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1. Introduction  

Monitoring the condition and the health of structures and machinery is one of the first priorities in a proper 
maintenance program. The reasons for this are multiple and include (but are not restricted to) the safety and the 
reliability of the structure  as well as  economical ones.  
 Vibration-based health monitoring (VHM) methods are quite popular and are of extensive use for monitor-
ing structures as well as machinery. The meaning of such approaches is that practitioners look for features de-
rived from vibration signals measured on a structure or machinery that ostensibly change as the struc-
ture’s/machinery dynamics change due to some degradation or failure mechanism. Thus the vibration response 
of a structure/machine can be used to monitor its condition and to detect and diagnose faults in it. A lot of dif-
ferent methods have been proposed to extract features from a vibration signal that can be used for certain fault 
diagnosis purposes. These damage features should be sensitive to the initialization and the growth of a certain 
fault type and in the same time they should be robust to noise and other factors like noise, temperature and 
operational/environmental conditions. Features can be extracted from the time domain and/or the frequency 
domain of a signal as well as from the modal domain of a structure/machine. Vibration-based methods are 
global non-destructive monitoring methods and as such they can be used for detecting faults in parts of the 
structure that are difficult or impossible to access.    
 A big group of VHM methods are based on the analysis of the measured vibration signals. This is actually 
the most popular alternative for machinery monitoring. Such methods are not based on any model and do not 
assume any linearity of the system. And it should be kept in mind that most real vibrating systems demonstrate 
nonlinear dynamic behavior as a result of material and/or geometric nonlinearities as well as nonlinearities due 
to contacts and boundary conditions. This is the case especially for high amplitude structural vibrations. Thus a 
big part of the signal- based VHM approaches utilize nonlinear signal analysis and time series methods.   Dam-
age on a lot of occasions induces very small changes in the structural modal parameters or in the machinery 
signal spectrum but in the same time it may result in phase shifts in the time domain vibration response of the 
damaged system. Time-domain-based VHM methods can be also robust to noise and changes in the operational 
and/or the environmental conditions. Such methods have been around during the last decade and they are at-
tracting growing interest. Most of them operate in a phase space and explore attractor changes. One of the 



reasons for using phase space is that nonlinear signals are slightly predictable in time, but they have structure 
which can be observed in a phase space. The dynamic response of a nonlinear system may look random in the 
time and in the frequency domain, but it has order and shape in a phase space. A frequency representation of a 
vibrating system will have thousands of frequency components while in the state space we are following the 
trajectories of the system which would converge to an attractor. An example is shown on Figure 1 below which 
gives the time history, the spectrum and the phase diagram of the vibration response of a circular plate which is 
subjected to a frequency equal to its first natural frequency. 
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Figure 1: Time history a), spectrum b) and phase diagram c) of an aluminum circular plate with ra-
dius R=0.1 m and h=0.01m subjected to harmonic loading with amplitude 1500 kN uniformly dis-
tributed along the plate surface, excitation frequency equal to the first natural frequency (ωe = 15300 
Rad/s)  

 
Attractor-based methods for structural health monitoring were introduced and explored first by the authors 

of (Olson et al 2005, Moniz et al 2003, Moniz et al 2005, Nichols et al 2003,2004,2005,2006,Todd et al 2001, 
2004) as well as by the authors of the present study (Trendafilova et al 1999, 2000,2001, Trendafilova 
2002,2003, Trendafilova & Manoach  2008). In (Moniz et al 2003, Nichols et al 2003004,2005,2006,Olson et 
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al 2005) the authors explore the possibility of exciting the structure with chaotic signal which results in nonlin-
ear/chaotic response. The authors of this study use random and/or large amplitude vibrations to excite structural 
nonlinearities. The advantage of using random (ambient) excitation is that this is the natural source of excita-
tion for most structures. Harmonic excitation is easier to produce and apply to a structure rather as compared to 
a chaotic one.  

Most state-space methods exploit the reconstructed attractor to extract damage sensitive features. There are 
two possibilities: to compare the attractors of the healthy and the damaged structure or the attractors built from 
data measured in different points (Olson et al 2005, Trendafilova 2006).  The attractors can then be compared 
on the basis of different features. Since attractors are sets of points (data sets) in the state space one possible 
way to characterise them is by using statistical methods and characteristics. This approach was followed by the 
authors of the present study (Trendafilova 2003,2006,Trendafilova &Manoach 2008) and some of the follow-
ing paragraphs explain the application of several such possibilities for damage feature extraction. The authors 
of (Todd et al 2001,2004) also explore several such possibilities. These type of methods have the advantage 
that in general the characteristics that they use can be estimated following existing statistical procedures and in 
this sense they are easily extractable form data. A disadvantage might be that these characteristics depend on 
the quantity and the quality of the data available. Most of these characteristics extracted from the data set of the 
attractor show quite good performance in the sense of sensitivity to damage and noise insensitivity (Torkamani 
2011, Trendafilova 2006, Nichols et al 2005, Olson et al 2005). The other possibility is to use the invariants of 
the reconstructed attractors e.g. Lyapunov exponents and/or state space dimensions. This approach has been 
followed in e.g.(Olson et al 2005, Moniz et al 2005) as well as by the current authors (Trendafilova 2006, 
Trendafilova& Van Brussel 2001). The invariants are characteristics of the dynamic system and they are inde-
pendent on the state space in which it is represented. These methods also show quite good sensitivity to dam-
age while in the same time being insensitive to noise as well as to changes in the reconstructed the attractor 
(Olson et al 2005, Trendafilova 2006). The problem with such methods is that the invariant characteristics of 
the state space and the attractor are quite difficult to estimate from data and thus the obtained estimates should 
be considered to possess quite some variability/uncertainty.  
 A somewhat different approach followed in (Todd et al 2004, Nichols et 2003), is the method of prediction 
error. The reconstructed attractor is used to build predictive models of the system dynamics and the prediction 
error is then used as an indicator for damage .The general principle is to follow the evolution of local neigh-
bourhoods of trajectories on the attractor and use the evolved neighbourhood to make a prediction. Again the 
attractors of the healthy and the damaged structure can be compared as well as the attractors built from differ-
ent measurement points. The difference is that rather than using characteristics of these attractors, predictive 
models are built and it is hypothesised that a prediction error will increase with damage. 
 This study explains and demonstrates the utilisation of different nonlinear-dynamics-based procedures for 
the purposes of structural health monitoring as well as for monitoring of robot joints.  

2. The Phase (state) Space Approach 

In this paragraph we introduce the basics of the phase-state approach and how it can be used for structural and 
machinery dynamic/vibration modelling. 

