463 research outputs found

    Routing of guaranteed throughput traffic in a network-on-chip

    Get PDF
    This paper examines the possibilities of providing throughput guarantees in a network-on-chip by appropriate traffic routing. A source routing function is used to find routes with specified throughput for the data streams in a streaming multiprocessor system-on-chip. The influence of the routing algorithm, network topology and communication locality on the routing performance are studied. The results show that our method for providing throughput guarantees to streaming traffic is feasible. The communication locality has the strongest influence on the routing performance while the routing algorithm has weakest influence. Therefore, the mapping algorithm is of greater importance for the system performance than the routing algorithm and it is profitable to use a more complex mapping algorithm that preserves the communication locality together with a simple routing algorithm

    CCL: a portable and tunable collective communication library for scalable parallel computers

    Get PDF
    A collective communication library for parallel computers includes frequently used operations such as broadcast, reduce, scatter, gather, concatenate, synchronize, and shift. Such a library provides users with a convenient programming interface, efficient communication operations, and the advantage of portability. A library of this nature, the Collective Communication Library (CCL), intended for the line of scalable parallel computer products by IBM, has been designed. CCL is part of the parallel application programming interface of the recently announced IBM 9076 Scalable POWERparallel System 1 (SP1). In this paper, we examine several issues related to the functionality, correctness, and performance of a portable collective communication library while focusing on three novel aspects in the design and implementation of CCL: 1) the introduction of process groups, 2) the definition of semantics that ensures correctness, and 3) the design of new and tunable algorithms based on a realistic point-to-point communication model

    Open queueing networks : optimization and performance evaluation models for discrete manufacturing systems

    Get PDF
    Includes bibliographical references (p. 41-45).Research supported by Fundac̦ão de Amparo a Pesquisa do Estado de São Paulo, Brazil.by Gabriel R. Bitran, Reinaldo Morabito

    Bin Packing Problem with uncertainty on item availability: an application to Capacity Planning in Logistics

    Get PDF
    Most modern companies are part of international economic networks, where goods are produced under different strategies, then transported over long distances and stored for variable periods of time at different locations along the considered network. These activities are often performed by first consolidating goods in appropriate bins, which are then stored at warehouses and shipped using multiple vehicles through various transportation modes. Companies thus face the problem of planning for sufficient capacity, e.g., negotiating it with third party logistic firms (3PLs) that specify both the capacity to be used and the logistical services to be performed. Given the time lag that usually exists between the capacity-planning decisions and the operational decisions that define how the planned capacity is used, the common assumption that all information concerning the parameters of the model is known is unlikely to be observed. We therefore propose a new stochastic problem, named the Variable Cost and Size Bin Packing Problem with Stochastic Items. The problem considers a company making a tactical capacity plan by choosing a set of appropriate bins, which are defined according to their specific volume and fixed cost. Bins included in the capacity plan are chosen in advance without the exact knowledge of what items will be available for the dispatching. When, during the operational phase, the planned capacity is not sufficient, extra capacity must be purchased. An extensive experimental plan is used to analyze the impact that diversity in instance structure has on the capacity planning and the effect of considering different levels of variability and correlation of the stochastic parameters related to items

    Network flow solution method for optimal evacuation traffic routing and signal control with nonuniform threat

    Get PDF
    An efficient two-stage network flow approach is proposed for the determination of optimal scenarios for integrated traffic routing and signal timing in the evacuation of real-sized urban networks with several threat zones, where the threat levels may be nonuniform across zones. The objective is to minimize total exposure to the threat (severity multiplied by duration) for all evacuees during the evacuation. In the problem formulation, traffic flow dynamics are based on the well-known point queue model in a time-expanded network representation. The proposed solution approach is adapted from a general relaxation-based decomposition method in a network flow formulation. The decomposition method is developed on the basis of insights into the optimal flow of traffic at intersections in the solution of the evacuation routing problem. As for efficiency, the computation time associated with the decomposition method for solving the integrated optimal routing and signal control problem is equivalent to the time required for solving the same optimal routing problem (without optimizing the intersection control plan) because the computation time required for determining the optimal signal control is negligible. The proposed solution method proves to be optimal. The method is implemented and applied to a real-sized evacuation scenario in the transportation network of Tucson, Arizona. The method is stress-tested with some inflated demand scenarios, and computation aspects are reported

    Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

    Full text link
    Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available

    Analysis of Computer Network Security Storage System Based on Cloud Computing Environment

    Get PDF
    A fundamental component of cloud computers from a business perspective is that users are allowed to use any desire and pay with a product that desire. Its cloud services were accessible anytime and anywhere consumers needed them. As a result, consumers are free to purchase whatever IT services they want, and they don't have to worry about how easy things can be managed. The remote server is used in a new information storage computing architecture that is considered an Internet generation. Ensuring security, material at resource providers' sites is a challenge that must be addressed in cloud technology. Thus, rather than reliance on a single provider for knowledge storing, this research implies developing construction for protection of knowledge stockpiling with a variation of operations, in which knowledge is scrambled and divided into numerous cipher frames and distributed across a large number of provider places. This support was applied to provide greater security, scalability, or reliability that was suggested according to the new structure. This paper, presented an encoded model for the cloud environment to improve security. The proposed model comprises the parity metadata for the database management provision to the provider. In the developed encoder chunks parity is not stored within the single resources with the provision of the available information chunks. The constructed security architecture in the RAID layer increases the dependability of the data with the deployment of the RAID 10 deployment. The developed RAID-based encoder chunks exhibit improved efficiency for the higher uptime at a minimal cost

    Application-Aware Deadlock-Free Oblivious Routing

    Get PDF
    Conventional oblivious routing algorithms are either not application-aware or assume that each flow has its own private channel to ensure deadlock avoidance. We present a framework for application-aware routing that assures deadlock-freedom under one or more channels by forcing routes to conform to an acyclic channel dependence graph. Arbitrary minimal routes can be made deadlock-free through appropriate static channel allocation when two or more channels are available. Given bandwidth estimates for flows, we present a mixed integer-linear programming (MILP) approach and a heuristic approach for producing deadlock-free routes that minimize maximum channel load. The heuristic algorithm is calibrated using the MILP algorithm and evaluated on a number of benchmarks through detailed network simulation. Our framework can be used to produce application-aware routes that target the minimization of latency, number of flows through a link, bandwidth, or any combination thereof
    corecore