clearly, there is a unique bit-complement 
automorphism¢ satisfying ¢(p) = q, namely¢= <Ps, where i ES if and only if Pi-/: qi. 
Now it can be shown that this automorphism will map processor p's view of the input, 
Ip, to the view of processor q, Iq· For any sequence bxbx, · · · of bits indexed by elements 
x, x', ... E Qn define 

</J(bxbx, · · ·) = b</>(x)b</>(x') · · · • 

We can prove by induction on i ~ n = log N that ¢(I;) = J~(p)· This is clear for i = 0. 
Assume th~ result true for i. Let p', q' be p's and q's neighbors along the ith edge, 
respectively. Then by definition we have 

i+ 1 i i i+ 1 i i IP = IPJP, and Iq = Iqlq,. 

Since ¢; is a bit-complement automorphism and p, p' are connected via the ith edge it 
follows that </J(p) = q and </J(p') = q'. Using the induction hypothesis ¢(I;) = J~(p) we 
obtain 

<t>U;+l) = <t>(I;)<t>(I;,) = I!I!(p') = 1;+1 = 1t:) 
This completes the inductive proof. It follows now that ¢(Ip) = Iq which implies that 
f(Ip) = J(Iq), since f is invariant under thE\ bit-complement automorphisms of Qn-

To study the bit complexity of the above algorithm, let T( N) be the number of 
bits transmitted in order that at the end of the computation all the processors in the 
hypercube know the input of the entire hypercube. By performing a computation on 
each of the two n - 1-dimensional hypercubes we obtain that their nodes will know 
the entire input corresponding to their nodes in T(N /2) bits. The total number of bits 
transmitted in this case is 2 • T( N /2). The final exchange transmission consists of N /2 
bits being transmitted by N /2 nodes to their N /2 corresponding other nodes, for a total 
of 2 • N/2 • N/2 = N 2/2. Hence we have proved that T(N) ~ 2 · T(N/2) + N 2 /2. It 
follows that T( N) ~ N 2

, as desired. I 
Contrasting oriented and unlabeled hypercubes we have the following result. 

Theorem 2. 2 For n ~ 2, there exist boolean functions f E B N, N = 2n, computable on 
the oriented hypercube but not computable on the unlabeled hypercube Qn-

Proof. Define the boolean function f on inputs < bx : x E Qn > as follows. The value 
of f is O if for all adjacent nodes x, y with edge labeled by 1, bx = by, otherwise it is 
equal to 1. More formally, 

!( b . V )-{ 0 ifYx,y(£(x,y) = 1 ⇒ bx= by) 
<x.XE >- h. 1 ot erw1se. 

It is easy to see that f is kept invariant by all bit-complement automorphisms of Qn but 
this is not true for any bit-permuting automorphism <Pu such that a(l) -=f 1 where 

<Pu(X1, · · ·, Xn) = (Xu(l), · · ·, Xu(n)) 
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since such an automorphism will also move the label. It follows that Fn ~ S(f), but 
Fn · Pn Cl S(J), where S(J) is the group of permutations in SN that keep the boolean 
function J invariant under all inputs. I 

3 Main Algorithm 

In this section we make several alterations to the previous algorithm and show how to 
improve the complexity bound to O(N-log4 N), for each boolean function J E EN which 
is computable in the hypercube. In all our subsequent discussions we use the notation 
and terminology given in the previous section. As before the new algorithm is also 
executed in n = Jog N steps, one step per dimension. However, now we take advantage 
of the fact that the transmitted views 1; provide information to p about the rest of "its 
hypercube". The main ingredients of the new algorithm are the following. 

• We introduce a leader election mechanism which for each i ~ log N elects leaders 
among the processors with lexicographically maximal view at the ith step of the 
algorithm. 

• We use elementary results from the theory of finite permutation groups [Wie64] in 
order to introduce a coding mechanism of the views; leaders at the ( i - 1 )st step 
exchange the encoded versions of their views 1;-1

; upon receipt of the encoded 
view they recover the original view sent and elect new leaders for the ith step. 

• The leader election and coding mechanisms help keep low the number of bits trans-
mitted during the i th step of the algorithm to 0( N • i3 ) bits. 

The technical details of the above description will appear in the sequel. We begin with 
some preliminary lemmas that will be essential in the proof of the main theorem. 

