9,757 research outputs found

    A Novel Method of the Generalized Interval-Valued Fuzzy Rough Approximation Operators

    Get PDF
    Rough set theory is a suitable tool for dealing with the imprecision, uncertainty, incompleteness, and vagueness of knowledge. In this paper, new lower and upper approximation operators for generalized fuzzy rough sets are constructed, and their definitions are expanded to the interval-valued environment. Furthermore, the properties of this type of rough sets are analyzed. These operators are shown to be equivalent to the generalized interval fuzzy rough approximation operators introduced by Dubois, which are determined by any interval-valued fuzzy binary relation expressed in a generalized approximation space. Main properties of these operators are discussed under different interval-valued fuzzy binary relations, and the illustrative examples are given to demonstrate the main features of the proposed operators

    Covering rough sets based on neighborhoods: An approach without using neighborhoods

    Get PDF
    Rough set theory, a mathematical tool to deal with inexact or uncertain knowledge in information systems, has originally described the indiscernibility of elements by equivalence relations. Covering rough sets are a natural extension of classical rough sets by relaxing the partitions arising from equivalence relations to coverings. Recently, some topological concepts such as neighborhood have been applied to covering rough sets. In this paper, we further investigate the covering rough sets based on neighborhoods by approximation operations. We show that the upper approximation based on neighborhoods can be defined equivalently without using neighborhoods. To analyze the coverings themselves, we introduce unary and composition operations on coverings. A notion of homomorphismis provided to relate two covering approximation spaces. We also examine the properties of approximations preserved by the operations and homomorphisms, respectively.Comment: 13 pages; to appear in International Journal of Approximate Reasonin

    Some characteristics of matroids through rough sets

    Full text link
    At present, practical application and theoretical discussion of rough sets are two hot problems in computer science. The core concepts of rough set theory are upper and lower approximation operators based on equivalence relations. Matroid, as a branch of mathematics, is a structure that generalizes linear independence in vector spaces. Further, matroid theory borrows extensively from the terminology of linear algebra and graph theory. We can combine rough set theory with matroid theory through using rough sets to study some characteristics of matroids. In this paper, we apply rough sets to matroids through defining a family of sets which are constructed from the upper approximation operator with respect to an equivalence relation. First, we prove the family of sets satisfies the support set axioms of matroids, and then we obtain a matroid. We say the matroids induced by the equivalence relation and a type of matroid, namely support matroid, is induced. Second, through rough sets, some characteristics of matroids such as independent sets, support sets, bases, hyperplanes and closed sets are investigated.Comment: 13 page

    A comprehensive study of implicator-conjunctor based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis

    Get PDF
    © 2014 Elsevier B.V. Both rough and fuzzy set theories offer interesting tools for dealing with imperfect data: while the former allows us to work with uncertain and incomplete information, the latter provides a formal setting for vague concepts. The two theories are highly compatible, and since the late 1980s many researchers have studied their hybridization. In this paper, we critically evaluate most relevant fuzzy rough set models proposed in the literature. To this end, we establish a formally correct and unified mathematical framework for them. Both implicator-conjunctor-based definitions and noise-tolerant models are studied. We evaluate these models on two different fronts: firstly, we discuss which properties of the original rough set model can be maintained and secondly, we examine how robust they are against both class and attribute noise. By highlighting the benefits and drawbacks of the different fuzzy rough set models, this study appears a necessary first step to propose and develop new models in future research.Lynn D’eer has been supported by the Ghent University Special Research Fund, Chris Cornelis was partially supported by the Spanish Ministry of Science and Technology under the project TIN2011-28488 and the Andalusian Research Plans P11-TIC-7765 and P10-TIC-6858, and by project PYR-2014-8 of the Genil Program of CEI BioTic GRANADA and Lluis Godo has been partially supported by the Spanish MINECO project EdeTRI TIN2012-39348-C02-01Peer Reviewe
    • …
    corecore