
Volume 10 Number 4

ACTA
CYBERNETICA

Editor-in-Chief: F. Gécseg (Hungary)

Managing Editor: J. Csirik (Hungary) Secretary: Z. Fülöp (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA), W . Brauer (Germany), L. Budach
(Germany), R. G. Bukharaev (USSR), H. Bunke (Switzerland), B. Courcelle (France), J.
Demetrovics (Hungary), B. Dömölki (Hungary), J. Engelfriet (The Netherlands), Z . Ésik
(Hungary), J. Gruska (Czechoslovakia), H. Jürgensen (Canada), L. Lovász (Hungary),
Á. Makay (Hungary), A. Prékopa (Hungary), A. Salomaa (Finland), L. Varga (Hungary)

Szeged, 1992

Information for authors: Acta Cybernetica publishes only original papers in English in the field of
computer sciences. Review papers are accepted only exceptionally. Manuscripts should be sent in
triplicate to one of the Editors. The manuscript must be typed double-spaced on one side of the paper
only. For the form of references, see one of the articles previously published in the journal.

Editor-in-Chief: F. Gécseg
A. József University
Department of Computer Science
Szeged
Aradi vértanúk tere 1.
H-6720 Hungary

Managing Editor: J. Csirik
A. József University
Department of Applied Computer Science
Szeged
Árpád tér 2.
H-6720 Hungary

Secretary: Z. Fülöp
A. József University
Department of Applied Computer Science
Szeged
Árpád tér 2.
H-6720 Hungary

Board of Editors:

M. Arató
University of Debrecen
Department of Mathematics
Debrecen
P.O. Box 12
H-4010 Hungary
S. L. Bloom
Stevens Institute of Technology
Department of Pure and
Applied Mathematics
Castle Point, Hoboken
New Jersey 07030
USA
W. Brauer
Institut für Informatik
der TU München
D-8000 München 2.
Postfach 202420
Germany
L. Budach
AdW
Forschungsbereich Mathematik
und Informatik
Rudower Chaussee 5
Berlin-Adlershof
Germany
R. G. Bukharaev
Kazan State University
Lenin str. 2.
420012 Kazan
USSR
H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Länggass strasse 51
CH-3012 Bern
Switzerland

B. Courcelle
Université de Bordeaux I.
Mathématiques et Informatique
351, cours de la Liberation
33405 TALANCE Cedex
France
J. Demetrovics
MTA SZTAKI
Budapest
P.O.Box 63
H-1502 Hungary

B. Dömölki
SZKI
Budapest
Donáti u. 35—45.
H-1015 Hungary

J. Engelfriet
Rijksuniversiteit te Leiden
Subfaculteit der
Wiskunde & Informatica
Post bus 9512
2300 RA LEIDEN
The Netherlands

Z. Ésik
A. József Univesity
Department of Computer
Science
Szeged
Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Technical
Cybernetics
Slovak Academy of Science
Dúbravska 9
Bratislava 84237
Czechoslovakia

H. Jurgensen
The University of Western
Ontario
Department of Computer
Science
Middlesex College
London N6A 5B7
Canada

L. Lovász
Eötvös University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary

Á. Makay
A. József University
Kalmár Laboratory of
Cybernetics
Szeged
Árpád tér 2.
H-6720 Hungary

A. Prékopa
Eötvös University
Budapest
Múzuem krt. 6—8.
H-1088 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50
Finland

L. Varga
Eötvös University
Budapest
Bogdánfy u. 10/B.
H-1117 Hungary

Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

A criterion for the simplicity of finite Moore
automata

A. Adam**

Abstract
A Moore automaton A = (A, X,Y,S, A) can be obtained in two steps:

first we consider the triplet (A, X, 6) - called a semiautomaton and denoted
by S — and then we add the components Y and A which concern the output
functioning. Our approach is: S is supposed to be fixed, we vary A in any
possible way, and - among the resulting automata - we want to separate
the simple and the nonsimple ones from each other. This task is treated by
combinatorial methods. Concerning the efficiency of the procedure, we note
that it uses a semiautomaton having |A|(|A| + l) /2 states.

1 Introduction and terminology

§ i .

The question, when a Moore automaton is simple, has already been the subject of
a series of previous papers.1 Let some earlier results be outlined.2 If, particularly,
only autonomous automata are considered (i.e., |X| = 1 is required), the question
has been solved in [4] as a consequence of the theory describing «ill congruences
of autonomous automata. Without the restriction to autonomousness, a result of
certain theoretical importance has been obtained in [2]; this statement does not
seem to be worthy practically, because its algorithmic complexity depends on |A|
exponentially. Investigations of recursive character are contained in 15] and [6], the
general problem of simplicity was there reduced to the question, when a strongly
connected automaton (i.e., an automaton having no proper subautomataj is simple.

In the present considerations the problem of simplicity is dealt with for the
eintirety of automata, we rely on the result achieved in [2]. We choose the way
that first a semiautomaton S = (A,X,S) is thought to be fixed, and we form

*MTA Matematikai Kutatointeiet, H-X364 Budapest, P.O.Box 127. Hungary
tResearch partially supported by the Hungarian National Foundation for Scientific Research

(O T K A) grant, no. 1909.
' T h e researcher of this problem feels his situation to be similar to that of a mountain-climber

who besieges a difficultly reachable peak from various sides, since he does not know in advance
where he must turn back becauie of a too steep rise.

3 Out of the three results to be mentioned now, the first and second ones are restated in this
paper as Propositions D and A (in J 11 and J 3, respectively).

221

222 A. Ádám

then several automata A\ = (A, X, Y, S, A) so that the output components Y, A
are prescribed in every (essentially different) manner. We obtain a necessary and
sufficient condition that separates the simple, A^s from the nonsimple ones. We use
combinatorial tools, and our considerations are in connection with the articles [7],
[8] where partial results were gained in common with I. Babcsdnyi and F. Wettl.

Sketching the content of this paper, let it be mentioned first that the terminology
concerning automata is introduced in §§ 2, 3; together with restating some former
results. A glance is thrown at the graph theory in § 4.

The construction, elaborated in § 5, and the Theorem, exposed at the end of §
6, are the principal purport of the article. § 7 contains the proof of the Theorem
and of two cognate propositions.

The condition for the simplicity of automata, asserted in the Theorem, allows
sometimes a useful further analysis by logical methods; an insight into this possi-
bility is explained in § 8. In § 9 examples are treated on how the Theorem can be
applied in practice.

The paper terminates with touching some questions on combinatorial complex-
ity, arising if the method is applied. These considerations do not set up a claim for
completeness at all, they are of intuitive nature. The possibilities of future contri-
butions to this topics are specified as open problems in § 11. It is probable that
a genuine expert of the combinatorial complexity theory may conceive essential
further thoughts in addition to the ideas formulated in §§ 10, 11.

§2.

As usual, we understand by a finite Moore automaton a quintuple A =
(A, X, Y, S, A) where A, X, Y are finite sets (called the set of states, set of input
symbols, set of output symbols, respectively), 5 (the transition function) is a map-
ping of A x X into A and A (the output function) is a mapping of A onto Y.

The finite sequences (of arbitrary nonnegative length) consisting of elements of
X are called input words. The set of all input words is denoted by -F(X). The
meaning of S(a,p) is the customary where p is an input word.

Let a and b be two states of sin automaton. We say that b is accessible from a
if there exists an input word p such that 5(a, p) = b. The accessibility is a reflexive
and transitive relation. If any of a, 6 is accessible from the other, then it is said
that a and b are mutually accessible. The mutual accessibility is an equivalence
relation in A, the equivalence classes are called the strongly connected blocks - or,
for the sake of brevity, the blocks - of A. If there is only one block, we say that A
is a strongly connected automaton.

Let it be an arbitrary equivalence relation in A. tt is called a congruence (of A)
if a = b (mod it) implies the formulae fi(a, x) = 6[b, x) (mod jt) and A(a) = A(b)
whenever a e A, 6 (E A, x E X. The minimal partition of A is the. trivial congurence
of A . It is said that A is simple (or reduced) if A has no nontrivial congruence.

If we do not take into consideration the third component Y and the fifth com-
ponent A of a Moore automaton A = [A,X, Y, 6, A), then the resulting structure
S = (A, X, 5) is called a semiautomaton.3 We say then that S is the scheme (or pro-
jection) of A and, reciprocally, that A is an automaton completion (or a-completion)
of S. Of course, a semiautomaton S has many a-completions, depending on how
A is chosen. We shall use the notation' A\ sometimes when the a-completion of a
semiautomaton with the output function A'is regarded. -

A pair (a, 6) is called a proper pair if ajt b. '

3 T h e present use of the word "semiautomaton" differs from the terminology of [10].

A criterion for the simplicity of finite Moore automata 223

§3.

Throughout this section let (a, 6) be a (proper or nonproper) unordered pair of
states of a Moore automaton.

We denote by Haib the set of all input words p satisfying 5(a, p) ji 6(b,p). It is
said that

(o, 6) is a pair of first type if |-ff<„i>| < oo,
(a, 6) is a pair of second type if Hatb =
(a, 6) is a pair of third type if C F[X) and |iTo,&| = oo.

The difference set F(X) — Ha>b is obviously either empty of infinite. The pairs
of second and third type are necessarily proper.

We say that (a, 6) is a distinguishable pair if there exists an input word p such
that A(5(a,p)) ^ A(5(6,p)). In the contrary case (a,b) is indistinguishable. The
relation of indistinguishability, to be denoted by 7Tmax, is clearly an equivalence
relation. The following fact establishes a connection between simplicity and distin-
guishability (see [2], § 5; [5], § 4):

Proposition A . Consider irmax in a Moore automaton A . The relation 7rmax
is a congruence of A and each congruence of A. is a refinement of irmax. A is
simple if and only if'irmax equals the minimal partition of A (or, equivalently, if
each proper pair (a, b) is distinguishable where a S A,b 6 A).

If a proper pair (a, b) of states is indistinguishable and of first type, then we say
that a and b are weakly indistinguishable. If a pair (a, b) is indistinguishable and
of second type, then we say that a and b are strongly indistinguishable. If (a, 6)
is indistinguishable and of third type, then we say that a and b are compoundly
indistinguishable.

The three kinds of indistinguisliability introduced above are pairwise excluding.
The subsequent assertion follows from [8], Proposition 2:

Proposition B . The weak indistinguishability is a transitive relation.

The analogous statement does not hold for the othèr two indistinguishability
types (cf. [8], Chapter III).

Let (a, 6) be a state pair. If A(a) = A(i>) holds and i(o, s) = S(b,x) is valid for
every i (S A) , then we say that (a, b) is an associated pair. The relation of being
associated is an equivalence in A.

It is clear that any associated proper pair is weakly indistinguishable. The
converse of this fact does not hold (in general), but we have the following sentence
(see [7], Proposition 2):

Proposition C. Consider the state pairs in a Moore automaton. There is a
proper associated pair if and only if there is a weakly indistinguishable pair.

H -

It is not superfluous to say here a few words on graph theory, because we shall
construct a nondirected graph at the end of § 5, and our automaton-theoretical

224 A. Ádám

considerations use sometimes certain ideas that originate from the theory of directed
graphs. Let [11], [13] be mentioned as reference books of the two main branches of
graph theory.

The graph got in § 5 is simple in the sense that each vertex pair [or, in another
terminology, point pair] is joined by at most one edge [line], and each edge joins
two different vertices. We use the notation [a6] for the edge joining a and b.

The notions of accessibility (introduced in § 2) correspond precisely to the anal-
ogous concepts in directed graph theory (for the latter, see e.g. Chapter 3 of [13]).
One can show easily that we get a cycle-free directed graph if we form the con-
densation of the strongly connected blocks jstrong components] in a directed graph
([13], Theorem 3.6). Keeping this fact in mind, the reader may perhaps understand
better Steps 2-4 of the Construction of § 5.

2 Results

§ 5.

Let S = (A, X, S) be a semiautomaton where |A| > 2. S is regarded to be fixed in
Chapter 2. We denote [A| by v.

If the output function A : A —• Y is varied, we can get several automaton
completions A\ = (A, X, Y, S, A) from S. Our aim is to examine the question: when
is a simple A.\ obtained (depending on the choice of A). Among the automata A^,
it is yielded always a simple one (if |Y| = v and A is bijective), and also a nonsimple
one (if |Y| = 1).

In the next construction, we are going to establish a pair (G,p) where G is a
nondirected graph (whose vertex set equals A) and p is a partition of the edges of
G.

CONSTRUCTION. The procedure consists of five steps.

Step 1. Let a semiautomaton R = (C, X, £r) be introduced in the following man-
ner: let C be the set of all (proper and nonproper) unordered pairs (a, 6)
where a 6 A, b G A, define 6R by the rule

¿K((a,6),*) = (5(a,s),*(6,*)). (1)

Comments to Step 1. The right-hand side of (1) is meant as an unordered pair.
Clearly |C] = v{v + l) /2 . If (a, 6) is a nonproper pair, then the values
¿«((a, b), x) are again nonproper pairs, hence R has a subsemiautomaton
isomorphic to S. In the terminology of products of automata, we can say
that the factor semiautomaton (S®S)/cr is denoted by R where <8> is the sign
of direct product and a is the congruence of S ® S defined by the rule that
(a, 6) = (e, d) (mod <r) exactly if either a = c, b = d are true or a = d, b = c
hold.

Step 2. Denote by e the equivalence relation of mutual accessibility in C.

Comment to Step 2. If if is an equivalence class modulo e, then either each
element of K is a proper pair or each element of K is a nonproper pair.

Step 3. Consider the equivalence classes K modulo e (in C) satisfying the condi-
tions (a) and (b):

A criterion for the simplicity of finite Moore automata 225

(a) K consists of proper pairs,
(b) whenever (o, b) e K and x e X, then

6R([a,b),x)eK. (2)

Denote the number of these classes by j and themselves the classes by
Ki,K2,. • • ,Kj.

Step 4. Consider the equivalence classes K modulo e (in C) such that K does not
satisfy (b), it fulfils (a) and the following condition (c):

(c) whenever (a, 6) £ K and x&X, then either 6R((a, 6), i) is a nonproper
pair or (2) is true.

Denote the number of these classes by k and themselves the classes by
-Ky+2) • • • i Kj+k-

Comments to Steps 3, 4. Condition (b) can be expressed by saying that K
determines a subsemiautomaton of R . The ordering of the classes K\,..., Kj
is arbitrary and the same holds for -fCy+i,. • •, Kj+k- The j + k classes are
pairwise disjoint because they have arisen as different classes of an equivalence
relation. The number j + k is positive by the finiteness of C.

Step 5. Denote by G the nondirected graph whose vertex set is A and in which
two vertices a, b are joined by an edge [a&] precisely when

(a, 6) G Kx U K2 U . . . U Kj+k.

Moreover, let the edge [a, &] belong to the t-th class (modulo p), L,-, exactly
when (a, i>) G Ki (where 1 < » < j + k).

§6.

We state two propositions and a theorem on an arbitrary a-completion Ax =
(A, X, Y, 5, A) of S and on the partitioned graph (G, g). The verification of the
results will be done in the next section.

Proposit ion 1 The following two assertions are equivalent:

ia) There is a strongly indistinguishable state pair in Ax.
P) The re exists a number i, fulfilling 1 < i < j, such that, whenever [a6] €

U, then A(a) = A(6).

Proposit ion 2 If there is a weakly indistinguishable state pair in Ax, then there
exists a number i such that the subsequent assertions are true:

j + 1 < t < j + k,

|L,| = 1, and

we have A(a) = A(6) for the single element [a6] of L{.

We have arrived to the main result of the paper.

226 A. Ad dm

Theorem 1 Let an output function A : A —• Y fee added to S. TAe following two
conditions are equivalent for the resulting automaton A.\:

(I) A.\ is simple.
ill) In any class Li (where 1 < t < j + k) there exists at least one edge [a,-6,-]

such that A(oi) / A(fci).

§7 .

P r o o f of Proposition 1. (a) => (/?). To any (unordered) proper state pair fa, 6) let
us denote by Q[a,b) the set of the (proper and nonproper) state pairs (c,a) which
satisfy

(e,<0 = (*(«. P) . * (M)
with some p(G F(X)). First we mention immediate consequences of this definition.
We have (a,b) G Q[a,b). The pair (c,d) is accessible from (a,6) if and only if

c,d)CQ(a,b).
(a, b) = (c, ci)(mod e)

if and only if Q(a,b) — Q(c,d). If (a,6) is a strongly indistinguishable pair and
(c, d) G Q(a, b), then also (c,d) is strongly indistinguishable.

Consider now a strongly indistinguishable state pair (a, 6) in A.\. We can choose -
a pair (co, do), belonging to Q(a, 6), in such a manner that the strict inclusion

Q(c,d)(zQ(c0,d0) (3)

is false for any (c,d)(e Q(a,b)). (This choice is possible by the finiteness of R .)
Denote Q{co, do) by K. The condition (b) in § 5 is obviously valid for K and K

consists of strongly indistinguishable pairs only, furthermore our condition on the
falsity of (3) implies that K is just a complete class modulo e. Consequently, K
equals one of the classes Ki , • • •, K j (introduced in Step 3 of the Construction),
thus the validity of (/?) is clear.

(/3) =>• (a). Suppose (/9) for a number t, consider an arbitrary edge [afc] in
We can see easily that Q(a,i) = Ki, hence (a, 6) is a strongly indistinguishable
pair.
Proo f of Proposition 2. Assume the existence of a weakly indistinguishable pair.
Then there is (by Proposition C) a proper associated state pair (a, M.A(a) = A(6)
is clear. The one-element set { (a,6)} is evidently a class if;(mod e) and t fulfils
j < i < j +
P r o o f of the Theorem.

First we show that the falsity of il) implies the falsity of (II). Denote the set
of indistingushable state pairs of A* Dy J. If is not simple, then nm&x differs
from the minimal partition of A (by Proposition A in § 3), therefore J ^ 0. We
separate three cases (the first and second ones can overlap each other).

Case 1: J contains a strongly indistinguishable pair. Proposition 1 applies, the
truth of (/5) shows that (II) does not hold.

Case 2: J contains a weakly indistinguishable pair. We get now by Proposition 2
that (II) is not fulfilled.

Case 3: any element of J is compoundly indistinguishable. Recall the notation
Q(a,b) (where (o, b) G J). Define Q'(a,b) as the difference set Q(a,b) - P
where P is the set of nonproper state pairs. We have always (a, 6) G Q'(a, b) C

Q{

A criterion for the simplicity of finite Moore automata 227

J. Analogously to the first proof in § 7, we start with an arbitrary (a, 6)(G J)
and we choose a (co,c¿o)(6 J) such that

Q'{c,d)cQ'(co,do)

is false when (c,d) is an arbitrary element of Q'(co,do). It is obtained that
Q'(c0, d0) is one of the classes , K2,..., Kj+k, say, K¿. (II) is not satisfied
with this t because A(o,) = A(6,) whenever (a,-, 6t) S Q'(CO, do)-

Conversely, let us assume that (II) is not fulfilled. There is an t such that
a¿>] € L{ (that is, (a, 6) 6 Ki) implies A(a) = A(6). Remember how Ki has
seen constructed in j 5. Choose an arbitrary element (ao, b0) of Ki. Whenever
c, d) S Qiao, bo), then either (c, d) G Ki or c = d; we get A(c) = A(d) in both cases.

We have shown that (ao, b0) is an indistinguishable proper pair. Thus 7rmax is not
the minimal partition of A, hence (by Proposition A in § 3) Ax is not simple.

3 Discussion and examples

§ 8.

Suppose that we consider some semiautomaton S and we want to use the Theorem
for getting an overview of the simple automata among all the automata obtained
as Ax.

There is no difficulty if the graph G and its edge-partition p are enough per-
spicuous. In the contrary case (i.e. when (G,p) is involved), it is possible to utilize
logical methods (see e.g. [l] for the occurring logical notions).

We regard that the elements of A are denoted by oi, a2, • • • ,av (where v = |A|).
The condition, stated in the Theorem, can be formulated as a conjunctive normal
form in, expressing a truth function / . This function has (j) variables rer< (where
1 < r < s < v) such that rer, is true or false according as A(ar) ^ Ma,) o r

A(ar) = A (a,), respectively. We form, to any class Li, the disjunction of the
variables rora such that the edge [ara,] (exists in G and) belongs to LWe get
j + k elementary disjunctions (of nonnegated variables) in this manner; / is obtained
by the formula in which is the conjunction of these j + k disjunctions.

It is known that a disjunctive normal form is often a more treatable represen-
tation of a truth function, than a conjunctive one. Therefore, if we continue the
study of / , it may be useful to transform 51 into a disjunctive normal form. Some
methods for performing this are described in Chapter 3 of 11].

If a function / is analyzed, sometimes we may gain advantage from the idea
that the variables ro T, are not independent of each other. Indeed, the equality is
transitive, thus the formula

(ro r,&m ,<) —• ro rt

- or, equivalently, the formula

"r t • (« r . Vro.t)

- must be true for any choice of the subscripts r, s, t (where ro r , denotes the
negation of ro rJ).

228 A. Ádám

§9-

In this section some examples will be studied. The semiautomata, analyzed in
what follows, are mostly schemes of some automata occurring in previous articles.4

Fig. 1.

Example 1 Put A = { 1 , 2 , . . . , 7} and X = {xltx2}, let 5 be defined by Table 1
(see Fig. 1). Applying the first step of the Construction for this semiautomaton S,
we get the semiautomaton R = (C,X,5r) seen in Fig. 2. (We write e.g. simply 2
instead of (2,2) in this figure.) R has 28 states, there are 21 proper pairs among the
elements of C. There are four classes modulo s, one class consists of the nonproper
pairs. The proper pairs are distributed into three classes. One of these three classes
is { (1,2)} , another class is

{(2,3), (4,5), (6,7)}, (4)

and the remaining 17 proper pairs belong to the third class. No class fulfils the
conditions posed in Step S of the Construction. There is one class - namely (4)
- which satisfies the conditions posed in Step 4These facts mean that we have
j — 0,k = 1 and

Ki — {(2,3), (4,5), (6,7)}
in the present example.

'Compare the present Examples 1-3 with Example 3 in [4], Example 7 in [7], Example 6 in [8],
respectively.

Fig. 2.

230 A. Ádám

Fortunately, our discussion leads to a very simple situtation. The examination
of the semiautomaton S terminates with constructing the graph G - seen in Fig.
3 - in which all the three edges belong to the same class Li. Thus the criterion of
the simplicity of an a-completion A* of S is

A(2) ^ A(3) V A(4) A(5) V A(6) ^ A(7).
© ®

® ®
® <D

®
Fig. 3.

a ¿(a.Xi) £(a, z 2)
1 2 3
2 4 4
3 5 5
4 6 6
5 7 7
6 2 1
7 3 1

Table 1.

Example 2 Put A = {1,2, ,5} and X = {xi,x2}, let 8 be defined by Table 2
(see Fig. 4)- In analogy to the preceding example, let R be constructed from this
semiautomaton S = (A,X,S). (Some details can be left to the reader.) Among the
15 states of R there are 10 proper pairs. The number of classes mod e, consisting
of proper pairs, is three. Two of these classes fulfil the conditions of Step 3 of the
Construction:

Fig. 4.

A criterion for the simplicity of finite Moore automata 231

a i(o,a;i) £(a, x2)
1 3 1
2 4 2
S 2 5
4 1 4
5 2 S

Table 2.

ifx = {(1,2), (3,4), (4,5)},

tf2 = { (l , 3) , (1,4), (1,5), (2,3), (2,4) (2,5)}

(hence j' = 2J, and the third class

* 3 = { (3 , 5) }

satisfies the conditions of Step 4 (thus k = 1). The graph G has as many edges as
possible, it is drawn in Fig. 5.

Using the logical formalism considered in § 8, the criterion of the simplicity of
an a-completion A\ of S can be expressed by the conjunctive normal form

(ro 12 V re 34 V » 4 s) &

&(tt> 13 V ro 1 4 V IT) J5 V ro 23 V ro 24 V ro 2 s) & r o 35- (5)

Observe that №35 —• (ro 13 V re i s) and 0135 —» (11)34 V » 4 5) are identically true
formulae (cf. the end of § 8). We can infer that the formula (5) is equivalent to
ro 35, consequently A\ is simple if and only if A(3) / A(5).

Although (5) was enough complicated, we were in the advantageous situation
that we could obtain a remarkable simplification of (5) by utilizing the transitivity
of the equality relation.

By analyzing Example 2, we see that the conclusion of Proposition 2 may hold
for some a-completions Aa of S, but the supposition of Proposition 2 is false for
each choice of A. Hence the converse of Proposition 2 does not hold in general.

232 A. Ádám

Example 3 Put A = { 1 , 2 , . . . , 10}, X = {xi,x2,x3}, let 8 be defined by Table 3
(see Fig. 5 in [8]). Starting with this semiautomaton S , let R and the equivalence
relation e be constructed. Consider the proper pairs

a 6 [a, ii) S(a,x2) 8 (a, x3)
1 2 5 6
£ 3 3 2
3 2 1 3
4 5 1 4
5 4 4 5
6 7 10 1
7 8 8 7
8 7 6 8
9 10 6 9

10 9 9 10

Table 3.

in C only, then the number of elements in the 11 classes mod e are: 24, 5, seven
times 2, two times 1. By a further analysis we get that j = 1, k = 2 and the classes
Ki, K2, K3 are:

Ki = {(1,6) , (2,7), (3,8), (4,9), (5,10)},
K2 = {(2,5), (3,4)},
K3 = {(7,10), (8,9)}.

Thus the necessary and sufficient condition for the simplicity of an a-completion
A.x of S is the fulfilment of the logical formula

(ro 16 V to 27 V n>38 V re 49 V n>5,io)&(n>25 V TO 34)&(ro 7,10 V ro 8,9).

For the sake of completeness, let also the other classes of C mod e be listed.
They are:

{ (1,2) , (2 ,6) } , {(1,7), (6,7)}, { (2 ,8) , (3,7)},
{(2,10), (3,9)} , {(4,8), (5,7)}, { (2 ,3) } , {(7, 8)};

moreover, a class consisting of the remaining 24 proper pairs and a class to which
the 10 nonproper pairs belong.

The section will be finished with two sequences of semiautomata. All the semi-
automata S, to be introduced in the sequel, have the property that, whenever a
satate (¿1,13) of R is a proper pair, then {(*i,«2)} is a separate class modulo e.

Example 4 5 Choose a number u(> 2). Put A = { 1 , 2 , . . . , t>},X = {xi, x2} and
let S be defined in the following manner:

S{ l . i !) = 2,
¿ (» . i x ^ l if 2 < t < «,

£(»", x2) = i + 1 if 1 < » < v - 1,
£(u,a52) = v.

s This example is due to A . Nagy (personal communication).

A criterion for the simplicity of finite Moore automata 233

We can observe that the proper pairs are indeed pairwise incongruent mod e,
furthermore, j = 0, k = 1 and K\ — {(v — 1, «) } . Thus the criterion of simplicity is
A (v - l) ^ A (« ;) .

E x a m p l e s 6 Choose a number v(> 3). Put A = { 1 , 2 , . . . , u}, X =
{zi, i2> • • • > z,,} and let 8 be defined in the following manner:

S[l,xh)=h if 1 <h<v,
$ (i, xi) = 1 if 2 < i <v,
5(t, ! / ,) = » ' if 2 < t < V, and 2 < h < v.

We find that j = 0 and - because for a proper pair (t 1,1*2) the set {(11,1*2)}
satisfies the conditions of Step 4 of the Construction precisely if 2 < t'i < u,2 <
1*2 < v are valid - we have k = (" j 1) and the criterion of simplicity is

|{A(2), A(3), A(4) , . . . , A(v)}| = v — 1.

For the reader who is interested in this subject, it can be recommended to study
also the schemes of other automata occurring as examples in [7] and [8].

§ 10.

A semiautomaton S = (A, X, can be considered to be an object of complexity
vn (where n = |X| and - as earlier - v = |A|), since it can be characterized by
a table having vn entries. The product vn is also a good (lower) estimate for the
complexity of an ^completion of S. From the view point of practical applications,
that (semi-) automata are of primary interest for which n is remarkably smaller
than v.

Start with a semiautomaton S and effectuate a construction of another proce-
dure concerning S. If the number of steps of the procedure is proportional to vn,
then the procedure may be viewed economical as far as it is expectable. Such an
optimal situation, however, is likely very infrequent. If the number of steps of a
procedure is proportional to vn& (with some exponent /?(> 1)), then its complexity
can be considered still as quite satisfactory. The procedures whose complexity is
of order of magnitude van^ (where a > 1) are already worse ones, their profitable-
ness decreases with the growth of a. At the other end of the scale, a procedure
is not advantageous at all if its complexity cannot be estimated better than by an
expression in which v occurs as an exponent.

Recall Proposition A, and consider the task that we are going to check whether
or not the states of an automaton are pairwise indistinguishable. It is known7 that
two states a, b are distinguishable (if and) only if there is an input word p, fulfilling
A(6(a,p)) ^ A(<S(fc,p)), such that the length of p does not exceed v — 2. The number
of input words whose length is at most v — 2 equals

n ° " 1 ~ 1 (= l + n + n 2 + - + n ' ' - 2) .
n — 1

If we want to decide the simplicity of an automaton by using these ideas, we arrive
at the following job:

6This example is due to F. Wettl (personal communication).
7See e.g. S S and J 12 in [3].

234 A. Ádám

we draft a matrix of sue v X ((n ° - 1 — 1) / (n — 1)),
we fill the matrix with the output signs A(5(a, p)) as its entries, and
we examine the existence of two rows of the matrix that are from place
to place coinciding.

