2,241 research outputs found

    Remote Sensing Object Detection Meets Deep Learning: A Meta-review of Challenges and Advances

    Full text link
    Remote sensing object detection (RSOD), one of the most fundamental and challenging tasks in the remote sensing field, has received longstanding attention. In recent years, deep learning techniques have demonstrated robust feature representation capabilities and led to a big leap in the development of RSOD techniques. In this era of rapid technical evolution, this review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods. More than 300 papers are covered in this review. We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision, and systematically review the corresponding methods developed in a hierarchical division manner. We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD. Future research directions are provided for further promoting the research in RSOD.Comment: Accepted with IEEE Geoscience and Remote Sensing Magazine. More than 300 papers relevant to the RSOD filed were reviewed in this surve

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    SSSDET: Simple Short and Shallow Network for Resource Efficient Vehicle Detection in Aerial Scenes

    Full text link
    Detection of small-sized targets is of paramount importance in many aerial vision-based applications. The commonly deployed low cost unmanned aerial vehicles (UAVs) for aerial scene analysis are highly resource constrained in nature. In this paper we propose a simple short and shallow network (SSSDet) to robustly detect and classify small-sized vehicles in aerial scenes. The proposed SSSDet is up to 4x faster, requires 4.4x less FLOPs, has 30x less parameters, requires 31x less memory space and provides better accuracy in comparison to existing state-of-the-art detectors. Thus, it is more suitable for hardware implementation in real-time applications. We also created a new airborne image dataset (ABD) by annotating 1396 new objects in 79 aerial images for our experiments. The effectiveness of the proposed method is validated on the existing VEDAI, DLR-3K, DOTA and Combined dataset. The SSSDet outperforms state-of-the-art detectors in term of accuracy, speed, compute and memory efficiency.Comment: International Conference on Image Processing (ICIP) 2019, Taipei, Taiwa

    Capsule Networks for Object Detection in UAV Imagery

    Get PDF
    Recent advances in Convolutional Neural Networks (CNNs) have attracted great attention in remote sensing due to their high capability to model high-level semantic content of Remote Sensing (RS) images. However, CNNs do not explicitly retain the relative position of objects in an image and, thus, the effectiveness of the obtained features is limited in the framework of the complex object detection problems. To address this problem, in this paper we introduce Capsule Networks (CapsNets) for object detection in Unmanned Aerial Vehicle-acquired images. Unlike CNNs, CapsNets extract and exploit the information content about objects’ relative position across several layers, which enables parsing crowded scenes with overlapping objects. Experimental results obtained on two datasets for car and solar panel detection problems show that CapsNets provide similar object detection accuracies when compared to state-of-the-art deep models with significantly reduced computational time. This is due to the fact that CapsNets emphasize dynamic routine instead of the depth.EC/H2020/759764/EU/Accurate and Scalable Processing of Big Data in Earth Observation/BigEart

    CAD-Net: A Context-Aware Detection Network for Objects in Remote Sensing Imagery

    Full text link
    Accurate and robust detection of multi-class objects in optical remote sensing images is essential to many real-world applications such as urban planning, traffic control, searching and rescuing, etc. However, state-of-the-art object detection techniques designed for images captured using ground-level sensors usually experience a sharp performance drop when directly applied to remote sensing images, largely due to the object appearance differences in remote sensing images in term of sparse texture, low contrast, arbitrary orientations, large scale variations, etc. This paper presents a novel object detection network (CAD-Net) that exploits attention-modulated features as well as global and local contexts to address the new challenges in detecting objects from remote sensing images. The proposed CAD-Net learns global and local contexts of objects by capturing their correlations with the global scene (at scene-level) and the local neighboring objects or features (at object-level), respectively. In addition, it designs a spatial-and-scale-aware attention module that guides the network to focus on more informative regions and features as well as more appropriate feature scales. Experiments over two publicly available object detection datasets for remote sensing images demonstrate that the proposed CAD-Net achieves superior detection performance. The implementation codes will be made publicly available for facilitating future researches

    Few-shot Object Detection on Remote Sensing Images

    Full text link
    In this paper, we deal with the problem of object detection on remote sensing images. Previous methods have developed numerous deep CNN-based methods for object detection on remote sensing images and the report remarkable achievements in detection performance and efficiency. However, current CNN-based methods mostly require a large number of annotated samples to train deep neural networks and tend to have limited generalization abilities for unseen object categories. In this paper, we introduce a few-shot learning-based method for object detection on remote sensing images where only a few annotated samples are provided for the unseen object categories. More specifically, our model contains three main components: a meta feature extractor that learns to extract feature representations from input images, a reweighting module that learn to adaptively assign different weights for each feature representation from the support images, and a bounding box prediction module that carries out object detection on the reweighted feature maps. We build our few-shot object detection model upon YOLOv3 architecture and develop a multi-scale object detection framework. Experiments on two benchmark datasets demonstrate that with only a few annotated samples our model can still achieve a satisfying detection performance on remote sensing images and the performance of our model is significantly better than the well-established baseline models.Comment: 12pages, 7 figure
    • …
    corecore