175 research outputs found

    Characterization and Modelling of Scattered Wireless Channel at 60 GHZ in an Underground Mine Gallery

    Get PDF
    RÉSUMÉ Depuis plus d’une décennie, les applications du système de communication sans fil sont exigeantes et augmentent rapidement pour fournir des services multimédias au public. De nos jours, la recherche se concentre sur la conception de communication sans fil à haute vitesse (i.e., 1 Gbps) en particulier dans des zones denses telles que des salles de conférence, des centres commerciaux,des stades et des lieux d’événements publics ouverts. Des réseaux locaux sans fil (WLAN) et des réseaux cellulaires utilisent des hauts potentiels pour réussir les haut débit de données en utilisant différentes technologies de pointe telles que la coexistence entre l’évaluation à long terme non autorisé (LTE-U) et les canaux Wi-Fi. En outre, la faisabilité d’utiliser le spectre à haute fréquence (i.e,> 6 GHz), une couche physique à 60 GHz pour les réseaux denses sont mis en évidence lorsque des liens de communication à courte distance (par exemple, <10 m) sont nécessaires aussi bien dans WLAN (i.e, WiGig) et le réseau cellulaire (i.e, 5G petite cellule). Cependant, les applications à 60 GHz se dirigent vers la communication sans fil souterraine pour une meilleure géolocalisation, les applications haute définition (HD) de streaming vidéo dans une galerie plus grande longueur (i.e,> 100 m) en raison de sa capacité de formation de faisceau et de plus grande capacité. Pour aider le concepteur du système, il est nécessaire de connaître les informations de propagation du canal sans fil diffusé puisque le plancher de la galerie, le plafond et le mur ont différentes rugosités (i.e.,> 5 mm). Cette thèse présente les résultats de la caractérisation du canal sans fil et la modélisation statistique à 60 GHz d’une mine souterraine à CANMET ayant des galeries dont la profondeur varie entre 40 m et 70 m. Depuis plus d’une décennie, les applications du système de communication sans fil sont exigeantes et augmentent rapidement pour fournir des services multimédias au public. Les résultats montrent que l’écart angulaire de la propagation par trajets multiples est inversement proportionnel à la distance entre l’émetteur et le récepteur. Un phénomène de dispersion solide est également observé dans le canal en observant l’angle de propagation des différents trajets. Des polarisations horizontales (H) et verticales (V) ont été utilisées puisque les diagrammes de rayonnement sont différents et peuvent fournir des comportements de dispersion temporelle différents. Les résultats montrent que l’antenne à polarisation verticale fournit un plus grand nombre de trajets multiples par rapport à polarisation horizontale et une valeur plus élevée de moyenne quadratique (RMS) par rapport à une horizontale. Par ailleurs, les mesures du coefficient de réflexion ont été effectuées pour étudier l’effet de dispersion de la surface rugueuse. Étant donné qu’aucun effet de regroupement sur le canal multitrajets n’a été observé, une approche de modélisation statistique a été considérée en tenant compte des différents trajets parcourus et leur amplitude. Par insertion des paramètres de hauteur de la surface de mesure, les modèles de diffusion connus ont également été analysées pour permettre la mise en oeuvre d’une approche de modélisation du canal dispersif.----------ABSTRACT More than a decade, there is a surge in demand and development of wireless communication system applications to deliver multimedia services. Nowadays the research is focused on the design of high speed (i.e., 1 Gbps) wireless system particularly in dense areas such as conference room, shopping mall, stadium and open public events. Wireless local area network (WLAN) and cellular network are making high potential approaches to fulfill high data rate by using different advanced technologies such as coexistence between Long Term Evaluation Unlicensed (LTE-U) and Wi-Fi Wireless channels. Moreover, the feasibility to use high-frequency spectrum (i.e., > 6 GHz), a physical layer research at 60 GHz for dense networks are highlighted where short-distance communication links (i.e., 100 m) due to its beamforming capability and higher capacity. To assist the system designer, it is necessary to know the scattered wireless channel propagation information since the gallery floor, ceiling and walls consist of the different magnitude of the roughness (i.e., > 5 mm). This thesis presents the results of wireless channel characterization and statistical modeling at 60 GHz where the measurements were carried out in CANMET underground mine (40 m and 70 m gallery depths). Several measurements were conducted with different antenna configurations and polarizations. Results show that angular and temporal dispersion are proportional to the mine gallery dimensions. Results also show that the angular spread of the multipath is inversely proportional to the transmitter receiver separation distance. A strong scattering phenomenon is also observed in the channel by observing multipath angle of arrivals. The use of Horizontal (H) and vertical (V) polarizations were performed due to its different radiation pattern can provide a different temporal dispersion behavior. The results show that a vertically polarized antenna provides a lower value of path loss exponent and a higher value of root mean square (RMS) delay spread compared to a horizontal one. Since no clustering effect was observed, a statistical modeling approach with the multipath arrivals and amplitudes was considered. In addition, the reflection coefficient measurements were conducted to investigate the scattering effect from the rough surface. By inserting measured surface height parameters, the known scattering models were also analyzed to have an idea to implement a modeling approach of the scattered channel

