

ABSTRACT

This paper examines the possibilities of providing

throughput guarantees in a network-on-chip by appropriate

traffic routing. A source routing function is used to find

routes with specified throughput for the data streams in a

streaming multiprocessor system-on-chip. The influence of

the routing algorithm, network topology and communication

locality on the routing performance are studied.

The results show that our method for providing throughput

guarantees to streaming traffic is feasible. The

communication locality has the strongest influence on the

routing performance while the routing algorithm has weakest

influence. Therefore, the mapping algorithm is of greater

importance for the system performance than the routing

algorithm and it is profitable to use a more complex mapping

algorithm that preserves the communication locality together

with a simple routing algorithm.

I. INTRODUCTION

Source routing [1] is a widely used method for

deterministic and oblivious routing in multiprocessor

interconnection networks. Its popularity is due to its speed,

simplicity and scalability. With source routing all routing

decisions for a packet are made by a central routing entity

and stored in the source node. Each node contains a table

with routes, at least one route per destination. The routes are

computed and loaded in the nodes tables during application

initialization.

Source-table routing is used in the IBM 9076 SP1

multicomputer. The routing algorithm used for computing

the routes that fill the tables in the nodes is discussed in [2].

Its main objective is a uniform distribution of the routes in

the network such that congestions are avoided and the

network channels are equally loaded.

In this paper we also study a routing algorithm that will be

used for computing the routes to be loaded in the source-

routing tables. It is based on the same algorithm used in the

SP1 but in our approach together with routes computation

the routing is used to provide throughput guarantees for data

streams.

The routing algorithm we consider will be used at run-time

and therefore has to be simple and fast. It will work in a

dynamic, adaptable multiprocessor system-on-chip (MPSoC)

as a part of its OS. The hardware architecture consists of a

number of processing elements (PEs) communicating

through a network-on-chip (NoC). At run-time the OS,

running on one of the PEs, starts and stops applications in

response to its interaction with the user and the environment.

Several applications can run in the system at a time. An

application can run on more than one PE. When the OS starts

an application it allocates PEs where the application

processes will run and routes the communication channels

between the processes. The calculated routes are then loaded

in the route tables of the corresponding PEs. Routing is done

for the communication channels of the application only and

consequently the source tables contain routes to a restricted

number of PEs.

The MPSoC we consider will be used for mobile

multimedia devices where most of the applications are

streaming and energy is an issue. Streaming applications

usually have simple linear application graphs – a data stream

flows through a pipe of PEs. From our experience we can

assume then the data streams account for more than 90% of

the system traffic. In this work we consider only the

streaming data traffic. The traffic patterns used in the SP1

are more typical for general parallel algorithms.

Most of the streaming applications running on the system

are real-time applications and require guaranteed network

services. In our system a routing function is used to find

routes with a certain throughput guarantees for the data

streams of the applications. Knowing the routes of all data

streams that are already in the system, the routing algorithm

can predict what the performance of a newly routed channel

will be. Thus, the routing algorithm can search for a route

that provides requested guarantees. This is the way in which

throughput guarantees are provided to data streams in our

network.

This paper focuses on the routing of guaranteed

throughput (GT) traffic only. Our objectives are i) to show

that the method for providing throughput guarantees is

feasible ii) to find the limits for the provided guarantees.

Three main factors influencing the routing performance are

taken into account in this work: routing algorithm, network

topology and traffic locality. Experiments are made with two

routing algorithms, two network topologies, and three traffic

locality models.

The paper is organized as follows. Section II presents the

Routing of guaranteed throughput traffic in a network-on-chip

Nikolay Kavaldjiev, Gerard J. M. Smit, Pascal T. Wolkotte, Pierre G. Jansen

Department of EEMCS, University of Twente, the Netherlands

{n.k.kavaldjiev, g.j.m.smit, p.t.wolkotte, p.g.jansen}@utwente.nl

approaches for providing service guarantees used in other

on-chip networks. Section III introduces our network and

explains how it provides throughput guarantees. In Section

IV the traffic models used in the simulations are presented.