The complexity of this process depends exponentially on v, consequently, it is not
in the least economical.

The method, based in §§ 5-6 of this paper, is such an improvement of the "rough"
application of Proposition A that its complexity remains already under polynomial
bounds. The order magnitude of the semiautomaton R is v(v+ l)n/2, this quantity
is approximately proportional to v2n. Although the number 2 (as exponent of u)
is not quite reassuring, the author is afraid that it cannot be diminished notably
(unless we restrict our attention to one or another particular class of semiautomata).

A known algorithm due to Tarjan (see [15]) shows that the classes of the mutual
accessibility relation in directed graphs can be determined so that the complexity
depends linearly on the number of vertices (if the ratio of the edge number and
the vertex number is bounded); consequently, the computational complexity of our
Construction is not increased in Steps 2-5 (in comparison to the complexity of Step
1).

§ 11.

In this final section further comments will be done concerning the Construction
(in § 5), the Theorem (at the end of § 6) and the handling of the question by logical
tools (see § 8).

It is not quite hopeless that the method (elaborated in §§ 5-8) can be refined
into a more economical process under certain particular conditions. This subject
will be concerned in the first three problems to be raised at once (they are rather
heuristical than exact ones). The study of these problems is desirable primarily
within the class of strongly connected semiautomata, because a reduction of the
general question of the simplicity of automata to the strongly connected case is
already known (see [5], [6]).

Problem 1. Find semiautomaton classes such that, for the elements of a class,
the graph (G,p) can be obtained by some remarkably easier way, than through
constructing the semiautomaton R.

Problem 2. Study circumstances under which the truth function / - assigned to
the graph (G, p) - admits an easy discussion. (/ is, of course, easily treatable if it is
got by a short formula. Beside this case, Problem 2 concerns whether the following
methods can be utlized adavantageously: conversion of a conjunctive normal form
into a disjunctive one, and/or use of the consequences of the transitivity of the
equality relation.)

Consider again the partitioned graph (G, p) obtained in Step 5 of the Construc-
tion. Denote the number of the non-adjacent proper vertex pairs, i.e. the quantity

Q - (i i i i + i i 2 i + - + i i y + f c i) ,

A criterion for the simplicity of finite Moore automata 235

by rj(G). The quotient

max(|L1|,[£2|,...,|Ly+fcl,r?(G))

G)
can be viewed as a measure of in what degree (G, p) is perspicuous. The value (6)
is clearly between l/(j + k + 1) and 1.

Prob lem S. Find semiautomaton classes such that, for the elements of a class,
the value of the expression (6) is near to one.

The last problem will be devoted to the connection between the general criterion
of simplicity, asserted as the Theorem, and the known criterion for the simplicity
of autonomous Moore automata, having been stated in [4]. The latter result can
be formulated as follows:

Proposit ion D . ([4], Proposition 6). Let S be an autonomous Moore semi-
automaton. An a-completion A* of S is simple exactly if A fulfils the following
conditions:

(ij each cycle is primitive,8

(lij the cycles are pairwise non-isomorphic,
(ixi) whenever 5(a, x) = 5(6, x) for a proper state pair (a, 6) then A(a) ^ A(6).

Let condition (II) of the Theorem be applied for an autonomous semiautomaton.
It is then almost obvious to see that condition (ixi) is necessary for the simplicity
of an Ax- In the other respects, however, it appears no immediate possibility for
deriving Proposition D from the Theorem.

Prob lem 4. Show that the necessity of the conditions (i), (ii) and the suffi-
ciency of (i) ii (ii) & (iii) are consequences of the Theorem when (particularly) an
autonomous semiautomaton is considered.

References
[1] Adám, A., Truth functions and the problem of their realization by two-terminal

graphs, Akadémiai Kiadó, Budapest, 1968.

[2] Ádám, A., On the question of description of the behaviour of finite automata,
Studia Sci. Math. Hungar. 13 (1978), 105-124.

[3] Ádám, A., On certain partitions of finite directed graphs and of finite au-
tomata, Acta Cybernetica (Szeged) 6 (1984), 331-346.

[4] Ádám. A., On the congruences of finite autonomous Moore automata, Acta
Cybernetica (Szeged) 7 (1986), 259-279.

[5j Ádám, A., On simplicity-critical Moore automata, I, Acta Math. Hungar. 52
(1988), 165-174.

8 See (4], pp. 261-262 for the definition of primitivity.

6)

236 A. Ádám

[6] Ádám, A., On simplicity-critical Moore automata, II, Acta Math. Hangar. 54
(1989), 291-296.

[7] Ádám, A. and Babcsányi, I., Results and problems on strongly connected
Moore automata, Studia Sci. Math. Hungar. (To appear)

[8] Ádám, A. and Wettl, F., On two realizability questions concerning strongly
connected Moore automata, Publ. Math. (Debrecen). (To appear)

[9] Babcsányi, I., Nagy, A. and Wettl, F., Indistinguishable state pairs in strongly
connected Moore automata, Pure Math, and Applications, A 2 (1991), 15-24.

[10] Gécseg, F. and Peák, I., Algebraic theory of automata, Akadémiai Kiadó, Bu-
dapest, 1972.

[11] Harary, F., Graph theory, Addison-Wesley, Reading, 1969.

[12] Harary, F., Teorija grafov, Mir. Moskva, 1973. (Russian translation of [11]).

[13] Harary, F., Norman, R.Z. and Cartwright, D., Structural models: An intro-
duction to the theory of directed graphs, Wiley, New York, 1965.

[14] Harary, F., Norman, R.Z. and Cartwright, D., Introduction d la théorie des
graphes orientés, Modèles structureaux, Dunod, Paris, 1968. (French transla-
tion of [13]).

[15] Tarjan, R., Depth-first search and linear graph algorithms, SIAM J. Comput.
1 (1972), 146-160.

Received May 8, 199S

Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

On a special composition of tree automata

B. Imreh't

In the theory of finite automata it is an interesting problem to describe such
systems from which any automaton can be built under a given composition and
isomorphic embedding as representation. Such systems are called isomorphically
complete with respect to the considered composition. In particular, it is important
to characterize those compositions for which there are finite isomorphically com-
p i l e systems. In the works [l], [2] necessary conditions are given for the existence
of finite isomorphically complete systems with respect to the classical automata
and tree automata, respectively. In both cases it turned out that the existence of
a finite isomorphically complete system yields the unboundedness of the feedback
dependency of the composition. It is unknown yet whether this condition is suffi-
cient. So it is interesting to investigate such compositions for which there are finite
isomorphically complete systems. In [4] such a composition was introduced. Here
we generalize this notion of composition to tree automata and give a necessary and
sufficient condition of the isomorphic completeness. For this reason we recall some
notions from [3] and [5].

By a set of operational symbols we mean a nonempty union E = So |J Ei |J...,
where E m (m = 0 ,1 , . . .) are pairwise disjoint sets of symbols. For any m > 0, the
set E m is called the set of m-ary operational symbols. It is said that the rank or
arity of a symbol c r g E i s m i f c r S E m . Now let a set E of operational symbols
and a set R of nonnegative integers be given. R is called the rank-type of E if for
any integer m > 0, E m ^ 0 if and only if m S R. Next we shall work under a fixed
rank-type R.

Now let E be a set of operational symbols with rank-type R. By a E-algebra A
we mean a pair consisting of a nonempty set A and a mapping that assigns to every
operational symbol a 6 E an m-ary operation aA : A m —» A, where the arity of a is
m. The set A is called the set of elements of A and aA is the realization of a in A.
The mapping cr —• aA will not be mentioned explicitly, but we write A — (A, E). It
is said that a E-algebra A is finite if A is finite, and it is of finite type if E is finite.
By a tree automaton we mean a finite algebra of finite type. Finally, it is said that
the rank-type of a tree automaton A = (A, E) is R if the rank-type of E is R.

Now let us denote by UR the class of all tree automata with rank-type R. A
composition of tree automata from UR can be represented as a network in which
each vertex denotes a tree automaton and the actual operation of a tree automaton
may depend only on those automata which have direct connection to the given one.

In order to define this notion of composition let V denote an arbitrary nonempty
fixed set of finite directed graphs. Let A = (A, E) € UR and AJ = (Ay, E J) £ UR
(j = 1 , . . . , n). Moreover, take a family ¥ of mappings

'Department of Informatics, A. József University, Árpád tér 2, Szeged 6720, Hungary
tThis paper was supported by Hungarian Foundation for Scientific Research (O T K A) , Grant

2035.

237

238 B. Imreh

¥my : (Ax x . . . x A „) m x E m (m e R , 1 < j < n) .

It is said that the tree automaton A is a D-product of Aj (j = 1 , . . . , n) with respect
to 9 if the following conditions are satisfied:

n
(i) A = JJ Ay ,

i= i

(ii) there exists a graph D — ({ 1 , . . . , n}, E) in D such that for any meR,
j e { l , . . . , n } and

((a n , . . .),•••,(ami,•••,amn)) e A m

the mapping is independent of the elements at, (t = 1 m) if (s, j) £ E,

(iii) for any m € R, <r € E m and ((a u , . . . , a l n) , . . . , (o m i , . . . , a m „)) e Am,

aA((aii,..., a i „) , . . . , (a m l , . . . , o m „)) = (erf1 (a n , . . . , a m i) , . . . , cr*"(a ln,..., amn))
where

ai = ^mj((aii,...,aln),...,(aml,...,amn),cr) (j = l,...,n) .

We shall use the notation

J=1
for the product introduced above and sometimes we shall indicate only those vari-
ables of t/imy on which it may depend.

Now let 8 be a system of tree automata from UR. It is said that B is isomor-
phically complete for UR with respect to the D-product if any tree automaton from
UR can be embedded isomorphically into a P-product of tree automata from B.

The first characterization of isomorphically complete systems of tree automata
was given in [5] with respect to the Gluskov-type product, which can be defined
considering the set of finite directed complete graphs as possible networks. Now
taking the set of the n-dimensional hyper cubes (n = 2,3, . . .) as possible networks,
we prove that this cube-product is equivalent to the Gluskov-type product with
respect to the isomorphic completeness. For this purpose we need some preparation.

Let n > 2 be an arbitrary integer. Let us consider the n-dimensional hyper
cube. The set of the vertices of this hyper cube is Sn = { (s i , . . . , s „) : s,- G
{0,1} it = l , . . . , n) } . Define the mapping A„ on the set Sn as follows: for any
vector (s i , . . . , s „)

n

t=i
Then A^ is a one-to-one mapping of Sn onto the set { 1 , . . . , 2" } .

Let us form the directed graph = ({1 , . . . , 2"} , Vn), where for any 1 < t, j <
2", (i,j) € Vn if and only if A"1^') is adjacent to A " 1 ^) . For any u € { 1 , . . . , 2 " }

On a special composition of tree automata 239

let us denote by j i the set of all ancestors of u in D*. It is obvious that A~1(u) =
(s i , . . . , sn) is adjacent to a vertex (r i , . . . , r„) if and only if there exists an index
1 < t < n such that r,- = 1 — s,- and ry = ay if 1 < j < n and t ^ j. Therefore,

= n, i.e. each vertex of D* has exactly n ancestors. On the other hand, it is
easy to see that

if 1 < u < 2 " - 1 , then u has one ancestor in the set { 2 n - 1 + 1 , . . . , 2 " } and n - 1
ancestors in the set { l , . . . , 2 n - 1 } ,

if 2 n _ 1 < u < 2n, then u has one ancestor in the set { 1 , . . . , 2 '* - 1 } and n — 1
ancestors in the set { 2 n _ 1 + 1 , . . . , 2 " } .

Now let us suppose that n > 2 and consider the graphs £>* and £ > * _ T h e n
using the above observation, one can prove the following equalities:

(1) = jM \{u + 2n~1} if 1 < u < 2 n _ 1 and

(2) = { w - 2 " _ 1 : u e (4 ") \ { « - 2 n ~ 1 }) } if 2 n _ 1 < u < 2" .

Now we are ready to prove our statement.

Theorem 0.1 Let P* = {£)* : n = 2 ,3 , . . . } . A system C C UR of tree automata
is isomorphiealiy complete for UR with respect to the D* -product if and only if C
contains a tree automaton A = which has two different states a, b and for
any m € R, (ui,...,um) € {0|6}m/ " £ {ai&} there exists an m-ary operation
i r e E with um) = u.

Proo f . If R = {0} , then the validity of our statement can be proved easily. Now
let us suppose that R ^ {0} . Then the necessity follows from the work [5].

In order to prove the sufficiency, first let us define the sequence of matrices A ' 1 ' ,
as follows:

A W =

(0 0\
0 1
1 0

VI 1 /

A(»+ 1) _ /A<") A<»>\ f .
À M) ' — •

where A ' " ' is defined by ai? } = 1 - (1 < t < 2 n + 1 ; 1 < < 2n) in the
partitioned matrix.

We shall show that for any n > 2 and 1 < u < 2" the n-tuples (a'™',...,)
(t = 1 , . . . , 2n) tire pairwise different, where {t'x,... , t „ } =

We proceed by induction on n. The case n = 2 can be checked easily. Now let
n > 2 and assume that the statement is valid for n — 1. Let 1 < ti < 2" be arbitrary
and Ju^ = { t ' i , . . . , t „ } . Let us suppose that t„ < iw if v < w. If the desired n-
tuples are pairwise not different, then there are indices j, k with 1 < j < k < 2"
such that

(3) (aJJ a W) = (aj>; « «) .

240 B. Imreh

Now we distinguish three cases.
Case 1. Let us suppose that 1 < j < k < 2 n _ 1 . If

1 < u < 2 " - 1 , then n — 1 ancestors of u are in the set { 1 , . . . , 2 " - 1 } and the nth
ancestor is u + 2 n _ 1 . Therefore, by the ordering of in = u + 2 n _ 1 . Then, by
(1), 4 n _ l) = { » i , . . . , t „ _ i } and by the definition of A<"),

(4 r " « - (- a < • £ . , > =

(4 : ! 4 i ,) = (4 ? r " 4 : ; . ' , 1)
which contradicts our induction assumption.

If 2n~1 < u < 2", then n - 1 ancestors of u are in the set {2n~ 1 + 1 , . . . , 2 " }
and the nth ancestor is u — 2 " - 1 . Therefore, = u — 2n~1. Let wt = it - 2 r a _ 1

(t = 2, . . . , n) . Then by (2), j}"1^ — {w2,...,wn}. But then using the equality
(3) and the definition of , we obtain that

f a (« - i) a ("""1 ,t _ f . i « - !) a (" _ 1 h laj«»3 > • • • > JWn t — \akw2 > • • • 1 akwn I
which contradicts our induction assumption.

Case 2. Assume that 2n~1 < j < k <2n.
Let r = j - 2n~1, s = k - 2n~1. Then 1 < r < s < 2 " _ 1 . On the other

hand, by the construction of A (" - 1) , from (3) it follows that (4?,\ . . . , a ^ ') =
(4? , >. . . , a'"]) which yields a contradiction in the same way as in Case 1.

Case 3. Let us suppose that 1 < j < 2 n _ 1 < k < 2".
If 1 < u < 2 " - 2 , then by (1), t„ = u + 2n~1, in-X = u + 2n~2 and J[un~2) =

{ t ' i , . . . , t „ _ 2 } C {1 , . . . , 2 n ~ 2 } . Since t„ = u + 2 n _ 1 , by the definition of A(")
and (3), we obtain «£> = a ^ = «£> = «£>. By (3), = a j ^ , which
results that k / j +2n~l. Now let r = k - 2 " _ 1 . Then 1 < r < 2 n _ 1 . Since
1 < u < 2n~2 and 2 " - 2 < i n _ i < 2n~1, by the construction of A i " - 1 ' , we obtain
4 u = 47» = 1 - o ^ . But then a ^ = 1 - 4 ? ' . On the other KU ' « * rv— 1 J • TV — 1 rt n_ 1

hand, 1 < u < 2n~2, u + 2 " - 2 = » „_ ! , aj"* = aft1, 1 < j,r < 2n~i yield that
4 " ' = a ' " ' which is a contradiction.

If 2n~2 < u < 2" " 1 , then on the bases of (l) and (2), t„ = u + 2 " _ 1 , t'j =
u - 2 n _ 2 and {»2,- - , V - i } C { 2 n " 2 + l , . . . , ^ - 1 } . - But then, by (3) and the
definition of A<"), 4 ") = 4" ,> w h i c h y i e l d s k £ J + 2t n _ 1) . Let r = A; - 2 n _ 1 .
By the construction of 4 u ' = 1 — 4 " \ a n d so, 4 " ' = 1 — ^ e
other hand, by (3), aj^j = 4™', and so, by the construction of A '™ - 1 ' , 4?i = 4? i "
Since »i + 2"~2 = u and 1 < j, r < 2 n _ 1 , by the construction of A ' " - 1 ' , we obtain
that the last equality yields 4 " ' = 4 " ' which is a contradiction.

If 2 n _ 1 < u < 2", then »! = u - 2 n _ 1 . Let twt_j = it - 2 " _ 1 (t = 2 , . . . , n)
and wn = t'i + 2 n _ 1 = u. Then by (l) and. (2), j i " ' .= {wltK .. ,to„}. On the other

On a special composition of tree automata 241

hand, by (3) and the definition of A ' ") , we obtain the equality (a ^ , . . . , a) =
I®!«!,' • • • iafcu?»)• Since 1 < t'i < 2 " - 1 , we have traced back the considered case to
the above treated ones.

Now let us suppose that C contains a tree automaton A = (A, E) satisfying the
conditions of our Theorem with the elements a, 6. Without loss of generality we may
assume that a = 0 and 6 = 1 . Furthermore, for any m 6 R, (ux , . . . , u m) 6 {0, l } m ,
ti e { 0 , 1 } let us denote by crUl Um,u a n operational symbol from E m for which

u i „ , u (u i , . . . , " m) = " holds.
Now let B = ({&i , . . . ,6 „ , } ,E ') be an arbitrary tree automaton. Choose an

integer n > 2 such that to < 2". Let / i b e a one to one mapping of {6 i , . . . ,6a,}
onto the first tw rows of the matrix defined by /i(6fc) = • • •, aj^L) (A: =
1 , . . . , w). Denote by S the set {/¿(6k) : k = 1 , . . . , to}. Let 1 < u < 2" be arbitrary.
We know that the n-tuples = 1. • • • > 2") are pairwise different,
where { t ' i , . . . , t n } = j i n \ But then there is a one to one mapping ru for which
ru (a ' " ' , . . . ,) = bt (t = l , . . . ,u>). Let us consider these mappings ru for any
1 < 2". ^

Take the £>*-product A = [l / l x Dn)> w h e r e t h e family f of mappings
is defined as follows:

For any 0 # m e R, o e E'm, 1 < u < 2n and st = (a« i , . . . , «ta») G S
= 1 , . . . , m) ,

^ , m«(8 i , . . . , 8 m , a) =tr . (»)

where a® (^ (s i , - , , . . . , s 1 < n) , . . . , ru(smil,..., s m i J) = bk.
If 0 6 R, o e E|, and n{oB) = (o ^ , . . . , aj^l) , then

^ m u ^) = 0"V) fc»

For any m £ R, a € E', 1 < u < 2" and ((u n , . . . , u i 2 ») , . . . (u m i , . . . , u m 2 »)) 6
{A2 }M \ SM, i m u is defined arbitrarily in accordance with the definition of the
P*-product.

It is easy to see that the mappings ^ma are well-defined, and so, we obtain a
P*-product. On the other hand, one can prove that is an isomorphism of B into
A. Therefore, {A} is an isomorphically complete system for UR with respect to the
P*-product, which completes our proof.

Remark . Characterization of the isomorphically complete systems with re-
spect to the Gluskov-type product (see [5]) is the same as the characterization
in our Theorem. So this two kind of products are equivalent with respect to the
isomorphically complete systems.

Acknowledgement . The author is very greatful to Professor F. Gecseg for his
helpful remarks which greatly improved this paper.

References
[1] F. G£cseg and B. Imreh, Finite isomorphically complete systems, Discrete

Applied Mathematics, 36 (1992),307-311.

«

242 B. Imreh

[2] F. Gécseg and B. Imreh, On finite isomorphic ally complete systems of tree
automata, Acta Sci. Math., to appear

[3] F. Gécseg and M. Steinby, Tree automata, Akadémiai Kiadó, Budapest, 1984.

[4] B. Imreh, On complete systems of automata, in: Proc. of the 2nd Internation-
alColloquium on Words, Languages and Combinatorics, to appear.

[5] M. Steinby, On the structure and realizations of tree automata, in Second Coll.
sur les Arbres an Algèbre et en Programmation (Lille, 1979), 235-248.

Received December 4, 1992

Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

Regularizing context-free languages by AFL
operations: concatenation and Kleene closure

J. Dassow * A. Mateescu ^ G. Paun ** A . Salomaa "

Abstract
We consider the possibility to obtain a regular language by applying

a given operation to a context-free language. Properties of the family of
context-free languages which can be "regularized'1 by concatenation with a
regular set or by Kleene closure are investigated here: size, hierarchies, char-
acterizations, closure, decidability.

1 Introduction
The core of formal language theory is the study of the Chomsky hierarchy, especially
of families of regular and of context-free languages. An important problem in
this context is to understand the differences between "regularity" and "context-
freeness". The question is approached, explicitly or implicitly, in many papers.

Here we follow [2], [3], [4], [7] and consider this problem in relation with oper-
ations with languages. Usually, the main topic dealt with when investigating op-
erations with languages is the closure of various families (how much an operation
can "complicate" a language). A dual natural question is "how much an opera-
tion can simplify languages in a given family". In particular, we are interested in
transforming in this way context-free languages into regular languages.

Similar problems are investigated in [2j, [4j, whereas [3], [7j consider numerical
measures of non-regularity of context-free languages and the influence of various
operations on them.

Here we investigate the possibility of obtaining a regular language starting from
a context-free language and using one of the six AFL operations: union, concate-
nation, intersection - all by regular sets -, Kleene closure, morphisms and inverse

*Otto von Guericke University of Magdeburg, Department of Computer Science,
PSF 4120, О - ЗОЮ Magdeburg, Germany

^Institute of Mathematics of the Romanian Academy of Sciences, Str. Academiei 14, 70109
Bucuresti, Romania

^Research supported by the Academy of Finland, grant nr 11281
^Institute of Mathematics of the Romanian Academy of Sciences, Str. Academiei 14, 70109

Bucuresti, Romania
^ Research supported by Alexander von Humboldt Foundation
"Academy of Finland and University of Turku, Department of Mathematics, SF - 20500 Turku

50, Finland

243

244 J. DASSOW, A. MATEESCU, G. PAUN, A. SALOMAA

morphisms. We enter into details only for the right and left concatenation and
for Kleene *, namely we study the properties of families of context-free languages
which can lead to regular languages by left/right concatenation with regular sets
of by Kleene *.

2 Notations
For an alphabet V, we denote by V* the free monoid generated by V under the op-
eration of concatenation; the null element of V* is denoted by A and |x| denotes the
length of x SV*. For x & V*, a G V, we denote by JxL the number of occurrences
in x of the symbol a. We denote also by REG, LIN, CF the families of regular,
linear and context-free languages.

For a language L we denote by Pref(L),Suf(L),Sub(L) the sets of prefixes,
suffixes, respectively subwords of strings in L.

The main problem of this paper is the following: given a language L £ CF and
an operation with languages, can we use this operation in such a way to obtain a
regular language starting from L ?

In this form, the question is trivial for most AFL operations. For instance, for
all context-free languages L C V*, the languages

(i) L U V" = V*,
ii] h{L) for all h : V* —• {a}*,
iii) L n R for all finite languages R,

(iv) h~l{L) for all h : {a}* —.• V ,
are regular. The question is not trivial for concatenation and Kleene closure:

(i) Concatenating (on the left side) the non-regular language

Li = {a"bm | 1 < n < m}
with

R = {aP \p> 1},

we obtain a regular language, but no right or left concatenation of

L2 = {an6n | n > 1}

with a non-empty set will give a regular language (if RL2 € REG, for some R, then
take x e R and intersect RL2 with xa*6*; the obtained language is not regular,
hence RL2 is not regular, a contradiction).

(ii) For the above language L2, the language L2 is not regular, but for

L3=L2u{a,b}

we have
L3 = {a.6}*.

which is regular.
Thus, we are led to consider the families
CL = {L £ CF I there is R e REG, R ¿ 0, such that RL 6 REG},
CR = { L e CF I there is R e REG, R ± 0, such that LR e REG),
K = {LeCF\L* € REG},
K„ = {L eCF I there is 1 < m < n such that L< e REG}, for n > 1.
We shall investigate here only the families CL, K, Kn, n > 1; the results for CL

are true also for CR, with obvious modifications.

Regularizing context-free languages 245

3 The size of the families introduced above
The next relations follow from definitions.

L e m m a 3.1 (i) REG C CL C CF,
(ii) REGCKCCF,
(in) REG = Ki C K2 C . . . C CF.

L e m m a 3.2 Kn C K, for all n > 1.

P r o o f . Take L E Kn. There is M < N such that |Jili € REG. Clearly,
L* = flXU Lx)*, hence also L* is regular, that ia L & K. •

All these inclusions are proper.

T h e o r e m S.S REG <ZCL<Z CF.

P r o o f . The language Li in the previous section is in CL but it is not regular,
whereas the language L2 in the previous section is not in CL U CR. •

L e m m a 3.4 (*) If on arbitrary language L C V* satisfies, for some k > 0, the
relation Vk C L, then VL 6 REG. In particular, ifXeL, then V'L E REG.

(ii) If an arbitrary language L E V* satisfies, for some ki,k2 > 0,ki,k2 rela-
tively prime, the relation Vkl U V f c l C L, then L* E REG.

P r o o f , (i) Under the previous conditions, we obtain

V*L = V*Lk,

for Lk = {xEL\\x\< fc}.
The inclusion C is obvious. Conversely, take x,y E V* L, x E V* ,y E L. If

jy| < k, then y S Lk)xy E V'Lk. K |y| > k, then y = yiy2, \y2\ = k. As xyi E V ,
we have again xy = xyijfc E V*Lk.

The language Lk is finite, hence assertion (i) follows.
(ii) Note that, because ki,k2 are relatively prime, there exists mo, mo E N ,

such that for any n > mo there are t, j E N with n = iki + jk2. Thus L* contains
all words w such that |iu| > mo, hence V* — L* is a finite set; consequently, L* is
regular. •

Corol lary 3.5 CL is incomparable with LIN.

Proo f . The above considered language L2 proves the relation LIN — CL ^ 0.
Conversely, take the Dyck language D over {0,6}. We have D E CF — LIN. It

contains the string A, hence D E CL and CL — LI N ^ 0 too. •

Corol lary 3.6 For every context-free language L, L C V*, either L or V* — L is
in CL.

Proo f . Obvious, as one of L and V* — L contains the null string.

T h e o r e m 3.7 REG C K c CF.

P r o o f . For all £ £ CF, L C V*, the language V = LuV is in i f , as (LUV)* = V\
For LeCF- REG we obtain L' $ REG, hence K - REG ji 0.

Conversely, the language L2 in the previous section is not in K (we have L2 n
o+6+ = L2), hence L2 ECF-K. •

246 J. DASSOW, A. MATEESCU, G. PAUN, A. SALOMAA

Corollary 3.8 K is incomparable with LIN.

Proo f . For LeCF- LIN, V £ LIN, but L2 € LIN - K. •

Theorem 3.9 The inclusions Kn C Kn+i are proper for all n > 1.
Proo f . (1) n = 1.

The language
La,b={xe{a,b}' \\x\aji\x\b}

is not regular (its complement, {x € {a, 6}* | |x|a = |s|t}, is clearly non-regular),
hence it is not in K\ = REG.

However,
¿a,6 u la,bio,6 = + .

The inclusion C is obvious. Conversely, if x € { a ,6 } + , |x|a ^ |x|j„ then x S £<,,(>•
If |x|a = |x|b, then either x = ax', |x'|a < |x'|t or x = bx', |x'|a > |x'|b. In both
cases x' € La b, and a, 6 £ La<b, therefore x € L^bL^b-

On the other hand, La b € CF. Indeed, consider the context-free grammar

G = ({ 5 , A , B } , { a , 6 } , 5 , P) ,

with P containing the following rules:

S AaA, S BbB,

A —* AA, A —• a, A —• A, A —• oAb, A —• bAa,
B BB, B —* b,B \,B -* aBb, B bBa.

Clearly, starting by 5 —» AaA we generate strings x with |x|a > |x|b and
starting by S —* BbB we obtain strings x with |x|0 < |x|fc (from A one generates
all the strings x with |x|a > |x|b and from B one generates all the strings x with
M a < M b) .

(2) n > 2.
Consider the language

Ln = La,b U La,b{c}La,b U Mn,

for
Mn = {xe{a,b,cy\\x\c>n}.

Clearly, Ln € CF, but
Ln n {a, 6}* = La,b,

hence Ln REG. In fact, for all k, 1 < A; < n, we have
k

(J A . n {x £ {a, b, c}* | \x\e = A — 1} =
»=i

= {X!CX2C . . . cxfcxfc+i I Xi e {a, b}+, 1 < i < k + 1,

|«y| >2,2<j<k, and xx € La,b, or x f c + i € La,b}-

Denote this language by H. Indeed, k — 1 < n, hence H n Af* = 0; it follows that

H C (J (¿ai6{c}La,6rZ„,k(La.6{c}A,,<>)y,

Regularizing context-free languages 247

the union being taken for all t, j > 0 with t + j = к — 1.
The language H is not regular: z,- = а'саасаа.. .часа* £ If for all t > 1, but

every two strings z,-, zy with t ф j are not congruent (the context (bl, bl) accepts
only zy).