    Characterization of a 60 GHz scattered wireless channel with different antenna polarizations for underground multimedia applications

    Get PDF
    ABSTRACT: Large scale (i.e. <10 m) and small scale (i.e. 1 × 1× 1 cm) measurements and characterization of a scattered wireless channel with different antenna polarizations and configurations in the underground mine galleries at 60 GHz are addressed. Results show that the rough surface scattering and the gallery dimensions affect the path loss (PL) exponent and it becomes smaller than the free space. Vertically polarized antennas give a lower value of the PL exponent and root mean square (RMS) delay spread compared to the horizontal one. The small scale 3D measurement results show that the power loss of around 1–5 dB within a small scale cubical area. Results also show that the channel is less time dispersive in a wider gallery and observed a higher value of the RMS delay spread compared to a smaller gallery. The statistical results of the small scale multipath amplitude fading provide a better fit with the Rician distribution. The effects such as scattering, polarization, antenna radiation patterns, and waveguide which caused increase and decrease of the value of PL exponent and delay spread are also analysed. Results revealed that a directional narrow beam dual-polarized antenna configuration might be a good candidate in this environment

    Millimeter-Wave Massive MU-MIMO Performance Analysis for Private Underground Mine Communications

    Get PDF
    In this article, a performance analysis of millimeter wave (mmWave) massive multiuser multiple-input and multiple-output (MU-MIMO) channel within an underground mine is performed. The analysis is based on channel measurements conducted at 28 GHz using a base station of 64 virtual antenna elements serving multiple users. Channel characteristics such as large-scale path loss, time dispersion, coherence bandwidth and sum-rate capacity are reported and evaluated. The results indicate that multislope path loss model is better suited for precise prediction of path loss across various propagation segments within the mining gallery. The time dispersion analysis reveals that the underground mine channel does not cause significant time dispersion, as 90% of the root-mean-square (rms) delay spreads are below 4 ns. In addition, it was found that the rms delay spread is not dependent on the propagation distance. The study on sum-rate capacity highlights the potential of employing massive MIMO technology to improve the channel’s spectral efficiency. The analysis reveals that the capacity, with eight active users, can reach up to 33.54 bit/s/Hz. The outcomes of this article offer valuable insights into the propagation properties of underground mine environment, which is characterized by rich-scattering and irregular topology

