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A criterion for the simplicity of finite Moore 
automata 

A. Adam** 

Abstract 
A Moore automaton A = (A, X,Y,S, A) can be obtained in two steps: 

first we consider the triplet (A, X, 6) - called a semiautomaton and denoted 
by S — and then we add the components Y and A which concern the output 
functioning. Our approach is: S is supposed to be fixed, we vary A in any 
possible way, and - among the resulting automata - we want to separate 
the simple and the nonsimple ones from each other. This task is treated by 
combinatorial methods. Concerning the efficiency of the procedure, we note 
that it uses a semiautomaton having |A|(|A| + l ) /2 states. 

1 Introduction and terminology 

§ i . 

The question, when a Moore automaton is simple, has already been the subject of 
a series of previous papers.1 Let some earlier results be outlined.2 If, particularly, 
only autonomous automata are considered (i.e., |X| = 1 is required), the question 
has been solved in [4] as a consequence of the theory describing «ill congruences 
of autonomous automata. Without the restriction to autonomousness, a result of 
certain theoretical importance has been obtained in [2]; this statement does not 
seem to be worthy practically, because its algorithmic complexity depends on |A| 
exponentially. Investigations of recursive character are contained in 15] and [6], the 
general problem of simplicity was there reduced to the question, when a strongly 
connected automaton (i.e., an automaton having no proper subautomataj is simple. 

In the present considerations the problem of simplicity is dealt with for the 
eintirety of automata, we rely on the result achieved in [2]. We choose the way 
that first a semiautomaton S = (A,X,S) is thought to be fixed, and we form 

*MTA Matematikai Kutatointeiet, H-X364 Budapest, P.O.Box 127. Hungary 
tResearch partially supported by the Hungarian National Foundation for Scientific Research 

( O T K A ) grant, no. 1909. 
' T h e researcher of this problem feels his situation to be similar to that of a mountain-climber 

who besieges a difficultly reachable peak from various sides, since he does not know in advance 
where he must turn back becauie of a too steep rise. 

3 Out of the three results to be mentioned now, the first and second ones are restated in this 
paper as Propositions D and A (in J 11 and J 3, respectively). 
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then several automata A\ = (A, X, Y, S, A) so that the output components Y, A 
are prescribed in every (essentially different) manner. We obtain a necessary and 
sufficient condition that separates the simple, A^s from the nonsimple ones. We use 
combinatorial tools, and our considerations are in connection with the articles [7], 
[8] where partial results were gained in common with I. Babcsdnyi and F. Wettl. 

Sketching the content of this paper, let it be mentioned first that the terminology 
concerning automata is introduced in §§ 2, 3; together with restating some former 
results. A glance is thrown at the graph theory in § 4. 

The construction, elaborated in § 5, and the Theorem, exposed at the end of § 
6, are the principal purport of the article. § 7 contains the proof of the Theorem 
and of two cognate propositions. 

The condition for the simplicity of automata, asserted in the Theorem, allows 
sometimes a useful further analysis by logical methods; an insight into this possi-
bility is explained in § 8. In § 9 examples are treated on how the Theorem can be 
applied in practice. 

The paper terminates with touching some questions on combinatorial complex-
ity, arising if the method is applied. These considerations do not set up a claim for 
completeness at all, they are of intuitive nature. The possibilities of future contri-
butions to this topics are specified as open problems in § 11. It is probable that 
a genuine expert of the combinatorial complexity theory may conceive essential 
further thoughts in addition to the ideas formulated in §§ 10, 11. 

§2. 

As usual, we understand by a finite Moore automaton a quintuple A = 
(A, X, Y, S, A) where A, X, Y are finite sets (called the set of states, set of input 
symbols, set of output symbols, respectively), 5 (the transition function) is a map-
ping of A x X into A and A (the output function) is a mapping of A onto Y. 

The finite sequences (of arbitrary nonnegative length) consisting of elements of 
X are called input words. The set of all input words is denoted by -F(X). The 
meaning of S(a,p) is the customary where p is an input word. 

Let a and b be two states of sin automaton. We say that b is accessible from a 
if there exists an input word p such that 5(a, p) = b. The accessibility is a reflexive 
and transitive relation. If any of a, 6 is accessible from the other, then it is said 
that a and b are mutually accessible. The mutual accessibility is an equivalence 
relation in A, the equivalence classes are called the strongly connected blocks - or, 
for the sake of brevity, the blocks - of A. If there is only one block, we say that A 
is a strongly connected automaton. 

Let it be an arbitrary equivalence relation in A. tt is called a congruence (of A) 
if a = b (mod it) implies the formulae fi(a, x) = 6[b, x) (mod jt) and A(a) = A(b) 
whenever a e A, 6 (E A, x E X. The minimal partition of A is the. trivial congurence 
of A . It is said that A is simple (or reduced) if A has no nontrivial congruence. 

If we do not take into consideration the third component Y and the fifth com-
ponent A of a Moore automaton A = [A,X, Y, 6, A), then the resulting structure 
S = (A, X, 5) is called a semiautomaton.3 We say then that S is the scheme (or pro-
jection) of A and, reciprocally, that A is an automaton completion (or a-completion) 
of S. Of course, a semiautomaton S has many a-completions, depending on how 
A is chosen. We shall use the notation' A\ sometimes when the a-completion of a 
semiautomaton with the output function A'is regarded. -

A pair (a, 6) is called a proper pair if ajt b. ' 

3 T h e present use of the word "semiautomaton" differs from the terminology of [10]. 
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§3. 

Throughout this section let (a, 6) be a (proper or nonproper) unordered pair of 
states of a Moore automaton. 

We denote by Haib the set of all input words p satisfying 5(a, p) ji 6(b,p). It is 
said that 

(o, 6) is a pair of first type if |-ff<„i>| < oo, 
(a, 6) is a pair of second type if Hatb = 
(a, 6) is a pair of third type if C F[X) and |iTo,&| = oo. 

The difference set F(X) — Ha>b is obviously either empty of infinite. The pairs 
of second and third type are necessarily proper. 

We say that (a, 6) is a distinguishable pair if there exists an input word p such 
that A(5(a,p)) ^ A(5(6,p)). In the contrary case (a,b) is indistinguishable. The 
relation of indistinguishability, to be denoted by 7Tmax, is clearly an equivalence 
relation. The following fact establishes a connection between simplicity and distin-
guishability (see [2], § 5; [5], § 4): 

Proposition A . Consider irmax in a Moore automaton A . The relation 7rmax 
is a congruence of A and each congruence of A. is a refinement of irmax. A is 
simple if and only if'irmax equals the minimal partition of A (or, equivalently, if 
each proper pair (a, b) is distinguishable where a S A,b 6 A). 

If a proper pair (a, b) of states is indistinguishable and of first type, then we say 
that a and b are weakly indistinguishable. If a pair (a, b) is indistinguishable and 
of second type, then we say that a and b are strongly indistinguishable. If (a, 6) 
is indistinguishable and of third type, then we say that a and b are compoundly 
indistinguishable. 

The three kinds of indistinguisliability introduced above are pairwise excluding. 
The subsequent assertion follows from [8], Proposition 2: 

Proposition B . The weak indistinguishability is a transitive relation. 

The analogous statement does not hold for the othèr two indistinguishability 
types (cf. [8], Chapter III). 

Let (a, 6) be a state pair. If A(a) = A(i>) holds and i(o, s) = S(b,x) is valid for 
every i ( S A) , then we say that (a, b) is an associated pair. The relation of being 
associated is an equivalence in A. 

It is clear that any associated proper pair is weakly indistinguishable. The 
converse of this fact does not hold (in general), but we have the following sentence 
(see [7], Proposition 2): 

Proposition C. Consider the state pairs in a Moore automaton. There is a 
proper associated pair if and only if there is a weakly indistinguishable pair. 

H -

It is not superfluous to say here a few words on graph theory, because we shall 
construct a nondirected graph at the end of § 5, and our automaton-theoretical 
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considerations use sometimes certain ideas that originate from the theory of directed 
graphs. Let [11], [13] be mentioned as reference books of the two main branches of 
graph theory. 

The graph got in § 5 is simple in the sense that each vertex pair [or, in another 
terminology, point pair] is joined by at most one edge [line], and each edge joins 
two different vertices. We use the notation [a6] for the edge joining a and b. 

The notions of accessibility (introduced in § 2) correspond precisely to the anal-
ogous concepts in directed graph theory (for the latter, see e.g. Chapter 3 of [13]). 
One can show easily that we get a cycle-free directed graph if we form the con-
densation of the strongly connected blocks jstrong components] in a directed graph 
([13], Theorem 3.6). Keeping this fact in mind, the reader may perhaps understand 
better Steps 2-4 of the Construction of § 5. 

2 Results 

§ 5. 

Let S = (A, X, S) be a semiautomaton where |A| > 2. S is regarded to be fixed in 
Chapter 2. We denote [A| by v. 

If the output function A : A —• Y is varied, we can get several automaton 
completions A\ = (A, X, Y, S, A) from S. Our aim is to examine the question: when 
is a simple A.\ obtained (depending on the choice of A). Among the automata A^, 
it is yielded always a simple one (if |Y| = v and A is bijective), and also a nonsimple 
one (if |Y| = 1). 

In the next construction, we are going to establish a pair (G,p) where G is a 
nondirected graph (whose vertex set equals A) and p is a partition of the edges of 
G. 

CONSTRUCTION. The procedure consists of five steps. 

Step 1. Let a semiautomaton R = (C, X, £r) be introduced in the following man-
ner: let C be the set of all (proper and nonproper) unordered pairs (a, 6) 
where a 6 A, b G A, define 6R by the rule 

¿K((a,6),*) = (5(a,s),*(6,*)). (1) 

Comments to Step 1. The right-hand side of (1) is meant as an unordered pair. 
Clearly |C] = v{v + l ) /2 . If (a, 6) is a nonproper pair, then the values 
¿«((a, b), x) are again nonproper pairs, hence R has a subsemiautomaton 
isomorphic to S. In the terminology of products of automata, we can say 
that the factor semiautomaton (S®S)/cr is denoted by R where <8> is the sign 
of direct product and a is the congruence of S ® S defined by the rule that 
(a, 6) = (e, d) (mod <r) exactly if either a = c, b = d are true or a = d, b = c 
hold. 

Step 2. Denote by e the equivalence relation of mutual accessibility in C. 

Comment to Step 2. If if is an equivalence class modulo e, then either each 
element of K is a proper pair or each element of K is a nonproper pair. 

Step 3. Consider the equivalence classes K modulo e (in C) satisfying the condi-
tions (a) and (b): 
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(a) K consists of proper pairs, 
(b) whenever (o, b) e K and x e X, then 

6R([a,b),x)eK. (2) 

Denote the number of these classes by j and themselves the classes by 
Ki,K2,. • • ,Kj. 

Step 4. Consider the equivalence classes K modulo e (in C) such that K does not 
satisfy (b), it fulfils (a) and the following condition (c): 

(c) whenever (a, 6) £ K and x&X, then either 6R((a, 6), i ) is a nonproper 
pair or (2) is true. 

Denote the number of these classes by k and themselves the classes by 
-Ky+2) • • • i Kj+k-

Comments to Steps 3, 4. Condition (b) can be expressed by saying that K 
determines a subsemiautomaton of R . The ordering of the classes K\,..., Kj 
is arbitrary and the same holds for -fCy+i,. • •, Kj+k- The j + k classes are 
pairwise disjoint because they have arisen as different classes of an equivalence 
relation. The number j + k is positive by the finiteness of C. 

Step 5. Denote by G the nondirected graph whose vertex set is A and in which 
two vertices a, b are joined by an edge [a&] precisely when 

(a, 6) G Kx U K2 U . . . U Kj+k. 

Moreover, let the edge [a, &] belong to the t-th class (modulo p), L,-, exactly 
when (a, i>) G Ki (where 1 < » < j + k). 

§6. 

We state two propositions and a theorem on an arbitrary a-completion Ax = 
(A, X, Y, 5, A) of S and on the partitioned graph (G, g). The verification of the 
results will be done in the next section. 

Proposit ion 1 The following two assertions are equivalent: 

ia) There is a strongly indistinguishable state pair in Ax. 
P) The re exists a number i, fulfilling 1 < i < j, such that, whenever [a6] € 

U, then A(a) = A(6). 

Proposit ion 2 If there is a weakly indistinguishable state pair in Ax, then there 
exists a number i such that the subsequent assertions are true: 

j + 1 < t < j + k, 

|L,| = 1, and 

we have A(a) = A(6) for the single element [a6] of L{. 

We have arrived to the main result of the paper. 
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Theorem 1 Let an output function A : A —• Y fee added to S. TAe following two 
conditions are equivalent for the resulting automaton A.\: 

(I) A.\ is simple. 
ill) In any class Li (where 1 < t < j + k) there exists at least one edge [a,-6,-] 

such that A(oi) / A(fci). 

§7 . 

P r o o f of Proposition 1. (a) => (/?). To any (unordered) proper state pair fa, 6) let 
us denote by Q[a,b) the set of the (proper and nonproper) state pairs (c,a) which 
satisfy 

(e,<0 = (*(«. P ) . * ( M ) 
with some p(G F(X)). First we mention immediate consequences of this definition. 
We have (a,b) G Q[a,b). The pair (c,d) is accessible from (a,6) if and only if 

c,d)CQ(a,b). 
(a, b) = (c, ci)(mod e) 

if and only if Q(a,b) — Q(c,d). If (a,6) is a strongly indistinguishable pair and 
(c, d) G Q(a, b), then also (c,d) is strongly indistinguishable. 

Consider now a strongly indistinguishable state pair (a, 6) in A.\. We can choose -
a pair (co, do), belonging to Q(a, 6), in such a manner that the strict inclusion 

Q(c,d)(zQ(c0,d0) (3) 

is false for any (c,d)(e Q(a,b)). (This choice is possible by the finiteness of R . ) 
Denote Q{co, do) by K. The condition (b) in § 5 is obviously valid for K and K 

consists of strongly indistinguishable pairs only, furthermore our condition on the 
falsity of (3) implies that K is just a complete class modulo e. Consequently, K 
equals one of the classes Ki , • • •, K j (introduced in Step 3 of the Construction), 
thus the validity of (/?) is clear. 

(/3) =>• (a). Suppose (/9) for a number t, consider an arbitrary edge [afc] in 
We can see easily that Q(a,i) = Ki, hence (a, 6) is a strongly indistinguishable 
pair. 
Proo f of Proposition 2. Assume the existence of a weakly indistinguishable pair. 
Then there is (by Proposition C) a proper associated state pair (a, M.A(a) = A(6) 
is clear. The one-element set { (a,6)} is evidently a class if;(mod e) and t fulfils 
j < i < j + 
P r o o f of the Theorem. 

First we show that the falsity of il) implies the falsity of (II). Denote the set 
of indistingushable state pairs of A* Dy J. If is not simple, then nm&x differs 
from the minimal partition of A (by Proposition A in § 3), therefore J ^ 0. We 
separate three cases (the first and second ones can overlap each other). 

Case 1: J contains a strongly indistinguishable pair. Proposition 1 applies, the 
truth of (/5) shows that (II) does not hold. 

Case 2: J contains a weakly indistinguishable pair. We get now by Proposition 2 
that (II) is not fulfilled. 