2.1. The Main Idea of the Phase-State Methodology 

The concept for phase-space representation and reconstruction stems from the dynamical system approach for 
analysis of non-linear time series. The main idea of this approach is to equip the investigator with tools for 
analysis and modeling of a system from observed time dependent variables. Each dynamic system can be rep-
resented by a system of differential equations  



                                          F(x(t))x
=

dt
d                                                                         (1)                                                                      

In most cases the function F(.) in the above model is not explicitly known and the original system space 
defined by the vector x is also unknown. Any dynamic system can be completely unfolded in its phase space, 
where the trajectories of the system converge to an invariant subspace (the attractor). The question is how to 
reconstruct this space especially for cases when there is not enough a priori information available about the 
system and one is able to observe only one or two variables. Obviously a vibrating structure or a rotat-
ing/moving machinery is a much more complex system and cannot be represented in a one-dimensional space. 
Takens theorem (Abarbanel, 1996) gives the answer to this question. The theorem tells that if we are able to 
observe a single scalar quantity s(n), n=1,2…. of some vector function of the dynamic variable x, 

))((()( nsns xg= ,  then the dynamics of the system can be unfolded in a space made of new vectors y(n), 
n=1,2,..,m, with components consisting of s(n). The vectors y(n): 

 

y(n) = [s(n), s(n + T),…, s(n + m – 1) T]             (2)                                                                 
 

composed simply of time lags of the observation define the motion in an m-dimensional Euclidean space. In 
particular it is shown that the evolution in time of the points y(n)  y(n + 1) follows that of the unknown dy-
namics x(n)  x(n + 1). This procedure converts the scalar measured series s(n) into a series of vectors y(n). T 
and m are properly chosen time delay and dimension respectively. They are known as the embedding parame-
ters of the new state space. The choice of proper embedding parameters is outside the scope of this paper and is 
discussed in detail for example in (Abarbanel,1996, Krantz & Schreiber,1997). Here we only mention how 
these parameters can be obtained.  

The time lag T is chosen so that the consecutive measurements in the moments t and t+T are independent 
from viewpoint of information but not so independent that information is lost. The first minimum of the aver-
age mutual information (AMI) is used to determine the time lag T (Krantz & Schreiber,1997) . The AMI is 
used as a measure of correlation between two measurements. The time lag is determined so that two consecu-
tive measurements are far enough from each other to be useful as independent coordinates but not too far to 
have no connection with each other (Abarbanel,1996, Fraser & Swiney,1986).  

A proper embedding dimension is needed to “unfold” the dynamics of a system. The false nearest neigh-
bour approach can be used for the purpose (Abarbanel,1996, Krantz & Schreiber,1997). The idea of this meth-
od is that the percentage of false nearest neighbours should become 0 when the adequate minimum unfolding 
dimension is reached.  

2.2. How Does the State-Space Representation Method Work 

Now that we have reconstructed our new phase space which is made of the vectors y(n) constructed according 
to (2), we want to represent our system in this new space.  

The dimension of the new phase space can be chosen as explained above using the false nearest neighbour 
method and one is trying to minimize the number of false nearest neighbours. The choice of a proper dimen-
sion of the new space depends also on the purposes of the investigation. The dynamics of the system will be 
completely unfolded in space made of as many variables that make the false nearest neighbours 0. But for some 
applications a proper and precise enough representation of the system can obtained with a smaller number of 
variables. In general two or three new variables will suffice to make the new phase space so that the dynamics 
of our system can be adequately represented.  This choice of the number of independent variables is in a lot of 
cases dictated by the possibility of visualisation of the system dynamics on the new state space- for a two or 
three dimensional space the system trajectories can be represented by the so-called phase-space diagram. A 
phase-space diagram pictures the dynamics of the system in a space made of two or three time lags of the 
measured variable like the phase-space diagram represented in Firgure 1.  In this particular case we are measur-
ing the displacement of the vibrating system (a) and rather than using only this one single variable we make use 
of its time lags x(t) and x(t+T) to have a two dimensional representation of the system dynamics.  



According to the traditional dynamics approach (which is in fact appropriate for systems which are linear 
or with behaviour close to linear) a dynamic/vibrating system can be represented in its time domain, in its fre-
quency domain or in its modal domain. The time domain representation consists of a signal or an ensemble of 
measured signals as a function of the time t.  The frequency domain representation of a system is given by the 
Fourier transforms of the ensemble of the initial signals.  For a nonlinear dynamic system the time domain as 
well as its frequency domain representations might look random which might make it difficult or even impos-
sible to extract useful information from these representations. From Figure 1 it can be seen that it is difficult to 
extract information from these two representations. While on the contrary the phase-space diagram represents a 
much more ordered image which is easier to analyse visually. Regarding the modal representation it should be 
mentioned that in general these cannot be obtained for a nonlinearly vibrating system. Thus the phase space 
representation looks like the best alternative for a nonlinear dynamic/vibrating system.  

The phase space is a space in which all possible states of a system are represented, with each state corre-
sponding to one unique point in the phase space. For a two dimensional space the phase space is usually made 
of the position /displacement and its time lag/ momentum. A phase space diagram represents all possible dy-
namic states of a structure in a two-or three dimensional space. In a phase space, every degree of freedom of 
the system is represented as an axis of a multidimensional space and for every possible state of the system  a 
point is plotted in the multidimensional space. This succession of plotted points is analogous to the system's 
state evolving over time. In the end, the phase diagram represents all that the system can be, and its shape can 
easily elucidate qualities of the system that might not be obvious otherwise. Thus the phase space allows to 
observe features of the dynamics of a system which cannot be observed in any of its other representations.  

3. The Phase/State Space Approach for Health Monitoring of Structures and Ma-
chinery. 

One way to characterize the dynamics of a system in a state space is by reconstructing the mapping relation: 
 

     y (t + T) = G ( y(t) )              (3) 
 

Unfortunately for most dynamic systems the evolution relation (3) is not available. The Fourier analysis of the 
motion of many nonlinear systems will lead to a continuous spectrum, which is associated with an infinite 
number of modes. Nonlinear dynamics suggests a more general approach to study the dynamics of a system in 
its phase space, vis.  by studying its attractor, which can be characterized by its invariants- the Lyapunov spec-
trum, the entropy and different dimensions. It can be argued and there is much evidence that these characteris-
tics change with the introduction of damage (Hunter al 2000, Todd et al 2001, Trendafilova 2002, Trendafilova 
2003, Moniz et al 2005). The Lyapunov spectrum of a dynamic system characterises the average rate of con-
traction or expansion in each of the principal geometric directions of the state space. For a linear vibrating sys-
tem the Lyapunov exponents are determined by the real parts of the eigen values of the state space matrix of 
the system. Since it is clear that many damage scenarios affect the eigen state of a structure (Brincker et 
al,1994, Hunter et al,2000) then it can be argued that damage will affect the Lyapunov spectrum of a vibrating 
structure and hence – the geometry of its state space. Some of our and other authors’ research has shown, and it 
has been experimentally confirmed, that the Lyapunov exponents and the geometry of the attractor of a vibrat-
ing system not only change under the introduction of damage, but they are rather sensitive to different kinds of 
damage (Todd et al,2001, Nichols et al 2003, Trendafilova 2002, Trendafilova 2003, Craig et al 2000).  Unfor-
tunately these invariants are on a lot of occasions are rather difficult to estimate precisely enough from data. 
There are methods for their estimation but they offer somewhat approximate results which on some occasions 
might be quite erroneous and might somewhat differ from the real invariants. This can be considered as a dis-
advantage when using these invariants for damage/fault isolation purposes.  

As was previously mentioned an alternative way to characterize the attractor of a vibrating system is to 
study the distribution of the points on it. This can be done by estimating some statistical characteristics of this 



distribution or by approximating the distribution function. This may be considered as a much better alternative 
as compared to the invariants estimation because these characteristics are quite easy and straightforward to 
estimate from data.  

The two approaches for characterizing a dynamic system introduced above are closely related and can be 
considered identical since they are linked by the ergodic theory (Eckmann &Ruelle 1985). The ergodic theorem 
asserts that time averages are equal to space averages. One of the virtues of the ergodic theory is that it allows 
consideration of the long term behaviour of a system. Since the physical long term behaviour of a dynamic 
system is on the attractor the system is thereby characterized by its attractor. The ergodic theory permits the 
invariants of a dynamic system to be viewed as invariant statistical quantities of the attractor.  