Section V presents the routing function used during the

simulation. Section VI presents and discusses the simulation

results.

II. RELATED WORK

In the Ethereal network-on-chip [7] guaranteed services

are based on the time-division multiple-access (TDMA)

scheme. The best effort service is based on wormhole routing

that utilizes the time slot not used by the guaranteed services.

In the Nostrum network-on-chip [9] guaranteed services

are based on temporally disjoint networks (a technique

related to TDMA) and looped container virtual circuits (a

time slots reservation scheme). Since the approaches used in

Nostrum and Ethereal are based on time slots, they require a

global notion of time in the network and in the system.

Another approach for providing guaranteed services in

network-on-chip is introducing traffic priorities. This

approach is used in [8], where in a virtual channel network

the virtual channels have static priorities. The virtual

channels on a network channel have different priorities and

provide different service guarantees. But these service

guarantees are traffic dependent. The throughput of the lower

priority channels depends on the bandwidth utilized by the

higher priority channels. The relation between throughput

and latency of a data stream is not direct but depends on the

size of the packets passing the higher priority virtual

channels, so it is hard to give guarantees.

III. NETWORK AND THROUGHPUT GUARANTES

The network interconnecting the PEs in the system is a

packet-switching virtual channel network [3]. In a virtual

channel network on top of every network channel there are

several virtual channels (VCs). In our network the number of

VCs per network channel is 4. The network uses table based

source routing – every PE has a table with routes to PEs to

which it sends data. The routes are computed by a routing

function (part of the OS), centrally for the system, at run-

time. The new routes are computed and routing tables are

updated every time a new application is started, however,

this is done only for the data streams of the application being

started.

The routing is done at the level of virtual channels – the

routing function decides on which VCs a data stream is

routed. The VCs are seen as a network resource which is

distributed between the data streams by the routing function.

The VCs which are used for GT traffic are not shared and

used only by one data stream, while the VCs used for best

effort (BE) traffic can be shared between many

communication channels.

Since GT data streams are routed on separate VCs there

are no resource dependencies between them. Therefore, a

deadlock involving GT data streams cannot occur and the

later discussed routing function does not deal with deadlock.

Deadlock must be taken into account when routing BE traffic

since BE communication channels may share a VC, but this

paper discusses routing of GT traffic only.

The network can give throughput guarantees to a limited

number of data streams. The throughput guarantees are based

on throughput-fairness - bandwidth of a network channel is

equally shared between its VCs (only those which are used).

Knowing the number of occupied VCs on a network channel

a lower bound on their throughput can be given. If a physical

channel of bandwidth b, has v occupied VCs, then each of

these VCs is guaranteed throughput greater than or equal to:

v

b
=Θmin

Since a network route is constructed as a concatenation of

VCs, the throughput of the route is determined by the VC

with the lowest throughput guarantees. Our network has 4

VCs per physical channel. Therefore, the throughput that is

guaranteed to a route can be b, b/2, b/3 or b/4.

The number of occupied VCs on a network channel is

known and under the control of the routing function which

has a global overview of the traffic in the network. The

routing function can provide guarantees to data streams by

finding routes that provide the requested throughput.

This way for providing guarantees is suitable for

streaming architectures where the application graphs are

simple and where more than 90% of the GT traffic is due to

streams flowing a same route for the duration of the

application.

The same method can be used for providing guarantees in

a circuit-switching network like that presented in [4]. Each

network channel in this network is split in four sub-channels,

called lanes. Switching can be done at different granularity

level, from single lane to whole channel. Thus, paths with

different throughput guarantees can be constructed. If the

same routing function is used, then instead of reserving VCs

it will reserve lanes.

The network topologies considered in our work are mesh

and torus - the most popular topologies for NoC. We assume

that the PEs are placed on a regular grid in a plane.

Experiments are made with two network topologies of fixed

size: 10-ary 2-mesh and 10-ary 2-cube (torus) [1]. The

system consists of 100 PEs placed in an array of size 10-by-

10. Energy results are obtained also for a folded torus - an

alternative topological placement for the torus.