Case 3: any element of J is compoundly indistinguishable. Recall the notation 
Q(a,b) (where (o, b) G J). Define Q'(a,b) as the difference set Q(a,b) - P 
where P is the set of nonproper state pairs. We have always (a, 6) G Q'(a, b) C 

Q{ 
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J. Analogously to the first proof in § 7, we start with an arbitrary (a, 6)(G J) 
and we choose a (co,c¿o)(6 J) such that 

Q'{c,d)cQ'(co,do) 

is false when (c,d) is an arbitrary element of Q'(co,do). It is obtained that 
Q'(c0, d0) is one of the classes , K2,..., Kj+k, say, K¿. (II) is not satisfied 
with this t because A(o,) = A(6,) whenever (a,-, 6t) S Q'(CO, do)-

Conversely, let us assume that (II) is not fulfilled. There is an t such that 
a¿>] € L{ (that is, (a, 6) 6 Ki) implies A(a) = A(6). Remember how Ki has 
seen constructed in j 5. Choose an arbitrary element (ao, b0) of Ki. Whenever 
c, d) S Qiao, bo), then either (c, d) G Ki or c = d; we get A(c) = A(d) in both cases. 

We have shown that (ao, b0) is an indistinguishable proper pair. Thus 7rmax is not 
the minimal partition of A, hence (by Proposition A in § 3) Ax is not simple. 

3 Discussion and examples 

§ 8. 

Suppose that we consider some semiautomaton S and we want to use the Theorem 
for getting an overview of the simple automata among all the automata obtained 
as Ax. 

There is no difficulty if the graph G and its edge-partition p are enough per-
spicuous. In the contrary case (i.e. when (G,p) is involved), it is possible to utilize 
logical methods (see e.g. [l] for the occurring logical notions). 

We regard that the elements of A are denoted by oi, a2, • • • ,av (where v = |A|). 
The condition, stated in the Theorem, can be formulated as a conjunctive normal 
form in, expressing a truth function / . This function has ( j ) variables rer< (where 
1 < r < s < v) such that rer, is true or false according as A(ar) ^ Ma,) o r 

A(ar) = A (a,), respectively. We form, to any class Li, the disjunction of the 
variables rora such that the edge [ara,] (exists in G and) belongs to LWe get 
j + k elementary disjunctions (of nonnegated variables) in this manner; / is obtained 
by the formula in which is the conjunction of these j + k disjunctions. 

It is known that a disjunctive normal form is often a more treatable represen-
tation of a truth function, than a conjunctive one. Therefore, if we continue the 
study of / , it may be useful to transform 51 into a disjunctive normal form. Some 
methods for performing this are described in Chapter 3 of 11]. 

If a function / is analyzed, sometimes we may gain advantage from the idea 
that the variables ro T, are not independent of each other. Indeed, the equality is 
transitive, thus the formula 

(ro r,&m ,<) —• ro rt 

- or, equivalently, the formula 

"r t • ( « r . Vro.t) 

- must be true for any choice of the subscripts r, s, t (where ro r , denotes the 
negation of ro rJ). 
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§9-

In this section some examples will be studied. The semiautomata, analyzed in 
what follows, are mostly schemes of some automata occurring in previous articles.4 

Fig. 1. 

Example 1 Put A = { 1 , 2 , . . . , 7} and X = {xltx2}, let 5 be defined by Table 1 
(see Fig. 1). Applying the first step of the Construction for this semiautomaton S, 
we get the semiautomaton R = (C,X,5r) seen in Fig. 2. (We write e.g. simply 2 
instead of (2,2) in this figure.) R has 28 states, there are 21 proper pairs among the 
elements of C. There are four classes modulo s, one class consists of the nonproper 
pairs. The proper pairs are distributed into three classes. One of these three classes 
is { (1,2)} , another class is 

{(2,3), (4,5), (6,7)}, (4) 

and the remaining 17 proper pairs belong to the third class. No class fulfils the 
conditions posed in Step S of the Construction. There is one class - namely (4) 
- which satisfies the conditions posed in Step 4These facts mean that we have 
j — 0,k = 1 and 

Ki — {(2,3), (4,5), (6,7)} 
in the present example. 

'Compare the present Examples 1-3 with Example 3 in [4], Example 7 in [7], Example 6 in [8], 
respectively. 



Fig. 2. 
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Fortunately, our discussion leads to a very simple situtation. The examination 
of the semiautomaton S terminates with constructing the graph G - seen in Fig. 
3 - in which all the three edges belong to the same class Li. Thus the criterion of 
the simplicity of an a-completion A* of S is 

A(2) ^ A(3) V A(4) A(5) V A(6) ^ A(7). 
© ® 

® ® 
® <D 

® 
Fig. 3. 

a ¿(a.Xi) £(a, z 2 ) 
1 2 3 
2 4 4 
3 5 5 
4 6 6 
5 7 7 
6 2 1 
7 3 1 

Table 1. 

Example 2 Put A = {1,2, ,5} and X = {xi,x2}, let 8 be defined by Table 2 
(see Fig. 4)- In analogy to the preceding example, let R be constructed from this 
semiautomaton S = (A,X,S). (Some details can be left to the reader.) Among the 
15 states of R there are 10 proper pairs. The number of classes mod e, consisting 
of proper pairs, is three. Two of these classes fulfil the conditions of Step 3 of the 
Construction: 

Fig. 4. 
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a i(o,a;i) £(a, x2) 
1 3 1 
2 4 2 
S 2 5 
4 1 4 
5 2 S 

Table 2. 

ifx = {(1,2), (3,4), (4,5)}, 

tf2 = { ( l , 3 ) , (1,4), (1,5), (2,3), (2,4) (2,5)} 

(hence j' = 2J, and the third class 

* 3 = { ( 3 , 5 ) } 

satisfies the conditions of Step 4 (thus k = 1). The graph G has as many edges as 
possible, it is drawn in Fig. 5. 

Using the logical formalism considered in § 8, the criterion of the simplicity of 
an a-completion A\ of S can be expressed by the conjunctive normal form 

(ro 12 V re 34 V » 4 s ) & 

&(tt> 13 V ro 1 4 V IT) J5 V ro 23 V ro 24 V ro 2 s ) & r o 35- ( 5 ) 

Observe that №35 —• (ro 13 V re i s ) and 0135 —» (11)34 V » 4 5 ) are identically true 
formulae (cf. the end of § 8). We can infer that the formula (5) is equivalent to 
ro 35, consequently A\ is simple if and only if A(3) / A(5). 

Although (5) was enough complicated, we were in the advantageous situation 
that we could obtain a remarkable simplification of (5) by utilizing the transitivity 
of the equality relation. 

By analyzing Example 2, we see that the conclusion of Proposition 2 may hold 
for some a-completions Aa of S, but the supposition of Proposition 2 is false for 
each choice of A. Hence the converse of Proposition 2 does not hold in general. 
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Example 3 Put A = { 1 , 2 , . . . , 10}, X = {xi,x2,x3}, let 8 be defined by Table 3 
(see Fig. 5 in [8]). Starting with this semiautomaton S , let R and the equivalence 
relation e be constructed. Consider the proper pairs 

a 6 [a, ii) S(a,x2) 8 (a, x3) 
1 2 5 6 
£ 3 3 2 
3 2 1 3 
4 5 1 4 
5 4 4 5 
6 7 10 1 
7 8 8 7 
8 7 6 8 
9 10 6 9 

10 9 9 10 

Table 3. 

in C only, then the number of elements in the 11 classes mod e are: 24, 5, seven 
times 2, two times 1. By a further analysis we get that j = 1, k = 2 and the classes 
Ki, K2, K3 are: 

Ki = {(1,6) , (2,7), (3,8), (4,9), (5,10)}, 
K2 = {(2,5), (3,4)}, 
K3 = {(7,10), (8,9)}. 

Thus the necessary and sufficient condition for the simplicity of an a-completion 
A.x of S is the fulfilment of the logical formula 

(ro 16 V to 27 V n>38 V re 49 V n>5,io)&(n>25 V TO 34)&(ro 7,10 V ro 8,9). 

For the sake of completeness, let also the other classes of C mod e be listed. 
They are: 

{ (1,2) , (2 ,6) } , {(1,7), (6,7)}, { (2 ,8) , (3,7)}, 
{(2,10), (3,9)} , {(4,8), (5,7)}, { (2 ,3 ) } , {(7, 8)}; 

moreover, a class consisting of the remaining 24 proper pairs and a class to which 
the 10 nonproper pairs belong. 

The section will be finished with two sequences of semiautomata. All the semi-
automata S, to be introduced in the sequel, have the property that, whenever a 
satate (¿1,13) of R is a proper pair, then {(*i,«2)} is a separate class modulo e. 

Example 4 5 Choose a number u(> 2). Put A = { 1 , 2 , . . . , t>},X = {xi, x2} and 
let S be defined in the following manner: 

S{ l . i ! ) = 2, 
¿ ( » . i x ^ l if 2 < t < «, 

£(»", x2) = i + 1 if 1 < » < v - 1, 
£(u,a52) = v. 

s This example is due to A . Nagy (personal communication). 
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We can observe that the proper pairs are indeed pairwise incongruent mod e, 
furthermore, j = 0, k = 1 and K\ — {(v — 1, « ) } . Thus the criterion of simplicity is 
A ( v - l ) ^ A ( « ; ) . 

E x a m p l e s 6 Choose a number v(> 3). Put A = { 1 , 2 , . . . , u}, X = 
{zi, i2> • • • > z,,} and let 8 be defined in the following manner: 

S[l,xh)=h if 1 <h<v, 
$ (i, xi) = 1 if 2 < i <v, 
5(t, ! / , ) = » ' if 2 < t < V, and 2 < h < v. 

We find that j = 0 and - because for a proper pair (t 1,1*2) the set {(11,1*2)} 
satisfies the conditions of Step 4 of the Construction precisely if 2 < t'i < u,2 < 
1*2 < v are valid - we have k = ( " j 1 ) and the criterion of simplicity is 

|{A(2), A(3), A(4) , . . . , A(v)}| = v — 1. 

For the reader who is interested in this subject, it can be recommended to study 
also the schemes of other automata occurring as examples in [7] and [8]. 

§ 10. 

A semiautomaton S = (A, X, can be considered to be an object of complexity 
vn (where n = |X| and - as earlier - v = |A|), since it can be characterized by 
a table having vn entries. The product vn is also a good (lower) estimate for the 
complexity of an ^completion of S. From the view point of practical applications, 
that (semi-) automata are of primary interest for which n is remarkably smaller 
than v. 

Start with a semiautomaton S and effectuate a construction of another proce-
dure concerning S. If the number of steps of the procedure is proportional to vn, 
then the procedure may be viewed economical as far as it is expectable. Such an 
optimal situation, however, is likely very infrequent. If the number of steps of a 
procedure is proportional to vn& (with some exponent /?(> 1)), then its complexity 
can be considered still as quite satisfactory. The procedures whose complexity is 
of order of magnitude van^ (where a > 1) are already worse ones, their profitable-
ness decreases with the growth of a. At the other end of the scale, a procedure 
is not advantageous at all if its complexity cannot be estimated better than by an 
expression in which v occurs as an exponent. 

Recall Proposition A, and consider the task that we are going to check whether 
or not the states of an automaton are pairwise indistinguishable. It is known7 that 
two states a, b are distinguishable (if and) only if there is an input word p, fulfilling 
A(6(a,p)) ^ A(<S(fc,p)), such that the length of p does not exceed v — 2. The number 
of input words whose length is at most v — 2 equals 

n ° " 1 ~ 1 ( = l + n + n 2 + - + n ' ' - 2 ) . 
n — 1 

If we want to decide the simplicity of an automaton by using these ideas, we arrive 
at the following job: 

6This example is due to F. Wettl (personal communication). 
7See e.g. S S and J 12 in [3]. 
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we draft a matrix of sue v X ( (n ° - 1 — 1 ) / (n — 1)), 
we fill the matrix with the output signs A(5(a, p)) as its entries, and 
we examine the existence of two rows of the matrix that are from place 
to place coinciding. 

The complexity of this process depends exponentially on v, consequently, it is not 
in the least economical. 

The method, based in §§ 5-6 of this paper, is such an improvement of the "rough" 
application of Proposition A that its complexity remains already under polynomial 
bounds. The order magnitude of the semiautomaton R is v(v+ l)n/2, this quantity 
is approximately proportional to v2n. Although the number 2 (as exponent of u) 
is not quite reassuring, the author is afraid that it cannot be diminished notably 
(unless we restrict our attention to one or another particular class of semiautomata). 

A known algorithm due to Tarjan (see [15]) shows that the classes of the mutual 
accessibility relation in directed graphs can be determined so that the complexity 
depends linearly on the number of vertices (if the ratio of the edge number and 
the vertex number is bounded); consequently, the computational complexity of our 
Construction is not increased in Steps 2-5 (in comparison to the complexity of Step 
1). 

§ 11. 

In this final section further comments will be done concerning the Construction 
(in § 5), the Theorem (at the end of § 6) and the handling of the question by logical 
tools (see § 8). 

It is not quite hopeless that the method (elaborated in §§ 5-8) can be refined 
into a more economical process under certain particular conditions. This subject 
will be concerned in the first three problems to be raised at once (they are rather 
heuristical than exact ones). The study of these problems is desirable primarily 
within the class of strongly connected semiautomata, because a reduction of the 
general question of the simplicity of automata to the strongly connected case is 
already known (see [5], [6]). 

Problem 1. Find semiautomaton classes such that, for the elements of a class, 
the graph (G,p) can be obtained by some remarkably easier way, than through 
constructing the semiautomaton R. 

Problem 2. Study circumstances under which the truth function / - assigned to 
the graph (G, p) - admits an easy discussion. ( / is, of course, easily treatable if it is 
got by a short formula. Beside this case, Problem 2 concerns whether the following 
methods can be utlized adavantageously: conversion of a conjunctive normal form 
into a disjunctive one, and/or use of the consequences of the transitivity of the 
equality relation.) 

Consider again the partitioned graph (G, p) obtained in Step 5 of the Construc-
tion. Denote the number of the non-adjacent proper vertex pairs, i.e. the quantity 

Q - ( i i i i + i i 2 i + - + i i y + f c i ) , 
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by rj(G). The quotient 

max(|L1|,[£2|,...,|Ly+fcl,r?(G)) 

G) 
can be viewed as a measure of in what degree (G, p) is perspicuous. The value (6) 
is clearly between l/(j + k + 1) and 1. 

Prob lem S. Find semiautomaton classes such that, for the elements of a class, 
the value of the expression (6) is near to one. 

The last problem will be devoted to the connection between the general criterion 
of simplicity, asserted as the Theorem, and the known criterion for the simplicity 
of autonomous Moore automata, having been stated in [4]. The latter result can 
be formulated as follows: 

Proposit ion D . ([4], Proposition 6). Let S be an autonomous Moore semi-
automaton. An a-completion A* of S is simple exactly if A fulfils the following 
conditions: 

(ij each cycle is primitive,8 

(lij the cycles are pairwise non-isomorphic, 
(ixi) whenever 5(a, x) = 5(6, x) for a proper state pair (a, 6) then A(a) ^ A(6). 

Let condition (II) of the Theorem be applied for an autonomous semiautomaton. 
It is then almost obvious to see that condition (ixi) is necessary for the simplicity 
of an Ax- In the other respects, however, it appears no immediate possibility for 
deriving Proposition D from the Theorem. 