Another possibility to characterize a dynamic system for the case of periodically driven oscillators is to uti-
lize its Poincaré map. The Poincaré map is a projection of the phase diagram for a moment t, which is a multi-
ple of the period of the system. It has been suggested by the authors of this chapter as a possible feature for 
damage detection in structures. 

The methods considered in this paper explore the three possibilities introduced above. The next sections in-
troduce the application of the Poincaré map (&3.1) and the distribution of state space points (&3.2) for damage 
diagnosis. &3.3 offers an example for the application of these two methodologies. The application of phase 
space invariants for damage/fault  assessment in structures is discussed in (&3.3). 

3.1. The Poincaré Maps and their Application to Structural VHM 

A standard technique for dealing with phase space (w, w, t) of periodically driven oscillators is to study the 
projection of (w, w) at moments in time t, where t is a multiple of the period T=2π/ω. Here ω can be the fre-
quency of the excitation of the mechanical system, an eigen-frequency of the structure, or its multiple, and T is 
a period of the forcing function, an eigen-period of the system, or its multiple. The result of inspecting the 
phase projection (w, w) only at specific times t=kT is a sequence of dots, representing the so-called Poincaré 
map. The steady-state converging trajectories, which represent the attractor, are usually formed in the phase 
space and in many cases of nonlinear systems they are very sensitive to any changes in the system. 

A Poincaré map can be interpreted as a discrete representation of the dynamic system in a state space 
which is one dimension smaller than the original continuous space of the dynamic system. Since it preserves 
many properties of periodic and quasi-periodic orbits of the original system and has a lower dimension, it is 
often used for analyzing the original system. 

Only a few authors have checked the influence of a fault on the Poincaré maps of the system (Choy et al 
2009, Choy et al 2007, Choy et al 2007) 

In the authors’ papers (Manoach&Trendafilova 2008,  Trendafilova&Manoach 2008) for the first time a 
damage index based on analysing the Poincaré maps of structures is introduced. According to these papers the 
damage index for each mode (i) of the discretized structure is: 
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where, i =1 , 2…Nnodes , Nnode  is the number of nodes,  Np  is the number of points on the Poincaré map and (wij, 
wij) and (wij, wij) denotes the jth point on the Poincaré maps of the undamaged and the damaged states, respec-
tively. 

The damage index suggested by eq (4) represents the relative difference between the lengths of the curves 
formed by connecting the dots on the Poincaré maps for the non-damaged and the damaged plate for ith node, 
respectively. This difference is accepted as a measure for the global change (during of the total period of vibra-
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tion) in the dynamic behaviour of the damaged structure in comparison with the undamaged one. The assump-
tion is that if the function FP(x) has maximum and it is strongly concave in the vicinity of the maximum, the 
structure has  damage and the nodes close to the maximal value of the function will represent the damaged 
area. 

The above damage index depends on the location of the damage in the structure, and consequently it is a 
function of the structure coordinates X(x1,x2,x3). One can expect that the maxima of the function FP(Xd) will 
represent the locations of the damage, i.e. Fmax(Xd) =max{Fi  }. 

The Poincaré maps contain data for the displacements and the velocities of the structure in a compact form 
and since these two parameters are expected to be sensitive to damage these diagrams can be used to detect 
damage. When the damage is large and the plate undergoes substantial nonlinear vibrations, this leads to 
changes in the attractor of the vibrating system in the phase space and then the application for damage assess-
ment purposes becomes obvious. Even when the damage is small, and the responses of the damaged and the 
healthy structure are close to each other, the points from the Poincaré map are easier to use for comparison and 
identification purposes because the number of these points is much smaller than the enormous number of points 
in the time-history diagrams. 

It is logical to expect that at the nodes close to the damaged area the introduced damage index Fi
P will be 

larger than the index for points which are far from the damaged zone. This can be used to localize the detected 
damage. 

So the damage criterion can be formulated as:  
 

         FP (X) > Td               (5) 
 

where X is the vector of the space variables and Td is the threshold for the damage index.  
It should be mentioned that this threshold is case dependent and it depends on the structure tested, the envi-

ronmental conditions, as well as on the characteristic used as a damage feature. 

3.2. Statistical Distribution of Points on the Attractor And The Effect of Damage on It.   

This method suggests to study the statistical distribution of points on the attractor and use it to extract damage 
sensitive features. In contrast to the previous method it can be used for any type of excitation including random 
one which is the natural source for most structures. An advantages of using these statistical characteristics is 
that they are easy to determine from measured data. Another advantage is that in general the statistical charac-
teristics of a nonlinear system are more robust to noise than any deterministic characteristics. The determina-
tion of any deterministic characteristics (invariants) of a nonlinear signal from observations  is very difficult (if 
possible at all) and the estimated characteristics could be quite imprecise (Abarbanel,1996, Krantz & 
Schreiber,1997). 

As it was mentioned above, a two-dimensional state space is used in this investigation. The time lag ΔT 
was found using the first minimum of the average mutual information in order to generate a number of “uncor-
related” points in the state space (Abarbanel,1996, Krantz & Schreiber,1997, Fraser & Swiney,1986). To study 
the attractor one needs a long enough signal which will exclude the transient and short term behaviour and 
allow one to concentrate on the long term behaviour of the system. For a vibrating system one measures accel-
eration, velocity or displacement signals. Any of these quantities can be used to obtain a sample of state space 
points. For the purposes of this method we use acceleration signals only because acceleration is the most com-
mon quantity to measure on a vibrating structure. Suppose one measures a long enough acceleration signal. It 
can be represented by an acceleration vector a as follows: 
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where a(ti) are the measured accelerations in the time moments ti, i=1,2….,n, n is large enough, the superscript 
[…]T stands for transpose and T is the time lag found as explained above.  

From a vector a one can obtain n-1 state space points: 
 

     yi = [yi1, yi2]T = [ai, ai+1]T, i = 1, 2, … n-1                                         (7) 
 

A set of N trajectories yk, k = 1, 2, …N, is then randomly chosen on the response attractor and NB nearest 
neighbours are found for each trajectory in the sense of  Euclidean distance, yi

q, i=1,2,…,N, q=1,2,…NB. This 

set is denoted by Yn, 
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yY . The set Yn, n = 1, 2, …, N. NB = M is used to characterise the attrac-

tor of the response signal. 
Now that we have obtained the set of vectors Yn the next task is to characterise the statistical distribution of 

these points. One way to do this is to estimate some statistics of the obtained sample Yn. Some of our and other 
authors’ previous research has shown that certain statistical characteristics of this distribution might be sensi-
tive to damage (Todd et al 2001, Sohn & Farrar,2001, Trendafilova,2006, Trendafilova,2003, Matthew,1997). 
For instance the variance and the skewness have been found to show sensitivity to damage in some cases, while 
other statistical moments turned less sensitive (Todd et al 2001, Nichols et al 2004, Trendafilova,2006).  For a 
multidimensional distribution the variance and the skewness can be defined by the following scalar quantities, 
respectively (Mardia 1970):  
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where M is the number of points Yn, n=1,...,M, Y is the sample mean vector and S is the sample covariance 
matrix. Instead of using the values for σ and s one can introduce relative changes compared to the non dam-
aged case. These characteristics are introduced below: 
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The above quantities can be used as damage features/indexes. The multivariate statistics (8) as well as the 
damage features (9) can be calculated for each measured time domain signal and they are expected to give 
reliable results provided the signal is long enough. These quantities will characterise the local dynamic state of 
the structure close to the point on the structure where the measurement is taken. Here and thereafter local refers 
to the location on the structure where the measurements are taken. We shall call σ    and    local statistics and 
Fσ and Fs−   local damage features. The local statistics and the local features will give information about the 
local distribution of state space points and the local damage state of the structure close to the measurement 
point. If one has more than one measurement points, the above characteristics can be then calculated using all 
the signals coming from different measurement points. The resulting statistics (8) will then contain information 
about the distribution of state space points for the whole structure and the damage features (9) will characterise 
the damage state of the whole structure.  We shall call these global statistics and global damage features re-
spectively. Global here and thereafter refers to the structure. The global features will give information about 
the damaged state of the whole structure. When damage is introduced in the structure it is expected to affect the 
local damage features calculated for the measurement points close to the damage more than the global features 
which are calculated for all the measurement points on the structure. So the local damage features might be 
used to localise the damage while the global features can be used as global damage features to detect the pres-