IV. TRAFFIC MODELS

Most of the streaming applications have a linear

application graph (a pipeline), for example base-band

processing, audio/video (de)coding, and image processing.

We consider a liner graph communication pattern as

representative for the GT traffic in a real stream-processing

system. If the last node in a linear graph is connected to the

first node a ring graph is constructed. A large ring topology

graph can be seen as a concatenation of smaller linear

application graphs. Thus, in the simulations a ring

communication pattern is used.

An application graph with a ring topology containing 100

nodes is mapped on the architecture. Mapping is about

deciding where on the multiprocessor architecture the

application processes will run; for each node in the

application graph a PE is chosen. In our experiment we

arranged that the number of processes in the graph equals the

number of PE in the architecture and each process runs on a

separate PE. We refer to the result of this procedure, the

fixed assignment of processes to PEs, as a mapping.

The mapping characteristic that is the most important for

the traffic routing is the communication locality – the

network distance between communicating processes. To

model the effect of communication locality we use three

different mapping strategies, each producing mappings with

different locality characteristics.

The first mapping strategy models traffic without

communication locality. It chooses PEs randomly. Therefore,

no communication locality should be expected and the

chance that there is a communication channel between a pair

of PEs is equal for all the pairs in the system. Nevertheless

the communication distance distribution after such a

mapping is not uniform but depends on the network topology

(the distance distribution over all pairs of nodes). For a 10-

ary 2-mesh the distribution has the shape shown on the left

graph in Figure 1 (attained by simulation). The mean of the

distance distribution equals the mean distance for uniform

traffic in the same topology – nk/3 for k-ary n-mesh and nk/4

for k-ary n-cube, both for even k [1].

The other two mapping strategies are locality-preserving

and model traffic with communication locality. They both

use the same algorithm for choosing PEs. Every next process

in the application graph is mapped on a PE chosen uniformly

among those PEs which are at distance �d from the previous

PE (where the previous process is mapped). Here the

distance d is a parameter of the algorithm. If there is no free

PE within that distance, then a PE is chosen uniformly

among all free PEs. The distances are calculated assuming a

mesh topology.

The two locality-preserving mapping strategies differ only

in the parameter d. For the first strategy d takes value 4 and

for the second it takes value 1. These numbers are chosen to

represent approximate average and best case of

communication locality. The resulting distance distributions

for the mesh topology are given in the second and the third

graph in Figure 1. We see that the probability for a

communication distance being �d is higher than being >d.

The distance distribution follows the shape of mapping with

no locality, but the distances �d and these >d are weighted

differently. As shown in the figure, for d=4 about 97% of the

data streams have distance �d.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Distance [hops]

F
re

q
u
e
n
c
y

Locality 1

mean= 1.8

"≤1 hop": 88%

">1 hop": 12%

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance [hops]

F
re

q
u
e
n
c
y

Locality 4

mean= 3.1

"≤4 hops": 97%

">4 hops": 3%

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

Distance [hops]

F
re

q
u
e
n
c
y

No locality

mean= 6.7

Figure 1 Distance distribution in a mesh network assuming ring

communication pattern

Further in the text we refer to the traffic models

corresponding to the three mapping strategies as No locality,

Locality 4 and Locality 1 or for brevity only as Lx, L4 and

L1.

After all the nodes in the application graph are mapped on

PEs a routing function is run to find routes for the data

stream in the graph.

V. ROUTING FUNCTION

The task of the routing function is to find a route in the

network for a data stream. The function takes as input a

description of a data stream (source node, destination node

and requested throughput) and returns as a result a

description of a network route (an ordered list {pv1, pv2, …,

pvn} where pvi defines the next network channel and its VC

to be taken). If the function cannot find a route that satisfies

the throughput request, an empty list is returned. Source and

destination nodes can be any two nodes in the network. Since

the network can provide throughput guarantees only for b,

b/2, b/3 and b/4, these are the throughput guarantees that can

be requested from the routing function (to identify them

values 1, 2, 3 and 4 are used).