Prob lem 4. Show that the necessity of the conditions (i), (ii) and the suffi-
ciency of (i) ii (ii) & (iii) are consequences of the Theorem when (particularly) an 
autonomous semiautomaton is considered. 
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On a special composition of tree automata 

B. Imreh't 

In the theory of finite automata it is an interesting problem to describe such 
systems from which any automaton can be built under a given composition and 
isomorphic embedding as representation. Such systems are called isomorphically 
complete with respect to the considered composition. In particular, it is important 
to characterize those compositions for which there are finite isomorphically com-
p i l e systems. In the works [l], [2] necessary conditions are given for the existence 
of finite isomorphically complete systems with respect to the classical automata 
and tree automata, respectively. In both cases it turned out that the existence of 
a finite isomorphically complete system yields the unboundedness of the feedback 
dependency of the composition. It is unknown yet whether this condition is suffi-
cient. So it is interesting to investigate such compositions for which there are finite 
isomorphically complete systems. In [4] such a composition was introduced. Here 
we generalize this notion of composition to tree automata and give a necessary and 
sufficient condition of the isomorphic completeness. For this reason we recall some 
notions from [3] and [5]. 

By a set of operational symbols we mean a nonempty union E = So |J Ei |J..., 
where E m (m = 0 ,1 , . . . ) are pairwise disjoint sets of symbols. For any m > 0, the 
set E m is called the set of m-ary operational symbols. It is said that the rank or 
arity of a symbol c r g E i s m i f c r S E m . Now let a set E of operational symbols 
and a set R of nonnegative integers be given. R is called the rank-type of E if for 
any integer m > 0, E m ^ 0 if and only if m S R. Next we shall work under a fixed 
rank-type R. 

Now let E be a set of operational symbols with rank-type R. By a E-algebra A 
we mean a pair consisting of a nonempty set A and a mapping that assigns to every 
operational symbol a 6 E an m-ary operation aA : A m —» A, where the arity of a is 
m. The set A is called the set of elements of A and aA is the realization of a in A. 
The mapping cr —• aA will not be mentioned explicitly, but we write A — (A, E). It 
is said that a E-algebra A is finite if A is finite, and it is of finite type if E is finite. 
By a tree automaton we mean a finite algebra of finite type. Finally, it is said that 
the rank-type of a tree automaton A = (A, E) is R if the rank-type of E is R. 

Now let us denote by UR the class of all tree automata with rank-type R. A 
composition of tree automata from UR can be represented as a network in which 
each vertex denotes a tree automaton and the actual operation of a tree automaton 
may depend only on those automata which have direct connection to the given one. 

In order to define this notion of composition let V denote an arbitrary nonempty 
fixed set of finite directed graphs. Let A = (A, E) € UR and AJ = (Ay, E J ) £ UR 
( j = 1 , . . . , n). Moreover, take a family ¥ of mappings 
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¥my : (Ax x . . . x A „ ) m x E m ( m e R , 1 < j < n) . 

It is said that the tree automaton A is a D-product of Aj ( j = 1 , . . . , n) with respect 
to 9 if the following conditions are satisfied: 

n 
(i) A = JJ Ay , 

i= i 

(ii) there exists a graph D — ( { 1 , . . . , n}, E) in D such that for any meR, 
j e { l , . . . , n } and 

( ( a n , . . . ),•••,(ami,•••,amn)) e A m 

the mapping is independent of the elements at, (t = 1 m) if (s, j) £ E, 

(iii) for any m € R, <r € E m and ( ( a u , . . . , a l n ) , . . . , ( o m i , . . . , a m „ ) ) e Am, 

aA((aii,..., a i „ ) , . . . , ( a m l , . . . , o m „ ) ) = (erf1 ( a n , . . . , a m i ) , . . . , cr*"(a ln,..., amn)) 
where 

ai = ^mj((aii,...,aln),...,(aml,...,amn),cr) (j = l,...,n) . 

We shall use the notation 

J=1 
for the product introduced above and sometimes we shall indicate only those vari-
ables of t/imy on which it may depend. 

Now let 8 be a system of tree automata from UR. It is said that B is isomor-
phically complete for UR with respect to the D-product if any tree automaton from 
UR can be embedded isomorphically into a P-product of tree automata from B. 

The first characterization of isomorphically complete systems of tree automata 
was given in [5] with respect to the Gluskov-type product, which can be defined 
considering the set of finite directed complete graphs as possible networks. Now 
taking the set of the n-dimensional hyper cubes (n = 2,3, . . . ) as possible networks, 
we prove that this cube-product is equivalent to the Gluskov-type product with 
respect to the isomorphic completeness. For this purpose we need some preparation. 

Let n > 2 be an arbitrary integer. Let us consider the n-dimensional hyper 
cube. The set of the vertices of this hyper cube is Sn = { ( s i , . . . , s „ ) : s,- G 
{0,1} it = l , . . . , n ) } . Define the mapping A„ on the set Sn as follows: for any 
vector ( s i , . . . , s „ ) 

n 

t=i 
Then A^ is a one-to-one mapping of Sn onto the set { 1 , . . . , 2" } . 

Let us form the directed graph = ( {1 , . . . , 2"} , Vn), where for any 1 < t, j < 
2", (i,j) € Vn if and only if A"1^') is adjacent to A " 1 ^ ) . For any u € { 1 , . . . , 2 " } 
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let us denote by j i the set of all ancestors of u in D*. It is obvious that A~1(u) = 
( s i , . . . , sn ) is adjacent to a vertex ( r i , . . . , r„) if and only if there exists an index 
1 < t < n such that r,- = 1 — s,- and ry = ay if 1 < j < n and t ^ j. Therefore, 

= n, i.e. each vertex of D* has exactly n ancestors. On the other hand, it is 
easy to see that 

if 1 < u < 2 " - 1 , then u has one ancestor in the set { 2 n - 1 + 1 , . . . , 2 " } and n - 1 
ancestors in the set { l , . . . , 2 n - 1 } , 

if 2 n _ 1 < u < 2n, then u has one ancestor in the set { 1 , . . . , 2 '* - 1 } and n — 1 
ancestors in the set { 2 n _ 1 + 1 , . . . , 2 " } . 

Now let us suppose that n > 2 and consider the graphs £>* and £ > * _ T h e n 
using the above observation, one can prove the following equalities: 

(1) = jM \{u + 2n~1} if 1 < u < 2 n _ 1 and 

(2) = { w - 2 " _ 1 : u e ( 4 " ) \ { « - 2 n ~ 1 } ) } if 2 n _ 1 < u < 2" . 

Now we are ready to prove our statement. 

Theorem 0.1 Let P* = {£)* : n = 2 ,3 , . . . } . A system C C UR of tree automata 
is isomorphiealiy complete for UR with respect to the D* -product if and only if C 
contains a tree automaton A = which has two different states a, b and for 
any m € R, (ui,...,um) € {0|6}m/ " £ {ai&} there exists an m-ary operation 
i r e E with um ) = u. 

Proo f . If R = {0} , then the validity of our statement can be proved easily. Now 
let us suppose that R ^ {0} . Then the necessity follows from the work [5]. 

In order to prove the sufficiency, first let us define the sequence of matrices A ' 1 ' , 
as follows: 

A W = 

( 0 0\ 
0 1 
1 0 

VI 1 / 

A(»+ 1 ) _ /A<" ) A<»>\ f . 
À M ) ' — • 

where A ' " ' is defined by ai? } = 1 - (1 < t < 2 n + 1 ; 1 < < 2n) in the 
partitioned matrix. 

We shall show that for any n > 2 and 1 < u < 2" the n-tuples (a'™',..., ) 
(t = 1 , . . . , 2n) tire pairwise different, where {t'x,... , t „ } = 

We proceed by induction on n. The case n = 2 can be checked easily. Now let 
n > 2 and assume that the statement is valid for n — 1. Let 1 < ti < 2" be arbitrary 
and Ju^ = { t ' i , . . . , t „ } . Let us suppose that t„ < iw if v < w. If the desired n-
tuples are pairwise not different, then there are indices j, k with 1 < j < k < 2" 
such that 

(3) (aJJ a W ) = (aj>; « « ) . 
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Now we distinguish three cases. 
Case 1. Let us suppose that 1 < j < k < 2 n _ 1 . If 

1 < u < 2 " - 1 , then n — 1 ancestors of u are in the set { 1 , . . . , 2 " - 1 } and the nth 
ancestor is u + 2 n _ 1 . Therefore, by the ordering of in = u + 2 n _ 1 . Then, by 
(1), 4 n _ l ) = { » i , . . . , t „ _ i } and by the definition of A<"), 

( 4 r " « - ( - a < • £ . , > = 

( 4 : ! 4 i , ) = ( 4 ? r " 4 : ; . ' , 1 ) 
which contradicts our induction assumption. 

If 2n~1 < u < 2", then n - 1 ancestors of u are in the set {2n~ 1 + 1 , . . . , 2 " } 
and the nth ancestor is u — 2 " - 1 . Therefore, = u — 2n~1. Let wt = it - 2 r a _ 1 

(t = 2, . . . , n ) . Then by (2), j}"1^ — {w2,...,wn}. But then using the equality 
(3) and the definition of , we obtain that 

f a ( « - i ) a ("""1 ,t _ f . i « - ! ) a ( " _ 1 h laj«»3 > • • • > JWn t — \akw2 > • • • 1 akwn I 
which contradicts our induction assumption. 

Case 2. Assume that 2n~1 < j < k <2n. 
Let r = j - 2n~1, s = k - 2n~1. Then 1 < r < s < 2 " _ 1 . On the other 

hand, by the construction of A ( " - 1 ) , from (3) it follows that (4?,\ . . . , a ^ ' ) = 
(4? , >. . . , a'"]) which yields a contradiction in the same way as in Case 1. 

Case 3. Let us suppose that 1 < j < 2 n _ 1 < k < 2". 
If 1 < u < 2 " - 2 , then by (1), t„ = u + 2n~1, in-X = u + 2n~2 and J[un~2) = 

{ t ' i , . . . , t „ _ 2 } C {1 , . . . , 2 n ~ 2 } . Since t„ = u + 2 n _ 1 , by the definition of A( " ) 
and (3), we obtain «£> = a ^ = «£> = «£>. By (3), = a j ^ , which 
results that k / j +2n~l. Now let r = k - 2 " _ 1 . Then 1 < r < 2 n _ 1 . Since 
1 < u < 2n~2 and 2 " - 2 < i n _ i < 2n~1, by the construction of A i " - 1 ' , we obtain 
4 u = 47» = 1 - o ^ . But then a ^ = 1 - 4 ? ' . On the other KU ' « * rv— 1 J • TV — 1 rt n_ 1 

hand, 1 < u < 2n~2, u + 2 " - 2 = » „_ ! , aj"* = aft1, 1 < j,r < 2n~i yield that 
4 " ' = a ' " ' which is a contradiction. 

If 2n~2 < u < 2" " 1 , then on the bases of ( l ) and (2), t„ = u + 2 " _ 1 , t'j = 
u - 2 n _ 2 and {»2,- - , V - i } C { 2 n " 2 + l , . . . , ^ - 1 } . - But then, by (3) and the 
definition of A<"), 4 " ) = 4" ,> w h i c h y i e l d s k £ J + 2t n _ 1 ) . Let r = A; - 2 n _ 1 . 
By the construction of 4 u ' = 1 — 4 " \ a n d so, 4 " ' = 1 — ^ e 
other hand, by (3), aj^j = 4™', and so, by the construction of A '™ - 1 ' , 4?i = 4? i " 
Since »i + 2"~2 = u and 1 < j, r < 2 n _ 1 , by the construction of A ' " - 1 ' , we obtain 
that the last equality yields 4 " ' = 4 " ' which is a contradiction. 

If 2 n _ 1 < u < 2", then »! = u - 2 n _ 1 . Let twt_j = it - 2 " _ 1 (t = 2 , . . . , n) 
and wn = t'i + 2 n _ 1 = u. Then by (l) and. (2), j i " ' .= {wltK .. ,to„}. On the other 
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hand, by (3) and the definition of A ' " ) , we obtain the equality ( a ^ , . . . , a ) = 
I®!«!,' • • • iafcu?»)• Since 1 < t'i < 2 " - 1 , we have traced back the considered case to 
the above treated ones. 

Now let us suppose that C contains a tree automaton A = (A, E) satisfying the 
conditions of our Theorem with the elements a, 6. Without loss of generality we may 
assume that a = 0 and 6 = 1 . Furthermore, for any m 6 R, (ux , . . . , u m ) 6 {0, l } m , 
ti e { 0 , 1 } let us denote by crUl Um,u a n operational symbol from E m for which 

u i „ , u ( u i , . . . , " m ) = " holds. 
Now let B = ( {&i , . . . ,6 „ , } ,E ' ) be an arbitrary tree automaton. Choose an 

integer n > 2 such that to < 2". Let / i b e a one to one mapping of {6 i , . . . ,6a,} 
onto the first tw rows of the matrix defined by /i(6fc) = • • •, aj^L) (A: = 
1 , . . . , w). Denote by S the set {/¿(6k) : k = 1 , . . . , to}. Let 1 < u < 2" be arbitrary. 
We know that the n-tuples = 1. • • • > 2") are pairwise different, 
where { t ' i , . . . , t n } = j i n \ But then there is a one to one mapping ru for which 
ru ( a ' " ' , . . . , ) = bt (t = l , . . . ,u>). Let us consider these mappings ru for any 
1 < 2". ^ 

Take the £>*-product A = [ l / l x Dn)> w h e r e t h e family f of mappings 
is defined as follows: 

For any 0 # m e R, o e E'm, 1 < u < 2n and st = (a« i , . . . , «ta») G S 
= 1 , . . . , m ) , 

^ , m«(8 i , . . . , 8 m , a ) =tr . (») 

where a® ( ^ ( s i , - , , . . . , s 1 < n ) , . . . , ru(smil,..., s m i J ) = bk. 
If 0 6 R, o e E|, and n{oB) = ( o ^ , . . . , aj^l) , then 

^ m u ^ ) = 0"V) fc» 

For any m £ R, a € E', 1 < u < 2" and ( ( u n , . . . , u i 2 » ) , . . . ( u m i , . . . , u m 2 » ) ) 6 
{A2 }M \ SM, i m u is defined arbitrarily in accordance with the definition of the 
P*-product. 

It is easy to see that the mappings ^ma are well-defined, and so, we obtain a 
P*-product. On the other hand, one can prove that is an isomorphism of B into 
A. Therefore, {A} is an isomorphically complete system for UR with respect to the 
P*-product, which completes our proof. 

Remark . Characterization of the isomorphically complete systems with re-
spect to the Gluskov-type product (see [5]) is the same as the characterization 
in our Theorem. So this two kind of products are equivalent with respect to the 
isomorphically complete systems. 
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Regularizing context-free languages by AFL 
operations: concatenation and Kleene closure 

J. Dassow * A. Mateescu ^ G. Paun ** A . Salomaa " 

Abstract 
We consider the possibility to obtain a regular language by applying 

a given operation to a context-free language. Properties of the family of 
context-free languages which can be "regularized'1 by concatenation with a 
regular set or by Kleene closure are investigated here: size, hierarchies, char-
acterizations, closure, decidability. 

1 Introduction 
The core of formal language theory is the study of the Chomsky hierarchy, especially 
of families of regular and of context-free languages. An important problem in 
this context is to understand the differences between "regularity" and "context-
freeness". The question is approached, explicitly or implicitly, in many papers. 