However,

n+l
(J Un = {a, 6 } + U Mn U
«=1

U {xicx2c ... xrcxr+1 | 1 < r < n — 1, X{ 6 {a, b}+,
1 < » < r + 1, |iy| > 2,2 < У < n} ,

hence this language is regular.
The inclusion С is obvious (note that = Mn). Conversely, Mn С

Ln,{a,b}+ = U La,bLa,b, and x\cx2c... xrcxr+i 6 ¿а,ь(^а,ь{с}Ьа,ь)гЬа,ь for
all 1 < r < n - 1, Xi 6 {а, 6 } + , 1 < t" < r + 1, |xy| > 2 , 2 < j < r. (The detaik are
the same as in the first part of the proof.)

In conclusion, Ln € Kn+1 — Kn and the proof is complete. •

Theorem 3.10 Kn С К for all n > 1.

Proo f . The language L = {а"6п | n > 1 } и { а , 6 }
is in К but L Kn for n > 1. Indeed, suppose that L' is regular for some m.
We have

m
|J V П a*b* = {xe a*b* | - m < |х|а - |x|b < m},
»=1

and this is not a regular language, a contradiction. •
The family CL is quite comprehensive and, in fact, the condition R 6 REG in

its definition can be removed:
Theorem 3.11 Assume that L\ ф 0 and are arbitrary languages over the al-
phabet V such that LiL2 e REG. Then also V*L2 £ REG.

Proo f . Let x £ Li be a string such that the conditions

yeLu |y| < |x|,

are satisfied for no string y. Since L\L2 is regular, so is the left derivative

I>o = d'x(LiL2)

and, hence, also V*LQ is regular. Since x is shortest in LI, we have also

L0 = (d'x(Li))L2.

Hence
VL0 = (VVJII))^ С V*L2.

But L2 С LO because A € d'x(Li). Consequently, V*L2 С V*LQ, which implies that
VL0 = V L2. Since V*L0 is regular, so is V*L2. •

248 J. DASSOW, A. MATEESCU, G. PAUN, A. SALOMAA

Using right derivatives, it can be shown similarly that if L\L2 £ REG and
L2 / 0, then LXV* £ REG.

Remark 1. The proof is effective if one of the shortest strings in L\ can be
effectively found. This is the case when, for instance, L\ is a context-free language.
Corol lary 3.12 K C CL, strict inclusion.

P r o o f . Take L C V", L £ K. Therefore L* £ REG. This implies L+ = L* - {A} £
REG, too. Moreover, L+ = L'L.

According to the previous theorem, L* L £ REG implies V* L £ REG, hence
L £ CL and we have obtained the inclusion K C CL.

This inclusion is proper. For instance, the language L\ considered in Section 2
is in CL — K. Indeed, L\ Da*6* = Lit which is not regular, hence L\ is not regular. •

Corol lary 3.1S A context-free language L C V* is in CL if and only ifV*L €
REG.

This corollary is useful in showing that languages are not in CL, for instance,
in the proof of Theorem 8.

Remark 2. The generality of this result (LI,L2 are arbitrary languages) can
be compared with the known result (see [5], page 50) that the left quotient of a
regular language by an arbitrary language is a regular language, as well as with
Lemma 3.1 in ¡6], which states that also deleting from the strings of a regular
language substrings which belong to an arbitrary language, we still obtain a regular
language. The previous theorem is in some sense a dual to these results.

A sort of converse of Theorem 5 is natural to be looked for, namely given Li L2
regular, it is expected that for any x € L\, also (Li — { x }) L 2 is regular. However,
this is not true.
Theorem 3.14 There are LI,L2 C {a. b}*,LI linear, L2 regular, and x £ L\,
such that L\L2 is regular, but (LI — {x})L2 is not regular.

P r o o f . Consider the language

Lx = {a'ba1' | 1 < t < / } U { a } .

It is clearly linear and

L\ = {ailbai*b...aikbaih*1 \ k> l,n > 1,
». > 3,1 < s < k,ik+i > 2} U a*.

Consequently, L\ £ REG. We take L2 = L*. Obviously, L\L2 = L^ is regular,
too. However,

[Li - {a})L2 n a'ba* = {¿ba* \ 1 < t < j),
which is not a regular language, hence (Lx — {a})L2 is not regular. •

The next theorem will give a characterization of languages in the family K.
With this aim, the notion of root of a language in the sense of [1] is used (see also
[8], pages 126 - 127).

Given a language L C V*, we denote by root(L) the smallest language LQ C L
such that LQ = L*\ it is proved in [l] that such;a language exists and it is unique.

Regularizing context-free languages 249

Theorem S.15 A language L & GF is in K if and only if there is a regular
language LO C L such that L C LQ.

Proof . The t/part is obvious (L0 C L C L%, hence L* = Lq€ REG).
Conversely, we have root(L) = root(L*). For all regular language, M, root(M)

is regular, too [1]. Therefore, for L € K, root(L*) € REG. Thus, we can take
Lo = root(L) = root(L*), and all conditions in tne theorem «ire satisfied. •

4 Closure and decidability properties
The families CL, K, Kn, n > 2, have rather poor closure properties.

Theorem 4.1 The family CL is closed under morphisms and Pref, Suf, Sub, but
it is not closed under union, concatenation, Kleene +, intersection by regular sets,
inverse morphisms and mirror image.

Proof .
Morphisms. If L e CL,L C V* and h : V —• U\ then let R € REG be

such that RL g REG. As h{RL) = h(R)h[L), we have h{RL) e REG, hence
h(L) S CL.

Pref, Suf, Sub. As a consequence of Lemma 3 (i), if by an operation a, from a
language L we obtain a(L) containing the empty string, then a(L) & CL. This is
the case with Pref, Sub, Suf.

Union. Consider the languages

Lx = {anbm | 0 < n < m},

L2 = {cn<T | 0 < n < m},

which are both in CL (take Ri = a*,R2 — c*). Since {a, b, c, d}*(Li U L2) is not
regular, we conclude by Corollary 2 of Theorem 5 that Lj U ¿2 ^ CL.

Concatenation. The languages

Li = {b},
L2 = {anbm | 0 < n < m},

are in CL, but L\L2 is not in CL, again by Corollary 2 of Theorem 5.
Kleene +. For the previous language i 2 we have L2 £ CL (indeed, L2C\a+b+ =

L2).
Intersection by regular sets. As we have seen, D, the Dyck language over {a, 6},

is in CL, but
Dna+b+ = {an6n | n > 1},

which is not in CL.

Inverse morphisms. Take the language

L = {(6ao)n(afc)m | 0 < n < m}.

It belongs to CL. Consider also the morphism

h-.{a,b,c,d,e,fY ~^{a,bY

250 J. DASSOW, A. MATEESCU, G. PAUN, A. SALOMAA

defined by

/1(0) = baa, h{b) = ab, A(c) = b, h[d) = aab, /i(e) = aaa, h(f) = 6a.

We obtain

h~1(L) = {anbm I 0 < n < m } U
u{arc(Tefmcbp | r , p > 0 , 0 < r + n < m + p } u
\j{arfbdnefmcbp | r , p > 0 , 0 < r + n + l < m + p}.

Again Corollary 2 of Theorem 5 shows that h~1(L) £CL.
Mirror image. The language {a"6m | 0 < n < m} is in CL, but its mirror image

is not. •
Theorem 4.2 The family K is closed under union, Kleene * and morphisms, but
it is not closed under concatenation, intersection by regular sets and inverse mor-
phisms.

Proof . The positive results follow from the next equalities:
IL,. U L2y = [L{ U LI)* (union),
[L*Y = L* (Kleene closure),
(/i(L))* = h{L*) (morphisms).

Concatenation. Take the languages

Lx = {anbn I n > 1} U {a, 6},
¿ 2 = { c } i

both in K. However, L\L2 $ K, because

[L^Y n a+6+c = {anbnc \ n > 1},

a non-regular language.
Intersection by regular sets. For L\ as above we have

Li n a + 6 + = {a"'6n I n > l } ,

which is not in K.
Inverse morphisms. Consider the language

L = {a.2nb2n I n > 1} U {a, 6},

which is in i f , and the morphism h : {a,6}* —• {a,b}* defined by

h[a) = aa,h(b) = 66.

We have
h ' ^ L) = {a"6" |n> 1},

which we have seen is not in K •.
Theorem 4.3 The families Kn,n > 2, are closed under morphisms and'Kleene *,
but they are not closed under union, concatenation, intersection by regular sets and
inverse morphisms.

Regularizing context-free languages 251

Proo f .
Morphisms. Use the equality MU£=i £'") = \T=i M£<)> m>l.
Kleene *. Follows from the inclusion Kn Q K,n > 1.
Union. Take

Li = {a'6a* | a i t, s, t > 1} U a*,
L2 = {b2}.

We have

L\ U L i i i = {o'fca* | s,t > 1} Ua* U
U{o'6at6ar | s, r > 1, í > 2,

(s, t, r) £ {(1,2,1), (1,2,2), (2, 2,1), (1,3,1), (2, 3 ,2) } } ,

hence Li € K2\ clearly, L2 & Kx. However, LiU L2 £ Kni for all given n. Indeed,
assume m

L = U (Li U L2y e REG,
•=i

for some m. If m = 2k, k > 1, then we have

L n (a*ba*b2)k = {a'bcfb2 \ s¿t,s,t> l} f c ,

which is not regular. If m = 2k + 1, k > 1, then

L CI (a*ba*b2)ka'ba* = {a'éo'fc2 | a ^ t, s, t > l } f c{a '6a t | s ± t, s, t > 1},

which is non-regular, too.
Concatenation. For the above languages Li, L2, take LiL2, then follow an

argument similar as for union.
Intersection with regular sets. Take again Lx and intersect it by a'ba*. We have

m
((J (¿1 n a*ba*Y) n o*6a* = {a'&a* | s ± t, s, t > 1},
»=1

which is not regular.
Inverse morphisms. Consider the language

L = {(a6)*6(a&Y \3¿t,s,t>l}U (ab)*

and the morphism h : {a,b,c,d}* —• {a,6}*, defined by

h(a) = a, h(b) = ba, h(c) = 66a, h(d) = b.

As for Li, we have L 6 K2. Clearly,

h~l(L) = {ab'~1cbt~1d \ s ¿ t,s, t > 1} U {abrd \ r > 0},

hence, for all m > 1,
m

(|J h-^LY) n ab*cb*d = { a 6 - 1 c 6 t - 1 d | s ± t, s, t > l } ,
<=i

which is not regular, hence / i - 1 (L) ^ Kn, for n > 2. •

252 J. DASSOW, A. MATEESCU, G. PAUN, A. SALOMAA

Corol lary 4.4 No family CL,CR,K,Kn,n> 2, is an AFL or an anti-AFL.

The following undecidability result is somewhat expected.

Corol lary 4.5 It is undecidable whether or not an arbitrarily given context-free
language over an alphabet with at least two symbols is in CL (in K or in Kn, n> 1).

P r o o f . Take L C {a, 6}* arbitrary in CF and the morphism h : {a, 6}* — •
{a, 5}*, defined by

h(a) = bab,h(b) = baab.

Since L = / i - 1 (/ i (L)) , the language h(L) is regular iff L is regular.
We construct the language

L' = {ba3b}h{L).

Then, V G CL (and V G K,L' G Kn, n > 1, respectively) iff L is regular (which is
undecidable).

Indeed,

1. (a, b}*L' G REG if and only if L G REG.

• (if) Obvious.
• (only if) We have

£ = h r l [J ^ b (S u f ({ a , bVL') n {6a36}{a, 6}*)).

2. U?=i £ REG if and only if L G REG, for all n = 2 , 3 , . . . , oo.

• (if) Obvious.
. (only if) We have L = LH n (6a36}{a, 6}*)), n > 2. •

References
[1] J. A. Brzozowski, Roots of star events, Journal of the ACM, 14 (1967), 466 -

477.

[2] W. Bucher, A. Ehrenfeucht, D. Haussler, On total regulators generated by
derivation relations, Theor. Computer Sci., 40 (1985), 131 - 148.

[3] J. Dassow, Gh. Paun, On the degree of non-regularity of context-free lan-
guages, Intern. J. Computer Math., 36 (1990), 13 - 29.

[4] A. Ehrenfeucht, D. Haussler, G. Rozenberg, On regularity of context-free lan-
guages, Theor. Computer Sci., 27 (1983), 311 - 332.

[5] M. A. Harrison, Introduction to Formal Language Theory, Addison Wesley,
Reading, Mass., 1978.

[6] L. Kari, On Insertion and Deletion in Formal Language Theory, Ph.D. Thesis,
Univ. of Turku, Dept. of Mathematics, 1991.

[7] E. Makinen, Two complexity measures for context-free languages, Intern. J.
Computer Math., 26 (1988), 29 - 34.

Regularizing context-free languages 253

[8] A. Salomaa, Theory of Automata, Pergamon Press, New York, 1969.

[9] A. Salomaa, Formal Languages, Academic Press, New York, London, 1973.

Received December 3, 1992

Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

The Boolean Closure of DR-Recognizable Tree
Languages

E. Jurvanen*

Abstract
The family DRec of tree languages recognized by deterministic root-to-

frontier (top-down) tree automata is not closed under unions or complements.
Hence, it is not a variety of tree languages in the sense of Steinby. However, we
show that the Boolean closure of DRec is a variety which is properly included
in the variety Rec of all recognizable tree languages. This Boolean closure is
also compared with some other tree language varieties.

1 Introduction
Finite tree recognizers are divided into four types according to whether they are de-
terministic or not, and whether they read trees from root to frontier or from frontier
to root. The nondeterministic tree automata and the deterministic frontier-to-root
tree automata recognize the same class of tree languages. This is the class of rec-
ognizable tree languages which is here denoted by Rec. However, the deterministic
root-to-frontier tree automata recognize a proper subclass of Rec called here DRec.
These tree automata types were defined and the connections between the languages
they recognize were established in the late sixties by Thatcher and Wright [TW68],
Rabin [Rab69], Doner [Don70], Magidor and Moran [MM69],

The class DRec has been studied relatively little. Courcelle [Cou78a,Cou78b]
and Viragh [Vir80] gave a characterization using a path closure operator. Gecseg
and Steinby [GS78] presented an algorithm for minimizing deterministic root-to-
frontier tree automata.

In this paper we study the Boolean closure of DRec denoted here by B(DRec).
It is shown to form a variety in the sense of Steinby [Ste79,Ste92]. Since also Rec
is a variety, the next question is, whether variety B(DRec) is properly included
in variety Rec. In connection with his studies of logic characterizations of tree
language families, Thomas [Tho84] answered this question positively; B (DRec) is a
proper subclass of the chain definable tree languages which form a proper subclass
of Rec. In this work we also prove the proper inclusion of 8 (DRec) in Rec, but
directly using only the pidgeon hole principle. After that 8 (DRec) is compared
with respect to the inclusion relation with the varieties Nil, D, RD, GD and Loc,
where Nil is the Boolean closure of the family of finite tree languages, and the
others consist of the definite, the reverse definite, the generalized definite and the
local tree languages, respectively. Some of the definitions of these tree families were

'Department of Mathematics, University of Turku, SF-20500 Turku, Finland, E-mail:
jurvanenQutu.fi

255

256 Eij a Jurvanea

given by Heater [Heu88,Heu89a,Heu89b] and they were shown to be varieties by
Steinby [Ste92j.

The notation is mostly from [GS84].

2 Preliminaries
For a set A, we denote by pA the power set of A, that is the set of sill subsets of
A, and by |A| the cardinality of A. If A C B, but A ^ B, then we write Ac. B.

Let N be the set of natural numbers, N = {0 ,1 , . . . } . A ranked, alphabet £ is a
finite set of operation symbols each of which has been assigned a unique rank from
N. For m £ N. the set of m-ary operation symbols of E form a set denoted by
E m . Thus E = (Jmgjv Two special cases are the trivial ranked alphabets, for
which E = Eo, and the unary ranked alphabets satisfying E = Eo U Ei .

In a E-algebra A = (A, E), A is a nonempty set, E is a set of operation symbols
and every operation symbol a £ E m , where m > 1, is interpreted as a mapping

aA : Am — • A,

and every miliary symbol a £ Eo is interpreted as an element aA of A. If A = (A, E)
and B = (B, E) are two E-algebras, then a homomorphism from A to B is a mapping
4> : A —• B such that

aA(a1,...,am)<f> = aB (ai<f>,..., am<f>)

holds for all m > 0, a £ E m and a i , . . . , am £ A. In particular, if a £ Eo and <f> is
a homomorphism, then aA<f> = crB. An equivalence relation 9 on A is a congruence
of A, if for all m > 0, <j £ E m and a\,..., am,bi,..., bm £ A,

arfbi,... ,am0bm implies aA (alt... ,am)9aA (blt... ,bm).

An equivalence class of a congruence is called a congruence class and the congruence
class of a £ A is denoted by ad. A congruence of A is said to saturate a subset
L C A, if L = L9. This means that L is the union of some congruence classes of 9.
If a congruence has finitely many congruence classes, then the congruence is finite.

Let X be an alphabet, that is a finite set of letters, such that E D X = 0. We
assume also that X u E o ^ 0- The set of all EX-trees is the smallest set containing
every x £ X,a £ Eo and <r(ti,.. . , t m) , where m > 1,(7 £ E m and t i , . . . , i m are
EX-trees. A set of EX-trees is called a EX-forest or a EX-iree language. The
set of all EX-trees is denoted by Fe (X) . The complement of a E X - forest T is
Tc = Fz(X) \ T. The height, root, subtrees and leaves of a tree t are denoted
by hg(t), rootm, sub(i) and leaf(i) respectively. As usual, if t £ X U Eo, then
hgifl = 0, rootft) = t and sub(i) = { t } . For t = er(i i , . . . , t m) , where m > 0,
hg(i) = 1 + m i X K , ^ hg(i<), root(t) = a and sub(i) = { i } u U ! < , < m sub(ti). The
leaves of any tree are its subtrees of height 0.

Let £ be a letter not in X u E . A tree p € F e (X u { £ }) is a special tree, if £ occurs
in it exactly once. The set of all special trees is denoted by Sp^(X). The product
of a special tree p £ Fe (X U {£ }) and a tree t £ -FE(X) is a tree t p £ FE(X) ,
which is formed from p by substituting t for its leaf When p £ Sp^(X) and
T C Fe(X) , the p-translation of T is

P(T) = {t e P |ter}

The Boolean Closure of DR-Recognissable Tree Languages 257

and the inverse p-translation of T is

p-1(T) = {teFv{X) I t i P e T) .

The EX-trees form a E-algebra fz(X) = (.FE;(X), E) with operations from E
defined as

tr^1*» (« ! , . . . , « „) = a (t i , . . . , i m) ,
where m > 0,ti,...,tm £ F^(X) and cr 6 E m . This E-algebra is called the E X -
term algebra.

A set of trees which can be recognized by a frontier-to-root or a nondeterministic
root-to-frontier recognizer [GS84] is called recognizable. The set of all recognizable
EX-tree languages we denote by J2ec(E,X).

A deterministic root-to-frontier H-algebra (a DR E-algebra) is a pair A = (A, E),
where A is a nonempty set and every operation symbol cr £ E m with m > 0 is
interpreted as a mapping

aA : A - Am.

If o £ Eoi then it defines a singleton cr* in A. An algebra A = (A, E) is called
finite, if the set A is finite.

Let X be an alphabet. A deterministic root-to-frontier EX-recognizer (a DR
EX-recognizer) is a triple A = (A, oo, a), where

f l] A is a finite DR E-algebra A = (A, E),
(21 ao £ A is the initial state and
(3) a : X —• pA is the final assignment.

The recognizer is also denoted by A = (A, E, X, a0 , a). The elements of the set A
are called the states of the recognizer.

Next we define the language which a DR EX-recognizer A = (A, a0l a) accepts.
We need the mapping a : .FE(X) —• pA, which is defined as follows:

(1) If x 6 X, then XOL = xa.
Í2Í If a £ E0, then oa = {erA}.
(3) If t = cr (i 1) . . . , t m) , where m > 1, then

tá = {a 6 A\aA(a) 6 (tjá X . . . x t m 5) } .

Now the forest recognized by A is the set

T (A) = {teFz{X)\a0 eta}.

A forest that can be recognized by a DR EX-recognizer is called DR-recognizable
or simply a DRec-language. The set of all DR-recognizable EX-tree languages is
DRec(E ,X) .

Because a deterministic recognizer can always be regarded as nondeterministic,
a DR-recognizable language is also recognizable. Thus DRec(E,X) C Rec(E, X) .

L e m m a 2.1 / / E E0 U E ^ then DRec(E, X) is properly included in Rec(E, X) .

P r o o f . We generalize a tree language originally due to Magidor and Moran [MM69]
and simplified by Thatcher [Tha73]. Let x £ X U Eo and a £ E m for m > 2. Then
the forest {cr(cr(x,..., x), x,..., x), ff(x,... ,x, cr(x,..., x)) } belongs to flec(E, X) ,
but it is not DR-recognizable. •

258 Eij a Jurvanea

Next we define the paths of a tree and the path closure of a forest. Using the
path closure concept we can distinguish DiZec-languages among JZec-languages.
Then we can easily see that any intersection of finitely many ¿3/Zee-languages is
also a DiZec-language, but that the Boolean closure of £)iiec-languages properly
contains the Diiec-languagea themselves.

Let £ be a ranked alphabet. For every operation symbol a £ £ m (m > 0), we
define a set of new unary operations Tier} = {cri , . . . , <rm} so that if a ^ r, then
T(cr) n r(r) = 0. Then we form a new alphabet T = T0 U Ti, where

(1) T0 = So and

(2) R 1 = U{R(<R)|CREE M I M> 1} .

The paths of a tree t £ FB(X) form the set <5(t) C F r (X) defined as follows:

(1) For x £ X, let 6{x) = {x } . (2) For a £ Eoi let 6(a) — {cr}. (3) For t = a(tu...,tm), let

m

= I M ' f c)) -
t=l

Now the set of the paths of a forest T C Fz (X) is

5 (T) = U { 5 (i) | i £ r }

and its path closure A (T) is the forest

A (r) = { t £ F E (X) | 5 (t) C 5 (r) } .

For example, the path set of the tree t — cr(z,a(uj(y),x)) contains the el-
ements cr1(z),a2(°'i('Wi(y))) and o"2(o"2(sc)), and the path closure of the forest
T = {CT(X, y) , A(y, x) } is A(T) = T U ^ (x , x), A(y, y) } .

Some of the properties of the path closure are noted in the following lemma.

Lemma 2.2 [VirSO]. IiT,Tx,T2 Q i ' s (X) , then

(1) T C A(T),
(2) A(T) = A(A(T)) and

(3) Ti C T2 implies A(TX) C A(T2). •

Theorem 2.3 [Cou78b,Vir80]. Let T £ Rec(E,X) and E0 = 0. Then

T £ BRec(Z,X) iff A(T) = T.
•

Corollary 2.4 Let S,T C FE(X). Then

S,T S DRec(Z,X) implies 5 n T £ DRec(T., X).

The Boolean Closure of DR-Recognissable Tree Languages 259

Proo f . We present a short proof in the case E 0 = 0. For a general ranked alphabet,
a product of two DR-recognizers can be constructed that accepts the intersection.
If S, T G DRec(Z, X), then S n T G Rec(E, X), because #ec(E, X) is closed under
Boolean operations.

Assume t G A (S n T). Then S(t) C 8{S n T) C 5{S) n 6{T). Now t G A (5) n
A(T) = 5 n T. Thus 5 n T G DRec(S, X) . •

Let 7 be a family of subsets of a set U. The Boolean closure B(7) of I is
the smallest set Q of subsets of U which contains I such that X, Y G y implies
X n Y; X U Y and U\X G We denote the complement U\X of X by Xc. The
following theorem can be found, for instance, in [Sik64].

Theorem 2.5 Let 7 C pU be a family of subsets of a given set U. A subset
T of U is in the Boolean closure of J iff there exist k > 1, ni,...,njt > 1 and
m i , . . . , rr»fc > 0 such that T can be expressed in the form

T = (F n n F I 2 n • • • n Flmi n Ff>mi+1 n F i C
m i + 2 n • • • n f i C „ J u

(F2i n F 2 2 n • • • n F3m, n Flmj+1 n Fftmi+2 n • • • n f 2
c „ J u

(Fki n Fk2 n • • • n Fkmk n Fkcmt+1 n Fkcmt+2 n • • • n FkcnJ,

where Fi}- G 7 for every 1 < t < k and every 1 < j < n^. •

Corollary 2.4 and Theorem 2.5 give the following result.

Corol lary 2.6 A setT C Rec(E,X) belongs to B{DRec(E,X)) iff there exist k >
1 and ni,..., nk > 1 such that T can be presented in the form

T = (TiinT^nT^n.-nT^Ju

(T21 n T2
C

2 n T23 n • • • n T2
c

nj) u

(Tfci n Tfcc2 n Tfcc3 n • • • n Tfcc„J,

where for all 1 < i < k, 1 < j < n,-, the language Tij G DRec(E, X). •

Since one-element tree language { t } is always DR-recognizable, every finite
language belongs to B[DRec(E ,X)) . The language T = {a(a(x,... ,x),x,... ,x),
cr(x,..., x, CT(X, . . . , z)) } does not belong to DRec[E, X) according to the proof of
Lemma 2.1, but ets finite it is in B(DRec(E,X)). This observation gives Theorem
2.7.

Theorem 2.7 If E ^ E 0 U E x , then DReciE,X) is properly included in
8{DRec(Z,X)). •

260 Eij a Jurvanea

3 B(DRec) is a Variety
Next we show that the Boolean closure of the DR-recognizable languages is a tree
language variety. For a family of tree languages to form a variety it is required to be
closed under Boolean operations, inverse translations and inverse homomorphisms
[Ste79,Ste92].

Let E be fixed. If one has defined for every alphabet X a set V (X) of recogniz-
able EX-tree languages, then the family V = { V (X) } is called a family of regular
E-tree languages. For instance. Rec = {Rec{Z,X)} itself, Triv = { { 0 , F E (X) } }
and B(DRec) = {В(Г>Лес(£, X)) } are families of regular E-tree languages.

Definit ion 3.1 Let E be fixed. A variety of E-tree languages is a family of regular
H-tree languages V = {"V(X)} such that the conditions

(1) 0 ф V(X) С Rec(E,X),
(2) T £ l » m implies FE(X)\T £ V (X) ,
(S) T,Ue У (X) implies T П U £ У (X),
(4) T £ У (X), p £ Spz (X) implies p~l{T) £ У (X), and
(5) if ф : 7E(X) — 7Z(Y) is a morphism and T £ "У(У), then

Т Ф - 1 £ V (X)
are satisfied for all alphabets X and Y.

For example, Triv and Rec are varieties of E-tree languages [Ste92], The family
B(DRec) is closed under Boolean operations by definition. So we need to study
the inverse translations and the inverse homomorphisms.

A translation is based on the notion of a special tree. To show that an inverse
image of a DR-recognizable language under a translation is again DR-recognizable
we also need the concept of a run tree. The idea of a run tree is to associate with
every node of a tree the state in which the recognizer has reached that node. Of
course, the states associated depend on the initial state at the root. The run tree
is defined using the alphabet X U { £ } to facilitate handling of special trees as well.

Let A = (A, E, X, a0, a) be a DR EX-recognizer and £ £ X U E. Then the run
tree of a tree t £ F E (X u { i }) in state a £ A is гип(Л, t, a) € / Ъ х л ((Х и { £ }) x A)
defined as follows:

(1) If у £ X U {£ } . then гип(Л, у, a) = (у, a).
(2) If a € E0 , then run(^,tr,a) = (a, a).
(3) If t = <r(ti,..., tm), where m > 1 and <rA(a) = (o j , . . . , a m) , then

гип(Л, t, a) = (а, а)(гш1(Л, t b o x) , . . . , гип(Л, tm, a m)) .

If the algebra A is clear from the context, we denote a run tree also by run(t, a).
With the help of a run tree we get a new way to find out whether a DR-recognizer

accepts a tree.

L e m m a 3.2 Let A = (^ а о . а) be a DR EX-recogntzer. Then

teT(A) iff a & la for all (I, a) £ leaf(run(^, t, Oq)).

Proo f . By tree induction on t one can first prove that 6 £ ta if and only if a £ la
for all leaves (I, a) £ leaf(run(>i, t, 6)). Choosing then oo for b we get the claim. •

Before the main theorem of this subsection we need to study the product of run
trees. This is done using the £-depth of a special tree.

The Boolean Closure of DR-Recognissable Tree Languages 261

The £-depth dp(p) of a special tree p G Spc (X) is the length of the path from
the root to the £-leaf:

il| If p = then dp(p) = 0.
(2) If p = <r(Pi,...,Pi p m) , where p,- G S p E (X) , then

dp (p) = dp(p,) + 1.

L e m m a 3.3 Let A = (A, E , X , ao,a) be a DR EX-recognizer. Lett G F^(X),p G
Spj ; (X) and let a and b be states of A . If (£,b) G leaf(run(p, a)), then

leaf(nin(i j p, a)) = leaf(run(t, 6)) U leaf(run(p, a))\{(£, b)}.

P r o o f . By induction on the £-depth of the special tree p one can first verify

run(i p, o) = run(t, 6) (i) 6) run(p, a),

from which the claim follows. •
T h e o r e m 3.4 Let p G 5 p E (X) and T C F^(X). If T is DR-recognizable, then
also p - 1(T") is DR-recognizable.

P r o o f . I f p _ 1 (r) = 0, then p _ 1 (T) G DRec(E,X). Thus we assume that p _ 1 (T) ^
0.

