17,457 research outputs found

    Vibration-based methods for structural and machinery fault diagnosis based on nonlinear dynamics tools

    Get PDF
    This study explains and demonstrates the utilisation of different nonlinear-dynamics-based procedures for the purposes of structural health monitoring as well as for monitoring of robot joints

    Magnetic measurement with coils and wires

    Full text link
    Accelerator magnets steer particle beams according to the field integrated along the trajectory over the magnet length. Purpose-wound coils measure these relevant parameters with high precision and complement efficiently point-like measurements performed with Hall plates or NMR probes. The rotating coil method gives a complete two-dimensional description of the magnetic field in a series of normal and skew multipoles. The more recent single stretched wire is a reference instrument to measure field integrals and to find the magnetic axis.Comment: 29 pages, 26 figures, presented at the CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 2009. For higher-resolution figures see http://cdsweb.cern.ch/record/134099

    Noncontacting device to indicate deflection of turbopump internal rotating parts

    Get PDF
    Phase 2 (development) which was concluded for the ultrasonic Doppler device and the light-pipe-reflectance device is reported. An ultrasonic Doppler breadboard system was assembled which accurately measured runout in the J-2 LOX pump impeller during operation. The transducer was mounted on the outside of the pump volute using a C-clamp. Vibration was measured by conducting the ultrasonic wave through the volute housing and through the fluid in the volute to the impeller surface. The impeller vibration was also measured accurately using the light-pipe probe mounted in an elastomeric-gland fitting in the pump case. A special epoxy resin developed for cryogenic applications was forced into the end of the fiber-optic probe to retain the fibers. Subsequently, the probe suffered no damage after simultaneous exposure to 2150 psi and 77 F. Preliminary flash X-radiographs were taken of the turbine wheel and the shaft-bearing-seal assembly, using a 2-megavolt X-ray unit. Reasonable resolution and contrast was obtained. A fast-neutron detector was fabricated and sensitivity was measured. The results demonstrated that the technique is feasible for integrated-time measurements requiring, perhaps, 240 revolutions to obtain sufficient exposure at 35,000 rpm. The experimental verification plans are included

    Vibrating diaphragm pressure transducer

    Get PDF
    Vibrating diaphragm transducer for pressure measurements in wind tunnels - construction, sensitivity, stability, energy losses, and cost estimat

    Energy flows in vibrated granular media

    Full text link
    We study vibrated granular media, investigating each of the three components of the energy flow: particle-particle dissipation, energy input at the vibrating wall, and particle-wall dissipation. Energy dissipated by interparticle collisions is well estimated by existing theories when the granular material is dilute, and these theories are extended to include rotational kinetic energy. When the granular material is dense, the observed particle-particle dissipation rate decreases to as little as 2/5 of the theoretical prediction. We observe that the rate of energy input is the weight of the granular material times an average vibration velocity times a function of the ratio of particle to vibration velocity. `Particle-wall' dissipation has been neglected in all theories up to now, but can play an important role when the granular material is dilute. The ratio between gravitational potential energy and kinetic energy can vary by as much as a factor of 3. Previous simulations and experiments have shown that E ~ V^delta, with delta=2 for dilute granular material, and delta ~ 1.5 for dense granular material. We relate this change in exponent to the departure of particle-particle dissipation from its theoretical value.Comment: 19 pages revtex, 10 embedded eps figures, accepted by PR

    Heap Formation in Granular Media

    Full text link
    Using molecular dynamics (MD) simulations, we find the formation of heaps in a system of granular particles contained in a box with oscillating bottom and fixed sidewalls. The simulation includes the effect of static friction, which is found to be crucial in maintaining a stable heap. We also find another mechanism for heap formation in systems under constant vertical shear. In both systems, heaps are formed due to a net downward shear by the sidewalls. We discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9

    Variable force, eddy-current or magnetic damper

    Get PDF
    An object of the invention is to provide variable damping for resonant vibrations which may occur at different rotational speeds in the range of rpms in which a rotating machine is operated. A variable force damper in accordance with the invention includes a rotating mass carried on a shaft which is supported by a bearing in a resilient cage. The cage is attached to a support plate whose rim extends into an annular groove in a housing. Variable damping is effected by tabs of electrically conducting nonmagnetic material which extend radially from the cage. The tabs at an index position lie between the pole face of respective C shaped magnets. The magnets are attached by cantilever spring members to the housing
    corecore