    Caractérisation du canal de propagation BAN dans un milieu minier

    Get PDF
    Le Body Area Network (BAN) est une technologie de réseau sans fil qui consiste à interconnecter, autour ou sur le corps humain des transmetteurs et des récepteurs afin d’établir une communication sans fil, impliquant le corps humain. À titre d’exemple, ces composants électroniques utilisant des courants de très faible puissance pourraient communiquer avec un centre de commande distant, pour alerter un service d'urgence. Les applications se trouvent principalement dans les domaines de la santé, militaire, et divertissement. Cette technologie (BAN) pourrait être appliquée davantage dans un environnement minier en raison de sa simplicité et sa capacité à fournir des informations utiles telles que la surveillance de l'environnement ou d’état de santé des employés. En effet, les mineurs sont exposés quotidiennement à un certain nombre de risques qui affecte leurs santés. Dans le cadre de ce projet, nous proposons un système BAN efficace qui sera à la fois rentable et simple à utiliser dans une mine souterraine. Ce projet de recherche consiste à déterminer, à la fréquence 2,4 GHz du standard IEEE 802.11, les performances des systèmes de communication SISO (Single Input Single Output) et MIMO (Multiple Input Multiple Output) pour les canaux BAN, en termes de l’étalement des retards (RMS delay spread), l’affaiblissement de parcours, la bande de cohérence et la capacité du canal. Afin d’atteindre ces objectifs, une campagne de mesure a été effectuée dans une galerie de la mine CANMET (niveau 40m) en ligne de vue directe (LOS) et en ligne de vue indirecte (NLOS) en utilisant les topologies SISO et MIMO. The Body Area Network (BAN) is a wireless networking technology that consists in interconnecting, on or around the human body, transmitters and receivers to establish wireless communication. For example, electronic components, mounted on the human body, using very low power could communicate with a remote control center to alert an emergency service. The BAN applications are mainly found in the areas of health, military, and entertainment. This technology (BAN) could be applied in a mining environment because of its simplicity and its ability to provide useful information such as environmental conditions and employees’ health status data. In fact, the miners are exposed daily to a number of risks that affect their health. As part of this project, we propose an efficient BAN system ,dedicated to the security of the miners, that is both cost effective and easy to use in an underground mine. This research project consists in determining, at the 2.4 GHz frequency of the IEEE 802.11 standard, the performance of the SISO and MIMO communication systems for BAN channels, in terms of the RMS delay spread, the path loss, the coherence bandwidth and the channel capacity. In order to achieve these objectives, measurement campaigns were carried out in the CANMET mine gallery (40m level) in line of sight (LOS) and no line of sight (NLOS) using SISO and MIMO topologies

    A Full Wave Electromagnetic Framework for Optimization and Uncertainty Quantification of Communication Systems in Underground Mine Environments

    Full text link
    Wireless communication, sensing, and tracking systems in mine environments are essential for protecting miners’ safety and daily operations. The design, deployment, and post-event reconfiguration of such systems greatly benefits from electromagnetic (EM) frameworks that can statistically analyze and optimize the wireless systems in realistic mine environments. This thesis proposes such a framework by developing two fast and efficient full-wave EM simulators and coupling them with a modern optimization algorithm and an efficient uncertainty quantification (UQ) method to synthesize system configurations and produce statistical insights. The first simulator is a fast multipole method – fast Fourier transform (FMM-FFT) accelerated surface integral equation (SIE) simulator. It relies on Muller and combined fields SIEs to account for scattering from mine walls and conductors, respectively. During the iterative solution of the SIE system, the computational and memory costs are reduced by using the FMM-FFT scheme. The memory costs are further reduced by compressing large data structures via singular value and Tucker decomposition. The second simulator is a domain decomposition (DD)-based SIE simulator. It first divides the physical domain of a mine tunnel or gallery into subdomains and then characterizes EM wave propagation in each subdomain separately. Finally, the DD-based SIE simulator assembles the solutions of subdomains and solves an inter-domain system using an efficient subdomain-combining scheme. While the DD-based SIE simulator is faster and more memory-efficient than the FMM-FFT accelerated SIE simulator when characterizing EM wave propagation in electrically large mine environments, it does not apply to certain scenarios that the FMM-FFT accelerated SIE simulators can handle. The optimization algorithm and UQ method that are coupled with the EM simulators are the dividing rectangles (DIRECT) algorithm and the high dimensional model representation (HDMR)-enhanced multi-element probabilistic collocation (ME-PC) method, respectively. The DIRECT algorithm is a Lipschitzian optimization method but does not require the knowledge of the Lipschitz constant. It performs a series of moves that explore the behavior of the objective function at a set of points in the carefully picked sub-regions of the search space. The HDMR-enhanced ME-PC method permits the accurate and efficient construction of surrogate models for EM observables in high dimensions. The HDMR expansion expresses the observable as finite sums of component functions that represent independent and combined contributions of random variables to the observable and hence reduces the complexity of UQ by including only the most significant component functions to minimize the computational cost of building the surrogate model. This research numerically validated and verified the two EM simulators and demonstrated the efficiency and applicability of the EM framework via its application to optimization and UQ problems in large and realistic mine environments.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146028/1/wtsheng_1.pd

    Improving wireless communications in underground mines using reconfigurable antennas