Let A = (A, E, X, ao, a) be a DR EX-recognizer that recognizes the for-
est T. Because p _ 1 (T) ^ 0 there exists t G p - 1 (T) which means t ¿ p G
T = T (A) . Then by Lemma 3.2 a G Ice for all (/, o) G leaf(run(.tf, t p,a0)) .
Since p is a special tree there exists exactly one state 6 G A such that (£, 6) G
leaf(run(>i, p, ao)). Now according to Lemma 3.3 we have a G la specifically for all
(l,a) G lea fO-unUp .aoJMí . f c) } .

Form the new recognizer B = (A, E, X, b, a) that differs from A only by its
initial state. Of course, also B is a DR EX-recognizer.

Now we show that T(B) = p _ 1 (T) and so p _ 1 (T) G DRec[E, X) : for any
EX-tree t,

t G T(B)
iff a G /5 for all (/, a) G leafíruníy?, t, 6))
iff a G la for all (I, a) G leaf(runM, t, fcjlU

leaf(run(i,p,a0))\{(£,&)}
iff a G lot for all (/, a) G leaf(run(.4, t p, ao))
iff t í p G T(A)
iff t G p—1 (T). •

The inverse image of a DR-recognizable forest under a homomorphism is studied
in Theorem 3.5.
T h e o r e m 3.5 Let <J> : ?E(X) be a homomorphism and let T G F^(Y), If
T is DR-recognizable, then also T<f>_1 = {t\t<j> G T}(C Fj^(X)) is DR-recognizable.

P r o o f . Let A = (A, E, Y, ao, a) be a DR EV-recognizer that recognizes the forest
T. Form a new recognizer B = (A, E, X , ao, /9) which differs from A by its alphabet
and its final assignment. The mapping : X —• pA is defined by putting x¡3 = x<f>á
for all x G X . Also B is a DR EX-recognizer.

A proof by tree induction shows that tfi = t<f>a for all t G F C (X) . Hence
t G T(BJ if and only if t<{> G T(A) . This means that T ^ - 1 = T (B) is DR-
recognizaole. •

According to Theorem 3.4 and Theorem 3.5, every 8(DRec{H, X)) satisfies the
conditions of Definition 3.1.

262 Eij a Jurvanea

Theorem S.6 The family 8{DRec) = {8{DRec(E,X))} is a variety of Z-tree
languages. •

4 B(DRec) is Properly Included in Rec

Next we show that there is a recognizable tree language that can not be constructed
from DR-recognizable languages by finitely many Boolean operations. The proof
is based on the pidgeon hole principle and uses Corollary 2.6.

In the beginning of this section we assume that E2 ^ 0 and that there are at
least two variables in X, but later the results are generalized.

A tree i € F^iJQ is balanced, if all its paths have the same length. Denote the
set of all balanced £X-trees of height h by Bal(/i).

Let <J € £2 and x,y € X. A balanced tree t € F^ jJX) is a left xy-tree, if
hg(t) > 1 , {s e sub(f)|hg(s) < 1} C {cr(x,y),cr(y,x),x,y} and cr(x, y) does not
appear in t to the right of an occurrence of o(y, x). Thus in a left xy-tree all its
subtrees cr(x, y) are on the left-hand side and the subtrees a{y, x) are on the right.
Denote the set of all left xy-trees of height h by BLxy(/i), where h > 1. Then
BLxy(/i) C Bal(fc) n F { < r }(X).

The trees in BLxy(y differ from each other according to where the leftmost
subtree cr(y, x) occurs. This also determines how many subtrees cr(x, y) it has. We
now denote the tree in BLxy(/I) with N — 1 subtrees CT(X, y) by b(h, N), and say that
it has the leftmost subtree cr(y, x) at place n. The tree 6(3,4) is displayed in Figure
1 later.

A balanced binary tree of height h — 1 has 2h~1 leaves. When these leaves are
then replaced by subtrees <T(X, y) and ER(y, x), the place for the leftmost subtree
a(y,x) can be chosen in 2h-1 + 1 ways. So there exist 2 h _ 1 + 1 trees in BLxy(/i).
Hence

BLxy(h) = {b(h, n)|n = 1, . . . ,2h~l + 1}.

We also need a mapping fi : BLxy(/i) —+ Bal(/i) which replaces the leftmost
<r(y, x) by cr(x, x). If a tree has no cr(y, x) at all, then fi leaves the tree unaltered,
i.e. fl(6(/i, 2h~1 + 1)) = b(h, 2h~1 + 1). Note that ii is an injection.

Lemma 4.1 Let TB = {b(h, nx),. -., b(h, np) } C BLxy(/i), where < n2 < • • • <
np. Then

n(TB\{b(h,np)))C A(TB).

Proo f . Consider the tree ii(b[h, n,)), where 1 < t < p. At place n, it has a subtree
<r(x, x), and this is the only place where it differs from the original tree b(h, n»),
which has a subtree cr(y, x) at place n .̂ The tree b(h,np) has a subtree <r(x,y) at
place n,. Thus Q(b(h,ni)) € A({6(/i, n,), b(h, np) }) C A [TB). •

Lemma 4.2 Let 11 = b(h, ni) and t2 = b(h, n2), where ni < n2. Then

ni < n < n2 implies n) € Atififtx), n(t2) }) .

Proo f . Consider a tree b(h, n), where ni < n < n2. Left to the place n it has only
subtrees a(x, y) just like the tree fi(i2). At place n and right to it the tree b(h, n)
has only subtrees cr(y,x) just like the tree n(tx). •

The Boolean Closure of DR-Recognissable Tree Languages 263

Lemma 4.3 Let o e E 2 ,x , y € X and T C F%(X). If no tree in T has a subtree
o(x, x) and

BLxy(h)\{b(h, l),b(h, 2 f c _ 1 + 1)} C T for all h>2,

then T does not belong to 8(DRec(Z, X)).

Proo f . Suppose that T e B(DRec(E, X)). Then there exist k,ni,... > 1 and
languages Tiy e DRec(S, -X")(l < i < k and 1 < j < n,), such that

T = (Tun^n-nrijU

(r 2 1 n r 2 c 2 n - n r 2 c „ 3) U

(r f c l n T f c c 2 n - n r f c c „ J .

Denote m = maxi<j<k n .̂
For any h > 2, the forest BLxy(/i)\{6(/i, 1), b(h, 2 h _ 1 + l) } is a subset of T and

it has 2 h _ 1 — 1 elements. Choose then h. so big that

2h~l - 1 > k(m + 1) .

Then there exists an t € [l, fc] such that

TB = (BLxy (h)\{b(h, 1), 2 / l—1 + 1)}) n ^ n ^ n - n Tfnt

contains at least m + 1 trees. This means that \TB\ > n,- + 1. Note also that
TB n Tij = 0, if 2 < j < n, .

Consider the set fi(TB). Every tree in it has a subtree cr(x,x), so no tree in
n(TB) belongs to T. Especially, no tree in n (T 5) belongs to the set Tn n Tf2 n

•nTfnr
Let s = max{sj\b(h, s,) & TB}. By Lemma 4.1

(l(TB\{b(h,s)}) C A (TB) C A (Tii) = Ti i .

We can not have n, = 1; otherwise Tn = Tn D T^ fl • • • D Tfn. and the trees in
Cl(TB\{b(h,s)}) would belong to T. Thus we assume n̂ > 2. Also we can deduce
that no tree in Cl(TB\{b(h, s)}) belongs to T?2 n • • • n Tfn..

The injectivity of CI implies that \il(TB\{b(h, a)})| = ¡2\B\{6(/i, s)}\ = \TB\ -
1 > rii. This means that in TB\{b(h, s)} there are two trees t\ = b(h,si) and
t2 = b(h, s2), where si < s2 , and one set T.- of the sets T^,... ,Tfni such that
n(ti) , fl(t2) £ T^. In other words, i i(i i) , n(t2) <E TiS. By Lemma 4.2

t2 = b(h,s2) e A ({n (i i) , fi(t2)}) c A(Iiy) = Ti,:

On the other hand, t2 S TB\{b(h, a)}. Thus TBnTiy / 0, which is a contradiction.
This means that T does not belong to the Boolean closure of DR-recognizable

languages. •

264 Eij a Jurvanea

Next we study the case where there are no binary operators. Let r be an m-ary
operator for some m > 2. First we expand the trees in BLxy(/i) by the following
mapping $: F M (X) - F{T][X) :

(1) $(x) = i f o r a U i e X a n d
(2) « (* (t l t ta)) = r(«(*i) , * (t a) , x , . . . , x).

In fact, $ is a linear tree homomorphism, but more importantly it is an injection.
Moreover, it preserves the height of a tree, and the subtrees of $(BLxy(/i)) of height
1 are in the set {r(x, y, x,..., x), r(y, x, x , . . . , x)}. The effect of $ is illustrated by
Figure 1.

X y X y \/ \/
a \ / G

a .

x y y x \ / \ /
xyxx xyxx
a n w

x x x x
X

xyxx yxxx
A N w

Figure 1. The effect of $ on the tree 6(3,4).

Lemma 4.4 Let m > 2,r 6 E m , x , y e X and T C ^ (X) . If no tree in T has a
subtree T(X, x, x,..., x) and

$(BLxy(A))\{$(i(fc, 1)), $(6(/i, 2h~l + 1))} C T for all' h> 2,

then T does not belong to 8(DRec(H, X)).

Proof . We repeat the proof of Lemma 4.3 using the modified mapping Q :
$(BLxy(/i)) —• $(.?£(X)), which is defined to replace the leftmost r(y, x,x,..., x),
by T(X, x, x,..., x). If a tree does not have a subtree r(y, x, x...., x), then H leaves
it unchanged. Abo now 0 is an injection in the set $(BLxy(/i)).

Throughout Lemma 4.1, Lemma 4.2 and Lemma 4.3 the trees $(6(/i, n)) are
used instead of the trees 6(h,n). The proofs of the first two lemmas consider only
the ordering of the leaves of subtrees of height 1, and from this point of view the
trees b(h, n) and $(6(/i, n)) are essentially the same.

Lemma 4.3 is based on the fact that BLxy(/i) can always be chosen sufficiently
large by increasing h. Because $ is an injection, the number of trees in $(BLxy(/i))
have the same property. Otherwise the rest of the proof continues identically to
the proof of Lemma 4.3. •
Theorem 4.5 / / E ^ E0 U Ei and |X| > 2, then B[DRec(E,JQ) is properly
contained in Rec(S, X). Hence, B(DRec) is a proper subvariety of Rec.

Proof . If r 6 E m , where m > 2, and x, y € X, then the EX-tree language

T = {t|{sesub(t)|hg(s)< 1}

= Mx,« / , x , . . . , x) , r (y , x , x , . . . , x) , x , y } }

is recognizable, and it satisfies the conditions of Lemma 4.4. Thus it distinguishes
the families B(DRec(E, X)) and Rec(E, X) . •

The Boolean Closure of DR-Recognissable Tree Languages 265

5 B(DRec) and Other Varieties
In this section we define the tree language varieties D, RD, GD, Nil and Loc and
compare B(DRec) with them.

The inclusion relation of varieties is defined componentwise: if V = {"V(X)}
and U = (Z/(X)} are varieties and V(X) C U (X) for every alphabet X , then we
write V C U. The trivial variety Triv = { { 0 , F E (X) H and the variety Rec -
{Rec(E, X) } of all recognizable languages awe the smallest and the largest tree
language varieties and Triv C BlDRec) C Rec. The intersection of varieties U and
V is U n V = {U(X) n V (X) } .

Definite, reverse definite and generalized definite tree languages were defined by
Heuter [Heu89b] and shown to form varieties by Steinby [Ste92j.

Definite tree languages. In a definite tree language the membership can be
tested by looking at the nodes near the root. These nodes form a part of a tree
called the A:-root.

The jfc-root rk(t) e F E (I u E) u {e} of a tree t G F^(X) is defined as follows:

(1) r0 (t)=s
(2) ri(t) = root(t)
(3) Let k > 2.

a) If hg(i) < k, then rk(t) = t.
b) If hg(t) > k and t = ff(ti,..., i m) , then

rk{t) = cr(r f c_1(t1) , . . . ,r f c_i(tm)) .

The special symbol e ^ X l l S means the empty tree.
For example, the k-roots of a tree t = cr(cr(x, 7), y) sire r0(t) = e, r^i) = a,

r2(t) = cr(cr, y) and rk(t) — t for all k > 3.
Let it > 0. A forest T C Fz(X) is k-definite, if for all trees s, t g ^ (X) ,

(t S T and = rfc(t)) imply s e T.

The family of all fc-definite EX-languages is denoted by D(k, X) . We write D(k) =
D(k, X) } . On the other hand, the family of definite ¿-tree languages is D =
D(X) } , where D(X) = \Jk>0D(k,X).

For example, the language (cr(x, y), cr(y, x)} belongs to D(2,X). Note that
according to Lemma 2.1 it is not DR-recognizable.

The definition of D(k,X) can be rephrased by means of a congruence 9k of the
term algebra / e (X) which is defined so that, for any EX-trees s and t,

s8kt iff rfc(s) = rfc(i).

A EX-tree language T is A-definite iff it is saturated by 8k, i.e. T = TOk.
The members of a i^-class have all the same k-root, which fully determines

the class. For a fixed k, there are only finitely many fc-roots, and therefore the
congruence 8k is finite.

Reverse definite tree languages. To see whether a tree belongs to a reverse
definite tree language only its subtrees lower than given height need to be known.

Let h > 0 and t G FS[X). Denote by

Sh(t) = (a esub(i)|hg(s) < /1}

266 Eij a Jurvanea

all the subtrees of t of height at most h— 1. A EX-tree language is reverse h-definite,
if for every s,t € Fe (X) ,

(i 6 T and Sh(s) = 5h(t)) imply s € T.

For example, if t = a(u)(x),a[x,v)), then S0[t) = 0 ,Si(i) = { x , y } ,S 2 (t) =
{ w (x) , a (z , í /) , i , y } a n d 5 3 (t í = 5 4 (t) = - = á u b (í) .

Let h > 0. The set of all reverse /i-definite EX-languages is RD[h,X). Also
we denote RD[h) = {RD(h,X)}. The family of áll reverse definite E-languages is
RD = {RD(X)}, where RD(X) = (Jh>0 RD(h, X).

As in the case of definite languages there exists a finite congruence 6 h of (X)
that characterizes the reverse definite EX-tree languages. This relation is defined
so that, for any s,t £ F j (X) ,

sBht iff Sh(s) = Sh{t).

Now a tree language is reverse /i-definite if and only if it is saturated by 6h.

Generalized definite tree languages. A tree language is generalized definite, if
for some h, k > 0, the membership of a tree is determined only by the tree's fc-root
and its subtrees of height less than h.

For h,k>0 and EX-trees s and t, the relation 8 £ is defined so that

s8Ít iff (Sh (s) = Sh(t) and rfc(s) = rfc(t)).

Then is a finite congruence of 7D(X).
A forest T Ç Fe (X) is generalized h,k-definite if and only if for all s, t 6 F^(X),

(teT and s6kt) imply s S T.

Again, a tree language is generalized h, fc-definite if and only if it is saturated by
the congruence

The family of all generalized h, fc-definite EX-tree languages is GD(h,k, X) .
Then we write GD(h,k) = {GD(h, k, X) } . Also

GD(X) = U (J GD(h,k,X).
h>0k>0

Now GD = {GZ>(X)} is the family of all generalized definite EX-tree languages.

Comparison between definite varieties and B(DRec). It is easy to see that
D(0) = RD(0) = GD(0,0) = Triv. For the general case, the connections be-
tween definite, reverse definite and generalized definite tree language families are
established by

Theorem 5.1 [Ste92], Leth,k>0. Then

(/) M
M OB
(S) RD
(4) GD

GD
(5) GD
(6) GD

, RD(h),GD(h,k) and D, RD,GD are tree language varieties,
Ç d\i\ Ç - CDC Rec,

0) Ç RD{ 1) Ç-ÇRDC Rec,
0,k
h,0
h, k'
h, k'

= D D{k),
RDlh),

Ç GD(h + 1, A;) D GD(h, k + 1) and
C GDC. Rec.

The Boolean Closure of DR-Recognissable Tree Languages 267

If So = 0 and the ranked alphabet S is unary, then every forest is closed under
A-operation, and DRec = Rec. Thus D, RD and GD are all included in B(DRec).
That the inclusion is proper can be seen by considering the forest Ti = {i,- | i is
even}, where

(1) to = x and
(2) tn+i = cr(tn).

The language Tx is DR-recognizable, but it does not belong to any of
D(k, X), RD(h, X) or GD{h, k, X) for any h, k>_0.

if S is trivial, then the construction of inclusions of Theorem 5.1 collapses and
Rec = GD{0,1) = GD(1,0) = GD(h, k) for all h, k ^ 1.

We show now that for any S with So = 0 the varieties G D (l , A;) for every k > 0 ,
and hence, also varieties D and iZ£)(l) are contained in B(DKec).
T h e o r e m 5.2 Let S 0 = 0. For all k > 0, the variety GD(1, k) is included in
B(DRec).

P r o o f . Let X be an alphabet, k > 0 and T G GD(1, k, X). Because T is saturated
by 6 i t is the union of some ^¿-classes. This union is finite, since 0£ is finite.
Therefore it suffices to show that any 0£-class belongs to B(DRec(S,X)).

For t G JePO . let t$l be the &}.-class of t. Because t$l = td1 n tdk, we will
prove t&l G B(DRec(E,X)) by studying tO1 and tdk separately.

Firstly, the class tOk is recognizable. If s £ A(t0fc), then rk(s) = r^(i). So
s G tdk. This means tdk is also DR-recognizable.

Secondly, the trees in a i1-class have the same set of leaves, which the A-
operation can only reduce. Thus td1 can be written in the form

tO1 = 1)|leaf(a) C leaf(i)}.

The sets Aftfl1) are DR-recognizable. Namely, if the leaves of t are all the same,
say leaf(i) = { x } , then Aftfl1) = {a | leaf(a) = { x } } = td1 is recognizable. But if t
has at least two different leaves, then

A ^ 1) = (J{u0 l|leaf(u) C leaf(i)} \ {a| |<5(a)| = 1},

where both the union of ^-classes and the set of chains {s||5(a)| = 1} are rec-
ognizable. This means that tB1 G B(DRec(E,X)). Hence, T G B(DRec(S,X)).
•

Next we show by generalizing the previously mentioned forest Ti that the in-
clusion of Theorem 5.2 is proper, if S is not trivial.

Let x G X and a G E m , for m > 1. For each t > 0, we define the special trees
a' so that

(1) - e.
(2) a1 = x , . . . , x) and
(3) a n + 1 = sn x , . . . , x).

Note that the superscript t indicates the height and also the number of cr-nodes
in a*. The forest T = { z a* | t is even} is DR-recognizable, since A (T) = T.
Lemma 5.3 shows that it is not generalized definite and thus neither definite nor
reverse definite.

268 Eij a Jurvanea

Lemma 5.3 The forest T = {x s' | t is even } is not generalized h,k-definite
for any h, k > 0.

Proo f . Assume that there exist h,k> 1 such that T g GD(h, k, X). Now t = x j
s2h + 2k g J, j t8 Jfc_roo(. Jg = a.(3k-l an(J _ { j ; ^ a»' | i' = 0,1, . . . , / i - l } .
On the other hand, the tree u = x •(s2h+*k+1 has the same k-root as t and the
same set of subtrees of height at most h — 1. Therefore u belongs to T, which is
contrary to the definition of T.

If T g GD(h,k, X) for h < 1 or k < 1, then T g GD(h, k,X) for h,k > 1 by
Theorem 5.1 (5). Thus the claim holds for all h, k > 0. •

As a result we get

Theorem 5.4 If E ^ 0, E0 = 0 and h, k > 0, then

(1) DcB[DRec),
(£) RD(1)C B{DRec),
(S) GD(l,k) c B(DRec),
(4) B(DRec) % RD(h),
(5) B(DRec\ g GD(h, k),
(6) B (DRec) g RD and
(7) B(DRec) g GD. •

To see that RD and GD are not included in B[DRec) we recall the language T
of Theorem 4.5:

T= {tgFE(X)| S2{t) = {T(x,y,x x),r(y,x,x,...,x),x,y}}.

Now T is a reverse 2-definite tree language, and thus also a generalized definite
tree language. Since T does not belong to the Boolean closure of DR-recognizable
languages, we have the following

Theorem 5.5 Let E / E0 U £ i . For h > 2 and k > 0, we have

(1) RD(h) g B(DRec),
(2) GD(h, k) g B(DRec),
(8) RD g B (DRec) and
(4) GD g B[DRec). • •

Finite and cofinite tree languages. The tree language family Nil =
is a variety of E-tree languages [Ste92l, where the family Nil[X) consists of all
finite and cofinite EX-tree languages. This variety is contained in both D and RD
and it itself contains Triv.

Theorem 5.6 The variety Nil is contained in the variety B(DRec). The inclusion
is proper if and only if E ^ EO- •

Local tree languages. Local tree languages are the languages in the Boolean
closure of strictly local tree languages. The membership of a tree in a strictly local
language is determined, when the root and the forks of a tree are known.

The forks of a tree t g Fj^(X) form a set fork(t) defined as follows:

(1) If t g E0 U X, then fork(t) = 0.
(2) If i =<T(tu...,tm), then

The Boolean Closure of DR-Recognissable Tree Languages 269

fork(i) = {<r(root(ti),... ,root(tm))} U |J fork(ii).
•=i

The set of all forks in EX-trees fork(E, X) is

fork(E, X) = (J{fork(t) | t e F E (X) } .

For example, the forks of t = ER(W(x), <R(x, J/)) are <R(W, CT), W(X) and CT(X, y).
A forest T C Fz (X) is local in the strict sense or strictly local, if there exist a

set of forks F C fork(E, X) and a set of roots R C E U X such that
teT iff (fork(t) C F and root(i) 6 R).

Then we write T = SL(i2, F).
For example, the languages L\ = {<7' | i > 1} and L2 = {c« | i > 1}, where

cr* and a, denote the trees

cr° = x, cr0 = x,
and

cxn+1 = o(on,x) crn+1 = cr(x,on),

are local in the strict sense: they could be defined as L\ = SL({cr}, (cr(cr, x) ,a(i , x)})
and L2 = SL({cr}, {cr(x, cr), cr(x, x)}) as well. But their union L = Li U L2 is not
strictly local. Namely, though the tree cr(x, cr(cr(x, x), x)) has o as root and the
forks of it are all forks of trees in L, it does not belong to L.

On the other hand, the intersection Ti n T2 = SLiiZi n R2.Fi n F2) of two
strictly local tree languages Ti, = SL(iZx, Fi) and T2 = SL(E2 ,F2) is strictly local.
Note also that 0 = SL(0, 0) and F£(X) = SL(E U X , fork(E,X)) are strictly local.
However, the previous remarks imply that the complement of a strictly local tree
language is not always strictly local.

A forest T C (X) is local, if it is built from local forests in the strict sense
by using finitely many Boolean operations. The family of local E-tree languages is
Loc = {Loc(X)}.

The local forests in the strict sense and thereby the local forests are recognizable
[GS84]. Furthermore, Loc is a tree language variety [Ste92].

Next we show that also the local tree languages have a characterizing family of
congruences. It is easy to see that the relation 6 defined by

s8t iff (root(a) = root (t) and fork(s) = fork(i))

is a finite congruence.
Lemma 5.7 Let L C F^(X). Then L is local if and only if 8 saturates L.
Proof . Let L e Loc(E, X) . Then there exist k > 1 and n > 2 such that L can be
written in the form

L = (I n n Lfa fl • • • n JtfJ U
(I21 n ¿22 n • • • n L%n) U

{LklnLck2n-nL'n),

270 Eij a Jurvanea

where for every 1 < t < k and 1 < j < n, L,y e SLf/i,/,
Let t 6 L0. Then there exists an I E L such that root(t) = root(/) and fork(i) =

fork(/). Now
leLa n Lf2 n • •• D Lfn

for at least one » E [1, A:]. Because I E L,n. then also t E The reason why
I Lij for a 2 < y < n must be either root(Z) & J2,-y or fork(i) g F.-y. In both cases
also t £ Lij. Together this means t e l . So L = L9.

Conversely assume L = L9. This means that L is the union of some 0-classes.
To show that L is local one only needs to verify that any d-class is local. It is,
because if / € L, then

19 = SL(root(/),fork(Z))\lJ{SL(root(/),.F)|.F c fork(i)}.

•

Now we are ready to compare Loc with DRec and B(DRec).

Theorem 5.8 7/E ^ EQ, we have

(1) DRec <£ Loc,
(£) 8 (DRec) g Loc, and
(S) Loc C Rec.

Proof . Let x G X U £o and a € £ m for m > 1. The DR-recognizable forest
T = {cr(cr(x,..., x), x,..., a:)} is not local, since 9 does not saturate it. •

The tree language T\ — {a(x, y), a(y, i) } is not DR-recognizable by Lemma 2.1,
but clearly it is local. Hence, Loc g DRec. However, T\ does belong to the Boolean
closure of DR-recognizable languages. So the question now is, whether this holds
for all local languages. For this purpose we consider the following language.

Let a 6 E m , where m > 2, and x,y E X. Define F as the set of forks F =
{a (f f , a, x,..., x),a(x, y,x,..., x),a(y, x, x,... ,x)}. Then the forest SL({CT}, F) sat-
isfies the conditions of Lemma 4.4 and thus does not belong to the Boolean closure
of DR-recognizable languages. This leads us to

Theorem 5.9 Let E ^ E0 U Ei. Then

(1) Loc % DRec and
(2) Loc g 8(DRec). •

If E is unary and £o = 0, then Loc is contained in DRec = Rec. Theorem 5.8
shows that this inclusion is proper. But if E is trivial, then every language is local
and Loc = DRec = Rec.

Figure 2 shows the inclusion relations of varieties for Eo = 0. If also E ^ EoUEj,
the inclusions are proper and those varieties not connected are incomparable.

Acknowledgment I am grateful to Professor Magnus Steinby for his expert guid-
ance and valuable suggestions during the course of this work.

The Boolean Closure of DR-Recognissable Tree Languages 271

Ree

B(DRec)

Loc

Triv

Figure 2. Comparation of studied varieties.

References
[Cou78a]

[Cou78b]

[Don70]

Courcelle, B., A representation of trees by languages I, Theoret. Corn-
put. Sci. 6 (1978), 255-279.

Courcelle, B., A representation of trees by languages II, Theoret. Com-
put. Sci. 7 (1978), 25-55.

Doner, J.E., Tree acceptors and some of their applications, J. Comput.
Syst. Sci. 4 (1970), 406-451.

[GS78] Gécseg, F. and Steinby M., Minimal ascending tree automata, Acta
Cybernet. 4 (1978), 37-44.

[GS84] Gécseg, F. and Steinby M., Tree automata, Akadémiai Kiadó, Bu-
dapest, 1984.

[Heu88] Heuter, U., Definite tree languages, Bull. EATCS 35 (1988), 137-144.

[Heu89a] Heuter, U., Generalized definite tree languages, Mathem. Found. Com-
put. Sci. (Proc. Symp., Porabka-Kozubnik, Poland 1989) Lect. Notes
in Comput. Sci. 379, Springer-Verlag, Berlin, 1989, pp. 270-280.

[Heu89b] Heuter, U., Zur Klassifizierung regulärer Baumsprachen, Dissertation,
Technical University of Aachen, Aachen, 1989.

[MM69] Magidor, M. and Moran, G., Finite automata over finite trees, Technical
Report 30, Hebrew University, Jerusalem, 1969.

[Rab69] Rabin, M.O., Decidability of second-order theories and automata on
infinite trees, Trans. Am. Math. Soc. 141 (1969), 1-35.

272 Eija Jarvanen

[SLk64] Sikorski, R., Boolean algebras, Springer-Verlag, Berlin, 1964.

[Ste79] Steinby, M., Syntactic algebras and varieties of recognisable sets, Les
arbres en algèbre et en programmation, 4ème Coll. Lille (Proc. Coll.,
Lille 1979), Université de Lille, 1979, pp. 226-240.

[Ste92] Steinby, M.. A theory of tree language varieties, Tree Automata and
Languages (Nivat, M. and Podelski, A., eds.), Elsevier Publishers, Am-
sterdam, 1992, pp. 57-81.

[Tha73] Thatcher, J. W., Ttee automata: an informed survey, Currents in the
Theory of Computing (Aho, A.V., ed.), Prentice-Hall, Englewood Cliffs,
N.J., 1973, pp. 143-172.

[TW68] Thatcher, J. W. and Wright, J. B., Generalized finite automata theory
with an application to a decision problem of second order logic, Math.
Syst. Theory 2 (1968), 57-81.

[Tho84] Thomas, W., Logical aspects in the study of tree languages, Ninth
colloquium on trees in algebra and programming (Courcelle, B., ed.),
Cambridge Univ. Press, Cambridge, 1984, pp. 31-51.

[Vir80] Virágh, J., Deterministic ascending tree automata I, Acta Cybernet. 5
(1980), 33-42.

Received August i, 1992.

Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

A Queuing Model for a Processor-Shared
Multi-Terminal System Subject to Breakdowns

B. Almasi*

Abstract
This paper deals with a non-homogeneous finite-source queuing model to

describe the performance of a multi-terminal system subject to random break-
downs under PPS (Priority Processor-Sharing) service discipline. It can be
viewed as a continuation of paper [l], which discussed a FIFO (First-ln, First-
Out) serviced queuing model subject to random breakdowns. All random
variables are assumed to be independent and exponentially distributed. The
system's behaviour can be described by a Markov chain, but the number of
states is very large (it is a combinatorically increasing function of the number
of terminals). The purpose of this paper is to give a recursive computational
approach to solve the steady-state equations and to illustrate the problem in
question using some numerical results.