s



ence of damage in the whole structure. The local and the global damage features/indexes introduced by (9) are 
similarly to the index (4) relative changes in the variance and the skewness. Indexes close to 0 indicate no 
damage while indexes exceeding a certain threshold will indicate the presence of damage in the structure or in 
a corresponding location. As was explained above the threshold is case dependent and should be defined for 
each parameter and for each structure/machinery. 

3.3.      Using the Nonlinear Invariants for Damage Detection in Vibrating Systems 

3.3.1. The Time Delay and the Average Mutual Information 

The time delay of the phase space defined by the variables y(n) can be reconstructed by finding the proper time 
lag T and a sufficient dimension m. The first minimum of the  AMI can be used to find the time delay T. The 
AMI can be estimated from data using the following relation: 
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The time lag T0 presents a possible candidate for damage detection purposes: it is expected to change when the 
dynamics of the system changes, which might include changes due to damage. Its relative change 
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 can be used similarly to the ones introduced before in (4) and (9) as a damage index.   
It is worth mentioning that the AMI for a certain value of T, I(T) , is an invariant of the dynamics of the 

system and so does not change for smooth changes of the coordinate system. This means that I(T) evaluated in 
the new state space will have the same value as in the original, but unknown, space and thus can be used to 
characterise the dynamics of the system in any space.  

It has been found for some cases that the average mutual information increases with the introduction and 
with the increase of damage. Thus the average mutual information can be used to form a damage feature. The 
relative change of I(T*) in per cent  referred to the undamaged case can be used as a possible feature: 
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The above quantity will be close to 0 if I(T*) has not changed compared to the undamaged value Iun(T*). How-
ever if I(T*) changes as a result of some changes in the attractor including damage, the above damage index FI 
will grow. The AMI is a quantity that is quite easily and robustly estimated from measured data, which makes 
it an attractive candidate for damage diagnosis. Another advantage of using the AMI for damage diagnosis is 
its robustness to  noise contamination in the data, The noise will act locally to alter the location of points, but 
taking the probability densities when calculating the AMI ( see equation(10)) is expected to make this quantity 
more robust as compared to many other characteristics. 

3.3.2. The Maximum Lyapunov Exponent and the Correlation Dimension. 

As was mentioned in &2 the Lyapunov exponents (LE) determine the rate of compression or expansion of 
perturbations along the principle axes of the state space. The maximum LE is a rather important invariant of 
any dynamic system. It represents the rate of compression/expansion of perturbations along the principle axis 
of the state space. It can be estimated from data, computing the Oseledec matrix, and thus can be used to char-
acterize a dynamic system from its measurements  (Abarbanel 1996). We will not go into details about this 



estimation since it is out of the scope of this paper we only mention that we used the method introduced in 
(Krantz & Schreiber 1997) to estimate it.  

Some of our and other authors’ previous research has established that the maximum LE is affected by the 
introduction of damage (Todd et al 2001,Trendafilova 2002,Trendafilova 2006, Nichols et al 2003,2004). But 
this finding is not in any way unexpected since many damage scenarios are known to affect the eigenstate of 
the structure, and thus they are expected to affect the structure’s LE’s. As in previous cases the relative change 
in the largest LE can be suggested as a possible damage feature/index: 
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The most significant problem with LE’s is their estimation from data, which is far from trivial. To begin 
with there is no robust procedure for the calculation of the first LE, its estimation involves the computation of 
the Oseledec matrix. Although the estimation of the Oseledec matrix from data is possible, as with some of the 
previous calculations, it is a rather difficult and computationally heavy procedure. Thus the Lyapunov exponent 
is much more difficult to estimate from data as compared to any of the previously considered characteristics 
and its estimation might be subjected to uncertainty. So the estimation should be assumed to have a considera-
ble variance.   

The correlation dimension presents another possibility for a damage feature. This is and invariant of the 
dynamics of a structure and similarly to the Lyapunov exponent is expected to change with changes in the 
structure but in the same time remain insensitive to changes in the state space where the dynamics is observed. 
The correlation dimension is defined by the correlation function and it is the second correlation dimension D 
that can be estimated from data (Krantz & Schreiber 1997). We shall not get into details about the estimation of 
D we use the method from (Abarbanel 1996) which makes use of the second order correlation function for 
small distances where it becomes close to linear. The slope of this function is used to estimate the correlation 
dimension. The correlation dimension suffers similar problems as the ones mentioned for the LE, it is difficult 
to estimate from data and the error in its estimation can sometimes go up to about 10%.  

As a conclusion it should be mentioned that the LE as well as the correlation dimension have the ad-
vantages of being insensitive to changes in the state space and to measurement noise but their estimation is far 
from trivial and can be rather erroneous. Thus they are difficult to apply from a practical view point. 

3.4.     Case study 1. Structural Damage Identification in a Vibrating Plate 

In this study the methods introduced above are demonstrated for  a thin square clamped aluminium plate with 
dimensions 500mm –500mm and constant thickness t = 6mm as shown on Figure 2. A finite element model of 
the plate was used to determine its time domain vibration response. 1600 four-node shell elements were used to 
discretize the plate.Two cases of damage were considered: - A) central damage- thickness reduction located in 
a small area located in the central part of the plate (see Fig. 2); B) side damage- thickness reduction in a small 
area close to the left lower corner of the plate as shown in Fig. 2. Two damage levels are introduced for both 
damage cases. In the first damage level the thickness in the corresponding damage zone is reduced to 4mm and 
in the second damage level the thickness in the corresponding damage zone is reduced to 3mm.  
       The plate was subjected to a harmonic loading uniformly distributed on the plate surface with different 
frequencies close to one of the plate’s natural frequencies. Numerical experiments were carried out for different 
values of the excitation frequencies. In the case of central defect (case A) the excitation frequency was chosen 
equal to ωe=1000 rad/s. In order to show the applicability of the methods for higher frequencies for the case B 
the excitation frequency was ωe=2000 rad/s. The amplitude of the harmonic loading was 6 N. 
 
 



 
Figure 2: Plate and defects 

 
 
First of all the sensitivity of the first ten natural frequencies of the plate was tested. Our results showed that 

in this particular case both defects introduce very small changes in the first 10 natural frequencies of the plate. 
The differences between the frequencies of the intact and the damaged plate do not exceed 2 %. These results 
were experimentally confirmed as well. So in this particular case the natural frequencies cannot be used for 
damage assessment purposes. 