Here we follow [2], [3], [4], [7] and consider this problem in relation with oper-
ations with languages. Usually, the main topic dealt with when investigating op-
erations with languages is the closure of various families (how much an operation 
can "complicate" a language). A dual natural question is "how much an opera-
tion can simplify languages in a given family". In particular, we are interested in 
transforming in this way context-free languages into regular languages. 

Similar problems are investigated in [2j, [4j, whereas [3], [7j consider numerical 
measures of non-regularity of context-free languages and the influence of various 
operations on them. 

Here we investigate the possibility of obtaining a regular language starting from 
a context-free language and using one of the six AFL operations: union, concate-
nation, intersection - all by regular sets -, Kleene closure, morphisms and inverse 
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morphisms. We enter into details only for the right and left concatenation and 
for Kleene *, namely we study the properties of families of context-free languages 
which can lead to regular languages by left/right concatenation with regular sets 
of by Kleene *. 

2 Notations 
For an alphabet V, we denote by V* the free monoid generated by V under the op-
eration of concatenation; the null element of V* is denoted by A and |x| denotes the 
length of x SV*. For x & V*, a G V, we denote by JxL the number of occurrences 
in x of the symbol a. We denote also by REG, LIN, CF the families of regular, 
linear and context-free languages. 

For a language L we denote by Pref(L),Suf(L),Sub(L) the sets of prefixes, 
suffixes, respectively subwords of strings in L. 

The main problem of this paper is the following: given a language L £ CF and 
an operation with languages, can we use this operation in such a way to obtain a 
regular language starting from L ? 

In this form, the question is trivial for most AFL operations. For instance, for 
all context-free languages L C V*, the languages 

(i) L U V" = V*, 
ii] h{L) for all h : V* —• {a}*, 
iii) L n R for all finite languages R, 

(iv) h~l{L) for all h : {a}* —.• V , 
are regular. The question is not trivial for concatenation and Kleene closure: 

(i) Concatenating (on the left side) the non-regular language 

Li = {a"bm | 1 < n < m} 
with 

R = {aP \p> 1}, 

we obtain a regular language, but no right or left concatenation of 

L2 = {an6n | n > 1} 

with a non-empty set will give a regular language (if RL2 € REG, for some R, then 
take x e R and intersect RL2 with xa*6*; the obtained language is not regular, 
hence RL2 is not regular, a contradiction). 

(ii) For the above language L2, the language L2 is not regular, but for 

L3=L2u{a,b} 

we have 
L3 = {a.6}*. 

which is regular. 
Thus, we are led to consider the families 
CL = {L £ CF I there is R e REG, R ¿ 0, such that RL 6 REG}, 
CR = { L e CF I there is R e REG, R ± 0, such that LR e REG), 
K = {LeCF\L* € REG}, 
K„ = {L eCF I there is 1 < m < n such that L< e REG}, for n > 1. 
We shall investigate here only the families CL, K, Kn, n > 1; the results for CL 

are true also for CR, with obvious modifications. 
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3 The size of the families introduced above 
The next relations follow from definitions. 

L e m m a 3.1 (i) REG C CL C CF, 
(ii) REGCKCCF, 
(in) REG = Ki C K2 C . . . C CF. 

L e m m a 3.2 Kn C K, for all n > 1. 

P r o o f . Take L E Kn. There is M < N such that |Jili € REG. Clearly, 
L* = flXU Lx)*, hence also L* is regular, that ia L & K. • 

All these inclusions are proper. 

T h e o r e m S.S REG <ZCL<Z CF. 

P r o o f . The language Li in the previous section is in CL but it is not regular, 
whereas the language L2 in the previous section is not in CL U CR. • 

L e m m a 3.4 (*) If on arbitrary language L C V* satisfies, for some k > 0, the 
relation Vk C L, then VL 6 REG. In particular, ifXeL, then V'L E REG. 

(ii) If an arbitrary language L E V* satisfies, for some ki,k2 > 0,ki,k2 rela-
tively prime, the relation Vkl U V f c l C L, then L* E REG. 

P r o o f , (i) Under the previous conditions, we obtain 

V*L = V*Lk, 

for Lk = {xEL\\x\< fc}. 
The inclusion C is obvious. Conversely, take x,y E V* L, x E V* ,y E L. If 

jy| < k, then y S Lk)xy E V'Lk. K |y| > k, then y = yiy2, \y2\ = k. As xyi E V , 
we have again xy = xyijfc E V*Lk. 

The language Lk is finite, hence assertion (i) follows. 
(ii) Note that, because ki,k2 are relatively prime, there exists mo, mo E N , 

such that for any n > mo there are t, j E N with n = iki + jk2. Thus L* contains 
all words w such that |iu| > mo, hence V* — L* is a finite set; consequently, L* is 
regular. • 

Corol lary 3.5 CL is incomparable with LIN. 

Proo f . The above considered language L2 proves the relation LIN — CL ^ 0. 
Conversely, take the Dyck language D over {0,6}. We have D E CF — LIN. It 

contains the string A, hence D E CL and CL — LI N ^ 0 too. • 

Corol lary 3.6 For every context-free language L, L C V*, either L or V* — L is 
in CL. 

Proo f . Obvious, as one of L and V* — L contains the null string. 

T h e o r e m 3.7 REG C K c CF. 

P r o o f . For all £ £ CF, L C V*, the language V = LuV is in i f , as (LUV)* = V\ 
For LeCF- REG we obtain L' $ REG, hence K - REG ji 0. 

Conversely, the language L2 in the previous section is not in K (we have L2 n 
o+6+ = L2), hence L2 ECF-K. • 
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Corollary 3.8 K is incomparable with LIN. 

Proo f . For LeCF- LIN, V £ LIN, but L2 € LIN - K. • 

Theorem 3.9 The inclusions Kn C Kn+i are proper for all n > 1. 
Proo f . (1) n = 1. 

The language 
La,b={xe{a,b}' \\x\aji\x\b} 

is not regular (its complement, {x € {a, 6}* | |x|a = |s|t}, is clearly non-regular), 
hence it is not in K\ = REG. 

However, 
¿a,6 u la,bio,6 = + . 

The inclusion C is obvious. Conversely, if x € { a ,6 } + , |x|a ^ |x|j„ then x S £<,,(>• 
If |x|a = |x|b, then either x = ax', |x'|a < |x'|t or x = bx', |x'|a > |x'|b. In both 
cases x' € La b, and a, 6 £ La<b, therefore x € L^bL^b-

On the other hand, La b € CF. Indeed, consider the context-free grammar 

G = ( { 5 , A , B } , { a , 6 } , 5 , P ) , 

with P containing the following rules: 

S AaA, S BbB, 

A —* AA, A —• a, A —• A, A —• oAb, A —• bAa, 
B BB, B —* b,B \,B -* aBb, B bBa. 

Clearly, starting by 5 —» AaA we generate strings x with |x|a > |x|b and 
starting by S —* BbB we obtain strings x with |x|0 < |x|fc (from A one generates 
all the strings x with |x|a > |x|b and from B one generates all the strings x with 
M a < M b ) . 

(2) n > 2. 
Consider the language 

Ln = La,b U La,b{c}La,b U Mn, 

for 
Mn = {xe{a,b,cy\\x\c>n}. 

Clearly, Ln € CF, but 
Ln n {a, 6}* = La,b, 

hence Ln REG. In fact, for all k, 1 < A; < n, we have 
k 

( J A . n {x £ {a, b, c}* | \x\e = A — 1} = 
»=i 

= {X!CX2C . . . cxfcxfc+i I Xi e {a, b}+, 1 < i < k + 1, 

|«y| >2,2<j<k, and xx € La,b, or x f c + i € La,b}-

Denote this language by H. Indeed, k — 1 < n, hence H n Af* = 0; it follows that 

H C ( J (¿ai6{c}La,6rZ„,k(La.6{c}A,,<>)y, 
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the union being taken for all t, j > 0 with t + j = к — 1. 
The language H is not regular: z,- = а'саасаа.. .часа* £ If for all t > 1, but 

every two strings z,-, zy with t ф j are not congruent (the context (bl, bl) accepts 
only zy). 

However, 

n+l 
( J Un = {a, 6 } + U Mn U 
«=1 

U {xicx2c ... xrcxr+1 | 1 < r < n — 1, X{ 6 {a, b}+, 
1 < » < r + 1, |iy| > 2,2 < У < n} , 

hence this language is regular. 
The inclusion С is obvious (note that = Mn). Conversely, Mn С 

Ln,{a,b}+ = U La,bLa,b, and x\cx2c... xrcxr+i 6 ¿а,ь(^а,ь{с}Ьа,ь)гЬа,ь for 
all 1 < r < n - 1, Xi 6 {а, 6 } + , 1 < t" < r + 1, |xy| > 2 , 2 < j < r. (The detaik are 
the same as in the first part of the proof.) 

In conclusion, Ln € Kn+1 — Kn and the proof is complete. • 

Theorem 3.10 Kn С К for all n > 1. 

Proo f . The language L = {а"6п | n > 1 } и { а , 6 } 
is in К but L Kn for n > 1. Indeed, suppose that L' is regular for some m. 
We have 

m 
|J V П a*b* = {xe a*b* | - m < |х|а - |x|b < m}, 
»=1 

and this is not a regular language, a contradiction. • 
The family CL is quite comprehensive and, in fact, the condition R 6 REG in 

its definition can be removed: 
Theorem 3.11 Assume that L\ ф 0 and are arbitrary languages over the al-
phabet V such that LiL2 e REG. Then also V*L2 £ REG. 

Proo f . Let x £ Li be a string such that the conditions 

yeLu |y| < |x|, 

are satisfied for no string y. Since L\L2 is regular, so is the left derivative 

I>o = d'x(LiL2) 

and, hence, also V*LQ is regular. Since x is shortest in LI, we have also 

L0 = (d'x(Li))L2. 

Hence 
VL0 = (VVJII))^ С V*L2. 

But L2 С LO because A € d'x(Li). Consequently, V*L2 С V*LQ, which implies that 
VL0 = V L2. Since V*L0 is regular, so is V*L2. • 
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Using right derivatives, it can be shown similarly that if L\L2 £ REG and 
L2 / 0, then LXV* £ REG. 

Remark 1. The proof is effective if one of the shortest strings in L\ can be 
effectively found. This is the case when, for instance, L\ is a context-free language. 
Corol lary 3.12 K C CL, strict inclusion. 

P r o o f . Take L C V", L £ K. Therefore L* £ REG. This implies L+ = L* - {A} £ 
REG, too. Moreover, L+ = L'L. 

According to the previous theorem, L* L £ REG implies V* L £ REG, hence 
L £ CL and we have obtained the inclusion K C CL. 

This inclusion is proper. For instance, the language L\ considered in Section 2 
is in CL — K. Indeed, L\ Da*6* = Lit which is not regular, hence L\ is not regular. • 

Corol lary 3.1S A context-free language L C V* is in CL if and only ifV*L € 
REG. 

This corollary is useful in showing that languages are not in CL, for instance, 
in the proof of Theorem 8. 

Remark 2. The generality of this result (LI,L2 are arbitrary languages) can 
be compared with the known result (see [5], page 50) that the left quotient of a 
regular language by an arbitrary language is a regular language, as well as with 
Lemma 3.1 in ¡6], which states that also deleting from the strings of a regular 
language substrings which belong to an arbitrary language, we still obtain a regular 
language. The previous theorem is in some sense a dual to these results. 

A sort of converse of Theorem 5 is natural to be looked for, namely given Li L2 
regular, it is expected that for any x € L\, also (Li — { x } ) L 2 is regular. However, 
this is not true. 
Theorem 3.14 There are LI,L2 C {a. b}*,LI linear, L2 regular, and x £ L\, 
such that L\L2 is regular, but (LI — {x})L2 is not regular. 

P r o o f . Consider the language 

Lx = {a'ba1' | 1 < t < / } U { a } . 

It is clearly linear and 

L\ = {ailbai*b...aikbaih*1 \ k> l,n > 1, 
». > 3,1 < s < k,ik+i > 2} U a*. 

Consequently, L\ £ REG. We take L2 = L*. Obviously, L\L2 = L^ is regular, 
too. However, 

[Li - {a})L2 n a'ba* = {¿ba* \ 1 < t < j), 
which is not a regular language, hence (Lx — {a})L2 is not regular. • 

The next theorem will give a characterization of languages in the family K. 
With this aim, the notion of root of a language in the sense of [1] is used (see also 
[8], pages 126 - 127). 

Given a language L C V*, we denote by root(L) the smallest language LQ C L 
such that LQ = L*\ it is proved in [l] that such;a language exists and it is unique. 
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Theorem S.15 A language L & GF is in K if and only if there is a regular 
language LO C L such that L C LQ. 

Proof . The t/part is obvious (L0 C L C L%, hence L* = Lq€ REG). 
Conversely, we have root(L) = root(L*). For all regular language, M, root(M) 

is regular, too [1]. Therefore, for L € K, root(L*) € REG. Thus, we can take 
Lo = root(L) = root(L*), and all conditions in tne theorem «ire satisfied. • 

4 Closure and decidability properties 
The families CL, K, Kn, n > 2, have rather poor closure properties. 

Theorem 4.1 The family CL is closed under morphisms and Pref, Suf, Sub, but 
it is not closed under union, concatenation, Kleene +, intersection by regular sets, 
inverse morphisms and mirror image. 

Proof . 
Morphisms. If L e CL,L C V* and h : V —• U\ then let R € REG be 

such that RL g REG. As h{RL) = h(R)h[L), we have h{RL) e REG, hence 
h(L) S CL. 

Pref, Suf, Sub. As a consequence of Lemma 3 (i), if by an operation a, from a 
language L we obtain a(L) containing the empty string, then a(L) & CL. This is 
the case with Pref, Sub, Suf. 

Union. Consider the languages 

Lx = {anbm | 0 < n < m}, 

L2 = {cn<T | 0 < n < m}, 

which are both in CL (take Ri = a*,R2 — c*). Since {a, b, c, d}*(Li U L2) is not 
regular, we conclude by Corollary 2 of Theorem 5 that Lj U ¿2 ^ CL. 

Concatenation. The languages 

Li = {b}, 
L2 = {anbm | 0 < n < m}, 

are in CL, but L\L2 is not in CL, again by Corollary 2 of Theorem 5. 
Kleene +. For the previous language i 2 we have L2 £ CL (indeed, L2C\a+b+ = 

L2). 
Intersection by regular sets. As we have seen, D, the Dyck language over {a, 6}, 

is in CL, but 
Dna+b+ = {an6n | n > 1}, 

which is not in CL. 

Inverse morphisms. Take the language 

L = {(6ao)n(afc)m | 0 < n < m}. 

It belongs to CL. Consider also the morphism 

h-.{a,b,c,d,e,fY ~^{a,bY 
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defined by 

/1(0) = baa, h{b) = ab, A(c) = b, h[d) = aab, /i(e) = aaa, h(f) = 6a. 

We obtain 

h~1(L) = {anbm I 0 < n < m } U 
u{arc(Tefmcbp | r , p > 0 , 0 < r + n < m + p } u 
\j{arfbdnefmcbp | r , p > 0 , 0 < r + n + l < m + p}. 

Again Corollary 2 of Theorem 5 shows that h~1(L) £CL. 
Mirror image. The language {a"6m | 0 < n < m} is in CL, but its mirror image 

is not. • 
Theorem 4.2 The family K is closed under union, Kleene * and morphisms, but 
it is not closed under concatenation, intersection by regular sets and inverse mor-
phisms. 

