274,687 research outputs found

    Zero kinetic energy-pulsed field ionization and resonance enhanced multiphoton ionization photoelectron spectroscopy: Ionization dynamics of Rydberg states in HBr

    Get PDF
    The results of rotationally resolved resonance enhanced multiphoton ionization photoelectron spectroscopy and zero kinetic energy‐pulsed field ionization studies on HBr via various rotational levels of the F^ 1Δ_2 and f^ 3Δ_2 Rydberg states are reported. These studies lead to an accurate determination of the lowest ionization threshold as 94 098.9±1 cm^(−1). Observed rotational and spin–orbit branching ratios are compared to the results of ab initio calculations. The differences between theory and experiment highlight the dominant role of rotational and spin–orbit interactions for the dynamic properties of the high‐n Rydberg states involved in the pulsed field ionization process

    Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase

    Get PDF
    Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.Comment: 31 pages, 14 figure

    Dynamical heterogeneity in aging colloidal glasses of Laponite

    Full text link
    Glasses behave as solids due to their long relaxation time; however the origin of this slow response remains a puzzle. Growing dynamic length scales due to cooperative motion of particles are believed to be central to the understanding of both the slow dynamics and the emergence of rigidity. Here, we provide experimental evidence of a growing dynamical heterogeneity length scale that increases with increasing waiting time in an aging colloidal glass of Laponite. The signature of heterogeneity in the dynamics follows from dynamic light scattering measurements in which we study both the rotational and translational diffusion of the disk-shaped particles of Laponite in suspension. These measurements are accompanied by simultaneous microrheology and macroscopic rheology experiments. We find that rotational diffusion of particles slows down at a faster rate than their translational motion. Such decoupling of translational and orientational degrees of freedom finds its origin in the dynamic heterogeneity since rotation and translation probe different length scales in the sample. The macroscopic rheology experiments show that the low frequency shear viscosity increases at a much faster rate than both rotational and translational diffusive relaxation times.Comment: 12 pages, 5 figures, Accepted in Soft Matter 201

    A subsonic transonic and supersonic nozzle flow by the inverse technique

    Get PDF
    Inverse solution of two dimensional gas dynamic flow fields of rotational or irrotational characte

    Rotational and translational self-diffusion in concentrated suspensions of permeable particles

    Get PDF
    In our recent work on concentrated suspensions of uniformly porous colloidal spheres with excluded volume interactions, a variety of short-time dynamic properties were calculated, except for the rotational self-diffusion coefficient. This missing quantity is included in the present paper. Using a precise hydrodynamic force multipole simulation method, the rotational self-diffusion coefficient is evaluated for concentrated suspensions of permeable particles. Results are presented for particle volume fractions up to 45%, and for a wide range of permeability values. From the simulation results and earlier results for the first-order virial coefficient, we find that the rotational self-diffusion coefficient of permeable spheres can be scaled to the corresponding coefficient of impermeable particles of the same size. We also show that a similar scaling applies to the translational self-diffusion coefficient considered earlier. From the scaling relations, accurate analytic approximations for the rotational and translational self-diffusion coefficients in concentrated systems are obtained, useful to the experimental analysis of permeable-particle diffusion. The simulation results for rotational diffusion of permeable particles are used to show that a generalized Stokes-Einstein-Debye relation between rotational self-diffusion coefficient and high-frequency viscosity is not satisfied.Comment: 4 figure

    Homoclinic, Subharmonic and Superharmonic Bifurcations for a Pendulum with Periodically Varying Length

    Full text link
    Dynamic behavior of a weightless rod with a point mass sliding along the rod axis according to periodic law is studied. This is the simplest model of child's swing. Melnikov's analysis is carried out to find bifurcations of homoclinic, subharmonic oscillatory, and subharmonic rotational orbits. For the analysis of superharmonic rotational orbits the averaging method is used and stability of obtained approximate solution is checked. The analytical results are compared with numerical simulation results.Comment: 9 pages, 6 figure

    Space station rotational equations of motion

    Get PDF
    Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station

    A driven two-dimensional granular gas with Coulomb friction

    Get PDF
    We study a homogeneously driven granular gas of inelastic hard particles with rough surfaces subject to Coulomb friction. The stationary state as well as the full dynamic evolution of the translational and rotational granular temperatures are investigated as a function of the three parameters of the friction model. Four levels of approximation to the (velocity-dependent) tangential restitution are introduced and used to calculate translational and rotational temperatures in a mean field theory. When comparing these theoretical results to numerical simulations of a randomly driven mono-layer of particles subject to Coulomb friction, we find that already the simplest model leads to qualitative agreement, but only the full Coulomb friction model is able to reproduce/predict the simulation results quantitatively for all magnitudes of friction. In addition, the theory predicts two relaxation times for the decay to the stationary state. One of them corresponds to the equilibration between the translational and rotational degrees of freedom. The other one, which is slower in most cases, is the inverse of the common relaxation rate of translational and rotational temperatures.Comment: 23 pages, 17 figure
    corecore