    Get PDF

    Caractérisation d'un canal ultra large bande (UWB) en milieu confiné souterrain

    Get PDF
    Le milieu minier, très complexe par sa nature, a besoin d'un système de communication fiable. Déployer un système fiable dans ce type de milieu, nécessite la connaissance parfaite du milieu de propagation. Notre projet d'étude porte donc sur la caractérisation d'un canal ultra large bande (UWB) en milieu confiné souterrain. Notre étude s'est focalisée sur la propagation des signaux ultra large bande dans le canal minier à différents niveaux. Il a consisté à déterminer ses paramètres à grande et petite échelle à différents niveaux dans la mine et à les comparer. Un autre élément fort important dans la conception d'un système de communication est sa capacité. Elle permet de déterminer les applications pouvant transiter sur le réseau. Nous avons dans un premier temps établi le protocole expérimental devant être utilisé pour des campagnes de mesures. Ensuite, les réponses fréquentielles du canal UWB (3 à 10 GHz) ont été mesurées. Nous avons grâce à la transformée inverse de Fourrier déterminé les réponses impulsionnelles. Nous avons, à deux niveaux de la mine (niveau 40 et niveau 70), déterminé les caractéristiques du canal UWB à savoir son amplitude, les paramètres de dispersion temporelle à différents niveaux de la mine et à différentes configurations (visibilité directe et non-visibilité directe) et la capacité. L'analyse des résultats obtenus montre que l'indice de pertes de propagation est proche de celui de l'espace libre en visibilité directe et varie fortement en cas de visibilité obstruée. Le système avec une antenne directive en réception donne de meilleurs résultats. La capacité du canal obtenue est assez importante pour permettre le déploiement des applications haut débit. En comparant les résultats obtenus, on constate que la majorité des paramètres du canal ne dépendent pas de la géométrie de la galerie souterraine. The mining environment, very complex by nature, needs a reliable communication system. Deploying a reliable system in this type of environment requires a perfect knowledge of the propagation channel. Our research project therefore focuses on the characterization of UWB propagation channel in an underground mine. Our study focused on the propagation channel of ultra wideband signals in the mine at different levels. It was to determine the parameters of large and small scale at various levels in the mine and then compare them. Another very important element in design of a communication system is the channel capacity that we have also calculated and compared. It identifies applications that can pass over the network. We initially established the experimental protocol to be used for measurement campaigns. Then the frequency responses of the UWB channel (3-10 GHz) were measured. The channel impulse responses were computed using the IFFT transform. We have, at two levels of the mine (Level 40 and Level 70), determined the characteristics of the UWB channel: its pathloss, the temporal dispersion parameters at different levels of the mine and at different configurations (line of sight and non line of sight) and capacity. Analysis of the results obtained show that the path loss exponent is close to free space in line of sight, and varies greatly in the case of non line of sight. The system with directional antenna at reception gives better results. The channel capacity obtained is large enough to allow the deployment of broadband applications. By comparing the results obtained, we found that the majority of the channel parameters does not depend on the geometry of the underground gallery

    Caractérisation du canal de propagation à 60 GHZ dans un environnement minier sousterrain

    Get PDF
    Les systèmes de communications sans fil font partie de notre vie quotidienne, notamment dans les environnements industriels, et ne cesse d'évoluer vers des supports d'applications qui sont de plus en plus gourmandes en bande passante. Cela se reflète par l'intérêt porté aux ondes millimétriques et plus précisément à la bande de fréquence 60 GHz. Offrant une bande de 7 GHz, elle représente la solution la plus intéressante pour satisfaire la demande croissante pour une largeur de bande accrue. La montée vers la gamme des ondes millimétriques permet d'offrir de nouvelles fréquences avec des largeurs de bande beaucoup plus importantes, avec des conditions de propagation très différentes. Les systèmes opérants dans cette bande de fréquence ont plusieurs avantages, notamment leur largeur de bande, leur très haut débit atteignant plusieurs Gbits/s et la possibilité de la miniaturisation des composants. Il s'agit, dans ce projet, de caractériser un canal de propagation à 60GHz dans un milieu minier souterrain afin de prédire les performances des futures solutions utilisant ces fréquences dans ce type d'environnement. Pour mener à bien ce travail, différentes campagnes de mesure ont été réalisées au sein de la mine et du laboratoire de CANMET. A partir des mesures obtenues, les paramètres pertinents, notamment les paramètres à grande échelle tels que l 'affaiblissement de parcours et à petite échelle tels que les paramètres de dispersion, sont analysés afin de caractériser le canal 60 GHz. La technique de mesure employée repose sur le sondage par balayage fréquentiel, exploitant un analyseur de réseau vectoriel
    • …
    corecore