Lemma 3.1 If IP= Iq then the hypercube as viewed from p is identical to the hypercube 
as viewed from q. More formally, for each p let IP =< b"' : x E N >. If Ip = Iq and 
<P = <Ps, where S = {i ~ n: Pi:/ qi}, then Vx E Qn(bx = bcf,(x))-

Proof. Indeed, notice that since q = </J(p) 

which proves the result. I 

Lemma 3. 2 Let I be a fixed sequence of bits of length 2n. Then the number of processors 
p such that IP= I is either O or a power of 2. Moreover the set of processors p such that 
IP = I can be identified with a natural group of bit-complement automorphisms. 

Proof. Let .:J be the set of processors q sati~fying Iq = I and assume that .:J :/ 0. Let p 
be an arbitrary but fixed element of .:J. It is clear that for each q E .:J there is a unique 
bit-complement automorphism </Jq E Fn such that </Jq(P) = q. It follows that the set 

9 = { </Jq : q E .:J} 
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is equipotent to J . It can be shown easily that 

9 = { </> E Fn : </>(p) E :J}. 

We now show that 9 is a subgroup of Fn. Assuming this it would follow from the well­
known theorem of Lagrange that the order of this group must divide the order of Fn 
which is exactly 2n. Hence 191 is a power of 2. It remains to show that 9 is a subgroup 
of Fn. We show that it is closed under composition. Let ¢, 'I/; E Q, i.e. by definition we 
have that 

\ 

Itf>(p) = 1,;,(p) = I. 
Then we have that 

1¢(,f,(v)) = ¢>(1,;,(p)) = ¢>(Iv) = ltf>(v) = I. 

Since the identity element is in Q, it follows that the latter is a group. It also remains to 
show that 9 is independent of the choice of the element p E :J. Indeed, let Q' be defined 
like Q but using another element p' E J. Let 'I/; be a bit-complement automorphism such 
that '1/;(p) = p'. Elementary calculations and the fact that Q is an abelian group show 
that 

This proves the first part of the lemma. 
To prove the second assertion we note that Fn can be identified with an n-dimensional 

vector space over the finite field Z2 = {O, 1} of two elements. The standard basis of this 
vector space consists of the bit-complement automorphisms 

<P{l}, <P{2}, · · ·, <P{n}· 

Any other bit-complement automorphism ¢s can be written as the sum (which in this 
case is the regular composition of functions) of the automorphisms <P{i}, where i E S. 
As a vector subspace 9 has a base consisting of a fixed number of bit-complement 
automorphisms. This proves the lemma. I 

Clearly the group 9 defined in lemma 3.2 depends on the string J. However we avoid 
mentioning it explicitely in Q in order to avoid unnecessary notational complications. 

Lemma 3.3 If 191 = 21 then I can be coded with a string of length 2n-l and l bit­
complement automorphisms. 

Proof (Outline). We continue using the notation of lemma 3.2. The group g defined 
above has a natural action on the hypercube Qn. For each x E Qn let x 9 be the orbit of 
x under Q, i.e. 

x 9 = {</>(xy: ¢ E Q}. 

For each x the stabilizer 9x of Q under x is the identity group, where the stabilizer group 
[Wie64] is defined by 

9x = {<PE 9 : </>(x) = X }. 

By the well-known stabilizer theorem [Wie64] 
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Since 19., I = l we obtain that all the orbits of 9 have exactly the same size, namely 
191 = 21, and since IQnl = 2n, there are exactly 

pairwise disjoint orbits. 
The above discussion gives rise to the following "coding" algorithm which can be 

applied by the processors concerned in order to code the given configuration I with a 
new (generally shorter) string. Each processor that knows J can execute the following 
"coding algorithm" (i.e. processor p applies this algorithm to the string I= 1;). 

Coding Algorithm: 
Input: I =< b., : x E Qn > is the given configuration, where bx is the bit corre­

sponding to processor x . 

l. Compute the group 9 of bit-complement aut omorphisms ¢ such that 

Vp E Qn(Ip = I ⇒ lrf>(p) = I). 
Assume that l is such that 191 = 21. 

2. Compute a set of l generators, i.e. bit-complement automorphisms ¢1, ... , ¢1 which 
generate the group 9. 

3. Compute the set of orbits of 9 in its natural action on Qn . There are 2n-l such 
orbits. For each orbit the processors choose a representative of the orbit in some 
canonical way, say lexicographically minimal; let x(l ), x(2), ... , x(2n-l) be the rep­
resentatives chosen. Next the processor arranges them in increasing order according 
to the lexicographic order -<, i.e. x(l) -< x(2) -< . . . -< x(2n-1) . 

