2,695 research outputs found

    Modeling Routing Overhead Generated by Wireless Proactive Routing Protocols

    Full text link
    In this paper, we present a detailed framework consisting of modeling of routing overhead generated by three widely used proactive routing protocols; Destination-Sequenced Distance Vector (DSDV), Fish-eye State Routing (FSR) and Optimized Link State Routing (OLSR). The questions like, how these protocols differ from each other on the basis of implementing different routing strategies, how neighbor estimation errors affect broadcast of route requests, how reduction of broadcast overhead achieves bandwidth, how to cope with the problem of mobility and density, etc, are attempted to respond. In all of the above mentioned situations, routing overhead and delay generated by the chosen protocols can exactly be calculated from our modeled equations. Finally, we analyze the performance of selected routing protocols using our proposed framework in NS-2 by considering different performance parameters; Route REQuest (RREQ) packet generation, End-to-End Delay (E2ED) and Normalized Routing Load (NRL) with respect to varying rates of mobility and density of nodes in the underlying wireless network

    Adaptive link-weight routing protocol using cross-layer communication for MANET

    Get PDF
    Routing efficiency is one of the challenges offered by Mobile Ad-hoc Networks (MANETs). This paper proposes a novel routing technique called Adaptive Link-Weight (ALW) routing protocol. ALW adaptively selects an optimum route on the basis of available bandwidth, low delay and long route lifetime. The technique adapts a cross-layer framework where the ALW is integrated with application and physical layer. The proposed design allows applications to convey preferences to the ALW protocol to override the default path selection mechanism. The results confirm improvement over AODV in terms of network load, route discovery time and link reliability

    Multipath optimized link state routing for mobile ad hoc networks

    Get PDF
    International audienceMultipath routing protocols for Mobile Ad hoc NETwork (MANET) address the problem of scalability, security (confidentiality and integrity), lifetime of networks, instability of wireless transmissions, and their adaptation to applications. Our protocol, called MP-OLSR (MultiPath OLSR), is a multipath routing protocol based on OLSR. The Multipath Dijkstra Algorithm is proposed to obtain multiple paths. The algorithm gains great flexibility and extensibility by employing different link metrics and cost functions. In addition, route recovery and loop detection are implemented in MP-OLSR in order to improve quality of service regarding OLSR. The backward compatibility with OLSR based on IP source routing is also studied. Simulation based on Qualnet simulator is performed in different scenarios. A testbed is also set up to validate the protocol in real world. The results reveal that MP-OLSR is suitable for mobile, large and dense networks with large traffic, and could satisfy critical multimedia applications with high on time constraints

    Evaluating Impact of Mobility on Wireless Routing Protocols

    Full text link
    In this paper, we evaluate, analyze, and compare the impact of mobility on the behavior of three reactive protocols (AODV, DSR, DYMO) and three proactive protocols (DSDV, FSR, OLSR) in multi-hop wireless networks. We take into account throughput, end-to-end delay, and normalized routing load as performance parameters. Based upon the extensive simulation results in NS-2, we rank all of six protocols according to the performance parameters. Besides providing the interesting facts regarding the response of each protocol on varying mobilities and speeds, we also study the trade-offs, the routing protocols have to make. Such as, to achieve throughput, a protocol has to pay some cost in the form of increased end-to-end delay or routing overhead

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol
    • …
    corecore