In order to provide throughput guarantees the routing

function needs to know the current state of the network. The

network state is stored in a data structure where every VC is

represented by one bit and one integer indicating respectively

whether the VC is occupied and what throughput is

guaranteed. (This information is sufficient when only GT

traffic is routed. When GT and BE traffic are routed together

then one more bit is needed per VC to identify whether the

VC is used for BE or GT. When a VC is used for BE the

integer stores the number of communication channels routed

through it.)

After a data stream has been routed the routing function

updates the network state. When the data stream is not

needed anymore (e.g. the application is stopped) its route is

cleared from the network state.

The routing function is based on an algorithm for shortest

path search in a graph. The algorithm runs over a sub-graph

of the network topological graph. The sub-graph is derived

by deleting all network channels that cannot be used for

routing the data stream either because they cannot guarantee

the requested throughput or either because the guarantees of

the data streams already routed there will be violated if

another one joins them.

This work studies two routing functions based on two

graph algorithms: Breadth-first search and Dijkstra’s single-

source shortest-path algorithm [5]. The algorithms are used

for solving the single-pair shortest-path problem – finding

the shortest path in a graph between given source and

destination vertices.

Breadth-first search (BFS) is one of the simplest

algorithms for searching in the graph. It works on a non-

weighted graph and finds shortest paths in terms of number

of edges. The runtime of the algorithm is O(V+E), where V

and E are the number of vertices and edges in the graph. The

same algorithm is used for routing in [2].

Dijkstra’s algorithm (DA) works on a weighted, directed

graph, where all edge weights are nonnegative. It finds

shortest paths in terms of minimal weight sum. In our case

the weighs assigned to the edges are the number of occupied

VCs on a channel plus one. Thus, if no VC is occupied the

weight of a channel is one and if all four VCs are occupied

the weight is 5 (one is added to avoid zero weight and thus

provide that the algorithm always prefers shorter paths).

When searching for the shortest path Dijkstra’s algorithm

will prefer to use less occupied channels and so will spread

the traffic more uniformly in the network. The runtime of the

algorithm is O(V
2
).

Both algorithms need also a description of the network

graph. To store the graph of the considered topologies we

use an adjacency list. Detailed description of the BFS and

Dijkstra’s algorithm can be found in [5].

We have implemented two routing functions, one using

the simpler Breath-first algorithm and another using the more

complicated Dijkstra’s algorithm. Our goal is to see whether

by balancing the load over the network channels the more

complex Dijkstra’s algorithm will bring any practical

advantages. The evaluation criteria are the amount of traffic

that the routing function can fit in the network, the average

path length and respectively the average communication

energy cost. The routing algorithms are examined

considering two other factors that influence the routing

performance – traffic locality and network topology. In this

paper we refer to the routing functions with the abbreviations

of their algorithms – BFS and DA.

VI. SIMULATION RESULTS

The conducted simulation experiments are as follows. For

each topology, traffic model and throughput requirement

1000 mappings of a ring application graph are generated;

each mapping is random but according the same traffic

model. All data streams in the graph are set to have equal

throughput requirements (this is not a very realistic

assumption but it will provide worst case performance

results). For each mapping both routing algorithms are run

separately to find routes that guarantee the requested

throughput for all the data streams of the graph. Routing for

a given mapping is considered successful if all data streams

are routed. If the routing algorithm cannot find a path for

even one data stream, the routing fails. The successfully

routed mappings are counted. Results are collected only for

the successfully routed mappings.

A. Throughput

The two routing algorithms are tested for the highest

requested throughput for which they still manage to route all

data streams. In other words, what maximal throughput they

can achieve for a ring communication pattern.

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

500

1000
No locality

Throughput guarantees

S
u
c
c
e
s
s
e
s

Mesh Torus

BFS

DA

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

500

1000
Locality 4

Throughput guarantees

S
u
c
c
e
s
s
e
s

Mesh Torus

BFS

DA

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

500

1000
Locality 1

Throughput guarantees

S
u
c
c
e
s
s
e
s

Mesh Torus

BFS

DA

Figure 2 Number of successfully routed mappings

The results are presented in Figure 2, where the three

graphs give the number of successfully routed mappings for

the three traffic locality models. Each graph shows the results

for mesh and torus topology.

