
 

ABSTRACT 

This paper examines the possibilities of providing 

throughput guarantees in a network-on-chip by appropriate 

traffic routing. A source routing function is used to find 

routes with specified throughput for the data streams in a 

streaming multiprocessor system-on-chip. The influence of 

the routing algorithm, network topology and communication 

locality on the routing performance are studied.  

The results show that our method for providing throughput 

guarantees to streaming traffic is feasible. The 

communication locality has the strongest influence on the 

routing performance while the routing algorithm has weakest 

influence. Therefore, the mapping algorithm is of greater 

importance for the system performance than the routing 

algorithm and it is profitable to use a more complex mapping 

algorithm that preserves the communication locality together 

with a simple routing algorithm.  

I. INTRODUCTION 

Source routing [1] is a widely used method for 

deterministic and oblivious routing in multiprocessor 

interconnection networks. Its popularity is due to its speed, 

simplicity and scalability. With source routing all routing 

decisions for a packet are made by a central routing entity 

and stored in the source node. Each node contains a table 

with routes, at least one route per destination. The routes are 

computed and loaded in the nodes tables during application 

initialization.  

Source-table routing is used in the IBM 9076 SP1 

multicomputer. The routing algorithm used for computing 

the routes that fill the tables in the nodes is discussed in [2]. 

Its main objective is a uniform distribution of the routes in 

the network such that congestions are avoided and the 

network channels are equally loaded.  

In this paper we also study a routing algorithm that will be 

used for computing the routes to be loaded in the source-

routing tables. It is based on the same algorithm used in the 

SP1 but in our approach together with routes computation 

the routing is used to provide throughput guarantees for data 

streams.  

The routing algorithm we consider will be used at run-time 

and therefore has to be simple and fast. It will work in a 

dynamic, adaptable multiprocessor system-on-chip (MPSoC) 

as a part of its OS. The hardware architecture consists of a 

number of processing elements (PEs) communicating 

through a network-on-chip (NoC). At run-time the OS, 

running on one of the PEs, starts and stops applications in 

response to its interaction with the user and the environment. 

Several applications can run in the system at a time. An 

application can run on more than one PE. When the OS starts 

an application it allocates PEs where the application 

processes will run and routes the communication channels 

between the processes. The calculated routes are then loaded 

in the route tables of the corresponding PEs. Routing is done 

for the communication channels of the application only and 

consequently the source tables contain routes to a restricted 

number of PEs.  

The MPSoC we consider will be used for mobile 

multimedia devices where most of the applications are 

streaming and energy is an issue. Streaming applications 

usually have simple linear application graphs – a data stream 

flows through a pipe of PEs. From our experience we can 

assume then the data streams account for more than 90% of 

the system traffic. In this work we consider only the 

streaming data traffic. The traffic patterns used in the SP1 

are more typical for general parallel algorithms.  

Most of the streaming applications running on the system 

are real-time applications and require guaranteed network 

services. In our system a routing function is used to find 

routes with a certain throughput guarantees for the data 

streams of the applications. Knowing the routes of all data 

streams that are already in the system, the routing algorithm 

can predict what the performance of a newly routed channel 

will be. Thus, the routing algorithm can search for a route 

that provides requested guarantees. This is the way in which 

throughput guarantees are provided to data streams in our 

network.  

This paper focuses on the routing of guaranteed 

throughput (GT) traffic only. Our objectives are i) to show 

that the method for providing throughput guarantees is 

feasible ii) to find the limits for the provided guarantees. 

Three main factors influencing the routing performance are 

taken into account in this work: routing algorithm, network 

topology and traffic locality. Experiments are made with two 

routing algorithms, two network topologies, and three traffic 

locality models.  

The paper is organized as follows. Section II presents the 
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approaches for providing service guarantees used in other 

on-chip networks. Section III introduces our network and 

explains how it provides throughput guarantees. In Section 

IV the traffic models used in the simulations are presented. 

Section V presents the routing function used during the 

simulation. Section VI presents and discusses the simulation 

results.  

II. RELATED WORK 

In the Ethereal network-on-chip [7] guaranteed services 

are based on the time-division multiple-access (TDMA) 

scheme. The best effort service is based on wormhole routing 

that utilizes the time slot not used by the guaranteed services.  