1 The Model
This paper deals with a terminal system consisting of n terminals connected with a
Central Processor Unit (CPU). The user at the terminal t thinks for random times
and generates jobs to the CPU. The think times are assumed to be exponentially
distributed with mean The required running times of jobs of terminal t are
exponentially distributed random variables with mean (assuming, that the jobs
use the whole capacity of the CPU). The jobs staying at the CPU are serviced in
parallel using the PPS scheduling strategy (see [2,3]). Each terminal has a positive
weight, denoted by w,• for terminal t(t = 1 , . . . , n), and if there are s(l < s < n) jobs
at the CPU from the terminals j\,..., js then the job of the terminal jr(r = 1 , . . . , s)
is serviced at rate

"3 r
E. t

that is, the processing intensity is W}r(ji,..., jt)Hi, for the job of terminal jr. Let
us suppose that the CPU is subject to random breakdowns stopping the whole
system. The failure-free operation times of the CPU are exponentially distributed
random variables with mean —. The restoration times of the CPU are exponentially

'Department of Mathematics, University of Debrecen, Debrecen P.O.Box 12, H-4010, Hungary
Acknowledgement: The author is very grateful to Professor M. Aratö and J. Sztrik for their help-
ful comments. Research is partially supported by Hungarian National Foundation for Scientific
Research under grant OTKA 1648/91.

273

274 B. Almasi

distributed with mean j . The busy terminals are also subject to random break-
downs not affecting the system's operation but stopping the work at the terminal.
The failure-free operation times of busy terminals are supposed to be exponen-
tially distributed random variables with mean for terminal t. The repair times /1
of terminal t are exponentially distributed random variables with mean j - . The
breakdowns are serviced by a single repairman according to FIFO discipline among
terminals and providing preemptive priority to the failure of CPU. We assume that
each terminal sleeps while its job is serviced by the CPU, that is, the terminal is
inactive while waiting at the CPU, and it cannot break down. All random variables
involved here are assumed to be independent of each other.

On the one hand this paper is a generalization of the non-homogeneous PS
model discussed in [4] (which allowed only CPU failures], on the other hand it
further generalizes the homogeneous model treated in [5] (which allowed both ter-
minal and CPU failures). This paper is the continuation of [l] where the FIFO
discipline was discussed (instead of PPS) and we build a new non-homogeneous
model and solve the steady-state equations recursively by using a similar compu-
tational approach as in [lj. In equilibrium the main performance of the system,
such as the mean number of jobs residing at the CPU, the mean number of func-
tional terminals, the expected response time of jobs, and utilizations are obtained.
Finally it is investigated - by using some numerical results - how breakdowns affect
the performance characteristics and the results of [1] are compared with ours.

2 The Mathematical Model and a Computa-
tional Approach

Let us introduce the following random variables:

f 1, if the CPU is failed at time t,
0 otherwise.

the failed terminals' indices at time t in order of their failure,
or 0 if there is no failed terminal,

the indices of jobs staying at the CPU at time t in lexicographically
increasing order, or 0 if there is no job at the CPU.

It is easy to see that the process

M(t) = (X(t),Y(t),Z(t)),

is a multi-dimensional Markov chain with 3 vector-components and with state space

s = {(9l*i,---,*k]ji,---,3s), 9 = 0,1; k = 0, . . . , n ; a = 0 , . . . , n - k),

where

(»1, • • •, *fc) is a permutation of K objects from the numbers 1 n o r O ,
if k = 0,

X(t) =

Y{t) =

Z[t) =

A Queuing Model for a Processor-Shared Multi-Terminal System 275

(ji,..., j,) is a combination of s objects from the remaining n — k numbers or
0, if s = 0.

The event (g;t ' i , . . . ,ik'>3h • • • >J«) denotes that the operating system is in state
X(t) = q, there are k failed terminals with indices t i , . . . and there are s jobs
with indices j\, at the CPU (tr ^ ji, r = 1 , . . . , k\ I = 1 , . . . , a).

The reader can easily verify that the number of states is

n k ,
n!

d i m i S) ^ ^ ^
fc=o »=o v '

Let us denote the steady-state distribution of (M(t) , t > 0) by

p(q;ii,---,ik]ji,..-,j.) = lim p(X(i) = q;Y(t) = i1,...,ik;Z(t) = ji,...,j.),
t—*oo

which exists and is unique (see [6]) because of all the rates are assumed to be
positive. For brevity let us introduce the following notation:

K,r(q;ii,...,ik;3I,•••,}») = P(T,*i• • • • • *'FC;j'i,• • •,3>). r = l , . . . , s .

Since we study the steady-state behavior of the Markov chain M(t), following [6],
we can start with the statement

Average rate of leaving state (9; t x , . . . , t'fc ; , . . . , j,) =

= Average rate of entering state (<7; 11, . . . , ; ji,..., j,),

that is, we can build the global balance equations for p(q*i,...,]\,..., j,) by
using the rules discussed in Section 1:

s

(a + r ç , + (A r + 7 r)) p (0 ; ¿1, • • •, ù ; > • • •, j»)+Y1 k > (0 ; l'i> • • • > **'< n, •••,] ,) =
rjii'l,...,«», r = 1
r^Jl J.

+ H r ' li> • • • >**! Ji, • • •,3.) + K r (0 ; ù , . . . , . . . , r , . . . , ; ,)) +
r & l , ...,»*
»•/j I,...,}',

a

+nkp{0;ii,.. .,ik-i\3i,- • • ,3.) + »1. • • • .ù; jï. • • -.ir-i.jr+i, -••,;«),
r = 1

for all» ! , . i l l - • - , y » ; k = 0 , . . . ,n;s = 0 , . . . ,n - A:,
^p (l ; » ! , . . . ,tfc; J i , . . . ,j.) = ap(0;t'i,...,ik]3I,••• ,3»), (2)
for all » ! , . . . , t'/tiji,.. .,j,;k = 0 , . . . , n ; s = 0, . . . , n - A:,

where the probabilities of meaningless events and coefficients are defined to be zero.

276 B. Almasi

For k = 0 and s = 0 ijt (and jB) are not defined, so for example the element
r/ikp (0 ; t ' i , . . . , t fc_i ; j i , • • • ,] ,) has no meaning, so it is defined to be zero, we have:

n n n

(a + , + 7 ,))p(0; 0; 0) = pp(1; 0; 0) + £ W p(0 ; 0; t) + £ np(0; t"; 0).
¿=i ¿=1 i = i

The system of equations will be simpler if we substitute Equation (2) to Equation
(1). Namely, we have

(*U + £ (Ar+7r))p(0 ; t ' i , . . . , t ' f c ;yi j.) +

r^ll,•••,].
8

+ £ Ki'(0' j i » " - > j») =
T = 1

= £ (r<-p(°ir»«1»• • • . J i . • • • >;») + tfr(0;t'i,.• •.*kik,• • •.r,...,j,)) +
r /M ifc

t
+ £ Ayrp(0;t'i,. . . . t ' f c j j i , . . . , > _ 1 , Jr+1, • • • ,y ,) ,

r = 1

for all t'i » fc j j i , . . . ,y,; A: = 0 , . . . , n\ s = 0 , . . . , n - k, (3)

Pp(1; t ' i , . . . , tfc; , . . . , j ,) = ap(0; 11 , . . . , t'fc; j i , . . . , j ,) , (4)
for all t 'x,. . . , t'fc; j\,..., y„; k = 0 , . . . , n; s = 0 , . . . , n - k.

The purpose of this paper is to solve this system subject to the normalization
condition

1 n n — k
£ £ £ p (< ? > M = i,
q=0 k=0 »=0

where

(u ifc)ev*(ii y.) €c;_ f c

V* : The set of all (t ' i , . . . ,»*) (sis defined above),
C'n_k : the set of all (j i , . . . , j») (as defined above).
Such a system of linear equations could easily be solved by standard compu-

tational methods, e.g., by Gauss- elimination. But we must not forget that the
unknowns are probabilities and therefore - since the state space is very large - the
round off errors may have considerable effect op them (see [7,8,9]) and when us-
ing computer programs to solve the system of equations, the whole matrix of the
equations cannot be stored in a personal computer if n > 3. It is more efficient to
use a recursive computational method to determine the steady-state probabilities,
as described in the following section (first it was proposed by Tomko [10]).

A Queuing Model for a Processor-Shared Multi-Terminal System 277

3 The Recursive Solution
Let Y_(m) be the vector of the stationary probabilities for the states where the
operating system is working, there are k failed terminals, and s = m — k jobs are
waiting at the CPU ((A: = 0 , . . . , m), m = 0 , . . . , n). That is,

(p(0; 1 , . . . , m — 1, m; 0) \
p (0 ; l , . . . , m - l , m + 1 ;0)

p(0 ;n , . . . ,n - m + 1;0)
p(0; 1 , . . . , m - 1; m)
p (0 ; l , . . . , m - l ; m + l)

p(0; n , . . . , n — m + 2; n — m + l)

Y(m) =

V p (0 ; 0 ; n - m + l , . . . , n)

In words, the elements of F(m) are written in lexicographically increasing order
of indices

1./ for k — m and s = 0,
2./ for k = m — 1 and s = 1,

m + 1./ for k = 0 and s = m.

Similarly, let Z_(m) be the vector of stationary probabilities alike Y_(m), but
for the states, where the CPU is failed. From the definition it is obivous that the
dimension of r (m) and Z(m) is £7=0 („ J ^ ; , , -

Using these notations Equations (3), (4) can be written in matrix form as

no) = qomi),
yU\ = cU)Y(j + 1) + D(j)Y(j - 1),

z(j) = F(j)Y(j), j = 0,... ,n.

l , . . . , n - 1,
(tttl

The dimension of the matrices are / d(j) = Yll=o (n-))\,\/ :

F(j) : d(j) x d(j), C(j) : d(j) x d(j + 1), D(j) : d(j)x'd(j - 1).
The elements of all the matrices can be obtained from the Equations (3). (4). For

example we can use Equation (4) to obtain the elements of matrix F(k + s)(k + s =
0 , . . . , n) : The element p(l ; t ' i , . . . j\,..., j,) of Z(k + s) can be obtained from
the element p(0;»'i,...,*jt; Ji j,) of Y(k + s) by multiplying it with j . That is,
the matrix F(k + s) contains non-zero elements only in its main diagonal, and this
non zero element is the constant value p

Similarly, we can use the second line of Equation (3) to build the matrix C(A:-f-s),
and the third line to determine the matrix D(k + s)(k + s = 0 , . . . , n).

Applying these notations we can state our main result:

278 B. Aim ¿si

Theorem 3.1 The solution of the Equations (i)-(iv) can be given in the form

m = F t i) Y U) , 3 = 0 , . . . , » , (5)

where L(n) = D(n), L(j) = (I - C(j)L(j + l))"1!^'!, j = 1,..., n - 1, so the
system of equations can be solved uniquely up to a multiplicative constant, which
can be obtained from the normalization condition.

Proof . As a starting point of our proof we can observe that equation (iv) is
identical with the second equation of (5).
In virtue of equation (iii)

H(n) = L(n)Y(n - 1).

Assuming that Y_(j + 1) = L(j + l)Y(y), from (ii) we have

Y(j) = C(j)L(j + l)H(j) + DV)Y(j - 1).

By simple calculation we obtain that

(/ - C(j)L(j + l))Y(j) = D(j)Y(3 - 1),

YU) = (/- C(j)L(j + 1))-lDU)W ~ 1).

w) = m w - 1) .

which completes the proof.
Now we can start the recursion with any initial value denoted by y ' (0)

and the non-normalized p'[q]ii, • • •,ik) 3h • • • > 3») elements of Yl(ro), Zl_(m)[m =
0 , . . . ,n) , can be obtained. We can calculate the steady-state probabilities from
YIX171)i (m = 0 , . . . , n), by using the normalization condition as follows

Y(m) = S)
Z)?=o o S«=o 53ji,...,y,ec*_. p'(9;*i.- • • i tfcl3i> • • • 13»)

YLi

Z(m) =
¥№

Z)g=o Sfc=o S , = o P'(9>*I> • • • i*fcî3h • • •,3»)
£X

A Queuing Model for a Processor-Shared Multi-Terminal System 279

4 Performance Measures
We derive the steady-state characteristics from the steady-state probabilities be-
cause the model is too complicated to derive the characteristics directly from the
parameters (n, a, ft,...). Some of these characteristics will be calculated in Table
1-5 (for n = 4 and n = 3) as examples. We can use these numerical results to
investigate how parameters influence the characteristics.

We employ the following usual notation: S(i,j) = 1, if t = j, (and 0 otherwise).
The steady-state characteristics:

(i) Mean number of jobs residing at the CPU

1 n n—k
= E E E aP(*> k ' 3)"

»'=0 k=0 «=0

(ii) Mean number of functional terminals

1 n n - f c

=n - E E E fcp(*> k< *)•
i=0 k=0 »=0

(iii) Mean number of busy terminals

n n — k nb = E E (n ~ k ~ s)p(0, k>
k=0 «=0

(iv) Utilization of repairman

n n—k n n—k Ur = E E p(l, *>«) + E E k>3)-
k=0»=0 k=l»=0

(v) Utilization of CPU
n —1n~ k

ucpv = E Ep(°'fc>s)-
fc=0 « = 1

(vi) Utilization of terminal t"/t = 1 , . . . , n /

n n—k k a

fi = E E E Ei1 ~ *(*»*'•) - *(»'. *))p(°;»i. • • • .«'*; n, • • -,}.)•
k=0 » = 0 r = l o = l

(vii) Expected response time of jobs for terminal »/» = 1 , . . . , » /

_ _ E ? J o E ' = i ^ (t " . i r) p (g ; » i , • • • J i , - -] ' .)

280 B. Almasi

5 Numerical Results
The algorithm described above was implemented on an IBM PC/AT in FORTRAN.
We show several examples to illustrate how breakdowns influence the characteris-
tics. The running times were at about 50 seconds for n = 4 (Table 1-3), and 2
seconds for n = 3 (Table 4-5). If we compare these results to the ones described in
[1,10] we can see how scheduling strategy influences the characteristics.

Case 1. Failure free system (See [10]).

n = 4 a = 0.0001 ß = 9999.0
nj = 2.195 fig = 4.0 UCPU = 0.906

t A i Mi 1i n U>i Ui Ti
1 0.500 0.900 0.0001 9999.0 1.0 0.429 2.658
2 0.400 0.700 0.0001 9999.0 1.0 0.423 3.405
3 0.300 0.600 0.0001 9999.0 1.0 0.452 4.045
4 0.200 0.500 0.0001 9999.0 1.0 0.500 4.998

Table 1.

This case will be the starting point of our investigation. It can be used to test
the results and to approximate a failure-free system described in [10]. The differ-
ence between these results and the ones in [10] is less than 0.01 for all calculated
characteristics. The difference can be derived from the different calculating circum-
stances (e.g. different computer and programming language). On the other hand
this case only approximates a failure-free system.

Case 2. Terminal failure.

n = 4 a = 0.0001 ß = 9999.0
n) = 1.253 ng --= 2.58 UCPU = 0.666

t A< li Ti W I UI TI
1 0.500 0.900 0.3200 0.4500 1.0 0.283 2.133
2 0.400 0.700 0.1700 0.3400 1.0 0.335 2.602
3 0.300 0.600 0.2200 0.5000 1.0 0.336 3.138
4 0.200 0.500 0.1600 0.3000 1.0 0.373 3.842

Table 2.

In this example we can see how terminal failures influence the performance
measures. The response times and the number of good terminals are less than in
Case 1. That is, the system works as if there were less terminals.

A Queuing Model for a Processor-Shared Multi-Terminal System 281

Case 3. CPU failure.

n = 4 a = 0.25 ß = 0.45
ny = 2.195 na = = 4.0 UCpu = 0.583

t A< Pi 7 i Ti Wi U{ Ti
1 0.500 0.900 0.0001 9999.0 1.0 0.276 4.135
2 0.400 0.700 0.0001 9999.0 1.0 0.272 5.296
3 0.300 0.600 0.0001 9999.0 1.0 0.290 6.292
4 0.200 0.500 0.0001 9999.0 1.0 0.321 7.775

Table 3.

If we compare these results with Case 1, it can be seen, that the failure of the
CPU increases the response times and decreases the utilizations, as one can expect.

It seems, that the FIFO (see in [l]) and the PS discipline gives nearly the same
results investigating the influence of terminal breakdowns. We got greater CPU
utilization in this model than in 111 (for each case). This is the reason why this
model is more sensible to the CPU breakdowns (see the response times in Case 3).

Case 4. PPS system (see [3]).

n = 3 a = 0.0001 ß = 9999.0
ny = 1.028 ng = 3.0 UCPU = 0.675

t Ai Y-I 7 i n U>I U{ Ti
1 0.200 0.400 0.0001 9999.0 1.0 0.508 4.831
2 0.200 0.600 0.0001 9999.0 5.0 0.666 2.498
3 0.200 0.800 0.0001 9999.0 125.0 0.796 1.277

Table 4.

This case can be used to test the algorithm (and the computer program) dis-
cussed above. A failure-free PPS system (described in [3]) is approximated by this
example. The results are exactly the same as in [3].

Case 5. PPS system with CPU failure.

n = 3 a = 0.1000 ß = 0.7000
ny = 1.028 n g = 3.0 UCPU = 0.591

i A, Pi 7 i n Wi Ui Ti
1 0.200 0.400 0.0001 9999.0 1.0 0.445 5.521
2 0.200 0.600 0.0001 9999.0 5.0 0.583 2.855
3 0.200 0.800 0.0001 9999.0 125.0 0.696 1.459

Table 5.

This case shows, that the more a terminals uses the CPU (or the CPU's queue)
the more the response time increases with the CPU failure.

282 B. Almasi

Case 6. PPS system for n = 5.

n = 5 a = 0.1000 ß = 0.7000
ny = 2.278 NG = 4.3 UCPU = 0.777

i M» 1 i n OJi Ui Tf
1 0.200 0.400 0.1000 0.7000 1.0 0.217 15.6472
2 0.300 0.700 0.0700 0.6000 5.0 0.319 5.836
3 0.250 0.650 0.1500 0.4500 50.0 0.418 2.951
4 0.220 0.600 0.1000 0.7600 15.0 0.406 4.706
5 0.400 0.800 0.1200 0.4400 125.0 0.442 1.747

Table 6.

The program was run for n = 5 in this case. This was the largest n value that
could be used. The running time was at about 4 minutes.

References
[1] B. Almási and J. Sztrik, A Queueing Model for a Non-Homogeneous Terminal

System Subject to Breakdowns, Computers and Mathematics with Applications
(to appear).

[2] E. Gelenbe and I. Mitrani, Analysis and Synthesis of Computer Systems, Aca-
demic Press, London, (1980).

[3] J. Sztrik, A probability model for priority processor-shared multiprogrammed
computer systems, Acta Cybernetica 7, 329-340 (1986).

[4] J. Sztrik, On the heterogeneous machine interference with limited server's
availability, European Journal of Op. Res. 28, 321-328 (1987).

[5] J. Sztrik and T. Gál, A recursive solution of a queueing model for a multi-
terminal system subject to breakdowns, Performance Evaluation 11, 1-7
(1990).

[6] R. Goodman, Introduction to Stochastic Models, Benjamin/Cummings, Cali-
fornia, (1988).

[7] S.S. Lavenberg, Ed., Computer Performance Modelling Handbook, Academic
Press, New York, (1983).

[8] P.M. Snyder and W.J. Stewart, Explicit and iterative approaches to solving
queueing models, Oper. Res. 88, 183-202 (1985).

[9] H.C. Tijms, Stochastical Modelling and Analysis, A Computational Approach,
Wiley and Sons, New York, (1986).

[10] L. Csige and J. Tomkó, The machine interference for exponentially distributed
operating and repair times, Alk. Mat. Lapok 8, 107-124 (in Hungarian) (1982).

Received September 29, 1992.

Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

The Self-organizing List and Processor
Problems under Randomized Policies

T . Makjamroen*

Abstract
We consider the self-organizing list problem in the case that only one item

has a different request probability and show that transposition has a steady
state cost stochastically smaller than any randomized policy that moves the
requested item, found in position t, to position j with some probability dij, i >
j. A random variable X is said to be stochastically smaller than another
random variable Y, written X <„ Y if Pr{X > Jfc} < Pr{Y > k}, for any
k. This is a stronger statement than E[X] < E[Y|. We also show that the
steady state cost under the policy that moves the requested item i positions
forward is stochastically increasing in t. Sufficient conditions are given for the
steady state cost under a randomized policy A to be stochastically smaller
than that under another randomized policy B. Similar results are obtained
for the processor problem, where a list of processors is considered.

OPTIMAL LIST ORDER; MEMORY CONSTRAINTS; TRANSPOSITION
RULE; RAMDOMIZATION

0 Introduction
A self-organizing list problem is characterized by a sequential list of n items subject
to a reordering policy. At the beginning of each time period, an item is requested
and the list is searched sequentially from the first position until the requested item
is found. Each of these n items has an unknown probability of being requested.
Let p = (pi,p2, • • • ,Pn) be the request probability vector, where p,- is the request
probability of item t,i = 1 , . . . , n, and 0 < p,- < 1, Pi — 1. At the end of each
period, the items on the list are reordered according to the reordering policy. The
cost of each period is taken to be the position where the requested item is found.
We are interested in the steady state costs under various policies. A reordering
policy is called optimal if it minimizes the expected steady state cost for any given
request probability vector p. The self-organizing list problem will now be called
the list problem and the policy will mean the reordering policy.

Kan and Ross [6] define a no-memory policy as a reordering policy that depends
only on the position of the requested item and the current ordering. Some of
the most studied examples of the no-memory policies are the transposition, move-
to-front, and move-i-position policies. Keeping the relative positions of all other

'Department of Economics, Thammasat University, Bangkok, Thailand 10200

283

284 T. Makjasnroen

items unchanged, the move-»-position policy moves the requested item » positions
closer to the front if the requested item is found at position j,j > i, otherwise the
requested item is moved to the first position. Transposition is just move-l-position
and move-to-front is move-(n— Imposition for a problem of n items. Hendricks [3,4]
gives the steady state probability distributions of states under move-to-front ana
transposition. See Hester and Hirschberg [5] for a recent survey of the list problem.

Anderson, Nash and Weber [l] show by counterexample that transposition is
not optimal. However, their counterexample not only moves the requested item
but also changes the positions of other items. So it is still an open question if
transposition is optimal among policies that move only the requested item, leaving
the relative ordering of the rest unchanged.

In the special case where only one item has a different request probability, Kan
and Ross [6] and Phelps and Thomas [7] show that transposition is indeed optimal
among policies that move only the requested item. We will show in Section 1.2 that
transposition is optimal in a stronger sense. In particular, by extending the induc-
tion argument used by Phelps and Thomas, we can show that transposition has
a steady state cost stochastically smaller than that of any randomized policy. Let
C(p; A) be the steady state cost of the list problem with request probability vector
p under policy A. Then C(p; A) is stochastically smaller than C(p ;B) , written
C (p ; A) <. t C(p; B), if P r { C (p ; A) > k) < P r { C (p ; B) > k}, k = 1, 2 , . . . , n.
It follows immediately that E[c7(p; A)] < E[C(p;B)|. A randomized policy is a
policy which, when an item is requested and found at position », moves that item
to position j with some probability a^, £ y = i a-ij = 1, leaving the relative ordering
of others unchanged.

Section 1.1 defines the randomized policy and shows its properties. By the
introduction of the randomized policy, we also show in Section 1.2 that move-
i-position has a steady state cost stochastically increasing in i. This partially
supports the conjecture of Gonnett, Munro, and Suwanda [2]. Their conjecture
says that if A and B are two no-memory policies such that if tne requested item is
found at position t, it is moved forward A(t) and B(i) positions by the policies A
and B respectively, and A(i) < B(i),i = 1 , . . . , n, then the expected steady state
cost under A is smaller than or equal to that under B, but B converges to its
asymptotic behavior more quickly than A. Furthermore, it also follows that if the
cost is taken to be an increasing function of the position where the requested item
is found, move-t-position will have an expected steady state cost increasing in i.
A special case of this situation is found in the paging problem as also discussed by
Phelps and Thomas [7] where for a fixed integer m , l < m < n , the cost is taken to
be zero if the requested item is found in a postion less than m, and one otherwise.

Tenenbaum and Nemes [9] consider two spectra of policies. Assuming that only
one item has a different request probability, the policies in each of the two spectra
are ordered by the values of their expected steady state costs. Each spectrum has
transposition at one end with the minimum expected steady state cost and move-
to-front at the other with the maximum expected steady state cost. We will show
in Section 1.2 that the steady state costs of these policies in each spectrum are
stochastically smaller or larger than each other.

A problem related to the list problem is called the processor problem which was
studied by, among others, Topkis [10]. In the processor problem, we consider a
sequential list containing an ordering of the n processors. Each of these processors
has an unknown probability that it will successfully process a given job. At the
beginning of each time priod, there is an arrival of a job to be processed. The job is
attempted by the processors successively according to the ordering in the list until
either one of the processors succeeds or all of them fail. Then the job is dismissed.
The cost in each period is taken to be the number of processors attempted until

The Self-organizing List and Processor Problems under Randomized Policies 285

the job is processed, or, in the case that all n processors fail, it is taken to be n.
At the end of each period, a reordering policy is applied in the same manner as
in the list probelm. For example, we might move the successful processor to the
beginning of the ordering (move-to-front), or we might just move it one position
closer to the front (transposition).

Topkis [10] gives the steady state probabilities of the move-to-front and move-
to-back policies and shows that move-to-front has a steady state cost stochastically
smaller than move-to-back, which in turn, has a steady state cost stochastically
smaller than the random policy where processors are equally likely to be in any of
the n! orderings.

Section 2.1 shows the properties of randomized policy when applied to the pro-
cessor problem with only one processor having a different success probability. In
this special case, Ross [8] shows that the expected steady state cost under trans-
position is smaller than or equal to that under move-to-front. In Section 2.2, we
also use randomized policies to obtain results closely parallel to those of the list
problem. That is, the steady state cost under transposition is stochastically smaller
than that under any randomized policy. Furthermore, the steady state cost under
move-t-position is stochastically smaller than that under move-(t + Imposition. The
steady state costs under the policies in the two spectra proposed by Tenenbaum
and Nemes [9] are also ordered such that the steady state cost of each policy is
stochastically smaller or larger than its neighbors in the same spectrum.

1 The List Problem
When only item 1 has a different request probability, the expected steady state
cost can be written in terms of the expected position of the item 1. That is, by
conditioning on whether item 1 is being requested,

E[C(p; A)] = C p E [y l (p ; A)] + P ^ - 1) E ' 1 + 2 + • + n ~ y i (p ; A) '

p(c - l)E[yi (p ; A)] +

n - 1
pn(n + 1)

where Yi(p; A) is the steady state position of item 1 of the list problem with request
probability vector p under policy A , p i = cp,p2 — p,... ,pn = p, and c > 0.

So when c > 1, we want to minimize E[yx(p; Aj] , and maximize it when c < 1.
For the rest of the paper, we assume that c > 1. The results for c < 1 will be just
the opposite.

1.1 Randomized Policy
A randomized policy is characterized by a matrix A = [A,yj„xn, where A,-y =
Ylk=i fltki a n d Oij is the probability that given an item is requested and found at
position t, it is moved to position j , where = 1 f ° r all t, and 0 < o,-y < 1.
So Ai j is the probability that given the requested item is found at position t, it is
moved to a position less than or equal to j .

Given a policy A defined in a system of n items, define a related policy A d in
a system of n — 1 items as follows.

A < i = Wy] (n - l)x (n - l) ,

286 T. Makjasnroen

where Af}- = Ei=i afk, and

ad = I ° i + 1 ' 1
0 I <*+ij.

+ «¿+1,2 , 3 = 1
j + i , 3 > 2. (1.1)

Let ir^ be the steady state probability that item 1 is at position t under policy A .
That is, = Pr{Yi(p; A) = t'}. Alternatively, we can say F i (p ; A) < , t Y i (p ; B)
by using the notation { * / } <> t Define K * = Lemma 1.1 to Lemma
1.4 below show the relationships between {ir/1} and {*fA} under the assumption
that (Pi,P2i • • • Pn-i) = (cPd> Pd} • • •, Pd)• Lemma 1.1 and Lemma 1.2 «ire also
obtained by Phelps and Thomas [7], where they consider only policies that move
the requested item, found at position t, to a fixed position r(t),r(t) < i.

Lemma 1.1 Under policy A, for i = 2 , . . . , n,

-.A ¡ A _ if A _ dA / dA

Proo f . The transition matrix, showing only columns 1, r + 1 and n can be written
as

CP + P E E aij
i=23=2

cpa21
cPa31

cpanl

0
n r

P E E a.'j t=r+iy=l

cPar+l,r+l +
cpar+2,r+i

epan< r + i
p(l - a „ „)

cpann + p(n - 1)

(1 .2)

where 8 = r + £ E °ty
i=r+2 j'=r+2

Except the first column, column r + 1 contains zeros from row 1 to row r. Using
the (r + l)8 t column of the transition matrix and suppressing the superscript A ,
we have

cPar+l,r+l +p8

+ E .cP°«>+i ,r»i
t=r+2

for r = 1 , . . . , n — 1.