The traffic locality has strongest influence on the routing

performance. The more local the traffic is the higher

throughput that can be guaranteed. For example, in the mesh

topology the local traffic (Locality 1) allows the routing

algorithms to fit traffic with throughput requirements b/2 in

the network, while for traffic with no locality (No locality)

the routing always succeeds only for lower throughput b/4

requested. Of course these results are dependent on the

network size, especially for traffic with no locality.

The dependence of the routing performance on the

network topology is significant only for traffic with no

locality. For such traffic the routing in a torus outperforms

the routing in a mesh, which is due to the double bisection of

the torus. When the traffic shows strong locality the higher

bisection is not so advantageous and the routing performs

almost the same in a torus and a mesh.

The two routing algorithms perform differently only when

the network is near saturation (like for b/3 in the mesh with

no locality). In this case DA outperforms BFS as it more

often manages to fit the traffic in the network. But still, for a

network near saturation it does not succeed for all the

mappings, which make the use of the network under such

conditions undesirable.

B. Extra distance

Both routing algorithms try to route the data streams using

minimal distance paths. But this is not always possible since

some network channels along the minimal distance paths

might already be occupied. In such cases the routing takes a

path which is not minimal. For a particular mapping extra

distance is defined as the difference between the sum of the

real distances and the sum of the minimal distances for all

data streams. The real distances are the result of the routing,

while the minimal distances are idealistic (assuming there is

no other traffic in the network).

The extra distance is used to compare the performance of

the routing algorithms. A better routing algorithm will

manage to route the traffic using shorter paths and therefore

with less extra distance. More extra distance leads to more

network traffic and more energy spent on communication.

Figure 3 presents the results for the average extra distance

for a mapping. The three graphs in the figure correspond to

the three traffic locality models. Each graph shows the results

for two network topologies, mesh and torus.

It can be seen that in most of the cases the extra distance is

negligible compared to the total minimal distance, especially

when the requested throughput is low and when the traffic

shows locality. In most of the cases the extra distance is less

than 10 hops in total for all 100 communication channels in

the application graph, which is small. Compared to the

results of Figure 2, we see that the extra distance becomes

significant only when the routing algorithm works in a

network near saturation. The results for the routing

algorithms differ significantly only in such conditions as DA

gives a smaller extra distance than BFS.

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

10

20

30

40

50
No locality

Guaranteed throughput

E
x
tr

a
 d

is
ta

n
c
e
 [

h
o
p
s
]

Mesh Torus

BFS

DA

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

10

20

30

40

50
Locality 4

Guaranteed throughput

E
x
tr

a
 d

is
ta

n
c
e
 [

h
o
p
s
]

Mesh Torus

BFS

DA

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

10

20

30

40

50
Locality 1

Guaranteed throughput

E
x
tr

a
 d

is
ta

n
c
e
 [

h
o
p
s
]

Mesh Torus

BFS

DA

Figure 3 Average extra distance

C. VC utilisation

The main difference between the two routing algorithms is

the way they spread traffic in the network. While BFS checks

only whether a network channel can provide the requested

throughput, DA also checks how heavy a channel is loaded

and among all possibilities selects a channel with lower load.

Thus, it can be expected that DA spreads the traffic more

uniformly in the network keeping the channels equally

occupied. It should be expected that spreading the traffic will

cost extra distance compared to BFS, but as Figure 3 shows

this extra distance is usually negligible.

The effect of traffic spreading can be seen in Figure 4.

The figure shows the average channel utilization in a torus

network. The traffic has no locality and the throughput

guarantee is b/4. The two graphs correspond to the two

routing algorithms; they give the average number of channels

in the network with utilized 0, 1, 2, 3 or 4 virtual channels.

The number of channels is normalized.