We shall first demonstrate the use of the Poincaré maps. The damage index P
iF  (equation 4 a) is used to 

detect and localise damage. To visualize the damage index and to set a threshold for detecting the damage we 
use the so-called contour plots. A contour plot is a graphical technique for representing a 3-dimensional surface 
by plotting constant z slices, contours, on a 2-dimensional plane. That is, given a value for z, lines are drawn 
that connect the (x,y) coordinates where that z value occurs. The contour plot is an alternative to a 3-D surface 
plot. 

The influence of damage on Poincaré maps can be seen in Figures 3 and 4. The influence of the central 
damage (case A) is bigger than the influence of the side defect (case B). The introduced damages do not change 
the type of the Poincaré section (circle) they only influence the length of the curves formed by the Poincaré 
dots. It can be observed that the influence of the higher level damage (hdamaged =3 mm) on the Poincaré maps is 
a little bigger compared to the influence of the lower level damage (hdamaged =4 mm). 

Then the damage index  P
iF was calculated for the points from the Poincaré maps for all the nodes and its 

contour plots were obtained. Figure 5 details the contour plots of  P
iF  for central damage A) for both damage 

levels. As can be seen from this plots damage A) can be detected and localised quite precisely especially at the 
second (higher) damage level. The value of the damage index for the second damage level is bigger than the 
one corresponding to the first damage level . Figure 6 presents similar contour plots for the case of side damage 



B). It can be observed that the plot for the second damage level identifies quite precisely the position of the 
defect despite the fact that the absolute values of the differences in displacements and velocities of the two 
responses at the nodes of the damaged area are small. The localisation of the damage for the first damage level 
is not absolutely precise but it is sufficient for many applications.  

 
 

 
 
Figure 3:  Poincaré map of the center of the plate in the 
case of central damage . Black dots – undamaged plate. 
Red dots – level 1, Blue dots – level 2. 

 
 
Figure 4: Poincaré map of the center of the plate in the 
case of side damage. Black dots – undamaged plate. 
Red dots – level 1, Blue dots – level 2. 

 
Now the use of the two statistics based on the distribution of points on the attractor, the indexes Fs and Fσ 

will be demonstrated. If there is no change in the damage state these indexes should be close to 0 while if there 
is a change in the damage state of the plate these indexes are expected to increase. In this numerical example it 
was assumed that measurements are taken in a net of 16 equally distributed points that cover the surface of the 
plate. The global indexes were calculated using the signals obtained in all the 16 points, while the local indexes 
were calculated for the signals obtained in each one point. The global indexes can be used preliminary for dam-
age detection. For the purposes of detection and localization the local indexes should be preferred. Figure 7 
details the local skewness-based and variance-based indexes (9) for central and side defect for the second dam-
age level. It should be noted that both indexes are capable to localise the damage. It can be appreciated that the 
variance-based index gives a sharper and more precise localisation of the damage while with the skewness-
based index the localization is a bit smeared. 
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         Figure 5. Contour map of damage index PF for central damage (Case A), a) level 1; b) –level 2. 
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Figure 6. Contour plots side damage (a) -level 1,(b)- level 2 
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Figure 7: The skewness-based a), b) and the variance-based c),d) indexes for side defect a),c), and cen-
tral defect b),d) 

 

3.5. Case study 2 .Structural Damage Detection in a Reinforced Concrete Slab 

In this study a reinforced concrete slab with the following dimensions 1420mm x 1420mm in plan and 75 mm 
in depth is tested. The experiment was performed in cycles. At each loading cycle a static load is slowly ap-
plied at mid-span. Then the static load is removed and the slab is dynamically excited and its acceleration re-
sponse is measured in the position indicated. A random excitation signal is used for the dynamic experiment 
and the reason for this is that in most practical situations structures are subjected to ambient excitation. Then a 
new increased static load is applied and the dynamic response of the slab is measured in its new state achieved 
after the removal of the load. The static load spanned from unloaded state to the ultimate state of failure. The 
damage levels introduced are given in Table 1 below.  
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Figure 8 gives the changes in the above introduced indexes with damage. It includes the indexes based on time 
delay FT, the mutual information FI, the correlation dimension FD  and the Lyapunov exponent Fλ as well as the 
indexes based on the statistical characteristics of the distribution Fσ  and Fs. The ones for the time lag, the Lya-
punov exponent and the correlation dimension are quite high for the first three levels of preload which actually 
correspond to no-damage level. They change just a little bit for the first level, 31kN preload and for the next 
level the time lag-based index jumps to 50 and it still increases for the last level corresponding to large damage. 
Thus it will be possible to detect and recognize the medium and the large damage but not the small level dam-
age. The other indexes based on the invariants, vis the ones based on the Lypunov exponent and the correlation 
dimension remain very much unchanged- they increase a little bit for the for the 1st damage level and then stay 
very much on the same level. So these indexes in this case will not be very helpful neither for detecting nor for 
estimating the damage level All the invariant-based indexes  will give a false alarm for the case of no damage if 
e.g. threshold of 5% is selected. Thus a higher threshold is needed for these indexes but then the small level 
damage might be unrecognized. The other two indexes, the ones based on the variance and the skewness, be-
have more or less as expected: they are below 5% for the no-damage cases and they gradually increase for the 
subsequent levels which means they can be used to detect even the smallest level of damage and also to distin-
guish between the different damage levels. Thus these two indexes are much more useful and easy to estimate 
from data as compared to the indexes based on the attractor invariants. 

3.6.     Case study 3. Backlash Detection in Robot Joints 

The phase space approach can be applied and has been applied for the purposes of machinery analysis and 
monitoring. The phase space methodology has been suggested and applied for the purposes of machinery moni-
toring by several authors (Matthew 1997, Trendafilova&Van Brussel 2001, Trendafilova et al 1999,2000). In 
this study the approach is demonstrated for the analysis and the detection of backlash robot joints.  

The dynamics of a robot joint is commonly rather complex. Some phenomena to be taken into account are 
friction, deformation of non-linear materials, geometry of the part, dynamics and geometry of the other parts 
connected to the joint. In general, robot joints demonstrate non-linear dynamic behaviour, which can be due to 
a number of different reasons and is caused by different mechanisms. The presence of non-linearities and the 
consequent non-linear behaviour exhibited by robot parts is a problem that gives rise to serious difficulties in 
the kinematic and especially the dynamic modelling, analysis and control of robot joints. It becomes rather 
difficult to develop an accurate model that takes into account the different phenomena (like friction, joint and 
link flexibility, backlash and clearances) that influence the system dynamics. The non-linear behaviour poses 
serious difficulties in the process of the analysis of signals recorded from different elements and in the related 
inverse dynamic problems, i.e. identification and control which are rather important for the design and analysis 
of robotic structures and their components.  