In the Nostrum network-on-chip [9] guaranteed services 

are based on temporally disjoint networks (a technique 

related to TDMA) and looped container virtual circuits (a 

time slots reservation scheme). Since the approaches used in 

Nostrum and Ethereal are based on time slots, they require a 

global notion of time in the network and in the system.  

Another approach for providing guaranteed services in 

network-on-chip is introducing traffic priorities. This 

approach is used in [8], where in a virtual channel network 

the virtual channels have static priorities. The virtual 

channels on a network channel have different priorities and 

provide different service guarantees. But these service 

guarantees are traffic dependent. The throughput of the lower 

priority channels depends on the bandwidth utilized by the 

higher priority channels. The relation between throughput 

and latency of a data stream is not direct but depends on the 

size of the packets passing the higher priority virtual 

channels, so it is hard to give guarantees.  

III. NETWORK AND THROUGHPUT GUARANTES 

The network interconnecting the PEs in the system is a 

packet-switching virtual channel network [3]. In a virtual 

channel network on top of every network channel there are 

several virtual channels (VCs). In our network the number of 

VCs per network channel is 4. The network uses table based 

source routing – every PE has a table with routes to PEs to 

which it sends data. The routes are computed by a routing 

function (part of the OS), centrally for the system, at run-

time. The new routes are computed and routing tables are 

updated every time a new application is started, however, 

this is done only for the data streams of the application being 

started. 

The routing is done at the level of virtual channels – the 

routing function decides on which VCs a data stream is 

routed. The VCs are seen as a network resource which is 

distributed between the data streams by the routing function. 

The VCs which are used for GT traffic are not shared and 

used only by one data stream, while the VCs used for best 

effort (BE) traffic can be shared between many 

communication channels.  

Since GT data streams are routed on separate VCs there 

are no resource dependencies between them. Therefore, a 

deadlock involving GT data streams cannot occur and the 

later discussed routing function does not deal with deadlock. 

Deadlock must be taken into account when routing BE traffic 

since BE communication channels may share a VC, but this 

paper discusses routing of GT traffic only. 

The network can give throughput guarantees to a limited 

number of data streams. The throughput guarantees are based 

on throughput-fairness - bandwidth of a network channel is 

equally shared between its VCs (only those which are used). 

Knowing the number of occupied VCs on a network channel 

a lower bound on their throughput can be given. If a physical 

channel of bandwidth b, has v occupied VCs, then each of 

these VCs is guaranteed throughput greater than or equal to: 

v

b
=Θmin  

Since a network route is constructed as a concatenation of 

VCs, the throughput of the route is determined by the VC 

with the lowest throughput guarantees. Our network has 4 

VCs per physical channel. Therefore, the throughput that is 

guaranteed to a route can be b, b/2, b/3 or b/4. 

The number of occupied VCs on a network channel is 

known and under the control of the routing function which 

has a global overview of the traffic in the network. The 

routing function can provide guarantees to data streams by 

finding routes that provide the requested throughput. 

This way for providing guarantees is suitable for 

streaming architectures where the application graphs are 

simple and where more than 90% of the GT traffic is due to 

streams flowing a same route for the duration of the 

application. 

The same method can be used for providing guarantees in 

a circuit-switching network like that presented in [4]. Each 

network channel in this network is split in four sub-channels, 

called lanes. Switching can be done at different granularity 

level, from single lane to whole channel. Thus, paths with 

different throughput guarantees can be constructed. If the 

same routing function is used, then instead of reserving VCs 

it will reserve lanes.  

The network topologies considered in our work are mesh 

and torus - the most popular topologies for NoC. We assume 

that the PEs are placed on a regular grid in a plane. 

Experiments are made with two network topologies of fixed 

size: 10-ary 2-mesh and 10-ary 2-cube (torus) [1]. The 

system consists of 100 PEs placed in an array of size 10-by-

10. Energy results are obtained also for a folded torus - an 

alternative topological placement for the torus.  



 

IV. TRAFFIC MODELS 

Most of the streaming applications have a linear 

application graph (a pipeline), for example base-band 

processing, audio/video (de)coding, and image processing. 

