274,687 research outputs found
Zero kinetic energy-pulsed field ionization and resonance enhanced multiphoton ionization photoelectron spectroscopy: Ionization dynamics of Rydberg states in HBr
The results of rotationally resolved resonance enhanced multiphoton ionization photoelectron spectroscopy and zero kinetic energy‐pulsed field ionization studies on HBr via various rotational levels of the F^ 1Δ_2 and f^ 3Δ_2 Rydberg states are reported. These studies lead to an accurate determination of the lowest ionization threshold as 94 098.9±1 cm^(−1). Observed rotational and spin–orbit branching ratios are compared to the results of ab initio calculations. The differences between theory and experiment highlight the dominant role of rotational and spin–orbit interactions for the dynamic properties of the high‐n Rydberg states involved in the pulsed field ionization process
Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase
Ultrafast two-dimensional spectroscopy utilizes correlated multiple
light-matter interactions for retrieving dynamic features that may otherwise be
hidden under the linear spectrum. Its extension to the terahertz regime of the
electromagnetic spectrum, where a rich variety of material degrees of freedom
reside, remains an experimental challenge. Here we report ultrafast
two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room
temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes
and other nonlinear signals resulting from molecular dipole orientation induced
by three terahertz field-dipole interactions. The nonlinear time-domain
orientation signals are mapped into the frequency domain in two-dimensional
rotational spectra which reveal J-state-resolved nonlinear rotational dynamics.
The approach enables direct observation of correlated rotational transitions
and may reveal rotational coupling and relaxation pathways in the ground
electronic and vibrational state.Comment: 31 pages, 14 figure
Dynamical heterogeneity in aging colloidal glasses of Laponite
Glasses behave as solids due to their long relaxation time; however the
origin of this slow response remains a puzzle. Growing dynamic length scales
due to cooperative motion of particles are believed to be central to the
understanding of both the slow dynamics and the emergence of rigidity. Here, we
provide experimental evidence of a growing dynamical heterogeneity length scale
that increases with increasing waiting time in an aging colloidal glass of
Laponite. The signature of heterogeneity in the dynamics follows from dynamic
light scattering measurements in which we study both the rotational and
translational diffusion of the disk-shaped particles of Laponite in suspension.
These measurements are accompanied by simultaneous microrheology and
macroscopic rheology experiments. We find that rotational diffusion of
particles slows down at a faster rate than their translational motion. Such
decoupling of translational and orientational degrees of freedom finds its
origin in the dynamic heterogeneity since rotation and translation probe
different length scales in the sample. The macroscopic rheology experiments
show that the low frequency shear viscosity increases at a much faster rate
than both rotational and translational diffusive relaxation times.Comment: 12 pages, 5 figures, Accepted in Soft Matter 201
A subsonic transonic and supersonic nozzle flow by the inverse technique
Inverse solution of two dimensional gas dynamic flow fields of rotational or irrotational characte
Rotational and translational self-diffusion in concentrated suspensions of permeable particles
In our recent work on concentrated suspensions of uniformly porous colloidal
spheres with excluded volume interactions, a variety of short-time dynamic
properties were calculated, except for the rotational self-diffusion
coefficient. This missing quantity is included in the present paper. Using a
precise hydrodynamic force multipole simulation method, the rotational
self-diffusion coefficient is evaluated for concentrated suspensions of
permeable particles. Results are presented for particle volume fractions up to
45%, and for a wide range of permeability values. From the simulation results
and earlier results for the first-order virial coefficient, we find that the
rotational self-diffusion coefficient of permeable spheres can be scaled to the
corresponding coefficient of impermeable particles of the same size. We also
show that a similar scaling applies to the translational self-diffusion
coefficient considered earlier. From the scaling relations, accurate analytic
approximations for the rotational and translational self-diffusion coefficients
in concentrated systems are obtained, useful to the experimental analysis of
permeable-particle diffusion. The simulation results for rotational diffusion
of permeable particles are used to show that a generalized
Stokes-Einstein-Debye relation between rotational self-diffusion coefficient
and high-frequency viscosity is not satisfied.Comment: 4 figure
Homoclinic, Subharmonic and Superharmonic Bifurcations for a Pendulum with Periodically Varying Length
Dynamic behavior of a weightless rod with a point mass sliding along the rod
axis according to periodic law is studied. This is the simplest model of
child's swing. Melnikov's analysis is carried out to find bifurcations of
homoclinic, subharmonic oscillatory, and subharmonic rotational orbits. For the
analysis of superharmonic rotational orbits the averaging method is used and
stability of obtained approximate solution is checked. The analytical results
are compared with numerical simulation results.Comment: 9 pages, 6 figure
Space station rotational equations of motion
Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station
A driven two-dimensional granular gas with Coulomb friction
We study a homogeneously driven granular gas of inelastic hard particles with
rough surfaces subject to Coulomb friction. The stationary state as well as the
full dynamic evolution of the translational and rotational granular
temperatures are investigated as a function of the three parameters of the
friction model. Four levels of approximation to the (velocity-dependent)
tangential restitution are introduced and used to calculate translational and
rotational temperatures in a mean field theory. When comparing these
theoretical results to numerical simulations of a randomly driven mono-layer of
particles subject to Coulomb friction, we find that already the simplest model
leads to qualitative agreement, but only the full Coulomb friction model is
able to reproduce/predict the simulation results quantitatively for all
magnitudes of friction. In addition, the theory predicts two relaxation times
for the decay to the stationary state. One of them corresponds to the
equilibration between the translational and rotational degrees of freedom. The
other one, which is slower in most cases, is the inverse of the common
relaxation rate of translational and rotational temperatures.Comment: 23 pages, 17 figure
- …