In this study, the data-dependent approach is used to analyse the behaviour of robot joints, for several cases 
when a backlash is present including the case of no backlash, from the standpoint of non-linear dynamics, mak-

State N0 Static load Damage observed 
 1 0kN  

No damage 2 7kN 
3 19 kN 
4 31kN Small damage 
5 40kN Medium damage 
6 51kN Considerable damage 
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ing use of the recorded acceleration signals. The approach is based on the assumption that a backlash introduc-
es a non-linearity in the joint. Thus, in all cases when backlash is present in the joint we are dealing with non-
linear motion. Accordingly, the non-linear motion invariants are supposed to change with the change of the 
backlash size. Then the non-linear invariants might be employed to generate features from the recorded signals 
and use them for backlash detection and quantification. All these assumptions were proved by using the time 
data from the response acceleration signals in (Trendafilova& VanBrussel 2001,Trendafilova et al. 2000). We 
first analyze the behaviour of robot connections when different backlash is present and in the state of no back-
lash starting from their time responses, spectra and using pseudo-phase-space representations. The next step is 
to recover the embedding space necessary to unfold the motion for all the types of joints considered. This in-
cludes the determination of the time lag and the embedding dimension. We further try to establish the kind of 
dynamic behaviour for all the categories of joints we introduce using surrogate data tests. It is demonstrated 
that for the robot joints despite the periodic behaviour of the arm, there is another component which makes the 
motion definitely non-linear, especially when looking at a single transient (Trendafilova&Van Brussel 2001). 
We prove that this component is a non-linear deterministic one. Thus a non-linear deterministic model for the 
dynamic behaviour of robot joints can be recovered. Unfolding their dynamics and recovering the embedding 
time delay space is the first step towards reconstructing a model. By using the recovered embedding state 
space, we are now able to more accurately estimate some of the motion invariants for all the joint types. The 
consequent determination of some non-linear (chaotic) dynamics invariants (Lyapunov exponents, attractor 
dimensions) confirms some conclusions, already suggested from the previous analysis. The obtained Lyapunov 
exponents suggest the degree of chaos for the considered signals. They prove the conclusions, already implied 
by the surrogate data tests: there is weak chaos in the cases of no backlash and small backlash and the degree of 
chaos increases with the increase of the backlash size. Ultimately, the reconstruction of the unfolding space can 
be used for building local and global models of the dynamics of the system. Such kinds of models can be uti-
lized to develop procedures for defect qualification and quantification, applying inverse identification methods. 

3.6.1. Experiments with Industrial Robots. 

Experiments were conducted on a PUMA 762 industrial robot. The aim is to analyse the time response of some 
robot joints in the presence of a backlash and in normal condition (no backlash). For this purpose, various de-
grees of backlash were introduced in two joints of the robot by adjusting the backlash screws of the robot links. 
The joints are rotational and each of them is driven by a servomotor and gear transmission. The dynamic re-
sponses are measured with an accelerometer mounted on the end transmission. Two series of experiments were 
performed with backlash in each joint with the following backlash sizes, vis. zero (i.e. no backlash), small, 
medium and maximum backlash. 

3.6.2. Signal Analysis. 
In accordance with the experiments performed, and in correspondence with the joint type from which the sig-
nals come, we introduce four signal categories: no backlash signals (N), small backlash signals (S), medium 
backlash signals (M) and large backlash signals (L). At first glance, the vibration signatures coming from the 
robot joints look very much periodic, since the joints rotate with constant frequency. But we were able to estab-
lish that there is another component besides the periodic one (Trendafilova&Van Brussel 2001). In order to 
observe it the signals were high-pass filtered. Since the visual appearance of the signals does not suggest any 
features to distinguish between signals coming from a damaged and a non-damaged link and since all the signal 
spectra were broadband which made them difficult to analyze and extract any features from we used a pseudo-
phase-space representation (Abarbanel 1996). The presumption is that the plot will mimic the behavior of the 
real system and the pseudo-phase-plane technique is expected to preserve the major properties of the system, 
and thus to enable us to draw some conclusions for the motion. From the analysis of the signals as well as from 
the analysis of the phase trajectories it can be suggested that the introduction of a backlash in a robot joint leads 
to the increase of chaotic motion, which is weaker for the cases of smaller backlash and gets stronger the larger 



the backlash becomes. This has been proved  in two previous studies (Trendafilova et al 
1999,Trendafilova&Van Brussel 2001) by using hypothesis analysis. The next section considers the process of 
backlash detection and quantification. 

3.6.3. Detecting Backlash Using the Phase Space Representation 

We were able to establish that there are several phase space invariants that change as a result of the introduc-
tion and the growth of backlash. Two of these characteristics, the Lyapunov exponent and the correlation di-
mension of the phase space were used in order to detect and quantify backlash in robot joints. A pattern recog-
nition method was used and the following categories were introduced: 
-the category of signals from a no backlash joint N, 
-the category of signals from a joint with a small backlash S, 
-the category of signals from a joint with a medium backlash M and 
-the category of signals from a joint with a large backlash L. 
It is our aim to distinguish among these categories, extracting information directly from the measured vibration 
signals and making use of the recovered embedding dimension to estimate the characteristics of the corre-
sponding time series. This can be achieved by using the above results, namely exploiting some non-linear dy-
namics characteristics of the signals. We were able to establish that the maximum LEs vary for the different 
categories. They have the smallest values for the case of N signals increasing with the introduction and the 
growth of backlash. Consequently, the maximum Lyapunov exponents can be used as features to distinguish 
among the introduced categories. Another characteristic that was be observed to differ for the different catego-
ries is the correlation dimension. It is a geometric characteristic of the motion and gives an idea about the di-
mension of the attractor. It is also expected to increase with the increase of the degree of chaos. Our results 
suggest the same tendency as for the LE: the smallest correlation dimensions are registered for the N category 
and they increase with the increase of the backlash extent. Accordingly, one can try to use the correlation di-
mension also as a feature. Figure 9 shows the ranges for the Lyapunov exponents and the correlation dimension 
for the different categories. Thus, a very natural way to try to distinguish among the considered categories is to 
develop a classifier using as features the maximum Lyapunov exponent and the correlation dimension. Instead 
of the signals their Lyapunov exponents λj and the correlation dimension D are used, thus forming a pattern 
vectors for each signal. A rather simple classifier is the one which utilises the nearest neighbour (NN) rule and 
the Euclidean distance as a dissimilarity measure. In order to build such a classifier, we take a prototype sample 
with known categorisation, i.e. each of the pattern vectors belongs to one of the considered categories. The NN 
classifier categorises a test signal to the category to which its nearest neighbour belongs. Thus e.g. a signal is 
considered to belong to the class N (no backlash) if its nearest neighbour belongs to this category.  

 
Figure 9: Ranges for the correlation dimension D and the Lyapunov exponent LE  
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For this study, 139 signals (35 of them from the N category, 33 from S, 36 from M and 35 from L) were meas-
ured from the PUMA robot axes to form the prototype sample of feature vectors with known categorisation. 
Then, the performance of the developed classifier was checked with another test sample of signals 96 signals 
from the PUMA robot axes. Table 2 summarises the results for the performance of the classifiers. The numbers 
on the main diagonal give the percentage of correctly classified signals for the quantification classifiers and the 
detection classifiers, respectively. The figures outside the diagonal give the percentage of the incorrectly classi-
fied signals. In general it can be seen that the classifier demonstrate rather good performance in distinguishing 
among the different signal categories. 
 
 
 

 
 
 
 
 
 

5. Influence of Temperature and Environmental Conditions on the Nonlinear Vi-
bratory Behaviour of Structures  

All approaches in health monitoring systems are based on the argument that damage in the structure will cause 
changes in the measured vibration data. Many existing methods, however, neglect the important effect of 
changing the environment of the underlying structure. For structures in operational conditions, the variability in 
dynamic properties and dynamic behavior can be a result of time-varying environmental conditions. Environ-
mental conditions include, temperature, humidity and eventually wind (if the structure is exposed to wind). 

Certainly, the temperature variation is the most important factor which can influence the health monitoring 
procedure. It not only changes the material stiffness, but also alters the boundary conditions of a system. 
(Sohn,2007). The temporal variation of the temperature also needs to be noted. Many structures exhibit daily 
and seasonal temperature variations. Thermal loads introduce stresses due to thermal expansion, which lead to 
changes in the modal properties. Thermal loads can also cause buckling and in some cases even lead to chaotic 
behaviour (Amabili et al. 2009, Manoach et al. 2004, Ribeiro et al. 2005 ,2007). Thus, on a lot of occasions the 
presence of a temperature field can either mask the effect of damage or increase it, which will render a VSHM 
method ineffective - it might give no alarm when a fault is present or give a false alarm. This is why it is vital 
to be able to take into account the temperature changes when developing VSHM procedures.   