We consider a liner graph communication pattern as 

representative for the GT traffic in a real stream-processing 

system. If the last node in a linear graph is connected to the 

first node a ring graph is constructed. A large ring topology 

graph can be seen as a concatenation of smaller linear 

application graphs. Thus, in the simulations a ring 

communication pattern is used.  

An application graph with a ring topology containing 100 

nodes is mapped on the architecture. Mapping is about 

deciding where on the multiprocessor architecture the 

application processes will run; for each node in the 

application graph a PE is chosen. In our experiment we 

arranged that the number of processes in the graph equals the 

number of PE in the architecture and each process runs on a 

separate PE. We refer to the result of this procedure, the 

fixed assignment of processes to PEs, as a mapping.  

The mapping characteristic that is the most important for 

the traffic routing is the communication locality – the 

network distance between communicating processes. To 

model the effect of communication locality we use three 

different mapping strategies, each producing mappings with 

different locality characteristics.  

The first mapping strategy models traffic without 

communication locality. It chooses PEs randomly. Therefore, 

no communication locality should be expected and the 

chance that there is a communication channel between a pair 

of PEs is equal for all the pairs in the system. Nevertheless 

the communication distance distribution after such a 

mapping is not uniform but depends on the network topology 

(the distance distribution over all pairs of nodes). For a 10-

ary 2-mesh the distribution has the shape shown on the left 

graph in Figure 1 (attained by simulation). The mean of the 

distance distribution equals the mean distance for uniform 

traffic in the same topology – nk/3 for k-ary n-mesh and nk/4 

for k-ary n-cube, both for even k [1]. 

The other two mapping strategies are locality-preserving 

and model traffic with communication locality. They both 

use the same algorithm for choosing PEs. Every next process 

in the application graph is mapped on a PE chosen uniformly 

among those PEs which are at distance �d from the previous 

PE (where the previous process is mapped). Here the 

distance d is a parameter of the algorithm. If there is no free 

PE within that distance, then a PE is chosen uniformly 

among all free PEs. The distances are calculated assuming a 

mesh topology.  

The two locality-preserving mapping strategies differ only 

in the parameter d. For the first strategy d takes value 4 and 

for the second it takes value 1. These numbers are chosen to 

represent approximate average and best case of 

communication locality. The resulting distance distributions 

for the mesh topology are given in the second and the third 

graph in Figure 1. We see that the probability for a 

communication distance being �d is higher than being >d. 

The distance distribution follows the shape of mapping with 

no locality, but the distances �d and these >d are weighted 

differently. As shown in the figure, for d=4 about 97% of the 

data streams have distance �d. 
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Figure 1 Distance distribution in a mesh network assuming ring 

communication pattern  

Further in the text we refer to the traffic models 

corresponding to the three mapping strategies as No locality, 

Locality 4 and Locality 1 or for brevity only as Lx, L4 and 

L1. 

After all the nodes in the application graph are mapped on 

PEs a routing function is run to find routes for the data 

stream in the graph.  

V. ROUTING FUNCTION 

The task of the routing function is to find a route in the 

network for a data stream. The function takes as input a 

description of a data stream (source node, destination node 

and requested throughput) and returns as a result a 

description of a network route (an ordered list {pv1, pv2, …, 

pvn} where pvi defines the next network channel and its VC 

to be taken). If the function cannot find a route that satisfies 

the throughput request, an empty list is returned. Source and 

destination nodes can be any two nodes in the network. Since 

the network can provide throughput guarantees only for b, 

b/2, b/3 and b/4, these are the throughput guarantees that can 

be requested from the routing function (to identify them 

values 1, 2, 3 and 4 are used).  

In order to provide throughput guarantees the routing 

function needs to know the current state of the network. The 

network state is stored in a data structure where every VC is 

represented by one bit and one integer indicating respectively 

whether the VC is occupied and what throughput is 

guaranteed. (This information is sufficient when only GT 

traffic is routed. When GT and BE traffic are routed together 

then one more bit is needed per VC to identify whether the 

VC is used for BE or GT. When a VC is used for BE the 

integer stores the number of communication channels routed 



 

through it.) 

After a data stream has been routed the routing function 

updates the network state. When the data stream is not 

needed anymore (e.g. the application is stopped) its route is 

cleared from the network state.  