Comparing the two graphs it can be seen that DA reduces

the number of network channels with a high number of

utilized VCs. More network channels are utilized but with

fewer VCs occupied. This effect is better observed when the

network is heavy loaded but still not in saturation. When the

network load is reduced the channels become weakly utilized

and both routing algorithms distribute the traffic in the same

way. When the network is loaded near saturation all channels

are heavy loaded and optimizations are not possible.

0 1 2 3 4
0

0.2

0.4

0.6

0.8
BFS

utilized VCs

N
u
m

.
c
h
a
n
n
e
ls

 (
n
o
rm

)

0 1 2 3 4
0

0.2

0.4

0.6

0.8
DA

utilized VCs

N
u
m

.
c
h
a
n
n
e
ls

 (
n
o
rm

)

Figure 4 Utilization of the network channels in a torus network, traffic with

no locality and throughput guarantees b/4

D. Energy cost

The average data stream distance obtained by the

simulations can be used for calculating the average

communication energy cost, assuming that all data streams

have a same throughput. We use the energy models of a

packet-switching network and a circuit-switching network

presented in [6]. The models estimate the energy cost for

data transportation in the network (for 0.13um technology).

The energy cost in [pJ/bit] is:

() ()
hopwirehopRps NlNEE 12.039.01 +++=

lwire is the network channel length in mm. In the formula

Nhop is the network distance in number of hops. ER stands for

energy for traversing a router; for packet-switching and

circuit-switching network takes values ER_PS = 0.98, ER_CS =

0.37. The second term estimates the energy for traversing a

network channel. The model captures only the dynamic

energy cost to transport a bit. An extra amount of energy is

consumed due to leakage (static energy) and an offset in the

frequency dependent power consumption.

The energy cost is estimated for three topologies – mesh,

torus, and folded torus – all of size 10-by-10 nodes. For the

mesh we assume a channel length of 1.5 mm corresponding

to PE size of 2.25 mm
2
. In the torus the wrap around

channels are ten times longer, 15 mm. In the folded torus the

network channels in the middle have to cross two PEs and

thus are 3 mm long.

Figure 5 presents the results for the communication

energy cost of a system with a packet-switching network. For

each topology three traffic models are considered: No

locality (Lx), Locality 4 (L4) and Locality 1 (L1) (see

Section IV).

The graph shows that the communication locality has the

strongest influence on the communication energy cost. By

introducing communication locality the average

communication energy cost can be reduced by 50% to 70%

for the different topologies.

Lx L4 L1 Lx L4 L1 Lx L4 L1
0

2

4

6

8

10

12

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

[p
J
/b

it
]

Locality model

Mesh Torus Folded Torus

BFS

DA

Figure 5 Average energy cost for communication of a system with packet-

switching network

Lx L4 L1 Lx L4 L1 Lx L4 L1
0

2

4

6

8

10

12

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

[p
J
/b

it
]

Locality model

Mesh Torus Folded Torus

BFS

DA

Figure 6 Average energy cost for communication of a system with circuit-

switching network

Dependency on the network topology is significant only

for traffic with no communication locality. For such traffic a

torus can reduce the communication energy compared to

mesh topology due to its smaller network diameter. The

distant data streams, which in a mesh topology have to cross

the middle of the mesh, in a torus network take the wrap-

around channels as a shortcut and save energy by avoiding

routers passing. Since the communication locality reduces

the communication distances and the consequently number of

data streams that take the wrap-around channels, the torus

does not bring significant energy reduction for local traffic.

Changing the network topology from torus to folded torus

does not influence significantly the communication energy

cost. Because the logical hop distribution for both topologies

is identical but the length of the network channels in folded

torus is doubled it should be expected the energy cost for

folded torus to be higher. But because the energy cost per

wire length is relatively small compared to a router energy

cost the increase is insignificant.

The influence of the routing algorithms on the energy cost

is also small. The cost is slightly higher when using DA,

especially when the traffic does not show locality and this is

mainly due to the small extra distance this routing algorithm

adds.