Few authors have investigated the long-term stability against humidity variation (Manson et al. 2001). The 
authors report that while temperature variation mainly produced a phase shift of the signal with a slight ampli-
tude change, humidity changed the amplitude of the Lamb-wave response. However, the authors concluded that 
Lamb-wave propagation characteristics were more sensitive to temperature variations than changes in humidi-
ty. 

As far as it is practically impossible to distinguish the influence of mechanically induced changes in the re-
sponse of the structures from the thermally induced ones (Pirner & Fischer 1997) we shall use the damage in-
dex and the corresponding criterion defined in & 3.1 with equations (4) and (5). 

Thus, if the following criterion is fulfilled 
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one can conclude that the beam is damaged and the sets of points (X) for which Eq.(14) is fulfilled, form the 
damaged area (areas). The essential point here is that the temperature changes should also be taken into ac-

 N S M L 
True class N 92 7 1 0 
True class S 7 91 2 0 
True class M 0 1 93 6 
True class L 0 0 5 95 

Table 2: Confusion matrix for the robot joint signal classifier. 
 



count. For this reason the damage indexes defined by Eqs. (4) and (5) should be calculated at equal values of 
ΔT for the healthy and damaged beams. 

To show the influence of the temperature on damage assessment and localization of structures two numeri-
cal examples are shown – for a beam and for a plate. The beam has length l=80 mm thickness h=2.5 mm and 
the width b=5 mm. The characteristics of the beam’s material are Young’s modulus E=41.92 GPa, Poisson’s 
ratio ν=0.32991, density ρ=2052 kg/m3 and the coefficient of thermal expansion αT=13.2×10-6 K-1.The material 
properties correspond to the effective properties of laminated composite. For the considered beam geometry 
damage (delamination) is located at (0.56m, 0.64m)x∈  (10 % of the beam length). It is modelled by prescribing 
to this part of the beam reduced rigidity Ed = 0.5E = 20.96 GPa. The beam is discretized by 40 linear beam 
finite elements. 

The second numerical example concerns a thick aluminium rectangular plate with the following geomet-
rical and material properties:  a = 10 m, b = 2.5 m, h = 0.05 m, Young’s modulus E = 7.1010 N/m2, Poison ratio 
ν = 0.34, density ρ = 2778 kg/m3. The finite element discretization and the damage area are shown in Fig. 16. 
In this case the damaged area is modelled as an area with reduced thickness hdamaged = h/2, (h is the thickness of 
the plate). The plate is fully clamped and the applied harmonic load p = 500 N is uniformly distributed over the 
whole plate surface.  

First of all, the sensitivity of the first 7 natural frequencies of the beams and plates (calculated by finite el-
ement method) to damage was tested. The results show that the considered defects cause very small changes 
(less than 5% ) in the natural frequencies of the beam. The changes in the eigen frequencies of the plate due to 
damage are even smaller. Obviously such small changes cannot be used as an indicator for damage.  

Then the forced response of the beam subjected to a harmonic loading is tested. The beams are subjected to 
two kinds of loadings: (a) excitation with frequency equal (or very close) to the first natural frequency and (b) 
excitation with frequency equal to a half of the first natural frequency. The beams are additionally subjected  to 
different temperature loads: Δ T=10 K, Δ T=20 K and Δ T=30 K. In all cases time history diagrams and Poin-
caré maps are plotted for intact (healthy) and damaged beams.  

Let us first have a look at the time histories of the beam’s responses. In the cases when the excitation fre-
quency is close to the first natural frequency of the beam a beating phenomenon is observed (Manoach et al., 
2004, 2008). The influence of damage on the time history diagrams of the beam subjected to a loading with 
excitation frequency ωe= 5665 rad/s (~ω1/2) at different temperature changes can be seen in Figs 10 a,b. In 
Figs 11 a,b the time history diagrams at excitation frequency almost equals to the first natural frequency of the 
healthy beam (ωe= 11330 rad/s) are shown. From these time-history diagrams it can be concluded that the 
considered damage leads to small changes in the amplitude of responses but the time histories undergo signifi-
cant changes in the period of beating . It can be seen that at the very beginning (t=0) the responses almost coin-
cide. Then the phase shifts and the differences between the responses increase (see small figures inserted in the 
main figures where the time history are shown for a very short period of time).  

The changes are more essential when ωe = ω1. It is reasonable to expect that small changes in the first natu-
ral frequency due to damage are more important when a beam is excited in the most sensitive frequency region. 
The computations confirm these expectations. Figures 12 a,b and 13 a,b show that the considered damage does 
not change the type of the Poincaré map but it only slightly influences the size of the radius of the circle 
formed by the dots. Nevertheless, in all cases of temperature loading the presence of damage and its location is 
very well predicted by the damage criterion based on the damage index (see Figs 14 and 15). It is important to 
notice that when eω ≈ω1/2 the level of the damage index increases with the temperature elevation, i.e. the ele-

vated temperature strengthens the influence of damage. However, when eω ≈ω1, the relation between damage 
index and temperature is opposite - increased temperature decreases damage index in the delaminated area. The 
increased temperature leads to change of the natural frequencies of the beam and in this way takes away the 
response of the beam from the most sensitive region around the resonance. This observation could be important 
when an excitation frequency must be chosen for damage detection purposes. In all cases the damage criterion 
based on the damage index suggested here shows very good capability to predict damage location. However, if 



one tries to construct a damage index by using data for the unheated healthy beam and for the heated damaged 
beam the damage location cannot be predicted as can be seen in Fig. 16. 

A similar study was performed in the case of the above described plate. The time history diagrams of the 
plate centre with defect and without defect are shown in Fig. 18. The same time history diagrams but in the 
case of elevated temperatures of the plates are shown in Fig. 19. The excitation frequency is 260 rad/s, which is 
7 % less than the first eigen frequency of the healthy plate. 

 

 
 

(a) 

 
 

(b) 
Figure 10: Time histories of  the beam centre for different temperatures. p=50 N, ωe= 5665 
rad/s,. (a) - Δ T=10; (b) Δ T=30  Black line – healthy beam; red line –damaged beam 

A strong beating can be observed in the responses of the healthy and damaged plates. The phase of the re-
sponse of the damaged plate shifts and the difference between the responses increases with the time. The same 
conclusion applies in the case of the rectangular plate at elevated temperature. The elevated temperature leads 
to larger values of the vibration amplitude. Again, the differences between the Poincaré plots of the heated and 
unheated plates are largest for the points from the damaged areas (see Fig. 20 a-c). Accordingly, the damage 
indexes corresponding to the damaged area have the biggest values, which gives the possibility to locate the 
damage. The contour plots of P

iF  corresponding to three different temperatures are shown in Fig. 21. It can be 
seen that the damage location is predicted very precisely in the case of the unheated plate as well as  in the 
cases of the heated plate with  two different temperatures ΔT = 50 K and ΔT = 100 K. The threshold value Td  
is set to 0.28 for all cases and the maximal value of Id is almost the same (Id = 0.4 for ΔT = 0,  ΔT = 50 K and 
Id = 0.42 for ΔT = 100 K). 
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Figure 11: Time history diagrams of the beam centre at different temperatures.(a) - Δ T=10, 
(b) -Δ T=30  p=50 N,  ωe= 11330 rad/s, Black line – healthy beam; red line –damaged beam 
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                                            (b) 