The Self-organizing List and Processor Problems under Randomized Policies 287

Since p = , the above equation becomes

\ t = r + l / = l)

— "V+l

— "V+l

c + n - 1 - CO r+l , r+l - f r + aO)
\ « = r + 2 / = r + 2)

n »

n -I- c (l - o r + 1 > r + i) - (r + 1) - Yh Z)
t ' = r + 2 j ' = r + 2

— Z) c o».r+l*«
i = r + 2

n
— C ^ Oĵ +iTT,-,

t = r + 2

(1.3)
where r = 1 , . . . , n — 1.

For policy AD, using the r th column of the transition matrix of n — 1 items and
noting that pd = we have in the same manner as (1.3) above

"-(siH
c + n — 2 — ca*r — i r — 1 + Y l J 2

V i = r + l j = r + l

n-1 i
„ + c (l - d ? r) - (r + l) - E 4

i=r+lj=r+l

caln?
n - l

— y 1 -"•ir-'t
i=r+1

n - l

Ed d

i = r + l

where r = 2 , . . . , n — 1. By the definition of af}- given in (l . l) , (1.4) becomes

1

\i=r + iy=l /

(1.4)

= *V n + c (l - a r + 1 , r + 1) - (r + l) -] C
i=r+2j'=r+2

- c Y! a « > + i , , f - i >
• = r + 2

(1.5)
where r = 2, . . . , n — 1. FVom (1.3) and (1.5), (x2 , . . . , i r n) and (fl^, • • •
satisfy the same set of equations. We will use this fact to show that Ki = Kf_lti =
2 , . . . , n, and this proves the Lemma. Since Kn = = 1 by definition, we use
the induction hypothesis that Ki — Ki_ l t x = r + 1 , . . . , n. We will show that it
is also true for i = r. But this follows immediately by dividing both sides of (1.3)
and (1.5) by irn and ^ - i respectively. •

If we know r f , » = 1 , . . . , n, then we know *fA, i = 1 , . . . , n — 1. The exact
relationship is given in Lemma 1.2.

288 T. Makjasnroen

L e m m a 1.2 Under policy A, for i = 2 , 3 , . . . , n,

P r o o f . Prom Lemma 1.1, we need to show that = (1 — H j 1) * ^ ! . By suppressing
superscript A ,

n—1 n— 1 n
1 = E ^ = E = <-1 E * = ^-li1 - *!)/*»•

1 = 1 t '= l 1=2

•
Conversely, given ir?A, » = 1 , . . . , n — 1, we can compute nf, i = 1 , . . . , n, using

Lemma 1.2 and the following Lemma 1.3.

Lemma 1.3 Under policy A,

A C(A2LF2 + «31^3 + ANL""N)
= .

«21 + «31 + h a„i

P r o o f . The Lemma is proved by using the first column of the transition matrix
(1.2) and noting that p = •

FVom Lemma 1.1 and Lemma 1.3, Lemma 1.4 below says that we can write Äy
in terms of Äy+i, Äy+2, • • •, K n . Note that An = a n , i = 2 , . . . , n. So Lemma 1.3
and Lemma 1.4 are equivalent when j = 1.
Lemma 1.4 Under policy A, for j = 1, 2 , . . . , n — 1,

Kf =
c(A3+1JKf+1 + AJ+2,,Kf+2 + -.. + An]K£)

3 Ai+1,} + ^y+2,y H 1- A. nj

Proo f . From Lemma 1.1, K2 = K*, K3 = = Kf,..'., Ks = K? ' . By exactly
the same argument, we have = K^'+i — • •• = -Ky+k-i, k = 2 , . . . , n — j + 1.
From Lemma 1.3,

c { 4 : l K t l + 4 r * t x + • • • +
" l = di-i , di-' , . adi~* 21 ^ °31 ^ ^ n—y+1,1

Now, by definiton (1.1),

S21 — a31 + a32
- a4 1 + a4 2 + o 4 3

= ° y + l , l + ° i + l , 2 + • • • + a / + l , y

= Al + U-

Similarly, = i4y+fc_i,y, k = 3 , . . . , n — j + 1. So follows the Lemma. •

The Self-organizing List and Processor Problems under Randomized Policies 289

1.2 Comparison of the Steady State Costs and Probabili-
ties of Two Lists under Two Different Policies

Let S be the set of policies that the resulting probability distribution { t « } is
decreasing in t when pi > p and increasing in t otherwise. The question of how to
determine if a policy is in 5 will be addressed later. We are now ready to prove
the following Theorem that compares {*<} of two different policies.

Theorem 1.5 Let A and B be two policies such that, ¡or j = 1 , 2 , . . . , n — 1, k =
j + 1,..., n,

A y + i ,y + A y + 2 , y + H AKy -By+i ,y + -By+2,y + H BK]

AJ+I,} + A y + 2 , y + • • • + A „ y ~~ -By+i .y + - S y + 2 , y + h BN)- '

(1.6)
and at least one of these two conditions holds:

(a) A S S and Bij is decreasing in i for all j = 1 , . . . , n,
(b) B S S and A{j is decreasing in i for all j = 1 , . . . , n.

Then <„t { f l f } for any p = (cp, p,..., p), c > 1.

Proo f . We will prove this Theorem by induction. It is easily checked that the
Theorem is true for n = 2. Assume that it is true for the problem of n — 1 items.
Now given such policies A and B , their corresponding policies A d and B d also
satisfy all the conditions above. We can check this by first noting by that by (1.1)

Aij — aii + ai2 H 1" aij = a « + i , i + ° t + i , 2 + Oi+1,3 + H a » + i , y + i = A i + i , y + 1 .

Therefore, Af - is also decreasing in t, and

A3+l,3 + AJ+2,J + • • • + Akj + Ad + • • + Ad_ 1,3- 1
AJ + 1,J + A)+2J + " • • + A „ y ¿1,3- 1 + A1+1,3-1 + • • 1,3- 1

Bd-^ 3,3-1+Bf+1,3-1 + • •• + Bd_ 1,3- 1
Bd. 3,3- 1 + Bf+1,3-1 + Bd. 1,3- 1

Secondly, since A e 5, vA > > ••• >irA. B u t from Lemma 1.2, vfA =
A

YZ^x, so > ir$A > > jr^lj . This means A d g S. So we have the induction
hypothesis that

From Lemma 1.2, ^ + + • • • + r A = (1 - + * f A + • • • + n ^ J .
All we need to show is that * A > ir f . From Lemma 1.2 and Lemma 1.3,

>1 (1 A , A 21*IA + A 3 i ^ A + • • • + AnlTTdA1 TTj = C^l — TTj J .
A 2 1 + A 3 1 + h A„ 1

290 T. Makjasnroen

A B
Since > 7rf if and only if j ^ x > i - ^ » , we need to show that

A21w*A + A31*jA + • • • + A^x*^ > B21 <B + + ••• + nni<B-i
A2i+A31+ - + Anl ~ B21+B31+- + Bnl

Assume first that (a) holds. Then', by (1.6) with j — 1 and, because Ad G
S, *FA>*$A>-~>*F£I,

B2i*iA + B 3 ^ + • • • + B n i n ^ i
B2\ + B3\ + 1- Bn 1

B21**B + B31**B + • • • +
B2i + B3i + 1- Bn 1

The second inequality follows from the assumption that B n is decreasing in t
and from the induction hypothesis that { n f A } <> t { n f B } .

Similarly, if (b) holds,

+ A31x$A + --- + Anl > A2 l 7rfB + A31x*B + ••• +
A 2 i + A 3 1 + 1- A n l ~ A 2 1 -I- A 3 1 H h A r e l

> B21xjB +B31**B + -- + Bnln*Bx

~ B21 + B31 + • • • + B„i

•
A consequence of this Theorem is that the steady state cost under policy A is

stochastically smaller than the steady state cost under policy B .
Corol lary 1.6 Under the conditions of Theorem 1.5, C (p ; A) <„ t C (p ; B) .

P r o o f . Conditioning on whether item 1 is at the first position, for k = 2

P r | c (p ; A > Jfcj

= n A P r|c (p ; A) > A i n t p j A) = l } + (l - ^ t) P r { c (p ; A) > A ^ f a A) ? l }

- x J * P r { c (p ; B) > fc|n(p;B) - l } + (1 - ^) P r { c (p ; A) > A ^ f a A) ? l } .

Now given that item 1 is not at position 1, the probability that it will be at
IT*4 . . dA position t, 2 < i < n, is ' x , which is exactly by Lemma 1.2. That is, given

. 1

item 1 is not at position 1, its probability distribution over { 2 , 3 , . . . , n) is the same
as the probability distribution of over { l , 2 , . . . n — 1}. Using the induction
hypothesis that the Corollary is true for the list of size n — 1, we have

P r { c (p ; A) > fcinipjA) / l } = (1 — p) P r | c (p d ; A d) > fc — l j

< (l - p) P r { c (p d ; B < ,) > f c - l }

= P r j c f a B j ^ f c l Y k f o B) ? * ! } .

A 2 i * r + A31n«A + • • • + A „ 1 j t „ _ 1

A 2 I + A 3 1 + •• • + A nl

>

The Self-organizing List and Processor Problems under Randomized Policies 291

Therefore,

Pr{<7(p;A) > fc}

< T* P r j c (p ; B) > fc|n(p;B) = l } + (1 - P r { c (p ; B) > ¿ ^ f o B) ft l }

< * f Pr j c (p ; B) > fc|Fi(p;B) = l } + (1 - * ?) P r { c (p ; B) > ¿ ^ f o B) ft l }

= P r { (p ; B) > f c } .

The second inequality follows from the fact that irf > 1rf and, when pi > p,
P r { c (p ; B) > fc|yx(p;B) = l } < Pr{(7(p;B) > fc|Yi(p;B) ft l } . •

By Lemma 1.2 and Corollary 1.6, transposition is optimal in the sense that it
has a steady state cost stochastically smaller than any randomized policy. Let T
denote the transposition policy.

Corollary 1.7 For any policy A , C (p ; T) < t i C(p; A) .

Proo f . Given c > 1, Phelps and Thomas [7] show that n j > nf for any policy
Z that moves the requested item strictly forward by using the fact that =
(l — 7r Since this fact also holds for any randomized policy A as shown in
Lemma 1.2, so irj" > and thus { t ^ } } by the same induction argument
in Theorem 1.5. The Corollary then follows by Corollary 1.6. •

The next question is how we know if A G S. The counterexample below shows
that not every policy A is in S even with Ai}• nonincreasing in t for all j.
A counterexample:

Let A be a policy characterized by the following matrix.

A =

0

1

1 — £

0

0

1

1 - e

0 0

0

1

1 - e
e

Let e be some small number. The policy A almost always moves the requested
item one position closer unless the requested item is founded at position 2 where
it stays put with probability 1 — e and moves to position 1 with probability e. By
selecting small enough e, we can get the values of Ki, as given by Lemma 1.4, to
approach cn~' arbitrarily close for t > 2. The value of K i t as also given by Lemma

292 T. Makjasnroen

1.4, is

c(ecn~2 + e c n - 3 + h ec + e)

c j c " - 1 - 1)
(n - l) (C - l) '

With c = 3 and n = 6, = 72.6 while K2 = 34 = 81. So here K{ is not
decreasing in i when c > 1. Thus not every policy has {«",-} decreasing in i when
c > 1. •

The following Proposition gives a sufficient condition for A 6 5 , This sufficient
condition turns out to be true for any policy A under which the distribution of
the number of positions to move the requested item is independent of the position
where it is found. In other words, there is only one distribution for all positions.
Call these policies position independent. One can interpret a position independent
policy as one that uses a mixture of move-t-position, t = 1 , . . . , n — 1.
Propos i t ion 1.8 A policy A 6 5 if, for j = 1,... ,n — 1,

Aj + iJ ^ Anj < Ai+i,j H y An-i,j < . . . < A1++ 3
Aj + 2,j + l + 1" An,j+1 A]+ 2,3 + 1 + 1- An_i i J + x Ay+ 2 , j + l

(1.7)

Proo f . Since Af j = A i + i j + i , a condition similar to (1.7) holds for A d . By the
induction hypothesis, AD £ 5 and n f A > IRDA > • • • > ^n- i - So by using Lemma
1.1 we have > nf > •• • > k a and > > • • • > K * . Thus it remains to
show that 7TJ4 By Lemma 1.3, this means we have to show

A2lK$ + + ''' + > A21 + A3 i + • • • + Anl

K* + • • • + An2^A A32 + A*2 + h An2

Rewrite the nominator on the left hand side of the above inequality as follows.

A21KA +A31Ka +-+AnlKA = KA{A21 + A31+-+Anl)

+ (KA_, - Ka)(A21 + A 3 I + • • • + A N - I . I) +

••• +(^-Ka)(A21 + A31) + (Ka-Ka)A21

The left hand side of the last inequality becomes

K£(A21 + A3i + 1- Ani) + (KA_X ~ K*)[A2i + A 3 ! + ••• + A n _ l t l) + - • •
^ (A 3 2 + A42 + - - + A n 2) + - •

• • • + [KA - Ka){A21 + A3X) + [Kf - K*)A21
• • + (KA_i ~ Ka)(A32 + A4 2 + • • • + A „ - 1 i 2) + -•• + № - K*)A32'

and because KA — > 0, » = 2 , . . . , n — 1, it is greater than the right hand side
if

A 2 I + A 3 1 + H AnI A 2 I + A 3 1 H H A N _ X | I < A 2 I + A 3 1

A32 + A 4 2 + H A„2 — A 3 2 -T- A42 + B

The Self-organizing List and Processor Problems under Randomized Policies 293

which is just (1.7) with j = 1. This follows from the fact that, f < f^a if f < g,
where a, 6, c and d are positive. •

We will show next that (1.7) holds for any position independent policy that
moves, with probability a,-, X -̂TQ1 = requested item i positions forward
if it is found at a position greater than or equal to i + 1. Otherwise the policy
moves the requested item to the first position. Thus, a,-y = Oi-i>j > 1, and
ciii = o,-_i + a,- + • • • + an_ i . Let A; = °fc be the probability that the
requested item is moved more than or equal to t positions. Thus,

An = a,i + cm + • • • + oi}- = (o,-_i + (- a„_ j) + Oi-2 H h a,_y = A,_y.

So (1.7) becomes

Ai + A 2 + < A j + A 2 + • • • + A n - 2 < _ < A t + A 2

AI + A2 + • • • + 3 „ - 2 ~ Ai+A2 + H A „ _ 3 Ai '

which can be shown to be true by just cross-multiplying terms on each side of each
inequality and noting that A,- is decreasing in t by its definition. Thus we have
proved the following Lemma.

L e m m a 1.9 Let A. be a position independent policy that moves requested item i
positions with probability ai, ^"Jq1 â = 1. Then A S S.

When a0 > 0, we can look at the embedded Markov chain when the items
actually change positions. The probability that item 1 is at position t in this
embedded Markov chain will be equal to the proportion of time item 1 is at position
t in the original chain. The policy governing the embedded chain is characterized
by

ai — i_'ao > * — Ij • • • i ni a n d a0 — We can, without loss of generality, restrict
ourselves from now on to the position independent policies that always move the
requested item at least one position closer to the front, unless it is already at the
first position.

When two position independent policies A and B are compared, (1.7) of Propo-
sition 1.8 becomes, for k = 1 , . . . , n — 1,

M + A2 + • • • + Ak B i + B 2 + - + B k

Ax + A2 + ... + An_! ~ Bj. + B2 + ... + Bn_!' (L8)

An interpretation of this condition (1.8) is as follows. Let XA be the renewal
time of some renewal process with Pr{X j 4 = »} = o<, t = 1 , . . . , n — 1, and ao = 0.
Then the equilibrium renewal time of XA, called XA, will be distributed by

pr{x* < *} = 3 + 3 + - - - + 3
- A 1 + A 2 + - + A „ _ 1

Therefore, (1.8) means XA <„t Xf. Theorem 1.5 combined with Corollary 1.6
can be restated for position independent policies as follows.

Theorem 1.10 Given two position independent policies A and B such that
XA <,t X*, then <st } and C (p ; A) < (t C (p ; B) for p =
[cp,p,...,p),c > 1.

294 T. Makjasnroen

Proo f . Direct application of Theorem 1.5, Corollary 1.6 and Lemma 1.9. •

Note that the condition that is decreasing in » in Theorem 1.5. becomes A{
is decreasing in t which is true by its definition. An immediate result of Theorem
1.10 is that moving » positions closer is better than moving » + 1 positions closer.
Formally,

Corollary 1.11 The steady state cost under move-i-position policy is stochastically
smaller than that under move-(i + 1)-position policy.

Proo f . Direct application of Theorem 1.10. •

Tenembaum and Nemes [9] examine two spectra of policies. For each spectrum,
they show that the policies are ordered by their expected steady state cost, having
tranposition at one end of the spectrum with minimum expected steady state cost
and move-to-front at the other with maximum expected steady state cost. It can be
shown that this also results directly from Theorem 1.5 and Corollary 1.6, and not
only are the policies ordered by their expected steady state cost but their steady
state costs are also stochastically smaller or larger than each other.

The first is a spectrum of policies POS(A;), k — 1 , . . . , n where the requested item
found at position j is moved to position k if j > k, and it is moved one position
closer to the front if j < k. We can write the matrices A and B representing
policies POS(fc + 1) and POS(fc) respectively as follows.

1
1 1

0 1

0 1

A = 1 1
O i l

1

1

0 0 0 1 1
1 1
1 1 1

Col. (!) • •• (A: + 1)

The Self-organizing List and Processor Problems under Randomized Policies 295

1

1 1

0 1

B =

0 0 0 1 1
1 1
1 1 1

Col. (1) . . . (*) . . . (n)

The upper triangles of both matrices A and B consist of zeros. It can be easily
checked that both policies A and B are in S as they satisfy (1.7) of Proposition 1.8.
Moreover, all the conditions of Theorem 1.5 are also satisfied. We can then make
a stronger statement that the steady state cost under POS(fc 4-1) is stochastically
smaller than the steady state cost under POS(fc).

The second is a spectrum of plicies SWITCH(A;),k — l , . . . , n , where the re-
quested item found at j is moved one position closer if j > k, and is moved to the
first position if j < k. A1 the conditions of Theorem 1.5 and (1.7) of Proposition
1.8 are satisfied by the following matrices A and B representing SWITCH(fc) and
SWITHC(fc + 1) respectively.

Row

A =

•• 1
1 l 1 1
0 0 0 1 1
; 0 1 '•

0 . 1

* 1
0 0 • • 0 0 0 • • 0

1
1 1

(1)

(k)

in)

296 T. Makjasnroen

Row

B =

0 0

1
1 1
0 1

: o

0 0 0

1 1
O i l

(1)

(f c + 1)

(n)

The upper triangles of A and B also consist of zeros. Similarly, the steady state
cost under SWITCH(ifc) is stochastically smaller than that under SWITCH(Jb + 1).

2 The Processor Problem
Let C(p; A) now be the steady state cost and Yi(p; A) the steady state position of
processor 1 of the processor problem with success probability vector p under policy
A . When only processor 1 has a different success probability, the expected steady
state cost, conditioning on the position of processor 1, can be written as

n
£ [C (p ; A)] = JS7 [C(p; A) j (p; A) = »] ^

; = i

= [l + î i (l + g + - - - + gB - 3)] ir i

+ E [(i + « + ••• + <Tx) + a (g- 1 + j + • • • + g" - 2)] * t = 2

+ (l + g + ' + g " - 1) * »

i - g i g " 1 pi - p sr i-1
= — - P —

where p = (pi ,p , . . . ,p), gi = 1—Pi, g = 1—p and -K, is the steady state probability
that processor 1 is at position ». Prom (2.1), since g* is decreasing in t, if pi > p
and the position of procesor 1 under policy A is stochastically smaller than under
policy B, the expected steady state cost under policy A will be smaller than the
expected steady state cost under policy B . For the rest of the paper, we assume
that pi > p.

The Self-organizing List and Processor Problems under Randomized Policies 297

2.1 Randomized Policy
Define the randomized policy A and its related randomized policy Ad in exactly
the same way as in the list problem. Also let -rf be the steady state probability
that processor 1 is at position i under policy A . Define Kf = xf/ic*. Lemma 2.1
to Lemma 2.4 below show the relationships between and { n f A } under the
assumption that (p?, pi,..., p ^) = (pi, p , . . . , p).

L e m m a 2.1 Under policy A , for i = 2,..., n,

= = 1.

P r o o f . Similar to Lemma 1.1, the Lemma is proved by using the column r + 1 of
the transition matrix, which is given by

1 - qr +qrPlar+1<r+i + qrqlP £ " = r + 2 ?*'~r~2 Ey = r + 2 aH +

9r+1Piar+2,r+l

? r + 1 Pl a » ,r+i

•

L e m m a 2.2 Under policy A, for i = 2,3,..., n,

P r o o f . Same as Lemma 1.2. •

L e m m a 2.3 Under policy A,

WA = Eil(a21*2 + 1a31*3 + •" • + \
1 hP\ a2i + 7a3i + h qn~2anl J'

P r o o f . Similar to Lemma 1.3, the Lemma is proved by using the first column of
the transition matrix, which is given by

P I + 9 L P E , N = 2 ? , 2 E Y = 2 °»Y + 9 " V
9Pla21
i2Pla31

i " 1Piani

•

298 T. Makjasnroen

Lemma 2.4 Under policy A , for j = 1 , 2 , . . . , n — 1,

^ = Piff (A > + ^ K U i + + • • • + q n ~ } ~ 1 A n] K A \
' qiP \ Ay+1,y + gAy+2,y + -- +qn-'~1An,- J'

P r o o f . Same as Lemma 1.4. •

2.2 Comparison of the Steady State Costs and Probabili-
ties of Two Problems under Two Different Policies

We can now state a result similar to Theorem 1.5 that compares the steady state
probability {jr,-} under two different policies. As in the list problem, let S be the
set of policies under which the resulting probability distribution {«¿ } is decreasing
in t when pi > p and increasing in t otherwise.

Theorem 2.5 Let A and B be two policies such that, for j = 1, 2 , . . . , n — 1, k =
j + 1 , . . . , n,

Ay+i,j + gAj+3,y + • • • + qk-j-1Akj > 5y+1 ,y + <?fly+2,y + • • • + g^^By
Ay+1,y + gAy+2,y + • • • + qn~>-lAnj - Bj + u + qBJ+2,j + • • • + qn->~xBni '

(2.2)

and at least one of these two conditions holds:

(a) A 6 S and Bij is decreasing in i for all j = 1 , . . . , n,
(b) B g S and A,y i*5 decreasing in i for all j = 1 , . . . , n.

Then <Jt { jrf } for any p = (pi, p , . . . ,p),pi > p.

P r o o f . Same as Theorem 1.5 because if A,y is decreasing in t for all j then so is
A,-y. _ •

It should be noted that (1.6) and (2.2) are not equivalent when Â y and Bi j
are decreasing in t for all j, even though (2.2) gives (1.6) when q = 1. A simple
counterexample can be constructed as follows. Suppose (1.6) is true. Let j = 1
and A2 i + A31 + 1- Anl = B21 + B31 + • • • + Bnl, with A2 i = B21. So by
(1.6), (A21, A 3 1 , . . . , A „ i) majorizes (B2i, B31,..., Bnl). With the fact that q* is
decreasing in t, we have

A21 + qA31 + ••• + q"-2Anl > B21 + qB31 + • •• + qn~2Bnl,

which means

A21 ^21
A21 + qA31 + • • • + qn~2Anl ~ B21 + qB31 + • • • + qn~2Bnl'

This contradicts (2.2) for j = 1 and k = 2.
A consequence of Theorem 2.5 is that the steady state cost under policy A is

stochastically smaller than the steady state cost under policy B.

Corol lary 2.6 Under the conditions of Theorem 2.5, C (p ; A) < , t C (p ; B) .

The Self-organizing List and Processor Problems under Randomized Policies 299

P r o o f . Same as Corollary 1.6. •
By exactly the same reason as in Corollary 1.7, transposition has a steady state

cost stochastically smaller than any randomized policy.

Corol lary 2.7 For any policy A , C (p ; r) < (t C(p; A) .

P r o o f . Same as Corollary 1.7. •
A counterexample similar to that in Section 1.2 can be made to show that not

every randomized policy is in S. A sufficient condition for a policy A to be in S
turns out to be the same as in the list problem. That is, when pi > p, {i",^} is
decreasing in t when (2.3) below, which is (1.7) of Proposition 1.8, holds.

Propos i t i on 2.8 A policy A 6 S if, for j = 1 , . . . , n — 1,

Aj+i ,y H h Any < Ay+i.y H V A „ - i , y < < Ay+1|y + Ay+2 ,y

Ay+2,y+i + f" A„,y+i Ay+ 2 ,y+l + V A n _ l j + i Ay + 2 , y + i

(2.S)

Proo f . By the same argument as in Proposition 1.8, A S S if, for k

Ay+i,y + gAy+2 ,y + • • • + qk~i-1 Akj

Ay+2,y+i + 9Ay+3>y+1 + • •• + qk-i~2 AkJ+1

< Ai+1,3 + <lAj+ 2,y + • • • + g fc~y~2Afc-i,y

~ ^y+2,y+i + 1A}+3,j+i + • • • + qk~:>-3Ak-u+1 '

It is then sufficient to show that (2.3) implies (2.4). By cross-multiplying and
rearranging terms, (2.4) is equivalent to

gAfcy Ay+i,y + h Afc_i,y
Ay+i,y + ?Ay+ 2 ,y + h qk~3~2Ak-it]- Ay+i,y + h A fc_i,y

= j + 3 , . . . , n ,

(2.4)

< Afc,y y+1 Ay+2,y+l + 1- Afc_i,y y+i
Ay+2,y+1 + gAy+3,y+i + 1- qk 3 3At-i,y+i Ay+2,y+i H h Afc-i,y+i

(2.5)

Now,
Afc,y + i

Ay +1,y + h A f c - i j Ay+ 2 ,y+i + 1- A f c _ l i J + 1

Ay+i,y H H Afcy
Ay+2,y+1 H 1" Afc,y+1

< Ay +1,y + h A f c - i ,y
AJ+2,3+1 + ' ' " + Afc_i,y+i

(2.6)

300 T. Makjasnroen

where the inequality on the right hand side of the equivalence is given by (2.3).
Also from (2.3), for m < k — 1,

A] + H h Amy ^ A y + 2 , y + l + • • • + A m > y + 1

A3 + l,3 + 1- -¿fe-io -¿j'+i.y+i + 1- -4fc-l,y+l

and because q% is decreasing in t we have

A]+i,j + gAy+2,y + •-• + q k ->~ 2 A k - l t y
Ay+i,y + Ay+2,y H h Ajt_i,y

?^y+2,y+i + ?2Ay+3,y+i + • • • + qk~3~2Akti+i >
A»"+2,y+l + ^y+3,y+l H 1- -¿k,y+l

(2.7)

Then (2.5) follows from (2.6) and (2.7). •
Thus for the processor problem, by the same argument as in Lemma 1.9, any

position independent policy is also in S. Formally,

Lemma 2.9 Let A. be a position independent policy that moves the succesful pro-
cessor I positions with probability a,-, a»' = 1- Then A E S.

Proo f . Same as Lemma 1.9. •
We can then restate Theorem 2.5 combined with Corollary 2.6 for position

independent policies as follows.

Theorem 2.10 Given two position independent policies A and B such that, for
k = l , . . . , n - 1 ,

At + qA2 + • • • + g^Afc > Bx + qB 2 + • • • + gfc_15fc

A1+qA2 + -- + qn~2 An-i B1+qB2 + -- + qn~2Bn

(2.8)

then { a / } <,t {wf } and C(p; A) <,< C(p;B) for any p = (P l , p , . . . , P) , P l > p.

Proo f . Direct application of Theorem 2.5 Corollary 2.6 and Lemma 2.9. •
There is no obvious interpretation of (2.8), unlike (1.8), as in the list problem.

However, (2.8) yields the same monotonicity result as in the list problem that
move-t'-position has a steady state cost stochastically smaller than move- (t + 1)-
position. Let A and B represent the move-t-position and move-(t + Imposition
policies respectively. Then,

Ai = A2 = • • • = Ai = 1, Ai+i = Ai+1 = • • • = An-i = 0

B\ = B2 = • • • = Bi+i = 1, Bi+2 = Bi+3 = • • • = = 0.

The Self-organizing List and Processor Problems under Randomized Policies 301

Therefore, for k = 1 , . . . , n — 1,

Ai + g A 2 + - + g f c ~ 1 A f c _ 1 + q+-+qk~l

A1 + gA2 + --- + g " - 2 A „ _ 1 ~ 1 + g + • • • + g - 1

> 1 + g + • • - + gfc~x

1 + g + • • • + g«'
J31 + qB2+-+ qk~^k

Bx + qB2 + ••• + g"-25„_r (2-9)

We have proved the following Corollary.

Corol lary 2.11 The steady state cost under the move-i-position policy is stochas-
tically smaller than that under the move-{i + Imposition policy.

P r o o f . By (2.9) and Theorem 2.10. •
By Theorem 2.5, it also holds, as in the case of the list problem shown in Section

1.2, that the policies in the two spectra of Tenenbaum and Nemes [9] tire ordered
such that the policies in each spectrum have steady state costs stochastically smaller
or larger than each other.

Acknowledgements . I would like to thank my advisor Prof. Sheldon M. Ross,
Anandhamahidol Foundation and Thammasat University.

References
[lj Anderson, E.J., Nash, P., and Weber, R.R. A counterexample to a conjecture

on optimal list ordering. Journal of Applied Probability, Vol. 19, No. 3 (1982),
730-732.

[2] Gonnett, G.H., Munro, J.I., and Suwanda, H. Exegesis of self-organizing linear
search. SI AM Journal on Computing, Vol. 10 (1981), No. 3, 613-637.