4. The code of I is defined to be the sequence < I'; ¢1, ¢2, .. . , ¢1 >, where I' is the 
sequence of bits of length i given by 

J' := bx(l)bx(2) · • · bx(2"-') 

and 

¢1, ¢2, · · · , ¢1 

is a sequence of bit-complement automorphisms generating the group Q. 

Output: < I'; ¢1, ¢2, ... , ¢1 >. \ 
It remains to prove that a processor can reconstruct I from its encoding. To do this 

it executes the following decoding algorithm. 
Decoding Algorithm: 
Input: < I'; ¢1, ¢2, ... , ¢1 >, where J' is a string of length 2n-l and ¢1, (P2, ... , ¢1 are 

bit-complement automorphisms. 

1. Let g be the group generated by these automorphisms. Compute the set of orbits 
of 9 in its natural action on Qn. There are 2n-! such orbits. For each orbit choose 
as representative of the orbit the lexicographically minimal string in the orbit. Let 
x(l), x(2), ... , x(2n- 1

) be the representatives chosen. Next the processor arranges 
them in increasing order according to the lexicographic order -<, i.e. x(l) -< x(2) -< 
... -< x(2n-l). 
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2. The previous coding algorithm guarantees that I' = bx(l)bx(2) · · · bx(2n.-1). Hence we 
can "fill-in" the remaining bits to form the string I since bx = by for x, y in the 
same orbit. 

Output: I. 
Indeed, by definition of the group 9 we have that for all ¢ E 9, ¢(I) = l. Hence by 

lemma 3.1 
Vx E Qn V</J E p (bx = b,p(x)), 

where l =< bx : x E Qn >. This explains why the decoding algorithm works. The rest 
of the details are left to the reader. I 

Now we can prove the following theorem which significantly improves the upper 
bound of theorem 2.1. 

Theorem 3.1 There is an algorithm for computing every boolean function f E B N 

{which is invariant under all bit-complement automorphisms} on the oriented hypercube 
Qn, N = 2n, with bit complexity 0( N • log4 N). 

Proof (Outline). For each fixed string x = Xi+l · · · Xn of bits of length n - i let 

Qi(x) = {u1 · · •uix: u1, ... ,ui E {0, l}}. 

For each processor p represented by the sequence p1 · · · Pn of bits the ith hypercube of p 
is defined to be Qi(Pi+l · · · Pn)- Clearly we have that 

Initially, 1i = "input bit to processor p" and each processor declares itself leader of 
its 0-dimension hypercube Q0 (p) = {p }. The leaders at the ith step of the algorithm 
are among those processors whose "view" 1; of their ith hypercube is lexicographically 
maximal among the set of strings 1; with q an active leader ( defined below). Assume by 
induction that we have elected leaders for the ( i - 1 )th stage of the algorithm and that 
each processor has a path to such a leader along its hypercube with edges _::; i - 1. We 
show how to extend these assumptions to the ith stage of the algorithm. Thus the ith 
stage of the new algorithm consists of the following steps. 

1. The leader-processors send their encoded views of their hypercube to their neigh­
bors along the ith dimension. 

2. The processors of the opposite hypercube receiving the views route them to their 
leaders. (All the processors know routes to their leaders along their hypercube; 
hence they can transmit the view received along such a route, say the lexico­
graphically minimal one.) Leaders that receive such encoded views become "active 
leaders" ; they decode the messages aS in lemma 3.3 compute the corresponding 
views of their neighbors along their ith edge and append it to their own view thus 
forming views at step i. To compute the view of their neighbors along their ith 
edge each leader f executes the following algorithm 

(a) Let f's neighbor along the ith edge be p and let 1 .:S k1 , ... , kr .:S i - 1 be a 
path along p's subcube leading to a leader f.' in this subcube (by the leader 
position algorithm and the induction hypothesis we can assume that such a 
path is known to p ). By the previous argument the view 1;;-1 off.' is known 
to f. Now f requests this path from its neighbor p. 
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< 211 processor::, < 211 leaders 

< 210 leaders < 210 processors 

Figure 1: Exchange of Views among Leaders in Hypercube Q,(x) 

(b) Since <P{ki, ... ,kr}(l') =pit is clear that l can compute p's view via the identity 

3. Active leaders send an "Active Leader" message to all their edges labeled ~ i - 1 
in order to inform the rest of the processors they are active ( this is similar to the 
leader position algorithm below) . New leaders can now be elected among the active 
leaders which have lexicographically maximal view. These leaders use the coding 
algorithm previously described in order to code their views. They also inform the 
rest of the processors of the hypercube Qi( x) of their position in the hypercube 
(see leader-position algorithm below). 