Figure 12: Poincaré maps for the response of the beam centre at different temperatures  
p=50 N,  ωe= 5665 rad/s.. (a) - Δ T=10, (b) -Δ T=30  .Black dots – undamaged beam, red 
dots – damaged beam 
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             (a) 

 
             (b) 

Figure13: Poincaré maps for the response of the beam centre at different temperatures p=50N,  ωe= 
11330 rad/s.  (a) Δ T=10, (b) -Δ T=30  .Black dots – undamaged beam, red dots – damaged beam 
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Figure 14: Damage index for a beam subjected to har-
monic mechanical loading with an amplitude  p=50 N, 
excitation frequency ωe= 5665 rad/s and different 
thermal loads 
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Figure 15: Damage index for a beam subjected to 
harmonic mechanical loading with an amplitude  
p=50 N, excitation frequency ωe= 11330 rad/s and 
different thermal loads 
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Figure 16: Damage index computed when the healthy 
beam is at ΔT=0 and the damaged beam is at ΔT=20 K 

 

 
 
 

 
 

Figure 17: Finite element mesh of the plate with 
defect  

 

 

 
 

Figure 18: Time history diagram of the plate centre, p 
= 500N, eω = 260 rad/s 

 
 

Figure 19: Time history diagram of the plate centre 
of heated plate , p = 500N, eω  = 260 rad/s, ΔT = 50 
K 

5. Discussion. Concluding remarks 

The aim of this chapter is to introduce some new applications of nonlinear dynamics tools and nonlinear signal 
analysis for VHM of structures and machinery (robotic mechanisms in particular). The main contributions of 
this study are in the introduction and the development of several novel procedures based on nonlinear dynamics 
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analysis for the health monitoring and diagnosis of structures and machinery. Several different possibilities to 
apply nonlinear dynamics tools for structural health monitoring as well as for monitoring of robot joints are 
presented. The suggested methodology can be applied for cases of linear as well as for cases of nonlinear vibra-
tion but it is especially appropriate for cases of nonlinear vibrations of structures and/or machinery. Nonlinear 
structural vibrations are due to different nonlinearities in the material, the geometry and/or the contacts and the 
supports of the structure. They are typically observed at higher amplitude vibrations and this is the case when 
the nonlinearities cannot be neglected and a linear approximation is not any longer appropriate for modelling 
the structural vibration. For cases of nonlinear structural vibration the response might not be even proportional 
to excitation. This poses extreme problems in estimating the structural response and keeping it in the limits of 
safety. For the case of nonlinear vibrations the structural response is characterised by a nonlinear signal. Non-
linear vibration signals are measures for a lot of cases of rotating machinery and machine vibrations as well. 
This nonlinear dynamic behaviour can be due to the materials, the geometry, the supports and/or the contacts in 
the machinery considered. It is known that the occurrence of a fault or damage introduces a nonlinearity in the 
vibrating structure or rotating/vibrating machinery which in turn changes its vibratory response. This is why we 
suggest the application of nonlinear dynamics tools for the purposes of monitoring the state and health of vi-
brating structures and rotating machinery.  
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Figure 20: Poincaré map at the centre of the plate, (a) TΔ  =0; (b) TΔ  = 50K, (c) TΔ  = 100 K. 
Undamaged plate  - black dots; Damaged  – red dots. 

 

 
Figure 21: Contour map of the damage index for unheated and heated rectangular plate with damage 

We first consider some applications for structural damage diagnosis which involve different nonlinear 
methods and features which are capable to detect the presence of structural damage as well as to localise it. It is 
shown using test cases that some of these methodologies and features demonstrate very good performance and 
hold a considerable potential in the area of structural health monitoring. It is the authors’ opinion that the appli-
cation of nonlinear dynamics and signal analysis for structural VHM is a very promising and still a relatively 
low explored area given the research in this direction on linear tools applications. It should be mentioned that 
linearity is one of the properties which is quite rarely fulfilled and for the case of nonlinear dynamic behaviour 
most of the standard methods like modal analysis and even frequency domain analysis are no longer applicable. 
Thus for cases of well-expressed nonlinear vibratory/dynamic behaviour it is imperative to use nonlinear meth-
ods and applications. This chapter also offers some discussion, results and examples for the influence of tem-
perature and other environmental factors which are known to affect the structural vibrations. Similarly to dam-
age these factors can be considered to introduce additional nonlinearity in the structural behaviour and on a lot 
of occasions they aggravate the nonlinear dynamic behaviour and make it imperative to account for the pres-
ence of nonlinearities. It is demonstrated that in general the temperature can considerably affect the vibration of 



structures and thus should be taken into account when developing VHM procedures. When applying a structur-
al VHM method special care should be taken that the measurements are taken under the same environmental 
and temperature conditions. Another possibility is to include the temperature in the damage feature itself so that 
it accounts for different temperatures and temperature changes. To our knowledge this has not been done yet. 
The incorporation of temperature and other environmental conditions like moisture etc. is a topic of future 
research in the area of structural and machinery VHM.  

This study considers also the application of nonlinear dynamics tools for monitoring of robot joints. This 
is based on the assumption that a fault in a joint introduces nonlinearity or an additional nonlinear component 
in the otherwise predominantly harmonic motion of the robot joint.   This assumption was proven in some of 
the authors previous research (Trendafilova et al 1999,Trendafilova &Van Brussel 2001) by using hypothesis 
testing. Thus it is known that a fault like e.g. a backlash in robot joint introduces an additional nonlinearity in 
its dynamic (rotational) signature. This research suggests using this fact and considering a backlash from the 
standpoint of nonlinear dynamics. Thus characterising the nonlinear motion of the joint and specifically esti-
mating the degree of nonlinearity in the motion can give us information about the presence of a fault in the 
joint and it can also help to estimate the fault severity.   

This research introduces several different possibilities to use nonlinear dynamics and signal analysis for 
VHM of both structures and machinery. One possibility is presented by the analysis of the phase space repre-
sentation of the motion. This can be analysed visually by inspecting the phase space diagrams and the Poincaré 
maps of the motion. The distribution of phase space points can be analysed by visualisation techniques which 
can eventually lead to the estimation of the probability density or the probability function of this distribution. 
The probability distribution of points on the attractor is also presented and characterised by its statistical mo-
ments like e.g. mean value, standard deviation, as well as higher moments like skewness and kurtosis. These 
statistical moments also present a possible way to characterise and analyse the phase space dynamics of a sys-
tem. The phase space representation of dynamic system is known to converge towards a compact set of points 
known as the attractor. The attractor normally has a specific shape which changes with properties of the dy-
namic system. Thus the shape of the attractor or the Poincaré map and the changes that they undergo can be 
used for fault/damage diagnosis as well. The phase space representation and the attractor are known to poses 
certain invariant characteristics also called invariants. The invariants do not change with the change of the co-
ordinate system. Thus they are the same in the original but unknown space of the system as well as in the re-
constructed phase space. The invariants characterise the dynamic system and not its representation. These in-
variants can also be used to analyse a dynamic system and since they are known to change with the introduc-
tion of certain damage and faults they can be used for purposes of fault identification.  In this study all these 
possibilities are critically considered and analysed taking into account their advantages as well as shortcom-
ings. The further development of better and more reliable techniques to estimate some of the above mentioned 
characteristics as well as the development of better fault/damage diagnosis methods are questions and topics for 
future research. 
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