[3] Hendricks, W.J. The stationary distribution of an interesting Markov chain.
Journal of Applied Probability, Vol. 9, No. 1 (1972), 231-23.

[4] Hendricks, W.J. An account of self-organizing systems. SI AM Journal on Com-
puting, Vol. 5 (1976), No. 4, 715-723.

[5] Hester, J.H., and Hirschberg. D.S. Self-organizing Linear Search. Computing
Surveys, Vol. 17, No. 3 (1985), 295-311.

[6] Kan, Y.C., and Ross, S.M. Optimal list order under partial memory con-
straints. Journal of Applied Probability, Vol. 17, No. 4 (1980), 1004-1015.

[7] Phelps, R.I., and Thomas, L.C. On optimal performance in self-organizing
paging algorithms. Acta Cybernetica, Vol. 5, No. 1 (1980), 88-85.

[8] Ross, S.M. Processor reordering rules. Probability in the Engineering and In-
formation Science, Vol. 4, No. 2 (1990), 181-186.

302 T. Makjasnroen

[9] Tenenbaum, A., and Nemes, R.M. Two spectra of self-organizing sequential
search algorithms. SIAM Journal on Computing, Vol. 11, No. 3 (1982), 557-
566.

[10] Topkis, D.M. Reordering heuristics for routing in communication networks.
Journal of Applied Probability, Vol. 23, No. 1 (1986), 130-143.

Received October 21, 1991

Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

Computing Maximum Valued Regions

G. J. Woeginger*^

Abstract
We consider the problem of finding optimum connected configurations

in the plane and in undirected graphs. First, we show that a special case
concerning rectilinear grids in the plane and arising in oil business is NP-
complete, and we present a fast approximation algorithm for it. Secondly,
we identify a number of polynomial time solvable special cases for the corre-
sponding problem in graphs. The special cases include trees, interval graphs,
cographs and split graphs.

1 Introduction
P r o b l e m statement and applications. In this paper, we deal with the MAXI-
MUM VALUED REGION problem (MVR, for short) which is defined as follows. We
are given a subdivision of a rectangle into equisized squares. Every single square
has some (known) positive value. The problem is to find for a given number k a
connected subregion of the rectangle that consists of exactly k squares and that
has the maximum overall value under these conditions.

Practical applications of MVR arise e.g. in the context of oil business, cf.
Hamacher, Joernsten and MafEoli [6]. Suppose a company is searching for oil at
many places of some large area and assigns values to the pieces of land according to
the results of these trial prospects. The places form some regular (rectilinear) pat-
tern as described above. Afterwards, the company will buy the 'best' k landpieces;
assuming unit prices for the land we exactly arrive at MVR.
A related graph prob lem. The corresponding problem in vertex-valued graphs
is to find a connected subgraph on k vertices with maximum overall value. We call
this graph problem the Maximum Valued Subtree problem, MVS for short. Problem
MVS is known to be NP-complete for arbitrary graphs (see [6]). It is easy to see
that MVS restricted to gridgraphs becomes MVR.
K n o w n results. Hamacher et al. [6] introduced the problem MVS and proved
it to be NP-complete for arbitrary graphs. They also developped a branch-and-
bound scheme for MVS, and gave an integer program formulation. As a main open
problem they asked whether the restriction of MVS to gridgraphs can be solved in
polynomial time. Maffioli [8] derived a polynomial time algorithm for solving MVS
in trees.

"TU Graz, Institut für Theoretische Informatik, Klosterwiesgasse 32/11, A-8010 Gras, Austria.
Electronic mail: gwoegiQigi.tu-graE.ac.at

tThis research was supported by the Christian Doppler Laboratorium für Diskrete
Optimierung.

I
304 G. J. Woeginger

O u r results. We prove that MVR (and hence the restriction of MVS to gridgraphs)
is NP-complete and we give a polynomial time approximation algorithm with worst
case guarantee;O [*/k) (Ee. the* approximation- algorithm, always .outputs absolution
with value'at least the optimum value divided by c\/k).

For the graph problem MVS, we will identify several polynomial time solvable
subcases, e.g. MVS in trees, interval (graphs ¡and cographs. It turns out that MVS
and the famous STEINER TREE problem are closely related in the following sense:
The investigated restrictions to the various 'famous' graph classes (as described in
Johnson [7]) are either NP-complete for both problems or polynomial time solvable
for both problems.
Organization of the paper . In Section' 2, we give the NP-completeness proof
for MVR,Mand,;in: Section, 3;;oiiri.approximatibñoalgorithm .is described'^and ana-
lyzed. sSection, 4 de^.fwith.treelike;graph.classescforiwhich. MVS. is. polynomial
time solvable-by, a, dynamic- prqgrammiiig approach. :Section; 5 summarizes. >some
other results on special graph.classes (interval graphs,xographs and split.graphs).
Section 6 contains,the discussion.,;,. . . : . .'.,, .,. - „,,;;:

2 NP-completeness of the Región Problem
To give a precise presentation of the problem and our method, we will .need the
following definitions. A gridpoint in the Euclidean pláné' is á :pbint 'with1 both"
coordinates integer. Two gridpoints are called adjacent iff they are at distance,,
orie^fr'om ^each' other.' This 'adjacency1 relation'induces1 an' infinite -• graph .on' 'tHe-
gridpoints: A 'regioW-is1 á set of- 'gricipoints that' is connected' in1 this- infinite1 graph.1

" f ó Á X i M Ü i i í ' . R E G I O N ; P R O B L E Í Í Í { M Y F C) ^ . . . " ; " J V I F V.:
Input . A rectangular region # = [1,..,. ri] ̂ x j l njfwith^,sidelength:in;;,%yalue„,-.
function c, : R r-"; ZZjr^a.jpositiye integer fc;an intégeí.bound .CVii: ! ,•• <<J.
•¡Questions. Does'. ther.e'existoa£region;;/ii G;lRlofpexactly!'A;;rpoints'- with •total'"
valué c[R') '^C T' - • - ' •< vo.. i • .-..-. -1, . - . < . , .'-n^ a ,

: We will show that the.NP-complete planar. Steiner-Tr.ee problem..(cf^Garey^and,
Johnson [3]) is polynomial time reducible to our problem MvR.
; I. . tmUvi ; s,;j.0i'.>t<::9YI0 , ' i i ><-('- Vf'-yr1 K02:? OS,' i'.'!
«•:;"• '̂ STEINER 'T'REE\INi!PLvANAR•'GR;APHS-(PST) ri^,'" ¡V--;- : . ! v . , i! V ?i

c / input'v" A; pianar^g^apn G t r = ' (^„E) -,. a weight w(:' jj.—-ZZ; * a ..subset•. f. i
< ^ ii'te£er"bound ¡V,?*- . V ; V a.,'.

h Question.¿Doesthere e^ta^S.teine^Tree Tl=n(Vx,.ET) of Giqr.,A\(i.'e.
'' does there'iexist a'subtree T61-G'with X C'W,) such that ... Olii- f ' i - - « •>••>•:,!>r: 1 •'»> •• >x — ; v ' ' -1 • "

**T • n- .t •:'•>;»RI;;ru'..'i -l." :u •-••"fy .. V,-; :•'. '• brj; , •
We start.-with an i^W'-i '^i '•
is' solvable' if and' only if PST issolvable.' To' simplify the presentation,* we will also1,
use negative values for points in problem MVR. Since .exactly, k points, have.to be
chosen,, adding,- adarge positive constant to .all values yields.-an equivalent- problem
with positive values. -3-1 1 >../,-• ion:

3 "In'a first siejy^we"cdtti^ute^awree<rfftt«br planar /oVouit bf'th^ grap'h'&. Such a
layout maps the vertices of G to (pairwise disjoint) horizontal line segments'arid
maps the edges of G to (pairwise disjoint) vertical line segments, with all endpoints

Computing Maximum Valued Regions 305

8

1

Figure 1: A planar graph and its rectilinear planar layout.

of segments at positive integer coordinates. Two horizontal vertex-segments are
connected by a vertical edge-segment, if and only if the corresponding vertices are
adjacent in the graph. Figure 1 shows a drawing of a planar graph together with
its rectilinear planar layout.

Rosenstiehl and Tarjan [9] show how to compute a rectilinear planar layout for
planar graphs with n vertices in O(n) time. The height of their layout is at most
|V|, and the width is at most 2|V| — 4. Most important, one can choose an arbitrary
vertex to become the bottom horizontal vertex-segment of the layout. We choose
some vertex x in X to become the bottom segment.

In the second step, we stretch the rectilinear planar layout in horizontal and
vertical directions by a factor of two, i.e. we multiply the coordinates of all endpoints
by 2. This ensures that points on distinct segments are at distance at least two,
unless they correspond to a vertex-edge incidence.

In the third and last step, we finally transform the layout into a weighted region
for problem MVR. We distinguish five types of gridpoints: vertex-points, edge-
points, link-points, dummy-points and fill-points. The vertex-points, edge-points
and link-points together cover exactly all gridpoints on the line segments of the
stretched rectilinear planar layout.

• For each vertex v in X (the set that has to be spanned by the Steiner "free),
we choose an arbitrary gridpoint on the horizontal line segment corresponding
to v and make it a vertex-point G(v). The value c of every point G(v) is set
to M := Y,e€E «»(e) + 1.

• For each edge e in E, we choose an arbitrary gridpoint on the vertical line
segment corresponding to e and make it an edge-point G(e). The value c(G(e))
equals the weight —ui(e).

• All points lying on line segments of the stretched rectilinear planar layout
that are neither vertex-points nor edge-points become link-points and receive
a value of 0.

306 • G. J. Woeginger

• e •

• o •

e e • •

• • • • • •

• e e •

• • • • o • • •

e e e e •

• • • • • • • • •

e e •

• • • • • o • • • • •

X

X X X X X X X X X X X

Figure 2: The upper part of the constructed region instance.

Now let n„, ne and nt denote the number of vertex-, edge- and link-points, respec-
tively. Set k = n„ -I- ne + ni and observe that k & 0(|V|2).

• We create a connected region of k points just below the layout, separated from
the layout by a single row of unused gridpoints (in other words, the topmost
points in this new region are at distance two from the lower border of the
layout). Moreover, we connect this region by a single gridpoint in this unused
row to the vertex-point corresponding to vertex x G X. The gridpoints in
this new region and this single gridpoint constitute the set of dummy-points.
All of them have value 0.

• Finally, we enclose the vertex-, edge-, link- and dummy-points by a rectangle
(obviously, the sidelength of this rectangle is polynomial in |K|). All points
in this rectangle to which we did not assign a value till this moment are the
fill points; they have value — |X| • M — 1.

An illustration for this construction is given in Figure 2, where the graph depicted
in Figure 1 is transformed in its corresponding region. The vertices in X are 1,
4 and 7 and the corresponding vertex-points in the region are marked by a " O " .
The edge-points are marked by an "e", and the link-points by a Empty space
corresponds to fill points. For reasons of readability and space, we did not show all
dummy-points (marked by an "x") that lie below the bottom "O " -

We claim that the constructed instance of MVR has a solution with value at
least C = • M — W if and only if there exists a Steiner Tree of G for X with
weight at most W. W.l.o.g. we assume W < w(e) = Af — 1> as otherwise the
PST is trivially solvable.

(only if) Assume there exists a region R' with value at least |X| • M — W. Since
the only points with positive value are exactly the |X| vertex-points with value M

Computing Maximum Valued .Regions 307

and since W < M — 1 holds, R' must contain all the vertex-points. Since all
fill-points have value — |X| • M — 1, no fill-point appears in R'.

Obviously, the dummy-points (outside of the layout!) cannot help in connecting
the vertex-points. Hence, the connections must result from the edge- and from the
link-points. Vertex-points on two distinct horizontal segments can be connected to
each other only via points on the vertical edge-segments. Using link-points (with
value 0) is no problem, but in the middle of each edge there sits an edge-point,
substracting u>(e) from the value of region R'. In order to connect all vertex-points
while substracting at most W from the total value |X| • M of all vertex-points,
we must find a connected configuration that has edge-weight at most W and that
contains X. This exactly yields the claimed Steiner Tree.

(if) Now assume we are given a Steiner TVee with edge-weight at most W. We
start with putting into the region R' all gridpoints on line segments corresponding
to edges and vertices used in the Steiner Tree. Hence, it contains all vertex-points
(with total value |Jf| • M) , some edge-points (with total value at most W) and a
number of link-points with zero value. By the definition of k, the overall number
of these points is at most k. To get a region with exactly k points, we add an
appropriate number of dummy-points to R' such that R' remains connected. As
all dummy points have zero value, the total value of the constructed R' is at least
\X\-M-W.

Summarizing, we have proven the following theorem.

Theorem 2.1 Problem MVR is NP-complete. •

3 A Heuristic for M V R
In this section we analyze the following fast and simple heuristic for the region
problem MVR (for convenience we assume throughout this section that k — a2 is
a square number).

Take the highest value axes-parallel quadratic region Q* with sidelength
y/k.

Clearly, this quadratic region can be found in 0(kn2) time and a slightly more
sophisticated implementation runs in o(Vk n2) time. Our main interest is to de-
termine the worst case quality of Q* compared to the optimum region R*.

Let k = a2. Consider a staircase, consisting of a / 2 vertical and at/2 horizontal
line segments where each line segment contains exactly a gridpoints. All gridpoints
on the staircase receive value one, all other gridpoints receive value zero. Then the
optimum region R* has value k, whereas no square with sidelength a can cover more
than 2a gridpoints on the staircase. Hence, for this configuration our heuristic is a
factor of Cl(>/k) away from the optimum. It is easy to see that the staircase is also
a bad configuration for the more general heuristic where we do not only consider
axes-parallel squares but also arbitrary (not necessarily axes-parallel) rectangles.

Surprisingly, OiVk) is also the worst that can happen as will be shown in the
remaining part of this section. We cover the optimum region R* by an orthogonal
grid with gridlength a and vertices that are integer points shifted by the vector
(1/2,1/2). This grid is called the A-grid and it partitions the plane into A-cells.

308 • G. J. Woeginger

Lemma 3.1 Atmost .10a of the lA-cells contain 'a point of R*.'

Proof. . , Denote rby, ,Víi the set -of- aÜL. A;cells, that..contain,-at;least one):poiiit of
R*.rTw;o Á-cells-,4!,and.Á2 in]yR.are called adjacent iff A,/contains a^gridpoint
Pi & R*-,..!•-< i:, < 2,.suchvthat P i and p2 are at distance one. Let T = .(Vjt> Er)
be an arbitraryspanning tree of the graph,induced by this adjacency relation. We
root T at an arbitrary leaf ofrT;j this defines fathers_and sons,,:and-by the choice, of
the,root.no vertex has.morethan .three sons-, - ,r . •
, ..Then we repeat the following two stepsj'oyer and oyerJagain. until T- contains
less tlian'-lO vertices. "(The "tree.is processed in",a b^Upm-up^fashion from the leaves
towards' the "root. Step 1 rémóves'iubtreés, that . are "paths on, four vertices, and
btep 2 removes branching subtrees).

. v. cc J". v ; h o ujb:: zyf£ •¡cu:::"' ¡ r¿ s'. -' ' • "u
V (Stepi;!) ..• Assume, ^contains a^veií.ex ,v whose.only •descendants, forma <••£••.

t,jT.'(;,:pathion., three /yeRtices ui,<V2iand :Vs ̂ su<&Za subgraph.. isxaUed' type-íb-. o *
a <%,! /au6^rapA).;,ThenxthetCojrMpOnding foj^A-ceUs-contain atleasta points ^jy ,
.. d-r «of JZ.v-The only interesting case ;occurs when the A^cells corresponding'' —
,-, - :-.;,to.u, vi;:U2>and «¿ form a 2 X2rConiiguration'.' W-.l.o.g.let.v berthe lower r\-. '; ;
í.»-.. J.left; A-cellin;this;configuration-, and-let.,y._be. connectedjto^its.father ¡via;. .-
¿¿at,' ..its left side.-£:Thenjthisfleft.jside. must be>linkedy to, the-diámetric A-,cell "> '

d2. A-cell «2 is at distance a from the left side of v, and there are at
least a vertices necessary to link them.
We iteratively removejajl type-l; subgraphs from.T..-?.->' / .v.

-i (Step 2). Next, we consider some vertex w of-degreeat least-two with n o j ; n
descandants of degree at least two (to must exist, unless Step 1 deleted
all but three vertices; in this case we terminate).
Vertex to has at most three sons, and since T doesmot contain any type- ?
1 configuration any more, each of its sohs"has at most two descendants.
Summarizing, the maximal subgraph of T rooted at to contains at most , ,

' ° - o • lb.A-cells'.' On the.dther hand', the 'A-cell córrespbndin'gtó to^hasoutside'"'
^ J "connections'onrat least three of its foiir sides (óne to its father,1 arid'at''' ">

least two to its sons). Two of these outside connections'-must' l ie^ñ' ' ;

opposite sides of the cell, and in order to link them to each other, the
•'JA-céÜ1müsVcontairií'á't^lea!st á p o i n t s ' ó f 7 2 * . ' '•BV '•""-i' ' '•
We remove the maximal subgraph of T rooted at to from T and return
to. Step 1. ,

. . y..t'.I-J " ''....i: jív.1.'.- . ','..' i: : ' • .>-.• ."•;.'•:- -p
To finishothe proof of the lemma, we .observe that each:removal'operation:in Step 1
and 2 removes^(i) atjinostclO A-cells-and-.(ii) at least a .points OÍTJ2*._/Because of
(ii), at most fc/a removal operations are performed and because-of (i), T,contains
at most 10fc/a '= ' l0a A-cells.' . ' • v- : / • - n ; D .i' ' in'r - J >. . x.q.o" i> . ., ' "t;1-'- i'iw. . -;s kiL.'-.xn^ - '
ThéorémcSt2 ' TKere exist coñstdñfaTex-^'-ei > 0 süch^that the heuristic detects
-for all- instances ^¿region Q* whose 'value 'is at' least' the[value- of-R*1 divided by
íc{y/ky'ahd1'tÍtere exist instances for whi'cÚ' the 'palue óf Q* js^at most .the "valtte* of
H* divided by c2\/kl ' ' i' v:-v " : r"'1'' ' " ' " r^

Proo f . We prove the statement' for ct = 10 and c2 = 1/2.'' ' ; - i e ' : : ! - ' ' ' ' ' ''
Applying Lemma, 3.1 andan averaging, argument, we see .that, there .exists an

-'A-cell An such that the póintsiniZ* n A0 have "overall valúe •atleast' the optimum .• -J _ • V..' . . 'f— 31 í • . •;• -'•.- ' .-'J- ' •'• Blij.f 1J •;'-.'.i «ií.f.j.--;-••.. t
-value divided byjlOy k.: Since-all-other gridpoints in AQ have nonnegatiye-value,
the Value of iQ*cis at least the valué of Í2*ldiyidedr!by l0\/fc.' " ' J ' . ' i

Computing Maximum Valued .Regions 309

The lower bound follows from the staircase configuration described at the be-
ginning of this section. •

Remark. The factor 10 in the statement of Lemma 3.1 is not the smallest possible.
A more elaborate argument decreases the factor down to 4. For our purposes, any
constant factor suffices.

4 Results for Trees
In this section, we consider the following problem corresponding to MVR in graphs.

MAXIMUM VALUED SUBTREE PROBLEM (M V S)
Input . A graph G = (V, E); a value function c : V —• IN; a positive integer k
and an integer bound C.
Prob lem. Does there exist a fc-subtree T of G with total value at least C ?

For general graphs, problem MVS is NP-complete since MVR is a special case of
MVS. We will present a polynomial time result for trees. As usual, we assume that
the input graph G is given by its adjacency list, i.e. for each vertex v G V we have
a list of its neighbors in G. The number of vertices in G will always be denoted by
n. A tree on k vertices will also be called a k-tree or a k-subtree.

Subsection 4.1 analyzes a related matrix problem and Subsection 4.2 gives an
0{nk2) algorithm for MVS on trees, The algorithms are based on Dynamic Pro-
gramming approaches. Maffioli [8] derived another (more complicated) polynomial
time algorithm for MVS in trees with the same running time as our solution.

4.1 A Matrix Problem
In this subsection we will analyze a matrix problem that is closely related to the
MVS-problem. Let M be a matrix with nonnegative integer entries that consists
of d rows and k columns. We define that the entry in the t-th row and j-th column
has value M¡,- and weight j. For 0 < j < k, we denote by MAXVAL(M, j) the
maximum value for which there exists a subset Sj of the entries in M fulfilling the
following conditions.

• Sj contains at most one entry from every single row in M,

• the overall weight of Sj equals j, and

• the overall value of Sj is MAXVALjii(j).

Lemma 4 . 1 For a d x k matrix M, all numbers M A X V A L (M , 0) , . . .
. . . , MAXVAL(A/, k) can be computed in overall time 0(k2d).

Proo f . We apply the Divide and Conquer paradigm to solve the problem by the
following recursive procedure.

(1) We divide matrix M by a horizontal line into an upper and into a lower
submatrix of equal size. We call these two submatrices U and L.

(2) We recursively calculate all numbers MAXVAL({7, *) and MAXVAL(L, *).

310 • G. J. Woeginger

(3) We determine MAXVAL(M , *) from MAXVAL((7, *) and MAXVAL(L , *) ac-
cording to the formula

M A X V A L (M , j) = m a x МАХУАЬ({ / , j - *') + M A X V A L (L , I) o<»<y

for all j, 0<j<k.

The correctness of the algorithm is obvious. Since the Divide-Step (1) takes only
constant time and the Merge-Step (3] is done with at most к2 operations, the time
complexity T(d, k) fulfills the inequality

T(d,k) < 2T(d/2,k) +k2.

Standard calculations yield T(d,k) < dT(l,k) + dk2, and consequently the time
complexity is at most 0(dk2). •

4.2 Trees
Now let the tree G = (V, E) constitute an instance of MVS with n = |V| = \E\ + 1.
We root G at an arbitrary vertex r. This assigns to every vertex v (with exception
of the root r) a unique father f(v). With every vertex v € V, we associate the
maximal subtree rooted at v. Let vi,v2,... ,v„ be an enumeration of the vertices
in V such that each v comes before its father /(t>). Such an enumeration can easily
be found in O(n) time.

We introduce a two-dimensional integer array AR[t,y] with n(k + 1) entries.
The rows are indexed by the vertices V{ in the above enumeration, and the columns
are indexed by the numbers from 0 to k.

The meaning of "AR[t,y] = to" is that "the maximum value j-subtree
of T(u,) that also contains its. root Vi, has value to".

Lemma 4.2 The values of all entries in AR can be calculated in 0(k2n) time.

P r o o f . We consecutively calculate all rows of AR, starting with the row corre-
sponding to vi and ending with the row corresponding to vn = r.

If Tfa) consists of the single vertex we set AR[»,0] = 0, AR[», l] = e(t^) and
all other entries in AR[t, *] to —oo.

If T(u.) consists of at least two vertices, we consider the sons vmi, vmj,..., vmi

of Vi, where d = deg(vj) — 1. In order to compute AR[t,y], we must find the
optimum partitioning of the number j — 1 into d nonnegative numbers j\,. •. ,jd
that maximizes E ? = i AR[t>mi, У,]. But this exactly amounts to solving the matrix
problem treated in Section 1 on the submatrix M of AR[*, *] generated by the
rows corresponding to the vertices vmi, u m , , . . . , vmi. According to Lemma 4.1,
this problem can be solved in 0(k2d) time. Finally, we add to each of the к
resulting numbers the value c(vi) of the root of this subtree.

To get the overall time complexity for computing AR[*,*], we have to sum up
the Jfc^deg^) — 1) steps for every with at least one son plus the к steps for every
Vi without a son. This is clearly dominated by k2 deg(uj) e 0(k2n). •

Computing Maximum Valued .Regions 311

Theorem 4.S For trees, the problem MVS can be solved in 0(k?n) time and 0(kn)
space.

Proo f . Assume that the maximum value A:-subtree T is spanned by vertices W =
I t o i , . . . , tUfcl and let to denote the unique vertex in W whose father is not in W.
Then the value of T equals AR[to, A;]. Conversely, each entry in AR[*, j] corresponds
to a j-subtree.

Hence, the maximum number in the fc-th column of AR[*,*] gives the value
of the maximum value fc-subtree. The time complexity follows from the preceding
lemma, the space complexity is determined by the sue of AR. •

Remark . We only showed how to find the value of the maximum value fc-subtree.
If we also want to find the corresponding k-subtree, we have to store for each entry
in AR[*, *] its 'history' consisting of at most k — 1 predecessor entries as used in
the dynamic program. This increases the time and the space complexity both by a
factor of k.

5 Other Graph Families
This section deals with interval graphs, cographs and split graphs. We derive
polynomial time results for the former two graph families and an NP-completeness
proof for the latter family.

5.1 Interval Graphs
The vertices of an interval graph G = (V, E) can be represented by intervals on the
real line in such a way that two intervals intersect if and only if the corresponding
vertices are adjacent. Most NP-complete graph problems become polynomial time
solvable when restricted to interval graphs, cf. [5,7].

W.l.o.g. we may assume that intervals corresponding to distinct vertices have
distinct endpoints. To find the MVS of a vertex-valued interval graph, we use the
following decomposition of a connected interval graph G: The interval with the
rightmost right endpoint is called the head of G. In general, there will be several
intervals covering the left endpoint of the head. Among those intervals we choose
that one with leftmost left endpoint, and we call it the neck of G; its endpoints are
denoted by nj and n r . The remaining intervals either belong to the body of G (if
their right endpoint lies to the left of n r) or to the hairs of G (if their right endpoint
lies to the right of n r) . Intuitively speaking, the body intervals are connected to
the head via the neck. The hair intervals are directly connected to the head (their
left endpoints are to the right of nj, and their right endpoints are covered by the
head).

Now sort the intervals from left to right according to their right endpoint
and call the resulting sequence Ii,...,Jn. We construct a twodimensional array
AR[1 . . . |V|, 1 . . . A:] such that the maximum valued subtree with head 7y and con-
sisting of k' vertices (1 < k' < k) has value AR[J, A:']. We compute all values in
AR[*,*], starting with level AR[1, *] and going up to level AR[M, *]. The initializa-
tion steps are trivial, hence we only show how to compute AR[J, A:'] for some fixed
j > k'.

By definition, I j constitutes the head of the optimum subgraph G'(j, k') we are
looking for. There are at most n— 1 possibilities for the neck of G'(j, A/). There are
at most 0(k2) pairs (fcj, k2) with sum A^-fA^+2 = k', where kx denotes the number

312 • G. J. Woeginger

of hairs and k2 denotes the number of body-vertices. For fixed head and neck and
for fixed numbers ki and k2, the value of the optimum G'(j,k') can be found in
the following way. The body is the maximum valued connected subgraph on k2 + 1
vertices and with our neck as new head; its value has already been computed and
we find it in constant time. The hairs are the kx most precious intervals with left
endpoints to the right of the left endpoint of the neck, and with right endpoints
covered by the head. We claim that the optimum value for the kt hairs can be
calculated in constant time with O(nk) preprocessing for every head.

For a fixed head h, we enumerate all intersecting intervals sorted by their left
endpoints from left to right in O(n) time (in a preprocessing step, we sort all
intervals by their left endpoints; if we deal with a fixed head, we run thru this list
and select all intersecting intervals). We run through this enumeration from right
to left and always store the k most precious values in a balanced tree: if the current
interval has a value larger than the minimum in the tree, we remove the minimum
and insert the value of the current interval (in case the tree has less than k vertices,
we just insert the new value). Hence, we know in every single step the 1 < k' < k
largest values and can compute their sum in 0(k) time.

Theorem 5.1 For interval graphs, the problem MVS can be solved in 0(k2n2) time
and O(kn) space.

Proof . The approach described above takes 0(kik2n + kn) time for each of the n
possible heads. Hence, the overall time is in 0(fc2n2). The space requirements are
dominated by the space of array AR. •

5.2 Cographs
In this section, we give a polynomial time algorithm for MVS in cographs.
Definition 5.2 For r > 2 disjoint graphs Gi = (Vit Ei) with V{ n Vy = 0 for
i], the union Ui=i defined as the graph (U,r=1 Vit |T=i EA. Their product
X,-=1G, is obtained by first taking the union of the r graphs and then adding all
edges (v,-, vy) with E V|, vy 6 Vy and i ^ j. •

Definition 5.3 The class of cographs is the smallest set of graphs fulfilling the
following rules.

1. The graph with one vertex and no edges is a cograph.

2. If Gi, 1 < » < r are cographs with pairwise disjoint vertex sets, then their
union is a cograph.

S. If Gi, 1 < t < r are cographs with pairwise disjoint vertex sets, then their
product is a cograph. •

To each cograph G = [V,E), we associate a corresponding rooted tree T =
(I , F) , called the cotree of G and reflecting the above definition in the following
way. Each non-leaf vertex in the tree is labeled either with U (union-vertex) or
x (product-vertex) and has two or more children. If two non-leaf vertices are
connected by an edge, then they have different labels. Each vertex x E I of the
cotree corresponds to a cograph Gx = (Vx, Ex), and a leaf corresponds to a single-
vertex graph. A union-vertex (product-vertex) corresponds to the union (product)
of the cographs associated with the children of the vertex. Finally, the entire
cograph is given by the cograph associated with the root r E I of the cotree. Corneil,
Perl and Stewart [2] have shown that one can decide in linear time 0(|V| + |-E|),
whether a graph is a cograph, and build the corresponding cotree.

Computing Maximum Valued .Regions 313

T h e o r e m 5.4 For a cograph G = (V, E), the problem MVS can be solved in 0(k2n)
time and O(kn) space.

