3,919 research outputs found

    Fourier-based Rotation-invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection

    Get PDF
    Geospatial object detection of remote sensing imagery has been attracting an increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for geospatial object detection in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 dataset, demonstrating the superiority and effectiveness of the FRIFB compared to previous state-of-the-art methods

    DOTA: A Large-scale Dataset for Object Detection in Aerial Images

    Get PDF
    Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect 28062806 aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using 1515 common object categories. The fully annotated DOTA images contains 188,282188,282 instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.Comment: Accepted to CVPR 201

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Automated Image Registration And Mosaicking For Multi-Sensor Images Acquired By A Miniature Unmanned Aerial Vehicle Platform

    Get PDF
    Algorithms for automatic image registration and mosaicking are developed for a miniature Unmanned Aerial Vehicle (MINI-UAV) platform, assembled by Air-O-Space International (AOSI) L.L.C.. Three cameras onboard this MINI-UAV platform acquire images in a single frame simultaneously at green (550nm), red (650 nm), and near infrared (820nm) wavelengths, but with shifting and rotational misalignment. The area-based method is employed in the developed algorithms for control point detection, which is applicable when no prominent feature details are present in image scenes. Because the three images to be registered have different spectral characteristics, region of interest determination and control point selection are the two key steps that ensure the quality of control points. Affine transformation is adopted for spatial transformation, followed by bilinear interpolation for image resampling. Mosaicking is conducted between adjacent frames after three-band co-registration. Pre-introducing the rotation makes the area-based method feasible when the rotational misalignment cannot be ignored. The algorithms are tested on three image sets collected at Stennis Space Center, Greenwood, and Oswalt in Mississippi. Manual evaluation confirms the effectiveness of the developed algorithms. The codes are converted into a software package, which is executable under the Microsoft Windows environment of personal computer platforms without the requirement of MATLAB or other special software support for commercial-off-the-shelf (COTS) product. The near real-time decision-making support is achievable with final data after its installation into the ground control station. The final products are color-infrared (CIR) composite and normalized difference vegetation index (NDVI) images, which are used in agriculture, forestry, and environmental monitoring
    • …
    corecore