Proof . The positive results follow from the next equalities: 
IL,. U L2y = [L{ U LI)* (union), 
[L*Y = L* (Kleene closure), 
(/i(L))* = h{L*) (morphisms). 

Concatenation. Take the languages 

Lx = {anbn I n > 1} U {a, 6}, 
¿ 2 = { c } i 

both in K. However, L\L2 $ K, because 

[L^Y n a+6+c = {anbnc \ n > 1}, 

a non-regular language. 
Intersection by regular sets. For L\ as above we have 

Li n a + 6 + = {a"'6n I n > l } , 

which is not in K. 
Inverse morphisms. Consider the language 

L = {a.2nb2n I n > 1} U {a, 6}, 

which is in i f , and the morphism h : {a,6}* —• {a,b}* defined by 

h[a) = aa,h(b) = 66. 

We have 
h ' ^ L ) = {a"6" |n> 1}, 

which we have seen is not in K •. 
Theorem 4.3 The families Kn,n > 2, are closed under morphisms and'Kleene *, 
but they are not closed under union, concatenation, intersection by regular sets and 
inverse morphisms. 
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Proo f . 
Morphisms. Use the equality MU£=i £'") = \T=i M£<)> m>l. 
Kleene *. Follows from the inclusion Kn Q K,n > 1. 
Union. Take 

Li = {a'6a* | a i t, s, t > 1} U a*, 
L2 = {b2}. 

We have 

L\ U L i i i = {o'fca* | s,t > 1} Ua* U 
U{o'6at6ar | s, r > 1, í > 2, 

(s, t, r) £ {(1,2,1), (1,2,2), (2, 2,1), (1,3,1), (2, 3 ,2) } } , 

hence Li € K2\ clearly, L2 & Kx. However, LiU L2 £ Kni for all given n. Indeed, 
assume m 

L = U (Li U L2y e REG, 
•=i 

for some m. If m = 2k, k > 1, then we have 

L n (a*ba*b2)k = {a'bcfb2 \ s¿t,s,t> l} f c , 

which is not regular. If m = 2k + 1, k > 1, then 

L CI (a*ba*b2)ka'ba* = {a'éo'fc2 | a ^ t, s, t > l } f c{a '6a t | s ± t, s, t > 1}, 

which is non-regular, too. 
Concatenation. For the above languages Li, L2, take LiL2, then follow an 

argument similar as for union. 
Intersection with regular sets. Take again Lx and intersect it by a'ba*. We have 

m 
( (J (¿1 n a*ba*Y) n o*6a* = {a'&a* | s ± t, s, t > 1}, 
»=1 

which is not regular. 
Inverse morphisms. Consider the language 

L = {(a6)*6(a&Y \3¿t,s,t>l}U (ab)* 

and the morphism h : {a,b,c,d}* —• {a,6}*, defined by 

h(a) = a, h(b) = ba, h(c) = 66a, h(d) = b. 

As for Li, we have L 6 K2. Clearly, 

h~l(L) = {ab'~1cbt~1d \ s ¿ t,s, t > 1} U {abrd \ r > 0}, 

hence, for all m > 1, 
m 

(|J h-^LY) n ab*cb*d = { a 6 - 1 c 6 t - 1 d | s ± t, s, t > l } , 
<=i 

which is not regular, hence / i - 1 (L ) ^ Kn, for n > 2. • 
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Corol lary 4.4 No family CL,CR,K,Kn,n> 2, is an AFL or an anti-AFL. 

The following undecidability result is somewhat expected. 

Corol lary 4.5 It is undecidable whether or not an arbitrarily given context-free 
language over an alphabet with at least two symbols is in CL (in K or in Kn, n> 1). 

P r o o f . Take L C {a, 6}* arbitrary in CF and the morphism h : {a, 6}* — • 
{a, 5}*, defined by 

h(a) = bab,h(b) = baab. 

Since L = / i - 1 ( / i (L) ) , the language h(L) is regular iff L is regular. 
We construct the language 

L' = {ba3b}h{L). 

Then, V G CL (and V G K,L' G Kn, n > 1, respectively) iff L is regular (which is 
undecidable). 

Indeed, 

1. (a, b}*L' G REG if and only if L G REG. 

• (if) Obvious. 
• (only if) We have 

£ = h r l [ J ^ b ( S u f ( { a , bVL' ) n {6a36}{a, 6}*)). 

2. U?=i £ REG if and only if L G REG, for all n = 2 , 3 , . . . , oo. 

• (if) Obvious. 
. (only if) We have L = LH n (6a36}{a, 6}*)), n > 2. • 
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The Boolean Closure of DR-Recognizable Tree 
Languages 

E. Jurvanen* 

Abstract 
The family DRec of tree languages recognized by deterministic root-to-

frontier (top-down) tree automata is not closed under unions or complements. 
Hence, it is not a variety of tree languages in the sense of Steinby. However, we 
show that the Boolean closure of DRec is a variety which is properly included 
in the variety Rec of all recognizable tree languages. This Boolean closure is 
also compared with some other tree language varieties. 

1 Introduction 
Finite tree recognizers are divided into four types according to whether they are de-
terministic or not, and whether they read trees from root to frontier or from frontier 
to root. The nondeterministic tree automata and the deterministic frontier-to-root 
tree automata recognize the same class of tree languages. This is the class of rec-
ognizable tree languages which is here denoted by Rec. However, the deterministic 
root-to-frontier tree automata recognize a proper subclass of Rec called here DRec. 
These tree automata types were defined and the connections between the languages 
they recognize were established in the late sixties by Thatcher and Wright [TW68], 
Rabin [Rab69], Doner [Don70], Magidor and Moran [MM69], 

The class DRec has been studied relatively little. Courcelle [Cou78a,Cou78b] 
and Viragh [Vir80] gave a characterization using a path closure operator. Gecseg 
and Steinby [GS78] presented an algorithm for minimizing deterministic root-to-
frontier tree automata. 

In this paper we study the Boolean closure of DRec denoted here by B(DRec). 
It is shown to form a variety in the sense of Steinby [Ste79,Ste92]. Since also Rec 
is a variety, the next question is, whether variety B(DRec) is properly included 
in variety Rec. In connection with his studies of logic characterizations of tree 
language families, Thomas [Tho84] answered this question positively; B (DRec) is a 
proper subclass of the chain definable tree languages which form a proper subclass 
of Rec. In this work we also prove the proper inclusion of 8 (DRec) in Rec, but 
directly using only the pidgeon hole principle. After that 8 (DRec) is compared 
with respect to the inclusion relation with the varieties Nil, D, RD, GD and Loc, 
where Nil is the Boolean closure of the family of finite tree languages, and the 
others consist of the definite, the reverse definite, the generalized definite and the 
local tree languages, respectively. Some of the definitions of these tree families were 
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given by Heater [Heu88,Heu89a,Heu89b] and they were shown to be varieties by 
Steinby [Ste92j. 

The notation is mostly from [GS84]. 

2 Preliminaries 
For a set A, we denote by pA the power set of A, that is the set of sill subsets of 
A, and by |A| the cardinality of A. If A C B, but A ^ B, then we write Ac. B. 

Let N be the set of natural numbers, N = {0 ,1 , . . . } . A ranked, alphabet £ is a 
finite set of operation symbols each of which has been assigned a unique rank from 
N. For m £ N. the set of m-ary operation symbols of E form a set denoted by 
E m . Thus E = (Jmgjv Two special cases are the trivial ranked alphabets, for 
which E = Eo, and the unary ranked alphabets satisfying E = Eo U Ei . 

In a E-algebra A = (A, E), A is a nonempty set, E is a set of operation symbols 
and every operation symbol a £ E m , where m > 1, is interpreted as a mapping 

aA : Am — • A, 

and every miliary symbol a £ Eo is interpreted as an element aA of A. If A = (A, E) 
and B = (B, E) are two E-algebras, then a homomorphism from A to B is a mapping 
4> : A —• B such that 

aA(a1,...,am)<f> = aB (ai<f>,..., am<f>) 

holds for all m > 0, a £ E m and a i , . . . , am £ A. In particular, if a £ Eo and <f> is 
a homomorphism, then aA<f> = crB. An equivalence relation 9 on A is a congruence 
of A, if for all m > 0, <j £ E m and a\,..., am,bi,..., bm £ A, 

arfbi,... ,am0bm implies aA (alt... ,am)9aA (blt... ,bm). 

An equivalence class of a congruence is called a congruence class and the congruence 
class of a £ A is denoted by ad. A congruence of A is said to saturate a subset 
L C A, if L = L9. This means that L is the union of some congruence classes of 9. 
If a congruence has finitely many congruence classes, then the congruence is finite. 

Let X be an alphabet, that is a finite set of letters, such that E D X = 0. We 
assume also that X u E o ^ 0- The set of all EX-trees is the smallest set containing 
every x £ X,a £ Eo and <r(ti,.. . , t m ) , where m > 1,(7 £ E m and t i , . . . , i m are 
EX-trees. A set of EX-trees is called a EX-forest or a EX-iree language. The 
set of all EX-trees is denoted by Fe (X ) . The complement of a E X - forest T is 
Tc = Fz(X) \ T. The height, root, subtrees and leaves of a tree t are denoted 
by hg(t), rootm, sub(i) and leaf(i) respectively. As usual, if t £ X U Eo, then 
hgifl = 0, rootft) = t and sub(i) = { t } . For t = er( i i , . . . , t m ) , where m > 0, 
hg(i) = 1 + m i X K , ^ hg(i<), root(t) = a and sub(i) = { i } u U ! < , < m sub(ti). The 
leaves of any tree are its subtrees of height 0. 

Let £ be a letter not in X u E . A tree p € F e ( X u { £ } ) is a special tree, if £ occurs 
in it exactly once. The set of all special trees is denoted by Sp^(X). The product 
of a special tree p £ Fe (X U {£ } ) and a tree t £ -FE(X) is a tree t p £ FE(X) , 
which is formed from p by substituting t for its leaf When p £ Sp^(X) and 
T C Fe(X ) , the p-translation of T is 

P(T) = {t e P |ter} 
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and the inverse p-translation of T is 

p-1(T) = {teFv{X) I t i P e T ) . 

The EX-trees form a E-algebra fz(X) = (.FE;(X), E) with operations from E 
defined as 

tr^1*» ( « ! , . . . , « „ ) = a ( t i , . . . , i m ) , 
where m > 0,ti,...,tm £ F^(X) and cr 6 E m . This E-algebra is called the E X -
term algebra. 

A set of trees which can be recognized by a frontier-to-root or a nondeterministic 
root-to-frontier recognizer [GS84] is called recognizable. The set of all recognizable 
EX-tree languages we denote by J2ec(E,X). 

A deterministic root-to-frontier H-algebra (a DR E-algebra) is a pair A = (A, E), 
where A is a nonempty set and every operation symbol cr £ E m with m > 0 is 
interpreted as a mapping 

aA : A - Am. 

If o £ Eoi then it defines a singleton cr* in A. An algebra A = (A, E) is called 
finite, if the set A is finite. 

Let X be an alphabet. A deterministic root-to-frontier EX-recognizer (a DR 
EX-recognizer) is a triple A = (A, oo, a), where 

f l ] A is a finite DR E-algebra A = (A, E), 
(21 ao £ A is the initial state and 
(3) a : X —• pA is the final assignment. 

The recognizer is also denoted by A = (A, E, X, a0 , a). The elements of the set A 
are called the states of the recognizer. 

Next we define the language which a DR EX-recognizer A = (A, a0l a) accepts. 
We need the mapping a : .FE(X) —• pA, which is defined as follows: 

(1) If x 6 X, then XOL = xa. 
Í2Í If a £ E0, then oa = {erA}. 
(3) If t = cr ( i 1 ) . . . , t m ) , where m > 1, then 

tá = {a 6 A\aA(a) 6 (tjá X . . . x t m 5 ) } . 

Now the forest recognized by A is the set 

T ( A ) = {teFz{X)\a0 eta}. 

A forest that can be recognized by a DR EX-recognizer is called DR-recognizable 
or simply a DRec-language. The set of all DR-recognizable EX-tree languages is 
DRec( E ,X ) . 

Because a deterministic recognizer can always be regarded as nondeterministic, 
a DR-recognizable language is also recognizable. Thus DRec(E,X) C Rec(E, X ) . 

L e m m a 2.1 / / E E0 U E ^ then DRec(E, X ) is properly included in Rec(E, X ) . 

P r o o f . We generalize a tree language originally due to Magidor and Moran [MM69] 
and simplified by Thatcher [Tha73]. Let x £ X U Eo and a £ E m for m > 2. Then 
the forest {cr(cr(x,..., x), x,..., x), ff(x,... ,x, cr(x,..., x ) ) } belongs to flec(E, X ) , 
but it is not DR-recognizable. • 
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Next we define the paths of a tree and the path closure of a forest. Using the 
path closure concept we can distinguish DiZec-languages among JZec-languages. 
Then we can easily see that any intersection of finitely many ¿3/Zee-languages is 
also a DiZec-language, but that the Boolean closure of £)iiec-languages properly 
contains the Diiec-languagea themselves. 

Let £ be a ranked alphabet. For every operation symbol a £ £ m (m > 0), we 
define a set of new unary operations Tier} = {cri , . . . , <rm} so that if a ^ r, then 
T(cr) n r(r) = 0. Then we form a new alphabet T = T0 U Ti, where 

(1) T0 = So and 

(2) R 1 = U{R(<R)|CREE M I M> 1} . 

The paths of a tree t £ FB(X) form the set <5(t) C F r ( X ) defined as follows: 

(1) For x £ X, let 6{x) = {x } . (2) For a £ Eoi let 6(a) — {cr}. (3) For t = a(tu...,tm), let 

m 

= I M ' f c ) ) -
t=l 

Now the set of the paths of a forest T C Fz (X) is 

5 ( T ) = U { 5 ( i ) | i £ r } 

and its path closure A (T ) is the forest 

A ( r ) = { t £ F E ( X ) | 5 ( t ) C 5 ( r ) } . 

For example, the path set of the tree t — cr(z,a(uj(y),x)) contains the el-
ements cr1(z),a2(°'i('Wi(y))) and o"2(o"2(sc)), and the path closure of the forest 
T = {CT(X, y ) , A(y, x ) } is A(T) = T U ^ ( x , x), A(y, y ) } . 

Some of the properties of the path closure are noted in the following lemma. 

Lemma 2.2 [VirSO]. IiT,Tx,T2 Q i ' s (X ) , then 

(1) T C A(T), 
(2) A(T) = A(A(T) ) and 

(3) Ti C T2 implies A(TX) C A(T2). • 

Theorem 2.3 [Cou78b,Vir80]. Let T £ Rec(E,X) and E0 = 0. Then 

T £ BRec(Z,X) iff A(T) = T. 
• 

Corollary 2.4 Let S,T C FE(X). Then 

S,T S DRec(Z,X) implies 5 n T £ DRec(T., X). 
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Proo f . We present a short proof in the case E 0 = 0. For a general ranked alphabet, 
a product of two DR-recognizers can be constructed that accepts the intersection. 
If S, T G DRec(Z, X), then S n T G Rec(E, X), because #ec(E, X) is closed under 
Boolean operations. 

Assume t G A ( S n T). Then S(t) C 8{S n T) C 5{S) n 6{T). Now t G A ( 5 ) n 
A(T) = 5 n T. Thus 5 n T G DRec(S, X ) . • 

Let 7 be a family of subsets of a set U. The Boolean closure B(7) of I is 
the smallest set Q of subsets of U which contains I such that X, Y G y implies 
X n Y; X U Y and U\X G We denote the complement U\X of X by Xc. The 
following theorem can be found, for instance, in [Sik64]. 