The routing function is based on an algorithm for shortest 

path search in a graph. The algorithm runs over a sub-graph 

of the network topological graph. The sub-graph is derived 

by deleting all network channels that cannot be used for 

routing the data stream either because they cannot guarantee 

the requested throughput or either because the guarantees of 

the data streams already routed there will be violated if 

another one joins them. 

This work studies two routing functions based on two 

graph algorithms: Breadth-first search and Dijkstra’s single-

source shortest-path algorithm [5]. The algorithms are used 

for solving the single-pair shortest-path problem – finding 

the shortest path in a graph between given source and 

destination vertices.  

Breadth-first search (BFS) is one of the simplest 

algorithms for searching in the graph. It works on a non-

weighted graph and finds shortest paths in terms of number 

of edges. The runtime of the algorithm is O(V+E), where V 

and E are the number of vertices and edges in the graph. The 

same algorithm is used for routing in [2]. 

Dijkstra’s algorithm (DA) works on a weighted, directed 

graph, where all edge weights are nonnegative. It finds 

shortest paths in terms of minimal weight sum. In our case 

the weighs assigned to the edges are the number of occupied 

VCs on a channel plus one. Thus, if no VC is occupied the 

weight of a channel is one and if all four VCs are occupied 

the weight is 5 (one is added to avoid zero weight and thus 

provide that the algorithm always prefers shorter paths). 

When searching for the shortest path Dijkstra’s algorithm 

will prefer to use less occupied channels and so will spread 

the traffic more uniformly in the network. The runtime of the 

algorithm is O(V
2
). 

Both algorithms need also a description of the network 

graph. To store the graph of the considered topologies we 

use an adjacency list. Detailed description of the BFS and 

Dijkstra’s algorithm can be found in [5]. 

We have implemented two routing functions, one using 

the simpler Breath-first algorithm and another using the more 

complicated Dijkstra’s algorithm. Our goal is to see whether 

by balancing the load over the network channels the more 

complex Dijkstra’s algorithm will bring any practical 

advantages. The evaluation criteria are the amount of traffic 

that the routing function can fit in the network, the average 

path length and respectively the average communication 

energy cost. The routing algorithms are examined 

considering two other factors that influence the routing 

performance – traffic locality and network topology. In this 

paper we refer to the routing functions with the abbreviations 

of their algorithms – BFS and DA.  

VI. SIMULATION RESULTS 

The conducted simulation experiments are as follows. For 

each topology, traffic model and throughput requirement 

1000 mappings of a ring application graph are generated; 

each mapping is random but according the same traffic 

model. All data streams in the graph are set to have equal 

throughput requirements (this is not a very realistic 

assumption but it will provide worst case performance 

results). For each mapping both routing algorithms are run 

separately to find routes that guarantee the requested 

throughput for all the data streams of the graph. Routing for 

a given mapping is considered successful if all data streams 

are routed. If the routing algorithm cannot find a path for 

even one data stream, the routing fails. The successfully 

routed mappings are counted. Results are collected only for 

the successfully routed mappings.  

A. Throughput 

The two routing algorithms are tested for the highest 

requested throughput for which they still manage to route all 

data streams. In other words, what maximal throughput they 

can achieve for a ring communication pattern.  
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Figure 2 Number of successfully routed mappings 

The results are presented in Figure 2, where the three 

graphs give the number of successfully routed mappings for 

the three traffic locality models. Each graph shows the results 

for mesh and torus topology.  

The traffic locality has strongest influence on the routing 

performance. The more local the traffic is the higher 



 

throughput that can be guaranteed. For example, in the mesh 

topology the local traffic (Locality 1) allows the routing 

algorithms to fit traffic with throughput requirements b/2 in 

the network, while for traffic with no locality (No locality) 

the routing always succeeds only for lower throughput b/4 

requested. Of course these results are dependent on the 

network size, especially for traffic with no locality. 

The dependence of the routing performance on the 

network topology is significant only for traffic with no 

locality. For such traffic the routing in a torus outperforms 

the routing in a mesh, which is due to the double bisection of 

the torus. When the traffic shows strong locality the higher 

bisection is not so advantageous and the routing performs 

almost the same in a torus and a mesh. 