Figure 6 presents the communication energy cost results

for a system with circuit switching network. As can be seen

the main difference between the results for the circuit-

switching and the packet-switching network is that the

energy cost in the circuit-switching network is proportionally

reduced. This is due to the smaller energy cost for passing a

router in a circuit-switching network – a clear advantage of

the circuit switching network.

In this work experiments are made only with a system of

size10-by-10 PEs. This size is large enough for

demonstrating the effect of the traffic locality while still

feasible in the present silicon technology. In a system of

smaller size the network will have a smaller diameter; the

network distances will be naturally shorter which leaves less

room for locality improvements. In a larger size system

preserving the communication locality will play a more

important role since system operation will be impossible

without it. But it can be also expected that with the increase

of the system size the possibilities for exploiting the

communication locality will get more and more limited.

Preserving communication locality is done at the level of a

single application, while the inter-application

communications are not so local. With the increase of the

system size the number of applications and therefore the

amount of the non-local inter-application communications

will increase. The network conditions in such a system can

be improved by a network topology of higher dimension.

VII. CONCLUSION

In this paper we examined with traffic routing in a

streaming multiprocessor architecture. The goal is to study

the possibilities for providing throughput guarantees in a

network-on-chip by appropriate traffic routing. The influence

of three major factors is taken into account – routing

algorithm, network topology and traffic locality.

The results show that for stream-dominated traffic and

assuming traffic locality it is feasible for a routing algorithm

to provide throughput guarantees. The traffic locality has

strongest influence on the routing performance. It allows for

higher communication throughput and reduction of the

energy cost of 50% to 70%. When no traffic locality is

presented a torus network topology improves the network

conditions and the routing performance compared with the

mesh topology. Increase in traffic locality reduces the

advantages of the torus. While different in complexity, the

two routing algorithms, based respectively on the simple

Breath-first search algorithm and the more complex

Dijkstra’s algorithm, do not show significant difference in

performance. The Dijkstra’s algorithm outperforms the

Breath-first algorithm only when the network is near

saturation and because this is not a desirable operating

condition for the system we cannot take advantage of that.

We can conclude that when routing is used to provide

throughput guarantees to streaming traffic in a

multiprocessor system-on-chip it is reasonable to use a

simple routing algorithm but more complex and clever

mapping functions that keep the traffic local.

REFERENCES

[1] William J. Dally and Brian Towles, “Principles and Practices of

Interconnection Networks” Morgan Kaufmann, 2004

[2] Bülent Abali, Cevdet Aykanat, “Routing Algorithms for IBM SP1”,

Proceedings of the First International Workshop on Parallel

Computer Routing and Communication, 1994, pp. 161–175.

[3] Nikolay Kavaldjiev, Gerard J. M. Smit, Pierre G. Jansen, “A Virtual

Channel Router for On-chip Networks", Proceedings of IEEE

International SOC Conference, September 2004, pp. 289-293.

[4] Pascal T. Wolkotte, Gerard J.M. Smit, Gerard K. Rauwerda, L.T.

Smit, “An Energy-Efficient Reconfigurable Circuit Switched

Network-on-Chip”, Proceedings of the 12th Reconfigurable

Architecture Workshop RAW, 2005, p. 155a

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford

Stein, “Introduction to Algorithms”, The MIT Press, 2nd edition, 2001

[6] Pascal T. Wolkotte, Gerard J.M. Smit, Nikolay Kavaldjiev, Jens E.

Becker, Jurgen Becker., “Energy Model of Networks-on-Chip and a

Bus”, International Symposium on System-on-Chip, 2005

[7] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage,

"Networks on Silicon: Combining Best-Effort And Guaranteed

Services", DATE 2002, pp. 423-428.

[8] Tomaz Felicijan, Steve Furber,“An Asynchronous On-Chip Network

Router with Quality-of-Service (QoS) Support”, Proceedings of IEEE

International SOC Conference, Sep. 2004, pp.274-277.

[9] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch,

“Guaranteed bandwidth using looped containers in temporally disjoint

networks within the Nostrum network on chip”, DATE 2004, p. 20890