Theorem 2.5 Let 7 C pU be a family of subsets of a given set U. A subset 
T of U is in the Boolean closure of J iff there exist k > 1, ni,...,njt > 1 and 
m i , . . . , rr»fc > 0 such that T can be expressed in the form 

T = ( F n n F I 2 n • • • n Flmi n Ff>mi+1 n F i C
m i + 2 n • • • n f i C „ J u 

(F2i n F 2 2 n • • • n F3m, n Flmj+1 n Fftmi+2 n • • • n f 2
c „ J u 

(Fki n Fk2 n • • • n Fkmk n Fkcmt+1 n Fkcmt+2 n • • • n FkcnJ, 

where Fi}- G 7 for every 1 < t < k and every 1 < j < n^. • 

Corollary 2.4 and Theorem 2.5 give the following result. 

Corol lary 2.6 A setT C Rec(E,X) belongs to B{DRec(E,X)) iff there exist k > 
1 and ni,..., nk > 1 such that T can be presented in the form 

T = (TiinT^nT^n.-nT^Ju 

(T21 n T2
C

2 n T23 n • • • n T2
c

nj) u 

(Tfci n Tfcc2 n Tfcc3 n • • • n Tfcc„J, 

where for all 1 < i < k, 1 < j < n,-, the language Tij G DRec(E, X). • 

Since one-element tree language { t } is always DR-recognizable, every finite 
language belongs to B[DRec( E ,X ) ) . The language T = {a(a(x,... ,x),x,... ,x), 
cr(x,..., x, CT(X, . . . , z ) ) } does not belong to DRec[E, X) according to the proof of 
Lemma 2.1, but ets finite it is in B(DRec(E,X)). This observation gives Theorem 
2.7. 

Theorem 2.7 If E ^ E 0 U E x , then DReciE,X) is properly included in 
8{DRec(Z,X)). • 
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3 B(DRec) is a Variety 
Next we show that the Boolean closure of the DR-recognizable languages is a tree 
language variety. For a family of tree languages to form a variety it is required to be 
closed under Boolean operations, inverse translations and inverse homomorphisms 
[Ste79,Ste92]. 

Let E be fixed. If one has defined for every alphabet X a set V ( X ) of recogniz-
able EX-tree languages, then the family V = { V ( X ) } is called a family of regular 
E-tree languages. For instance. Rec = {Rec{Z,X)} itself, Triv = { { 0 , F E ( X ) } } 
and B(DRec) = {В(Г>Лес(£, X ) ) } are families of regular E-tree languages. 

Definit ion 3.1 Let E be fixed. A variety of E-tree languages is a family of regular 
H-tree languages V = {"V(X)} such that the conditions 

(1) 0 ф V(X) С Rec(E,X), 
(2) T £ l » m implies FE(X)\T £ V (X) , 
(S) T,Ue У (X) implies T П U £ У (X), 
(4) T £ У (X), p £ Spz (X) implies p~l{T) £ У (X), and 
(5) if ф : 7E(X) — 7Z(Y) is a morphism and T £ "У(У), then 

Т Ф - 1 £ V ( X ) 
are satisfied for all alphabets X and Y. 

For example, Triv and Rec are varieties of E-tree languages [Ste92], The family 
B(DRec) is closed under Boolean operations by definition. So we need to study 
the inverse translations and the inverse homomorphisms. 

A translation is based on the notion of a special tree. To show that an inverse 
image of a DR-recognizable language under a translation is again DR-recognizable 
we also need the concept of a run tree. The idea of a run tree is to associate with 
every node of a tree the state in which the recognizer has reached that node. Of 
course, the states associated depend on the initial state at the root. The run tree 
is defined using the alphabet X U { £ } to facilitate handling of special trees as well. 

Let A = (A, E, X, a0, a) be a DR EX-recognizer and £ £ X U E. Then the run 
tree of a tree t £ F E ( X u { i } ) in state a £ A is гип(Л, t, a) € / Ъ х л ( ( Х и { £ } ) x A) 
defined as follows: 

(1) If у £ X U {£ } . then гип(Л, у, a) = (у, a). 
(2) If a € E0 , then run(^,tr,a) = (a, a). 
(3) If t = <r(ti,..., tm), where m > 1 and <rA(a) = ( o j , . . . , a m ) , then 

гип(Л, t, a) = (а, а)(гш1(Л, t b o x ) , . . . , гип(Л, tm, a m ) ) . 

If the algebra A is clear from the context, we denote a run tree also by run(t, a). 
With the help of a run tree we get a new way to find out whether a DR-recognizer 

accepts a tree. 

L e m m a 3.2 Let A = ( ^ а о . а ) be a DR EX-recogntzer. Then 

teT(A) iff a & la for all (I, a) £ leaf(run(^, t, Oq)). 

Proo f . By tree induction on t one can first prove that 6 £ ta if and only if a £ la 
for all leaves (I, a) £ leaf(run(>i, t, 6)). Choosing then oo for b we get the claim. • 

Before the main theorem of this subsection we need to study the product of run 
trees. This is done using the £-depth of a special tree. 
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The £-depth dp(p) of a special tree p G Spc (X ) is the length of the path from 
the root to the £-leaf: 

il| If p = then dp(p) = 0. 
(2) If p = <r(Pi,...,Pi p m ) , where p,- G S p E ( X ) , then 

dp (p) = dp(p,) + 1. 

L e m m a 3.3 Let A = (A, E , X , ao,a) be a DR EX-recognizer. Lett G F^(X),p G 
Spj ; (X) and let a and b be states of A . If (£,b) G leaf(run(p, a)), then 

leaf(nin(i j p, a)) = leaf(run(t, 6)) U leaf(run(p, a))\{(£, b)}. 

P r o o f . By induction on the £-depth of the special tree p one can first verify 

run(i p, o) = run(t, 6) ( i ) 6 ) run(p, a), 

from which the claim follows. • 
T h e o r e m 3.4 Let p G 5 p E ( X ) and T C F^(X). If T is DR-recognizable, then 
also p - 1(T") is DR-recognizable. 

P r o o f . I f p _ 1 ( r ) = 0, then p _ 1 ( T ) G DRec(E,X). Thus we assume that p _ 1 ( T ) ^ 
0. 

Let A = (A, E, X, ao, a) be a DR EX-recognizer that recognizes the for-
est T. Because p _ 1 ( T ) ^ 0 there exists t G p - 1 ( T ) which means t ¿ p G 
T = T (A) . Then by Lemma 3.2 a G Ice for all (/, o) G leaf(run(.tf, t p,a0 ) ) . 
Since p is a special tree there exists exactly one state 6 G A such that (£, 6) G 
leaf(run(>i, p, ao)). Now according to Lemma 3.3 we have a G la specifically for all 
(l,a) G lea fO-unUp .aoJMí . f c ) } . 

Form the new recognizer B = (A, E, X, b, a) that differs from A only by its 
initial state. Of course, also B is a DR EX-recognizer. 

Now we show that T(B) = p _ 1 ( T ) and so p _ 1 ( T ) G DRec[E, X ) : for any 
EX-tree t, 

t G T(B) 
iff a G /5 for all (/, a) G leafíruníy?, t, 6)) 
iff a G la for all (I, a) G leaf(runM, t, fcjlU 

leaf(run(i,p,a0))\{(£,&)} 
iff a G lot for all (/, a) G leaf(run(.4, t p, ao)) 
iff t í p G T(A) 
iff t G p—1 (T). • 

The inverse image of a DR-recognizable forest under a homomorphism is studied 
in Theorem 3.5. 
T h e o r e m 3.5 Let <J> : ?E(X) be a homomorphism and let T G F^(Y), If 
T is DR-recognizable, then also T<f>_1 = {t\t<j> G T}(C Fj^(X)) is DR-recognizable. 

P r o o f . Let A = (A, E, Y, ao, a) be a DR EV-recognizer that recognizes the forest 
T. Form a new recognizer B = (A, E, X , ao, /9) which differs from A by its alphabet 
and its final assignment. The mapping : X —• pA is defined by putting x¡3 = x<f>á 
for all x G X . Also B is a DR EX-recognizer. 

A proof by tree induction shows that tfi = t<f>a for all t G F C ( X ) . Hence 
t G T(BJ if and only if t<{> G T(A) . This means that T ^ - 1 = T (B) is DR-
recognizaole. • 

According to Theorem 3.4 and Theorem 3.5, every 8(DRec{H, X ) ) satisfies the 
conditions of Definition 3.1. 
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Theorem S.6 The family 8{DRec) = {8{DRec(E,X))} is a variety of Z-tree 
languages. • 

4 B(DRec) is Properly Included in Rec 

Next we show that there is a recognizable tree language that can not be constructed 
from DR-recognizable languages by finitely many Boolean operations. The proof 
is based on the pidgeon hole principle and uses Corollary 2.6. 

In the beginning of this section we assume that E2 ^ 0 and that there are at 
least two variables in X, but later the results are generalized. 

A tree i € F^iJQ is balanced, if all its paths have the same length. Denote the 
set of all balanced £X-trees of height h by Bal(/i). 

Let <J € £2 and x,y € X. A balanced tree t € F^ jJX) is a left xy-tree, if 
hg(t) > 1 , {s e sub(f)|hg(s) < 1} C {cr(x,y),cr(y,x),x,y} and cr(x, y) does not 
appear in t to the right of an occurrence of o(y, x). Thus in a left xy-tree all its 
subtrees cr(x, y) are on the left-hand side and the subtrees a{y, x) are on the right. 
Denote the set of all left xy-trees of height h by BLxy(/i), where h > 1. Then 
BLxy(/i) C Bal(fc) n F { < r }(X). 

The trees in BLxy(y differ from each other according to where the leftmost 
subtree cr(y, x) occurs. This also determines how many subtrees cr(x, y) it has. We 
now denote the tree in BLxy(/I) with N — 1 subtrees CT(X, y) by b(h, N), and say that 
it has the leftmost subtree cr(y, x) at place n. The tree 6(3,4) is displayed in Figure 
1 later. 

A balanced binary tree of height h — 1 has 2h~1 leaves. When these leaves are 
then replaced by subtrees <T(X, y) and ER(y, x), the place for the leftmost subtree 
a(y,x) can be chosen in 2h-1 + 1 ways. So there exist 2 h _ 1 + 1 trees in BLxy(/i). 
Hence 

BLxy(h) = {b(h, n)|n = 1, . . . ,2h~l + 1}. 

We also need a mapping fi : BLxy(/i) —+ Bal(/i) which replaces the leftmost 
<r(y, x) by cr(x, x). If a tree has no cr(y, x) at all, then fi leaves the tree unaltered, 
i.e. fl(6(/i, 2h~1 + 1)) = b(h, 2h~1 + 1). Note that ii is an injection. 

Lemma 4.1 Let TB = {b(h, nx),. -., b(h, np ) } C BLxy(/i), where < n2 < • • • < 
np. Then 

n(TB\{b(h,np)))C A(TB). 

Proo f . Consider the tree ii(b[h, n,)), where 1 < t < p. At place n, it has a subtree 
<r(x, x), and this is the only place where it differs from the original tree b(h, n»), 
which has a subtree cr(y, x) at place n .̂ The tree b(h,np) has a subtree <r(x,y) at 
place n,. Thus Q(b(h,ni)) € A({6(/i, n,), b(h, np ) } ) C A [TB). • 

Lemma 4.2 Let 11 = b(h, ni) and t2 = b(h, n2), where ni < n2. Then 

ni < n < n2 implies n) € Atififtx), n(t2 ) } ) . 

Proo f . Consider a tree b(h, n), where ni < n < n2. Left to the place n it has only 
subtrees a(x, y) just like the tree fi(i2). At place n and right to it the tree b(h, n) 
has only subtrees cr(y,x) just like the tree n(tx). • 
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Lemma 4.3 Let o e E 2 ,x , y € X and T C F%(X). If no tree in T has a subtree 
o(x, x) and 

BLxy(h)\{b(h, l),b(h, 2 f c _ 1 + 1)} C T for all h>2, 

then T does not belong to 8(DRec(Z, X)). 

Proo f . Suppose that T e B(DRec(E, X)). Then there exist k,ni,... > 1 and 
languages Tiy e DRec(S, -X")(l < i < k and 1 < j < n,), such that 

T = (Tun^n-nrijU 

( r 2 1 n r 2 c 2 n - n r 2 c „ 3 ) U 

( r f c l n T f c c 2 n - n r f c c „ J . 

Denote m = maxi<j<k n .̂ 
For any h > 2, the forest BLxy(/i)\{6(/i, 1), b(h, 2 h _ 1 + l ) } is a subset of T and 

it has 2 h _ 1 — 1 elements. Choose then h. so big that 

2h~l - 1 > k(m + 1 ) . 

Then there exists an t € [l, fc] such that 

TB = (BLxy (h)\{b(h, 1), 2 / l—1 + 1)}) n ^ n ^ n - n Tfnt 

contains at least m + 1 trees. This means that \TB\ > n,- + 1. Note also that 
TB n Tij = 0, if 2 < j < n, . 

Consider the set fi(TB). Every tree in it has a subtree cr(x,x), so no tree in 
n(TB) belongs to T. Especially, no tree in n ( T 5 ) belongs to the set Tn n Tf2 n 

•nTfnr 
Let s = max{sj\b(h, s,) & TB}. By Lemma 4.1 

(l(TB\{b(h,s)}) C A (TB) C A (Tii) = Ti i . 

We can not have n, = 1; otherwise Tn = Tn D T^ fl • • • D Tfn. and the trees in 
Cl(TB\{b(h,s)}) would belong to T. Thus we assume n̂  > 2. Also we can deduce 
that no tree in Cl(TB\{b(h, s)}) belongs to T?2 n • • • n Tfn.. 

The injectivity of CI implies that \il(TB\{b(h, a)})| = ¡2\B\{6(/i, s)}\ = \TB\ -
1 > rii. This means that in TB\{b(h, s)} there are two trees t\ = b(h,si) and 
t2 = b(h, s2), where si < s2 , and one set T.- of the sets T^,... ,Tfni such that 
n(ti) , fl(t2) £ T^. In other words, i i( i i) , n(t2) <E TiS. By Lemma 4.2 

t2 = b(h,s2) e A ( {n ( i i ) , fi(t2)}) c A(Iiy) = Ti,: 

On the other hand, t2 S TB\{b(h, a)}. Thus TBnTiy / 0, which is a contradiction. 
This means that T does not belong to the Boolean closure of DR-recognizable 

languages. • 
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Next we study the case where there are no binary operators. Let r be an m-ary 
operator for some m > 2. First we expand the trees in BLxy(/i) by the following 
mapping $ : F M ( X ) - F{T][X) : 

(1) $(x) = i f o r a U i e X a n d 
(2) « ( * (t l t ta)) = r(«(*i) , * ( t a ) , x , . . . , x). 

In fact, $ is a linear tree homomorphism, but more importantly it is an injection. 
Moreover, it preserves the height of a tree, and the subtrees of $(BLxy(/i)) of height 
1 are in the set {r(x, y, x,..., x), r(y, x, x , . . . , x)}. The effect of $ is illustrated by 
Figure 1. 

X y X y \/ \/ 
a \ / G 

a . 

x y y x \ / \ / 
xyxx xyxx 
a n w 

x x x x 
X 

xyxx yxxx 
A N w 

Figure 1. The effect of $ on the tree 6(3,4). 

