2 research outputs found

    Rotation-based formulation for stable matching

    Get PDF
    We introduce new CP models for the many-to-many stable matching problem. We use the notion of rotation to give a novel encoding that is linear in the input size of the problem. We give extra filtering rules to maintain arc consistency in quadratic time. Our experimental study on hard instances of sex-equal and balanced stable matching shows the efficiency of one of our propositions as compared with the state-of-the-art constraint programming approach

    A Collection of Constraint Programming Models for the Three-Dimensional Stable Matching Problem with Cyclic Preferences

    Get PDF
    We introduce five constraint models for the 3-dimensional stable matching problem with cyclic preferences and study their relative performances under diverse configurations. While several constraint models have been proposed for variants of the two-dimensional stable matching problem, we are the first to present constraint models for a higher number of dimensions. We show for all five models how to capture two different stability notions, namely weak and strong stability. Additionally, we translate some well-known fairness notions (i.e. sex-equal, minimum regret, egalitarian) into 3-dimensional matchings, and present how to capture them in each model. Our tests cover dozens of problem sizes and four different instance generation methods. We explore two levels of commitment in our models: one where we have an individual variable for each agent (individual commitment), and another one where the determination of a variable involves pairing the three agents at once (group commitment). Our experiments show that the suitability of the commitment depends on the type of stability we are dealing with. Our experiments not only led us to discover dependencies between the type of stability and the instance generation method, but also brought light to the role that learning and restarts can play in solving this kind of problems
    corecore