4. Return to 1 and iterate, for i = 1, 2, ... , log N. 

The above algorithm is depicted in figure 1. 
To inform the rest of the processors of their position the leaders execute the following 

algorithm. 
Leader-position Algorithm 

1. Initialize L := LEADER. 

2. For j = 0 to i do 

(a) send L to all neighbors in subcube 

(b) processor receiving L via edge labeled k appends k to L, i.e. L :=< L, k >. 

After i steps the processors will receive paths, like 

indicating that a leader can be found along the path indicated by the sequence 

The total bit complexity of this algorithm is 0(2i . i3 ). 

Now we estimate the bit complexity of the algorithm. The coding and decoding 
algorithms are "internal" and do not contrjbute anything to the total bit complexity. 
Suppose there are ~ 21 leaders elected at the ith step of the algorithm, there exists 



a message w of length i-1 and a sequence of l ~ i bit-complement automorphisms of 
the hypercube Qi which "code" the view 1;. Since only the leaders transmit messages 
at the ith step while the rest of the processors are "routing" messages to the leaders 
(processors are always at a distance ~ i from a leader, since the diameter of the ith 
hypercube is i), the total bit complexity a~ the ith step of the algorithm is 0(2i • i3

) 

(since each encoded view consists of at most' i bit-complement automorphisms and each 
bit-complement automorphism can be coded with i bits). Clearly this algorithm is 
applied to 2n-i subcubes simultaneously. Since the algorithm is iterated log N times it 
follows that the bit complexity of the new algorithm is 

logN 

L 2n-i · O(i · i3
) = O(N -log4 N). 

i=l 

This proves the theorem. I 

·4 Symmetric Functions 

For the case of symmetric functions the algorithm given in section 2.1 may be modified 
to achieve an even better bit complexity. 

Theorem 4.1 On the oriented hypercube Qn, every symmetric function can be computed 
in O(N • log2 N) bits. Moreover the threshold function Thk can be computed in O(N • 
log N - log k) bits, where k ~ N . 

Proof. The idea of the proof of theorem 2.1 can be used to compute the threshold 
function Thk. We employ exactly the same algorithm, however in this case, the processors 
need only transmit the minimum between k and the number of ls they have encountered 
so far, which requires at most log k bits. Consequently we obtain the inequality T(N) ~ 
2. T(N /2) + N · log k. It follows that T(N) ~ N · log N · log k, as desired. Symmetric 
functions are handled in the same way. In each stage the processors transmit the exact 
number of ls encountered. I 

Clearly, the above can be used to compute the OR of N variables in O(N · log N) 
bits. The same bit comple)city holds for the parity function by just remembering wether 
the number of ls is even or odd. The lower bound proof given in [ASW85] may be 
modified to show that any symmetric function requires 0( N · log N) bits to compute 
on the hypercube. Thus the algorithm of \heorem 4.1 is optimal to within a factor of 
O(log N) for arbitrary symmetric functions and is exactly optimal for the functions ORN 
and parity. 

5 Conclusion and Further Work 

In this paper we developed an efficient algorithm for computing all computable boolean 
functions on the anonymous, oriented hypercube with bit complexity O(N - log4 N). For 
the case of symmetric functions this may be improved to 0( N • log2 N) bits. Little 
seems to be known for the unlabeled, anonymous hypercube, except for the results of 
[KK vdB90] which gives algorithms computing symmetric functions with bit complexity 
O(N · log3 N) and arbitrary functions with bit complexity O(N4 

- log4 N). 
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Our algorithm was based on the coding-decoding mechanism of the views. In turn, 
the efficiency of this mechanism was based on the fact that that every permutation group 
g has O(log JQJ) generators. Thus it is possible to extend our main theorem to abelian 
groups. Furthermore, in the oriented torus on N = mn nodes, composed of oriented 
rings of size m there is an algorithm for computing all computable boolean functions 
with bit complexity O(N1+2/n • log4 N/ log3 m). Applications of this technique to more 
general anonymous Caley graphs are investigated in [KK90]. 
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