Lemma 4.4 Let m > 2,r 6 E m , x , y e X and T C ^ ( X ) . If no tree in T has a 
subtree T(X, x, x,..., x) and 

$(BLxy(A))\{$(i(fc, 1)), $(6(/i, 2h~l + 1))} C T for all' h> 2, 

then T does not belong to 8(DRec(H, X)). 

Proof . We repeat the proof of Lemma 4.3 using the modified mapping Q : 
$(BLxy(/i)) —• $(.?£(X)), which is defined to replace the leftmost r(y, x,x,..., x), 
by T(X, x, x,..., x). If a tree does not have a subtree r(y, x, x...., x), then H leaves 
it unchanged. Abo now 0 is an injection in the set $(BLxy(/i)). 

Throughout Lemma 4.1, Lemma 4.2 and Lemma 4.3 the trees $(6(/i, n)) are 
used instead of the trees 6(h,n). The proofs of the first two lemmas consider only 
the ordering of the leaves of subtrees of height 1, and from this point of view the 
trees b(h, n) and $(6(/i, n)) are essentially the same. 

Lemma 4.3 is based on the fact that BLxy(/i) can always be chosen sufficiently 
large by increasing h. Because $ is an injection, the number of trees in $(BLxy(/i)) 
have the same property. Otherwise the rest of the proof continues identically to 
the proof of Lemma 4.3. • 
Theorem 4.5 / / E ^ E0 U Ei and |X| > 2, then B[DRec(E,JQ) is properly 
contained in Rec(S, X). Hence, B(DRec) is a proper subvariety of Rec. 

Proof . If r 6 E m , where m > 2, and x, y € X, then the EX-tree language 

T = {t|{sesub(t)|hg(s)< 1} 

= Mx,« / , x , . . . , x ) , r ( y , x , x , . . . , x ) , x , y } } 

is recognizable, and it satisfies the conditions of Lemma 4.4. Thus it distinguishes 
the families B(DRec(E, X)) and Rec(E, X) . • 
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5 B(DRec) and Other Varieties 
In this section we define the tree language varieties D, RD, GD, Nil and Loc and 
compare B(DRec) with them. 

The inclusion relation of varieties is defined componentwise: if V = {"V(X)} 
and U = (Z/(X)} are varieties and V(X) C U (X) for every alphabet X , then we 
write V C U. The trivial variety Triv = { { 0 , F E ( X ) H and the variety Rec -
{Rec(E, X ) } of all recognizable languages awe the smallest and the largest tree 
language varieties and Triv C BlDRec) C Rec. The intersection of varieties U and 
V is U n V = {U(X) n V ( X ) } . 

Definite, reverse definite and generalized definite tree languages were defined by 
Heuter [Heu89b] and shown to form varieties by Steinby [Ste92j. 

Definite tree languages. In a definite tree language the membership can be 
tested by looking at the nodes near the root. These nodes form a part of a tree 
called the A:-root. 

The jfc-root rk(t) e F E ( I u E ) u {e} of a tree t G F^(X) is defined as follows: 

(1) r0 (t)=s 
(2) ri(t) = root(t) 
(3) Let k > 2. 

a) If hg(i) < k, then rk(t) = t. 
b) If hg(t) > k and t = ff(ti,..., i m ) , then 

rk{t) = cr(r f c_1(t1) , . . . ,r f c_i(tm)) . 

The special symbol e ^ X l l S means the empty tree. 
For example, the k-roots of a tree t = cr(cr(x, 7), y) sire r0(t) = e, r^i) = a, 

r2(t) = cr(cr, y) and rk(t) — t for all k > 3. 
Let it > 0. A forest T C Fz(X) is k-definite, if for all trees s, t g ^ ( X ) , 

( t S T and = rfc(t)) imply s e T. 

The family of all fc-definite EX-languages is denoted by D(k, X) . We write D(k) = 
D(k, X ) } . On the other hand, the family of definite ¿-tree languages is D = 
D(X) } , where D(X) = \Jk>0D(k,X). 

For example, the language (cr(x, y), cr(y, x)} belongs to D(2,X). Note that 
according to Lemma 2.1 it is not DR-recognizable. 

The definition of D(k,X) can be rephrased by means of a congruence 9k of the 
term algebra / e ( X ) which is defined so that, for any EX-trees s and t, 

s8kt iff rfc(s) = rfc(i). 

A EX-tree language T is A-definite iff it is saturated by 8k, i.e. T = TOk. 
The members of a i^-class have all the same k-root, which fully determines 

the class. For a fixed k, there are only finitely many fc-roots, and therefore the 
congruence 8k is finite. 

Reverse definite tree languages. To see whether a tree belongs to a reverse 
definite tree language only its subtrees lower than given height need to be known. 

Let h > 0 and t G FS[X). Denote by 

Sh(t) = (a esub(i)|hg(s) < /1} 
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all the subtrees of t of height at most h— 1. A EX-tree language is reverse h-definite, 
if for every s,t € Fe (X) , 

(i 6 T and Sh(s) = 5h(t)) imply s € T. 

For example, if t = a(u)(x),a[x,v)), then S0[t) = 0 ,Si( i ) = { x , y } ,S 2 ( t ) = 
{ w ( x ) , a ( z , í / ) , i , y } a n d 5 3 ( t í = 5 4 ( t ) = - = á u b ( í ) . 

Let h > 0. The set of all reverse /i-definite EX-languages is RD[h,X). Also 
we denote RD[h) = {RD(h,X)}. The family of áll reverse definite E-languages is 
RD = {RD(X)}, where RD(X) = (Jh>0 RD(h, X). 

As in the case of definite languages there exists a finite congruence 6 h of ( X ) 
that characterizes the reverse definite EX-tree languages. This relation is defined 
so that, for any s,t £ F j (X) , 

sBht iff Sh(s) = Sh{t). 

Now a tree language is reverse /i-definite if and only if it is saturated by 6h. 

Generalized definite tree languages. A tree language is generalized definite, if 
for some h, k > 0, the membership of a tree is determined only by the tree's fc-root 
and its subtrees of height less than h. 

For h,k>0 and EX-trees s and t, the relation 8 £ is defined so that 

s8Ít iff (Sh ( s ) = Sh(t) and rfc(s) = rfc(t)). 

Then is a finite congruence of 7D(X). 
A forest T Ç Fe (X ) is generalized h,k-definite if and only if for all s, t 6 F^(X), 

(teT and s6kt) imply s S T. 

Again, a tree language is generalized h, fc-definite if and only if it is saturated by 
the congruence 

The family of all generalized h, fc-definite EX-tree languages is GD(h,k, X ) . 
Then we write GD(h,k) = {GD(h, k, X ) } . Also 

GD(X) = U ( J GD(h,k,X). 
h>0k>0 

Now GD = {GZ>(X)} is the family of all generalized definite EX-tree languages. 

Comparison between definite varieties and B(DRec). It is easy to see that 
D(0) = RD(0) = GD(0,0) = Triv. For the general case, the connections be-
tween definite, reverse definite and generalized definite tree language families are 
established by 

Theorem 5.1 [Ste92], Leth,k>0. Then 

( / ) M 
M OB 
(S) RD 
(4) GD 

GD 
(5) GD 
(6) GD 

, RD(h),GD(h,k) and D, RD,GD are tree language varieties, 
Ç d\i\ Ç - CDC Rec, 

0) Ç RD{ 1) Ç-ÇRDC Rec, 
0,k 
h,0 
h, k' 
h, k' 

= D D{k), 
RDlh), 

Ç GD(h + 1, A;) D GD(h, k + 1) and 
C GDC. Rec. 
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If So = 0 and the ranked alphabet S is unary, then every forest is closed under 
A-operation, and DRec = Rec. Thus D, RD and GD are all included in B(DRec). 
That the inclusion is proper can be seen by considering the forest Ti = {i,- | i is 
even}, where 

(1) to = x and 
(2) tn+i = cr(tn). 

The language Tx is DR-recognizable, but it does not belong to any of 
D(k, X), RD(h, X) or GD{h, k, X) for any h, k>_0. 

if S is trivial, then the construction of inclusions of Theorem 5.1 collapses and 
Rec = GD{0,1) = GD(1,0) = GD(h, k) for all h, k ^ 1. 

We show now that for any S with So = 0 the varieties G D ( l , A;) for every k > 0 , 
and hence, also varieties D and iZ£)(l) are contained in B(DKec). 
T h e o r e m 5.2 Let S 0 = 0. For all k > 0, the variety GD(1, k) is included in 
B(DRec). 

P r o o f . Let X be an alphabet, k > 0 and T G GD( 1, k, X). Because T is saturated 
by 6 i t is the union of some ^¿-classes. This union is finite, since 0£ is finite. 
Therefore it suffices to show that any 0£-class belongs to B(DRec(S,X)). 

For t G JePO . let t$l be the &}.-class of t. Because t$l = td1 n tdk, we will 
prove t&l G B(DRec(E,X)) by studying tO1 and tdk separately. 

Firstly, the class tOk is recognizable. If s £ A(t0fc), then rk(s) = r^(i). So 
s G tdk. This means tdk is also DR-recognizable. 

Secondly, the trees in a i1-class have the same set of leaves, which the A-
operation can only reduce. Thus td1 can be written in the form 

tO1 = 1)|leaf(a) C leaf(i)}. 

The sets Aftfl1) are DR-recognizable. Namely, if the leaves of t are all the same, 
say leaf(i) = { x } , then Aftfl1) = {a | leaf(a) = { x } } = td1 is recognizable. But if t 
has at least two different leaves, then 

A ^ 1 ) = (J{u0 l|leaf(u) C leaf(i)} \ {a| |<5(a)| = 1}, 

where both the union of ^-classes and the set of chains {s||5(a)| = 1} are rec-
ognizable. This means that tB1 G B(DRec(E,X)). Hence, T G B(DRec(S,X)). 
• 

Next we show by generalizing the previously mentioned forest Ti that the in-
clusion of Theorem 5.2 is proper, if S is not trivial. 

Let x G X and a G E m , for m > 1. For each t > 0, we define the special trees 
a' so that 

(1) - e. 
(2) a1 = x , . . . , x) and 
(3) a n + 1 = sn x , . . . , x). 

Note that the superscript t indicates the height and also the number of cr-nodes 
in a*. The forest T = { z a* | t is even} is DR-recognizable, since A ( T ) = T. 
Lemma 5.3 shows that it is not generalized definite and thus neither definite nor 
reverse definite. 
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Lemma 5.3 The forest T = {x s' | t is even } is not generalized h,k-definite 
for any h, k > 0. 

Proo f . Assume that there exist h,k> 1 such that T g GD(h, k, X). Now t = x j 
s2h + 2k g J, j t8 Jfc_roo(. Jg = a.(3k-l an(J _ { j ; ^ a»' | i' = 0,1, . . . , / i - l } . 
On the other hand, the tree u = x •( s2h+*k+1 has the same k-root as t and the 
same set of subtrees of height at most h — 1. Therefore u belongs to T, which is 
contrary to the definition of T. 

If T g GD(h,k, X) for h < 1 or k < 1, then T g GD(h, k,X) for h,k > 1 by 
Theorem 5.1 (5). Thus the claim holds for all h, k > 0. • 

As a result we get 

Theorem 5.4 If E ^ 0, E0 = 0 and h, k > 0, then 

(1) DcB[DRec), 
(£) RD(1)C B{DRec), 
(S) GD(l,k) c B(DRec), 
(4) B(DRec) % RD(h), 
(5) B(DRec\ g GD(h, k), 
(6) B (DRec) g RD and 
(7) B(DRec) g GD. • 

To see that RD and GD are not included in B[DRec) we recall the language T 
of Theorem 4.5: 

T= {tgFE(X)| S2{t) = {T(x,y,x x),r(y,x,x,...,x),x,y}}. 

Now T is a reverse 2-definite tree language, and thus also a generalized definite 
tree language. Since T does not belong to the Boolean closure of DR-recognizable 
languages, we have the following 

Theorem 5.5 Let E / E0 U £ i . For h > 2 and k > 0, we have 

(1) RD(h) g B(DRec), 
(2) GD(h, k) g B(DRec), 
(8) RD g B (DRec) and 
(4) GD g B[DRec). • • 

Finite and cofinite tree languages. The tree language family Nil = 
is a variety of E-tree languages [Ste92l, where the family Nil[X) consists of all 
finite and cofinite EX-tree languages. This variety is contained in both D and RD 
and it itself contains Triv. 

Theorem 5.6 The variety Nil is contained in the variety B(DRec). The inclusion 
is proper if and only if E ^ EO- • 

Local tree languages. Local tree languages are the languages in the Boolean 
closure of strictly local tree languages. The membership of a tree in a strictly local 
language is determined, when the root and the forks of a tree are known. 

The forks of a tree t g Fj^(X) form a set fork(t) defined as follows: 

(1) If t g E0 U X, then fork(t) = 0. 
(2) If i =<T(tu...,tm), then 
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fork(i) = {<r(root(ti),... ,root(tm))} U |J fork(ii). 
•=i 

The set of all forks in EX-trees fork(E, X) is 

fork(E, X) = (J{fork(t) | t e F E ( X ) } . 

For example, the forks of t = ER(W(x), <R(x, J/)) are <R(W, CT), W(X) and CT(X, y). 
A forest T C Fz (X) is local in the strict sense or strictly local, if there exist a 

set of forks F C fork(E, X ) and a set of roots R C E U X such that 
teT iff (fork(t) C F and root(i) 6 R). 

Then we write T = SL(i2, F). 
For example, the languages L\ = {<7' | i > 1} and L2 = {c« | i > 1}, where 

cr* and a, denote the trees 

cr° = x, cr0 = x, 
and 

cxn+1 = o(on,x) crn+1 = cr(x,on), 

are local in the strict sense: they could be defined as L\ = SL({cr}, (cr(cr, x ) ,a( i , x)}) 
and L2 = SL({cr}, {cr(x, cr), cr(x, x)}) as well. But their union L = Li U L2 is not 
strictly local. Namely, though the tree cr(x, cr(cr(x, x), x)) has o as root and the 
forks of it are all forks of trees in L, it does not belong to L. 

On the other hand, the intersection Ti n T2 = SLiiZi n R2.Fi n F2) of two 
strictly local tree languages Ti, = SL(iZx, Fi) and T2 = SL(E2 ,F2) is strictly local. 
Note also that 0 = SL(0, 0) and F£(X) = SL(E U X , fork(E,X)) are strictly local. 
However, the previous remarks imply that the complement of a strictly local tree 
language is not always strictly local. 

A forest T C (X) is local, if it is built from local forests in the strict sense 
by using finitely many Boolean operations. The family of local E-tree languages is 
Loc = {Loc(X)}. 

The local forests in the strict sense and thereby the local forests are recognizable 
[GS84]. Furthermore, Loc is a tree language variety [Ste92]. 

Next we show that also the local tree languages have a characterizing family of 
congruences. It is easy to see that the relation 6 defined by 

s8t iff (root(a) = root (t) and fork(s) = fork(i)) 

is a finite congruence. 
Lemma 5.7 Let L C F^(X). Then L is local if and only if 8 saturates L. 
Proof . Let L e Loc(E, X) . Then there exist k > 1 and n > 2 such that L can be 
written in the form 

L = ( I n n Lfa fl • • • n JtfJ U 
(I21 n ¿22 n • • • n L%n) U 

{LklnLck2n-nL'n), 
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where for every 1 < t < k and 1 < j < n, L,y e SLf/i,/, 
Let t 6 L0. Then there exists an I E L such that root(t) = root(/) and fork(i) = 

fork(/). Now 
leLa n Lf2 n • •• D Lfn 

for at least one » E [1, A:]. Because I E L,n. then also t E The reason why 
I Lij for a 2 < y < n must be either root(Z) & J2,-y or fork(i) g F.-y. In both cases 
also t £ Lij. Together this means t e l . So L = L9. 