The two routing algorithms perform differently only when 

the network is near saturation (like for b/3 in the mesh with 

no locality). In this case DA outperforms BFS as it more 

often manages to fit the traffic in the network. But still, for a 

network near saturation it does not succeed for all the 

mappings, which make the use of the network under such 

conditions undesirable.  

B. Extra distance 

Both routing algorithms try to route the data streams using 

minimal distance paths. But this is not always possible since 

some network channels along the minimal distance paths 

might already be occupied. In such cases the routing takes a 

path which is not minimal. For a particular mapping extra 

distance is defined as the difference between the sum of the 

real distances and the sum of the minimal distances for all 

data streams. The real distances are the result of the routing, 

while the minimal distances are idealistic (assuming there is 

no other traffic in the network).  

The extra distance is used to compare the performance of 

the routing algorithms. A better routing algorithm will 

manage to route the traffic using shorter paths and therefore 

with less extra distance. More extra distance leads to more 

network traffic and more energy spent on communication.  

Figure 3 presents the results for the average extra distance 

for a mapping. The three graphs in the figure correspond to 

the three traffic locality models. Each graph shows the results 

for two network topologies, mesh and torus.  

It can be seen that in most of the cases the extra distance is 

negligible compared to the total minimal distance, especially 

when the requested throughput is low and when the traffic 

shows locality. In most of the cases the extra distance is less 

than 10 hops in total for all 100 communication channels in 

the application graph, which is small. Compared to the 

results of Figure 2, we see that the extra distance becomes 

significant only when the routing algorithm works in a 

network near saturation. The results for the routing 

algorithms differ significantly only in such conditions as DA 

gives a smaller extra distance than BFS. 
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Figure 3 Average extra distance 

C. VC utilisation 

The main difference between the two routing algorithms is 

the way they spread traffic in the network. While BFS checks 

only whether a network channel can provide the requested 

throughput, DA also checks how heavy a channel is loaded 

and among all possibilities selects a channel with lower load. 

Thus, it can be expected that DA spreads the traffic more 

uniformly in the network keeping the channels equally 

occupied. It should be expected that spreading the traffic will 

cost extra distance compared to BFS, but as Figure 3 shows 

this extra distance is usually negligible. 

The effect of traffic spreading can be seen in Figure 4. 

The figure shows the average channel utilization in a torus 

network. The traffic has no locality and the throughput 

guarantee is b/4. The two graphs correspond to the two 

routing algorithms; they give the average number of channels 

in the network with utilized 0, 1, 2, 3 or 4 virtual channels. 

The number of channels is normalized.  

Comparing the two graphs it can be seen that DA reduces 

the number of network channels with a high number of 

utilized VCs. More network channels are utilized but with 

fewer VCs occupied. This effect is better observed when the 

network is heavy loaded but still not in saturation. When the 

network load is reduced the channels become weakly utilized 

and both routing algorithms distribute the traffic in the same 



 

way. When the network is loaded near saturation all channels 

are heavy loaded and optimizations are not possible. 
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Figure 4 Utilization of the network channels in a torus network, traffic with 

no locality and throughput guarantees b/4 

D. Energy cost 

The average data stream distance obtained by the 

simulations can be used for calculating the average 

communication energy cost, assuming that all data streams 

have a same throughput. We use the energy models of a 

packet-switching network and a circuit-switching network 

presented in [6]. The models estimate the energy cost for 

data transportation in the network (for 0.13um technology). 

The energy cost in [pJ/bit] is: 

( ) ( )
hopwirehopRps NlNEE 12.039.01 +++=  

lwire is the network channel length in mm. In the formula 

Nhop is the network distance in number of hops. ER stands for 

energy for traversing a router; for packet-switching and 

circuit-switching network takes values ER_PS = 0.98, ER_CS = 

0.37. The second term estimates the energy for traversing a 

network channel. The model captures only the dynamic 

energy cost to transport a bit. An extra amount of energy is 

consumed due to leakage (static energy) and an offset in the 

frequency dependent power consumption. 

The energy cost is estimated for three topologies – mesh, 

torus, and folded torus – all of size 10-by-10 nodes. For the 

mesh we assume a channel length of 1.5 mm corresponding 

to PE size of 2.25 mm
2
. In the torus the wrap around 

channels are ten times longer, 15 mm. In the folded torus the 

network channels in the middle have to cross two PEs and 

thus are 3 mm long.  