P r o o f . We will compute two twodimensional arrays ARC[X, A;'] and ARA[X, A:'],
where the rows correspond to the vertices x of the cotree and where 0 < k' < k
holds. Once more, we start the computation of the array values at the leaves and
go up to the root. ARC[X, A;'] stores the largest possible value of any connected
subgraph on k' vertices of the cograph Gx associated with x, and A R A [X , kf] stores
the corresponding value for arbitrary (not necessarily connected) subgraphs.

The initialization is straight forward and we only show how to compute
A R C [X , *] and A R A [X , *] for a non-leaf vertex x. The computation of A R A [X , A:']
is easy: We simply take the k' most valuable vertices in the corresponding cograph.
Applying e.g. the matrix algorithm from Subsection 4.1 this can be performed in
0{k2n) overall time for all vertices in the cotree. The computation of A R C [X , k'\ is
more envolved; we have to distinguish between union- and product-vertices x. For
a union-vertex x, A R C [I , k1} equals the maximum of ARC|S, fc'] over all sons s of
x in the cotree (as a union operation cannot change connectivity properties of the
graph). For a pro duct-vertex x with sons . . . , sp, we perform two computations
to find ARC[x, A:']:

(i) We compute the maximum value of ARAJSX, ki) + . . . + A R A [S p , fcp] over all
p-tuples (ki,... ,kp) with sum k' and at least two non-zero fc,- (by applying
the matrix algorithm). Since this maximum value results from at least two
distinct sons of x, the corresponding graph is connected.

(ii) We compute max,- ARC[S,-, A;'J. By the definition of ARC[S,-, *], the corre-
sponding graph is again connected.

Obviously, the maximum of the two values computed in (i) and (ii) yields
ARC[X, A:'].

The entry ARC[r, A:] for the root r of the cotree gives the desired value of the
MVS. Since the cotree has 0(n) vertices, the claimed time and space complexity
follows from the discussion in Subsection 4.1. •

5.3 Split Graphs
A graph G = (V, E) is a split graph, if there is a partition of its vertices into an
independent set / and in a clique C (and arbitrary edges between I and C), see
Golumbic [4].

T h e o r e m 5.5 Problem MVS restricted to split graphs remains NP-complete.

P r o o f . By reduction from the NP-complete SET-COVERING PROBLEM: Given
a set S = (1 , . . . , p } and subsets Ax,..., Aq C S, the SET-COVERING PROBLEM
consists in finding r subsets A, - , , . . . , A<r with Uy=1 A^. = (1 , . . . , p} . This problem
is known to be NP-complete [3].

We construct a split graph on p + q vertices that are labeled by some label in
(l , . . . ,p, A i , . . . , Aq}. The vertices A i , . . . , A , form a clique, the vertices 1 , . . . , p
form an independent set. We introduce an additional edge from t to At> iff t £ A t j
holds. All vertices 1 , . . . , p receive value 1, all other vertices receive value 0. Finally,
we set A; = p + r and ask whether there exists a subtree with value at least p.

314 • G. J. Woeginger

Trees Intervalgraphs
L J L J

Figure 3: Containment relations for some of the treated graph classes.

In case such a tree exists, it uses all p vertices with value 1 and r vertices
belonging to the clique must connect them; this yields the existence of a small set
cover. In case a set cover with at most r subsets exists, we choose the corresponding
r vertices in the clique and all p vertices not in the clique; clearly, the spanned graph
is connected and of value p. •

Remark. We observe that there exists a simple approximation algorithm for MVS
in split graphs with (tight) worst case guarantee 2: We simply take the k/2 most
valuable vertices t>i,..., vk /2 a n d for every » some clique vertex c,- adjacent to t>,-.
Obviously, the resulting spanned graph is connected and its value is at least half of
the optimum possible value.

6 Discussion
In this paper, we investigated the computational complexity of two closely related
combinatorial problems, called MVR and MVS. The geometric problem MVR was
shown to be NP-complete, and a polynomial time approximation algorithm was
derived. The graph problem MVS is NP-complete for arbitrary graphs, but it can
be solved efficiently on many well known special graph classes by applying Dynamic
Programming techniques.

Figure 3 summarizes some of our results for MVS. Directed arcs represent
containment of the lower graph class in the upper graph class. For classes with

Computing Maximum Valued .Regions 315

a solid frame, MVS is NP-complete, and for classes with a dashed frame, MVS is
polynomial time solvable (for exact definitions of all graph classes cf. Johnson [7l).
Cographs, trees, interval graphs and split graphs were treated in this paper. Tne
NP-completeness result for split graphs implies NP-completeness for chordal graphs
and for perfect graphs. NP-completeness of MVS for bipartite graphs can be seen
easily (by subdividing the edges of an arbitrary graph, assigning value sero to the
new vertices and replacing k by 2k — 1), and this also yields the NP-completeness
for comparability graphs. Finally, a polynomial time algorithm for directed path
graphs can be derived by standard Dynamic Programming techniques (the method
is analogous to that we applied to trees and cographs, and left to the ambitious
reader as an exercise).

Moreover, for planar graphs we have proven the following results. MVS on grid-
graphs (and consequently on arbitrary planar graphs) is NP-complete. However,
the restriction to outerplanar and series-parallel graphs (these two classes are sub-
sets of the partial 2-trees) can be solved in polynomial time. Bodlaender [l] derived
an 0(k2n) algorithm that solves MVS in partial if-trees, where K is not part of
the input.

The most intriguing open problem is to construct polynomial time approxima-
tion algorithms for the geometric problem MVR with constant worst case guarantee
(or prove that such algorithms do not exist).

References
H.L.Bodlaender, private communication, 1992.

D.G.Corneil, Y.Perl and L.K.Stewart, A linear recognition algorithm for
cographs, SIAM J. Comput. 4, 1985, 926-934.

M.R.Garey and D.S.Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco, 1979.

M.C.Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

U.I.Gupta, D.T.Lee and J.Y.-T.Leung, Efficient algorithms for interval graphs
and circular-arc graphs, Networks 12, 1982, 459-467.

H.Hamacher, K.Joernsten and F.Maffioli, Weighted k-cardinality trees, Report
91.023, Dipartimento di Elettronica, Politécnico di Milano, 1991.

D.S.Johnson, The NP-Completeness Column: an Ongoing Guide, J. Algo-
rithms 6, 1985, 434-451.

F.Maffioli, Finding a best subtree of a tree, Report 91.041, Dipartimento di
Elettronica, Politécnico di Milano, 1991.

P.Rosenstiehl and R.E.Tarjan, Rectilinear planar layouts of planar graphs and
bipolar orientations, Discr. Comp. Geometry 1, 343-353, 1986.

Received November 8, 199B

Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

On the Boolean structure of fuzzy logical
systems: a counter example

J. Dombi ** Gy. Lencses *

Abstract

The article of Murthy, Pal and Majumder [l] gives a new interpretation
of the connectives in fuzzy sets claiming that these connectives preserve the
whole Boolean structure of ordinary set theoretic operations. In our paper a
counter example is given where the property of associativity is not valid for
the new connectives.

Introduction

Many authors attempt to construct fuzzy logical systems preserving as- many
Boolean properties as it is possible. It is well known that to preserve the whole
Boolean structure of set operations when extending them pointwisely to [0,1] val-
ued membership functions of fuzzy sets is not possible (see e.g. [2]). For instance
excluded middle law and idempotence are incompatible for fuzzy sets if we demand
that the result of the operation in any point must be dependent only on the value
of the membership functions in this point.

C.A. Murthy et al. [l] try to solve this problem by defining operators the result
of which may be dependent not only on the value of membership functions but
also on their relative natures. They claim that the operators ® and © defined
in their article fulfil all of the Boolean properties. If it were true, then these new
operators should be preferred to any other earlier construction.

We will show, however, a counter example where the operators ® and ©
do not fulfil some Boolean properties. It will be shown that the operators are ill-
defined, and we will point out why it is impossible to prove some of the Boolean
properties of the operators © and © by the Theorems 1-7 of the cited paper.

'Research Group on the Theory of Automata, Hungarian Academy of Sciences Aradi Vértanúk
tere 1., H-6720 Sieged, Hungary

tThis work was carried out during my stay in FRG and supported by the Humboldt Foundation.
¡Department of Sociology, University of Sieged, Petőfi S. sgt. 30-34, H-6720 Sieged, Hungary

317

318 J. Dombi, Gy. Leacsis

1 Preliminary definitions
First of all we have to recall the definitions of C.A. Murthy et al. [1].

1. 1 Properties of the operators

They claim that the operators © and © fulfil the following properties. Here
A,B,C are fuzzy sets in a universe X, HAJHB, etc. are membership functions of
A, B, etc., Ac is the complement of A.

Pi - Ha © = 0 for all x 6 X

P2' HA © AC i 1) = 1 for all i € X

P3 : commutativity
HA 0 B (I) = HB ©A{X)
HA © B (I) = HB © A(X)

P4 : associativity
HA Q (B Q C) (X) = H (A © B) Q c W

HA © (B © c){x) = H(A © B) © c[x)

Ps : idempotency
HA ®A{X) = HA{X)
HA @ A{X) = HA(X)

P6 : distributive laws
HA © (B © c){x)=H(A © B) © (A ©<?)(*)
HA © (B © c) («) = M (x © B) © (A @ c) (*)

P7 : identity
HA ©0(*) = HA{X)
HA © x{x) — HA{X)

pg : a) absorption laws
b) DeMorgan's laws
c) involution laws

Pa : 0 < HA © B < MM(NA,HB)
1>HA © B > m a x ^ . / i s)

In the following HA,HB,HC are denoted by f,g,h respectively, FIA © B is denoted
by / © g, etc.

1. 2 Definition of type I membership functions

Let the domain Q = [a, 6] be a closed interval in R, and let / be a membership
function with the following properties:

On t ie Boolean structure of fussy logical systems: a counter example 319

a) / : Q —• [0,1] is continuous
bj HQ) = [o, l] ^
C) / { a , 6} ç {0,1}

f is a type I membership function if it fulfils the next assumption:
Let a < xo < b such that / increases (decreases) at xo. Then there exist x\ and

x2 such that

a < xi < x0 < x2 < b and f(xi) = 0 (/ (x i) = l) , / (x 2) = 1

(/ (x 2) = 0) and / is nondecreasing (nonincreasing) at all x G (x l t x2).

1. 8 Definition of © and © .

a) Murthy et al. first define a set Ax for every / membership function and for
every point x € [a, 6] as follows:

A. =

[0, f[x)] if / is nondecreasing at x
[1 — / (x) , l] if / is nonincreasing at x
any finite set if / (x) = 0
[0,1] i f / (*) = !

Bx and Cx are similarly defined for the functions g and h in any point x.

b) Then © and © are defined by

(/ © ff)(x) = A(AX n Bx)

[f © g)(x) = X(AxUBx)

where A is the Lebesgue measure on R.

2 A counter example
We give an example, where the property of associativity (P4) of © does not hold.

Let us consider the © operator. If we use it two times, one after another

((/©<?)© *)(«)
then according to the definition 1.3 in each step first of all we have to determine
sets:

- in the first step: the sets Ax and Bx,
- in the second step: the set Dx connected with (/ © gr)(x) by definition 1.3a,

and the set Cx.

But it is easily possible that Dx = Ax C\BX is not valid (e.g. when / is increasing
and g is decreasing at x). In this case the properties of Lebesgue measure in
connection with ordinary sets cannot be automatically used to prove associativity
and distributivity as it was done in Part \fl oft the cited paper.

Let us see a counter example where J|,'ft are type I membership functions
and the associativity of © does not h^dt L.et Q = [0,1], / , g and h be piecewise
linear membership functions as shown in. figure 1.

320 J. Dombi, Gy. Leacsis

Fig. 1. Functions f, g, h

Here f, g and h are type I membership functions. But g © h does not belong
to the same type because (g © /i)([0,1]) = [0, 0.7]. See figure 2.

Since for all x € [0,1] f(x) < g(x), and / and g are nondecreasing at all
x 6E (0,1), so / © g = f on the whole interval [0,1], according to the definition of
© . On the interval (0.3,0.7) the functions / , g, /© g(= f),g© h are nondecreasing
and h is nonincreasing.

So (/ © <7)(0.5) = / (0 . 5) = 0.3.
Let the set connected to / © g at the point 0.5 be Do.s (see definition 1.3a).

Then Do.s = [0,0.3], because / © g is nondecreasing at 0.5. Co.5 = [0.2,1], because
h is nonincreasing at 0.5.

So ((/ © g) © h)(0.5) = A (A) . s n C 0 . 5) = 0.1
Similarly since g © h is increasing at 0.5, and (g © h) (0.5) = 0 .6, so Eo.s =

[0.0.6], where Eo.s is the set connected to g® h(0.5) by definition 1.3a. In addition
/(0.5) = 0.3, A0.5 = [0,0.3] and so

(/ © {g © h))(0.S) = A(A0.6 n ^0 .s) = 0.3

That is ((/ © g) © A)(0.5) ¿ (f M (j k© ,/i)(0.5)
This result contradicts to the 'property of associativity of © .

Oil the Boole an structure of fuzzy logical systems: a counter example 321

Fig. 2. Function g © h

3 Concluding remarks
1. The definition of © and © is suitable only for type I membership functions.

How can the set Ex be determined for the function g © h in Fig. 2. at the
point x = 0.7? Here g ® h attains its maximum value, g © /i(0.7) = 0.7,
but this value is not equal to 1.

2. Why is the proof of associativity wrong in [1]? The cited paper uses the
following argumentation to prove the Boolean properties of © and © :
"the operations are ordinary set operations and the Lebesgue measure satisfies
similar properties in connection with ordinary sets". This reasoning would
be correct only if in composite operations the sets Ax, Bx, etc. connected
to the membership functions were inherited. That is if f(x) = (g © h)lx)
and AX) Bx. Cx are obtained from definition 1.3a, then Ax = Bx D Cx for
all x € [a, 6]. Murthy et al. prove this only for the case when f,g and h
are type I membership functions (see Theorems 1-7 in [1]). If, however, the
result function / does not belong to the same type then the above equality
for the sets Ax, Bxt Cx is not true usually. (See e.g. the function g © h. in
our counter example.)

322 J. Dombi, Gy. Leacsis

References
[1] C. A. Murthy, S. K. Pal and D. D. Majumder, "Representation of fnzzy op-

erators using ordinary sets", IEEE Transactions on Systems, Man and Cyber-
netics, vol. SMC-17 no. 5, pp. 840-847, 1987.

[2] D.Dubois and H. Prade, " New results about properties and semantics of fuzzy
set-theoretic operations", in P.P. Wang and S.K. Chang, Elds., Fuzzy Sets,
Pergamon Press, 1980.

Received March 19, 1993

Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

On minimal and maximal clones

L . Szabó**

1 Introduction
A composition closed set of finitary operations on a fixed universe A containing all
projections is a clone. For example the set J of all projections and the set O of
all operations on A are clones. The clones, ordered by inclusion, form an algebraic
lattice L with least element J and greatest element O. For |A| = 2, L is the
well-known countable Post lattice [5], but already for |A| > 2 there are 2K° clones.
For A finite L has finitely many coatoms, called maximal clones , and they are
fully known ([7],[81). On the other hand L has finitely many atoms, called minimal
clones, and are fully known only for lAl < 3 ([3], [5]). It is also known (see e.g. [6])
that the meet of all maximal clones is J, ana the join of all minimal clones is Ó.

The aim of the present paper is to show that in general there are three maximal
clones with meet J and there are three minimal clones with join O; moreover, for
a prime element universe, two maximal clones, resp., two minimal clones have the
above properties.

2 Preliminaries
Let A be a fixed universe with |A| > 2. For any positive integer n let O '") denote
the set of all n-ary operations on A (i.e. maps An —» A) and let O = U^Li O^"^ .
For 1 < t < n let e" denote the n-ary t-th projection (trivial operation). Further let
J = {e?|l < t < n < oo} . The operations in O \ J are called non trivial operations.
By a clone we mean a subset of O which is closed under superpositions and contains
all projections. The set of clones ordered by inclusion form a lattice L in which
every meet is the set-theoretical intersection. For F C O denote by [F] the clone
generated by F, and instead of [{ / }] we write [/].

A minimal clone, resp., a maximal clone is an atom, resp., a dual atom of L. It is
well-known that L is an atomic and dually atomic algebraic lattice, and has finitely
many minimal clones and maximal clones. Furthermore, the intersection of all
maximal clones is J, and the minimal clones generate O (see e.g. Í6j). The maximal
clones tire fully known and was given by I. G. Rosenberg ([7], [8]). For |A| = 2, L
is the well-known Post lattice [5]. Considering the Post lattice we immediately see
that for two element set there are three maximal clones with intersection J and the
intersection of two maximal clones cannot be J. Moreover, there are three minimal
clones with join O and the join of two minimal clones cannot be O.

'Bolyai Institute, Aradi vértanúk tere 1, 6720 Sieged, Hungary
tResearch partially supported by Hungarian National Foundation for Scientific Research Grant

no. 1813 and 1903.

323

324 L. Szabd

A subset F C O as well as the algebra (A, F) is primal or complete if the clone
generated by F (i.e. the set of all term functions of (A, F)) is equal to O; F as
well as the algebra (A, F) is functionally complete if F together with all constant
operations is primal.

A ternary operation / on A is a majority function if for all x, y G A we have
f(x,x,y) = f(x,y,x) = / (y , x,x) = x; / is a Mal'tsev function if / (x , y, y) =
f(y>y>x) = x f ° r all x ,y e A. An n-ary operation t on A is said to be an t-th
semi-projection in > 3, 1 < t < n) if for all xi,..., x n G A we have t (x i , . . . , x „) =
Xi whenever at least two elements among x i , . . . , x n are equal. We are going to
formulate Rosenberg's Theorem ([7],]8]) which is the main tool in proving our
results. First, however, we need some further definitions.

Let n,h> 1. An n-ary operation / 6 o W is said to preserve the h-ary relation
p C Ah if p is a subalgebra of the /i-th direct power of the algebra (A; /) . Then the
set of operations preserving p forms a clone, which is denoted by Polp. We say that
a relation p is a compatible relation of the algebra {A, F) if F C Polp. A binary
relation is called nontrivial if it is distinct from the identity relation and from the
full relation.

An h-ary relation p on A is called central if p ft Ah and there exists a non-void
proper subset C of A (called the center of p) such that

(a) (a j , . . . , a/,) €E p whenever at least one Oi G C(1 < t < h);

(b) p is totally symmetric, i.e. (o i , . . . , a^) € p implies (a i „ , . . . , € p for every
permutation <f> of the indices 1 , . . . , h]

(c) p is totally reflexive, i.e. (a i , . . . , a^) € p if a,- = ay for some i ^ j (l < t, j < h).

Let h > 3. A family T = { © i , . . . , 6 m } (m > 1) of equivalence relations on A is
called h-regular if each (1 < t < m) has exactly h blocks and Qy = 9 j n . . . n © „ ,
has exactly hm blocks (i.e. the intersection Hi^i arbitrary blocks Bi of
0; (t = 1 , . . . , m) is nonempty). The relation determined by T is

Xt = { (a i , • • • > <*h) G Ah : o i , . . . , a/, are not pairwise incongruent

modulo 0,- for all t (l < t < m)}.

Note that /i-regular relations are both totally reflexive and totally symmetric.
Now we are in a position to state Rosenberg's Theorem:

Theorem A (I. G. Rosenberg [7],[8]). A subset of O is a maximal clone if and
only if it is of the form Polp for a relaton p of one of the following six types:

1. a bounded partial order;

2. a binary relation { (a, a?r)|a G A} where x is a permutation of A with |A|/p
cycles of the same length p (p is a prime number);

3. a quaternary relation { (a j , a2 , a3 , o<) e A4Jai + a2 = a3 + a 4 } where (A; +)
is an elementary abelian p-group (p is a prime number);

4. a nontrivial equivalence relation;

5. a central relation;

6. a relation determined by an h-regular family of equivalence relations.

On minimal and maximal clones 325

Moreover, a finite algebra A = (A, F) is primal if and only if F С Polp for no
relation p of any of the above six types.

3 Results
From now on A is supposed to be the set { 0 , . . . , A; — 1} with к > 2.

Theorem S. l There exist three maximal clones such that their intersection is J .
Moreover, if к is a prime number then there are two maximal clones such that their
intersection is J.

Proo f . For any a € A define a binary relation pa on A as follows:

Pa = { (s , y)|z = a or у = a or x = y}.

Observe that pa is a central relation with center {a} . Choose two fixed point free
permutation о and r on A of prime orders such that {a, r } generates a transitive
permutation group on A. If A: is a prime number then we can choose a and r with
a = т. Then, by Theorem A, Polpa (a G A), Polcr and Polr are maximal clones.
Put F = Ро1р0П Polcrfl Polr. We show that F = J.

Consider the algebra A = (A; F). Then po is a compatible relation, a and r
are automorphisms of A . Therefore, by the choice of a and r, Aut A is transitive,
which implies that every operation of A is surjective. Moreover, if тг £ Aut A then

Po* = yjrJK®, y) G po}

is also a compatible relation of A . Therefore, by the transitivity of Aut A , we have
that pa is a compatible relation of A for every a & A. From this it follows that for
every distinct a, 6 G A

Pab- РаПрь = { (a , 6) , (6 , a) } U { (x , x) | x G A }

is also a compatible relation of A .
It is well-known that if a surjective operation preserves a central relation then

it preserves its center (see e.g. [9]). Thus we have that every operation in F
is idempotent. Suppose that A nas a nontrivial operation. Then it has either
a nontivial binary operation or a majority function or a Mal'tsev function or a
nontrivial semi-projection among its term functions (see e.g. [4]).

First consider the case when A has a nontrivial binary term function / . Let
a,b G A be arbitrary distinct elements. Then from (a, b), (b, b) G pab we have
that (f(a,b),b) = (f[a,b),f{b,b)) G P a b , implying that / (a , 6) = a or / (a, 6) = b.
Suppose that f(a, b) — a and choose an arbitrary element с G A with с ф a,b. Then
(a,a),(6,c) 6 рьс implies that (/ (o , c),o) = (/ (a , c), f(a, b)) G рьс and f[a,c) = a.
This fact together with the transitivity of Aut A shows that / is the first projection,
a contradiction. If f(a, b) = b then a similar argument yields that / is the second
projection.

Now let d be a majority term function of A , and let a,b,c € A be pairwise
different elements. Then d(a,b.c) is different from two of the elements a,b,c,
say from a and b. Then (а, о), (Ь, о), (с, с) £ рь implies that (d(a,b,c),a) =
(d(a, b, c), d(a, a, c)) 6 рь, a contradiction.

If t is a Mal tsev function among the term functions of A , then for any
two distinct elements a, b ф 0, (a, 0), (0,0), (0,6) G po implies that (a, 6) =
(t(a,0,0), (t(0,0,6)) G p0, a contradiction.

326 L. Szabó

Finally, let I be a nontrivial ii-ary first semi-projection among the term
functions of A. Since I is not the first projection, there are a, a j , . . . ,an 6 A
such that l(a, a2,..., a„) = 6 / a. Choose c 6 A with c ^ a, b. Then
(°i c)i (°2i °)i • • -.i (°m e pa implies that (6,c) = (Z(a,a2 , . . . ,an),l(c,a,..., a)) e
pa, a contradiction. This completes the proof.
Theorem 3.2 There exist three minimal clones such that their join is O. More-
over, if k is a prime number then there are two minimal clones such that their join
is O.

Proof . First consider the case when k is a prime number and let a be the per-
mutation (0 1 . . . A; — 1) on A. Clearly, [<7] is a minimal clone. Define a ternary
operation / on A as follows:

f(x, y, z) = max(min(x, y), min(x, z), min(y, z))

for all x, y, z € A. Then f is a majority function and I/] is a minimal clone (see e.g.
[6]). We show that / together with a generates O. Put F = {/, 0}.

Taking into consideration Theorem A, we have to show that F C Polp for no
relation of any of the types (l)-(6). Since <r generates a transitive permutation
group, it is easy to show that it cannot preserve a relation of type (l) and (5).
Moreover, making use of the fact that A; is a prime number, one can show easily
that 0 do not preserve a relation of type (4). Furthermore, / being a majority
function - as it is well-known (see e.g. [4]) - ao not preserve a relation of type (3)
and (6). Finally suppose that p is a relation of type (2) determined by a permutation
•K with F C Polp. Then TT is an automorphism of the algebra A = (A; F). Since
•k and a commute we have that IT is a power of 0, and then a is also a power
of -k (k is prime). Hence o is an automorphism of A . Therefore, we have that
1 = /(0,1,2) = /((fc-l)CT,Oor, la) = f(k- 1,0,1)0- = l<r = 2, a contradiction. This
completes the proof when A: is a prime number.

Now suppose that k is not a prime, and let p be a prime number such that
k/2 < p < k. Consider the permutations 0 = (0 1 . . . p — 1) and r = (A: — p k —
(p — 1) . . . k — 1) on A. Clearly, [cr] and [r] are minimal clones. Define a ternary
operation d on A as follows:

\ _ / *> if 1 = !/>
V1) S/iz) ^ otherwise.

Then d is the well-known dual discriminator, which generates a minimal clone,(see
e.g. [2]). We show that a and r together with d generate O. Put F = (d, <7, r } .

Again, by Theorem A, we have to show that F C Polp for no relation of any of
the types (l)-(6). Suppose that F C Polp for a relation of one of the type (l)-(6).
It is known that {d} is a functionally complete set (see e. g. [1]). Therefore d
Polp if Polp contains all constant operations. Hence p is of type (2) or a unary
centred relation. Since [a] and [r] generate a transitive permutation group, they do
not preserve a unary central relation..

Finally suppose that p is a relation of type (2) determined by a permutation
Observe that if IT is of order q then TT is the product of k/q cycles of the same

length q. Moreover, since k is not a prime number, we have q < k/2. Then JT
commutes with <r and.r. Let Or = t. If t > p — 1 then for all j € (0 ,1 , . . . , p — 1} we
have jic = Oct-'tt = 0•ko} = ia} = », showing that * is not injective, a contradiction.
Hence t < p, and for all j 6 {0 ,1 , . . . , p — 1} we have j% = 0<xJ7r = On a3 = io3 -
Qo'o3 = Oa3 o* = jtj* showing that «- contains the cycle cr' of length p. Therefore
we have p = q < k/2, a contradiction. This completes the proof.

On minimal and maximal clones 327

Problem 1 Find all natural numbers k for which there exist two maximal clones
on the set { 0 , . . . , k — 1} such that their intersection is J.

Problem 2 Find all natural numbers k for which there exist two minimal clones
on the set {0,... ,k — 1} such that their join is O.

References
[1] B. Csákány, Homogeneons algebras are functionally complete, Algebra Uni-

versalis 11 (1980), 149-158.

[2] B. Csákány and T. Gavalcová, Finite homogeneous algebras. I, Acta Sei. Math.
42 (1980), 57-65.

[3] B. Csákány, All minimal clones on the three-element set, Acta Cybernet. 6
(1980), 227-238.

[4] P. P. Pálfy, L. Szabó and Á. Szendrei. Automorphism groups and functonal
completeness, Algebra Universalis 15 (1982), 385-400.

[5] E. L. Post, The two-valued iterative systems of mathematical logic, Ann. Math.
Studies 5, Princeton Univ. Press, 1941.

[6] R. Poschel and L. A. Kalouznin, Functionen- und Relationenalgebren, VEB
Deutscher Verlag d. Wissenschaften, Berlin, 1979.

[7] I. G. Rosenberg, Über die funktionale Vollständigkeit in den mehrwertigen
Logiken (Struktur der Funktionen von mehreren Veränderlichen auf endlichen
Mengen), Rozpravy Geskoslovenske Akad. Véd Rad a Mat. Pf írod. Véd 80
(1970), 9-93.

[8] I. G. Rosenberg, Completeness properties of multiple-valued logic algebras, in:
Computer Science and Multiple-Valued Logic, Theory and Applications (ed.
D. C. Rine), North-Holland (1977); pp. 144-186.

[9] I. G. Rosenberg, Functional completeness of single generated orsurjective alge-
bras, in: Finite Algebra and Multiple-Valued Logic (Proc. Conf. Szeged, 1979),
Colloq. Math. Soc. J. Bolyai, vol. 28, North-Holland, Amsterdam, 1981; pp.
635-652.

Received September 26, 1991.

I

Készítette a JATEPress
6722 Szeged, Petőfi Sándor sugárút 30-

Subscription information and mailing address for editorial correspondence:

Acta Cybernetica
Árpád tér 2.
Szeged
H-6720 Hungary

CONTENTS

A. Ádám: A criterion for the simplicity of finite Moore automata 221
B. Imreh: On a special composition of tree automata 237
J. Dassow, A. Mateescu, G. Paun, A. Salomaa: Regularizing context-free languages by

AFL operations: concatenation and Kleene closure 243
E. Jurvanen: The Boolean Closure of DR-Recognizable Tree Languages 255
B. Almási: A Queuing Model for a Processor-Shared Multi-Terminal System Subject to Break-

downs 273
T. Makjamroen: The Self-organizing List and Processor Problems under Randomized Policies 283
G. J. Woeginger: Computing Maximum Valued Regions 303
J. Dombi, Gy. Lencsés: On the Boolean structure of fuzzy logical systems: a counter example 317
L. $zabó: On minimal and maximal clones 323

1 ISSN 0324—721 X |

Felelős szerkesztő és kiadó: Gécseg Ferenc
A kézirat a nyomdába érkezett: 1993. július

Terjedelem: 7,12 (B/5) iv

