197,281 research outputs found

    Timing analysis in microlensing

    Get PDF
    Timing analysis is a powerful tool used to determine periodic features of physical phenomena. Here we review two applications of timing analysis to gravitational microlensing events. The first one, in particular cases, allows the estimation of the orbital period of binary lenses, which in turn enables the breaking of degeneracies. The second one is a method to measure the rotation period of the lensed star by observing signatures due to stellar spots on its surface.Comment: 11 pages, 4 figures. To be published in International Journal of Modern Physics D (IJMPD

    Rayleigh - Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries

    Get PDF
    Accretion onto compact objects in X-ray binaries [black hole, neutron star (NS), white dwarf] is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Raylegh-Taylor gravity waves (RTGW). They should be seen as quasioperiodic wave oscillations (QPO). In this paper I show that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The observed low and high QPO frequencies are an intrinsic signature of the RTGW. I elaborate the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. I find that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. I also predict that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin.Comment: 14 pages and 2 figures, ApJ in pres

    Superfluid instability of r-modes in "differentially rotating" neutron stars

    Full text link
    Superfluid hydrodynamics affects the spin-evolution of mature neutron stars, and may be key to explaining timing irregularities such as pulsar glitches. However, most models for this phenomenon exclude the global instability required to trigger the event. In this paper we discuss a mechanism that may fill this gap. We establish that small scale inertial r-modes become unstable in a superfluid neutron star that exhibits a rotational lag, expected to build up due to vortex pinning as the star spins down. Somewhat counterintuitively, this instability arises due to the (under normal circumstances dissipative) vortex-mediated mutual friction. We explore the nature of the superfluid instability for a simple incompressible model, allowing for entrainment coupling between the two fluid components. Our results recover a previously discussed dynamical instability in systems where the two components are strongly coupled. In addition, we demonstrate for the first time that the system is secularly unstable (with a growth time that scales with the mutual friction) throughout much of parameter space. Interestingly, large scale r-modes are also affected by this new aspect of the instability. We analyse the damping effect of shear viscosity, which should be particularly efficient at small scales, arguing that it will not be sufficient to completely suppress the instability in astrophysical systems.Comment: RevTex, 11 figure

    Gravimetric Soil Moisture Protocols

    Get PDF
    The purpose of this resource is to measure soil water content by mass. Students collect soil samples with a trowel or auger and weigh them, dry them, and then weigh them again. The soil water content is determined by calculating the difference between the wet sample mass and the dry sample mass. Educational levels: Primary elementary, Intermediate elementary, Middle school, High school

    Astrometric Image Centroid Displacements due to Gravitational Microlensing by the Ellis Wormhole

    Full text link
    Continuing work initiated in an earlier publication (Abe, ApJ, 725 (2010) 787), we study the gravitational microlensing effects of the Ellis wormhole in the weak-field limit. First, we find a suitable coordinate transformation, such that the lens equation and analytic expressions of the lensed image positions can become much simpler than the previous ones. Second, we prove that two images always appear for the weak-field lens by the Ellis wormhole. By using these analytic results, we discuss astrometric image centroid displacements due to gravitational microlensing by the Ellis wormhole. The astrometric image centroid trajectory by the Ellis wormhole is different from the standard one by a spherical lensing object that is expressed by the Schwarzschild metric. The anomalous shift of the image centroid by the Ellis wormhole lens is smaller than that by the Schwarzschild lens, provided that the impact parameter and the Einstein ring radius are the same. Therefore, the lensed image centroid by the Ellis wormhole moves slower. Such a difference, though it is very small, will be in principle applicable for detecting or constraining the Ellis wormhole by using future high-precision astrometry observations. In particular, the image centroid position gives us an additional information, so that the parameter degeneracy existing in photometric microlensing can be partially broken. The anomalous shift reaches the order of a few micro arcsec. if our galaxy hosts a wormhole with throat radius larger than 10510^5 km. When the source moves tangentially to the Einstein ring for instance, the maximum position shift of the image centroid by the Ellis wormhole is 0.18 normalized by the Einstein ring radius. For the same source trajectory, the maximum difference between the centroid displacement by the Ellis wormhole lens and that by the Schwarzschild one is -0.16 in the units of the Einstein radius.Comment: 29 pages, 6 figures, 2 tables, accepted by Ap

    Damping of Neutron Star Shear Modes by Superfluid Friction

    Get PDF
    The forced motion of superfluid vortices in shear oscillations of rotating solid neutron star matter produces damping of the mode. A simple model of the unpinning and repinning processes is described, with numerical calculations of the consequent energy decay times. These are of the order of 1 s or more for typical anomalous X-ray pulsars but become very short for the general population of radio pulsars. The superfluid friction processes considered here may also be significant for the damping of r-modes in rapidly rotating neutron stars.Comment: 7 LaTeX pages, 4 eps figures; accepted for publication in MNRA
    • …
    corecore