Figure 5 presents the results for the communication 

energy cost of a system with a packet-switching network. For 

each topology three traffic models are considered: No 

locality (Lx), Locality 4 (L4) and Locality 1 (L1) (see 

Section IV).  

The graph shows that the communication locality has the 

strongest influence on the communication energy cost. By 

introducing communication locality the average 

communication energy cost can be reduced by 50% to 70% 

for the different topologies.  
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Figure 5 Average energy cost for communication of a system with packet-

switching network 
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Figure 6 Average energy cost for communication of a system with circuit-

switching network  

Dependency on the network topology is significant only 

for traffic with no communication locality. For such traffic a 

torus can reduce the communication energy compared to 

mesh topology due to its smaller network diameter. The 

distant data streams, which in a mesh topology have to cross 

the middle of the mesh, in a torus network take the wrap-

around channels as a shortcut and save energy by avoiding 

routers passing. Since the communication locality reduces 

the communication distances and the consequently number of 

data streams that take the wrap-around channels, the torus 

does not bring significant energy reduction for local traffic.  

Changing the network topology from torus to folded torus 

does not influence significantly the communication energy 

cost. Because the logical hop distribution for both topologies 

is identical but the length of the network channels in folded 

torus is doubled it should be expected the energy cost for 



 

folded torus to be higher. But because the energy cost per 

wire length is relatively small compared to a router energy 

cost the increase is insignificant.  

The influence of the routing algorithms on the energy cost 

is also small. The cost is slightly higher when using DA, 

especially when the traffic does not show locality and this is 

mainly due to the small extra distance this routing algorithm 

adds. 

Figure 6 presents the communication energy cost results 

for a system with circuit switching network. As can be seen 

the main difference between the results for the circuit-

switching and the packet-switching network is that the 

energy cost in the circuit-switching network is proportionally 

reduced. This is due to the smaller energy cost for passing a 

router in a circuit-switching network – a clear advantage of 

the circuit switching network.  

 

In this work experiments are made only with a system of 

size10-by-10 PEs. This size is large enough for 

demonstrating the effect of the traffic locality while still 

feasible in the present silicon technology. In a system of 

smaller size the network will have a smaller diameter; the 

network distances will be naturally shorter which leaves less 

room for locality improvements. In a larger size system 

preserving the communication locality will play a more 

important role since system operation will be impossible 

without it. But it can be also expected that with the increase 

of the system size the possibilities for exploiting the 

communication locality will get more and more limited. 

Preserving communication locality is done at the level of a 

single application, while the inter-application 

communications are not so local. With the increase of the 

system size the number of applications and therefore the 

amount of the non-local inter-application communications 

will increase. The network conditions in such a system can 

be improved by a network topology of higher dimension. 

VII. CONCLUSION 

In this paper we examined with traffic routing in a 

streaming multiprocessor architecture. The goal is to study 

the possibilities for providing throughput guarantees in a 

network-on-chip by appropriate traffic routing. The influence 

of three major factors is taken into account – routing 

algorithm, network topology and traffic locality.  

The results show that for stream-dominated traffic and 

assuming traffic locality it is feasible for a routing algorithm 

to provide throughput guarantees. The traffic locality has 

strongest influence on the routing performance. It allows for 

higher communication throughput and reduction of the 

energy cost of 50% to 70%. When no traffic locality is 

presented a torus network topology improves the network 

conditions and the routing performance compared with the 

mesh topology. Increase in traffic locality reduces the 

advantages of the torus. While different in complexity, the 

two routing algorithms, based respectively on the simple 

Breath-first search algorithm and the more complex 

Dijkstra’s algorithm, do not show significant difference in 

performance. The Dijkstra’s algorithm outperforms the 

Breath-first algorithm only when the network is near 

saturation and because this is not a desirable operating 

condition for the system we cannot take advantage of that.  

We can conclude that when routing is used to provide 

throughput guarantees to streaming traffic in a 

multiprocessor system-on-chip it is reasonable to use a 

simple routing algorithm but more complex and clever 

mapping functions that keep the traffic local. 
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