Conversely assume L = L9. This means that L is the union of some 0-classes. 
To show that L is local one only needs to verify that any d-class is local. It is, 
because if / € L, then 

19 = SL(root(/),fork(Z))\lJ{SL(root(/),.F)|.F c fork(i)}. 

• 

Now we are ready to compare Loc with DRec and B(DRec). 

Theorem 5.8 7/E ^ EQ, we have 

(1) DRec <£ Loc, 
(£) 8 (DRec) g Loc, and 
(S) Loc C Rec. 

Proof . Let x G X U £o and a € £ m for m > 1. The DR-recognizable forest 
T = {cr(cr(x,..., x), x,..., a:)} is not local, since 9 does not saturate it. • 

The tree language T\ — {a(x, y), a(y, i ) } is not DR-recognizable by Lemma 2.1, 
but clearly it is local. Hence, Loc g DRec. However, T\ does belong to the Boolean 
closure of DR-recognizable languages. So the question now is, whether this holds 
for all local languages. For this purpose we consider the following language. 

Let a 6 E m , where m > 2, and x,y E X. Define F as the set of forks F = 
{a ( f f , a, x,..., x),a(x, y,x,..., x),a(y, x, x,... ,x)}. Then the forest SL({CT}, F) sat-
isfies the conditions of Lemma 4.4 and thus does not belong to the Boolean closure 
of DR-recognizable languages. This leads us to 

Theorem 5.9 Let E ^ E0 U Ei. Then 

(1) Loc % DRec and 
(2) Loc g 8(DRec). • 

If E is unary and £o = 0, then Loc is contained in DRec = Rec. Theorem 5.8 
shows that this inclusion is proper. But if E is trivial, then every language is local 
and Loc = DRec = Rec. 

Figure 2 shows the inclusion relations of varieties for Eo = 0. If also E ^ EoUEj, 
the inclusions are proper and those varieties not connected are incomparable. 

Acknowledgment I am grateful to Professor Magnus Steinby for his expert guid-
ance and valuable suggestions during the course of this work. 
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Figure 2. Comparation of studied varieties. 
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A Queuing Model for a Processor-Shared 
Multi-Terminal System Subject to Breakdowns 

B. Almasi* 

Abstract 
This paper deals with a non-homogeneous finite-source queuing model to 

describe the performance of a multi-terminal system subject to random break-
downs under PPS (Priority Processor-Sharing) service discipline. It can be 
viewed as a continuation of paper [l], which discussed a FIFO (First-ln, First-
Out) serviced queuing model subject to random breakdowns. All random 
variables are assumed to be independent and exponentially distributed. The 
system's behaviour can be described by a Markov chain, but the number of 
states is very large (it is a combinatorically increasing function of the number 
of terminals). The purpose of this paper is to give a recursive computational 
approach to solve the steady-state equations and to illustrate the problem in 
question using some numerical results. 

1 The Model 
This paper deals with a terminal system consisting of n terminals connected with a 
Central Processor Unit (CPU). The user at the terminal t thinks for random times 
and generates jobs to the CPU. The think times are assumed to be exponentially 
distributed with mean The required running times of jobs of terminal t are 
exponentially distributed random variables with mean (assuming, that the jobs 
use the whole capacity of the CPU). The jobs staying at the CPU are serviced in 
parallel using the PPS scheduling strategy (see [2,3]). Each terminal has a positive 
weight, denoted by w,• for terminal t(t = 1 , . . . , n), and if there are s(l < s < n) jobs 
at the CPU from the terminals j\,..., js then the job of the terminal jr(r = 1 , . . . , s) 
is serviced at rate 

"3 r 
E. t 

that is, the processing intensity is W}r(ji,..., jt)Hi, for the job of terminal jr. Let 
us suppose that the CPU is subject to random breakdowns stopping the whole 
system. The failure-free operation times of the CPU are exponentially distributed 
random variables with mean —. The restoration times of the CPU are exponentially 

'Department of Mathematics, University of Debrecen, Debrecen P.O.Box 12, H-4010, Hungary 
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distributed with mean j . The busy terminals are also subject to random break-
downs not affecting the system's operation but stopping the work at the terminal. 
The failure-free operation times of busy terminals are supposed to be exponen-
tially distributed random variables with mean for terminal t. The repair times /1 
of terminal t are exponentially distributed random variables with mean j - . The 
breakdowns are serviced by a single repairman according to FIFO discipline among 
terminals and providing preemptive priority to the failure of CPU. We assume that 
each terminal sleeps while its job is serviced by the CPU, that is, the terminal is 
inactive while waiting at the CPU, and it cannot break down. All random variables 
involved here are assumed to be independent of each other. 

On the one hand this paper is a generalization of the non-homogeneous PS 
model discussed in [4] (which allowed only CPU failures], on the other hand it 
further generalizes the homogeneous model treated in [5] (which allowed both ter-
minal and CPU failures). This paper is the continuation of [l] where the FIFO 
discipline was discussed (instead of PPS) and we build a new non-homogeneous 
model and solve the steady-state equations recursively by using a similar compu-
tational approach as in [lj. In equilibrium the main performance of the system, 
such as the mean number of jobs residing at the CPU, the mean number of func-
tional terminals, the expected response time of jobs, and utilizations are obtained. 
Finally it is investigated - by using some numerical results - how breakdowns affect 
the performance characteristics and the results of [1] are compared with ours. 

2 The Mathematical Model and a Computa-
tional Approach 

Let us introduce the following random variables: 

f 1, if the CPU is failed at time t, 
0 otherwise. 

the failed terminals' indices at time t in order of their failure, 
or 0 if there is no failed terminal, 

the indices of jobs staying at the CPU at time t in lexicographically 
increasing order, or 0 if there is no job at the CPU. 

It is easy to see that the process 

M(t) = (X(t),Y(t),Z(t)), 

is a multi-dimensional Markov chain with 3 vector-components and with state space 

s = {(9l*i,---,*k]ji,---,3s), 9 = 0,1; k = 0, . . . , n ; a = 0 , . . . , n - k), 

where 

(»1, • • •, *fc) is a permutation of K objects from the numbers 1 n o r O , 
if k = 0, 

X(t) = 

Y{t) = 

Z[t) = 
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(ji,..., j,) is a combination of s objects from the remaining n — k numbers or 
0, if s = 0. 

The event (g;t ' i , . . . ,ik'>3h • • • >J«) denotes that the operating system is in state 
X(t) = q, there are k failed terminals with indices t i , . . . and there are s jobs 
with indices j\, at the CPU (tr ^ ji, r = 1 , . . . , k\ I = 1 , . . . , a). 

The reader can easily verify that the number of states is 

n k , 
n! 

d i m i S ) ^ ^ ^ 
fc=o »=o v ' 

Let us denote the steady-state distribution of (M(t ) , t > 0) by 

p(q;ii,---,ik]ji,..-,j.) = lim p(X( i ) = q;Y(t) = i1,...,ik;Z(t) = ji,...,j.), 
t—*oo 

which exists and is unique (see [6]) because of all the rates are assumed to be 
positive. For brevity let us introduce the following notation: 

K,r(q;ii,...,ik;3I,•••,}») = P(T,*i• • • • • *'FC;j'i,• • •,3>). r = l , . . . , s . 

Since we study the steady-state behavior of the Markov chain M(t), following [6], 
we can start with the statement 

Average rate of leaving state (9; t x , . . . , t'fc ; , . . . , j, ) = 

= Average rate of entering state (<7; 11, . . . , ; ji,..., j, ), 

that is, we can build the global balance equations for p(q*i,..., ]\,..., j,) by 
using the rules discussed in Section 1: 

s 

( a + r ç , + ( A r + 7 r ) ) p ( 0 ; ¿1, • • •, ù ; > • • •, j»)+Y1 k > ( 0 ; l'i> • • • > **'< n, •••, ] , ) = 
rjii'l,...,«», r = 1 
r^Jl J. 

+ H r ' li> • • • >**! Ji, • • •,3.) + K r ( 0 ; ù , . . . , . . . , r , . . . , ; , ) ) + 
r & l , ...,»* 
»•/j I,...,}', 

a 

+nkp{0;ii,.. .,ik-i\3i,- • • ,3.) + »1. • • • .ù; jï. • • -.ir-i.jr+i, -••,;«), 
r = 1 

for all» ! , . i l l - • - , y » ; k = 0 , . . . ,n;s = 0 , . . . ,n - A:, 
^p ( l ; » ! , . . . ,tfc; J i , . . . ,j.) = ap(0;t'i,...,ik]3I,••• ,3»), (2) 
for all » ! , . . . , t'/tiji,.. .,j,;k = 0 , . . . , n ; s = 0, . . . , n - A:, 

where the probabilities of meaningless events and coefficients are defined to be zero. 
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For k = 0 and s = 0 ijt (and jB) are not defined, so for example the element 
r/ikp (0 ; t ' i , . . . , t fc_i ; j i , • • • , ] , ) has no meaning, so it is defined to be zero, we have: 

n n n 

(a + , + 7 , ) )p( 0; 0; 0) = pp( 1; 0; 0) + £ W p(0 ; 0; t) + £ np(0; t"; 0). 
¿=i ¿=1 i = i 

The system of equations will be simpler if we substitute Equation (2) to Equation 
(1). Namely, we have 

(*U + £ (Ar+7r))p(0 ; t ' i , . . . , t ' f c ;yi j.) + 

r^ll,•••,]. 
8 

+ £ Ki'(0' j i » " - > j») = 
T = 1 

= £ (r<-p(°ir»«1»• • • . J i . • • • >;») + tfr(0;t'i,.• •.*kik,• • •.r,...,j,)) + 
r /M ifc 

t 
+ £ Ayrp(0;t'i,. . . . t ' f c j j i , . . . , > _ 1 , Jr+1, • • • ,y ,) , 

r = 1 

for all t'i » fc j j i , . . . ,y,; A: = 0 , . . . , n\ s = 0 , . . . , n - k, (3) 

Pp( 1; t ' i , . . . , tfc; , . . . , j , ) = ap(0; 11 , . . . , t'fc; j i , . . . , j , ) , (4) 
for all t 'x,. . . , t'fc; j\,..., y„; k = 0 , . . . , n; s = 0 , . . . , n - k. 

The purpose of this paper is to solve this system subject to the normalization 
condition 

1 n n — k 
£ £ £ p ( < ? > M = i, 
q=0 k=0 »=0 

where 

(u ifc)ev*(ii y.) €c;_ f c 

V* : The set of all (t ' i , . . . ,»*) (sis defined above), 
C'n_k : the set of all ( j i , . . . , j») (as defined above). 
Such a system of linear equations could easily be solved by standard compu-

tational methods, e.g., by Gauss- elimination. But we must not forget that the 
unknowns are probabilities and therefore - since the state space is very large - the 
round off errors may have considerable effect op them (see [7,8,9]) and when us-
ing computer programs to solve the system of equations, the whole matrix of the 
equations cannot be stored in a personal computer if n > 3. It is more efficient to 
use a recursive computational method to determine the steady-state probabilities, 
as described in the following section (first it was proposed by Tomko [10]). 
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3 The Recursive Solution 
Let Y_(m) be the vector of the stationary probabilities for the states where the 
operating system is working, there are k failed terminals, and s = m — k jobs are 
waiting at the CPU ((A: = 0 , . . . , m), m = 0 , . . . , n). That is, 

( p(0; 1 , . . . , m — 1, m; 0) \ 
p ( 0 ; l , . . . , m - l , m + 1 ;0) 

p(0 ;n , . . . ,n - m + 1;0) 
p(0; 1 , . . . , m - 1; m) 
p ( 0 ; l , . . . , m - l ; m + l ) 

p(0; n , . . . , n — m + 2; n — m + l) 

Y(m) = 

V p ( 0 ; 0 ; n - m + l , . . . , n ) 

In words, the elements of F(m) are written in lexicographically increasing order 
of indices 

1./ for k — m and s = 0, 
2./ for k = m — 1 and s = 1, 

m + 1./ for k = 0 and s = m. 

Similarly, let Z_(m) be the vector of stationary probabilities alike Y_(m), but 
for the states, where the CPU is failed. From the definition it is obivous that the 
dimension of r ( m ) and Z(m) is £7=0 ( „ J ^ ; , , -

Using these notations Equations (3), (4) can be written in matrix form as 

no) = qomi), 
yU\ = cU)Y(j + 1) + D(j)Y(j - 1), 

z(j) = F(j)Y(j), j = 0,... ,n. 

l , . . . , n - 1, 
(tttl 

The dimension of the matrices are / d(j) = Yll=o (n-))\,\/ : 

F(j) : d(j) x d(j), C(j) : d(j) x d(j + 1), D(j) : d(j)x'd(j - 1). 
The elements of all the matrices can be obtained from the Equations (3). (4). For 

example we can use Equation (4) to obtain the elements of matrix F(k + s)(k + s = 
0 , . . . , n) : The element p(l ; t ' i , . . . j\,..., j,) of Z(k + s) can be obtained from 
the element p(0;»'i,...,*jt; Ji j,) of Y(k + s) by multiplying it with j . That is, 
the matrix F(k + s) contains non-zero elements only in its main diagonal, and this 
non zero element is the constant value p 

Similarly, we can use the second line of Equation (3) to build the matrix C(A:-f-s), 
and the third line to determine the matrix D(k + s)(k + s = 0 , . . . , n). 

Applying these notations we can state our main result: 
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Theorem 3.1 The solution of the Equations (i)-(iv) can be given in the form 

m = F t i ) Y U ) , 3 = 0 , . . . , » , (5) 

where L(n) = D(n), L(j) = (I - C(j)L(j + l))"1!^'!, j = 1,..., n - 1, so the 
system of equations can be solved uniquely up to a multiplicative constant, which 
can be obtained from the normalization condition. 

Proof . As a starting point of our proof we can observe that equation (iv) is 
identical with the second equation of (5). 
In virtue of equation (iii) 

H(n) = L(n)Y(n - 1). 

Assuming that Y_(j + 1) = L(j + l)Y(y), from (ii) we have 

Y(j) = C(j)L(j + l )H( j ) + DV)Y(j - 1). 

By simple calculation we obtain that 

(/ - C(j)L(j + l))Y(j) = D(j)Y(3 - 1), 

YU) = (/- C(j)L(j + 1 ))-lDU)W ~ 1). 

w ) = m w - 1 ) . 

which completes the proof. 
Now we can start the recursion with any initial value denoted by y ' (0 ) 

and the non-normalized p'[q]ii, • • •,ik) 3h • • • > 3») elements of Yl(ro), Zl_(m)[m = 
0 , . . . ,n ) , can be obtained. We can calculate the steady-state probabilities from 
YIX171)i (m = 0 , . . . , n), by using the normalization condition as follows 

Y(m) = S ) 
Z)?=o o S«=o 53ji,...,y,ec*_. p'(9;*i.- • • i tfcl3i> • • • 13») 

YLi 

Z(m) = 
¥№ 

Z)g=o Sfc=o S , = o P'(9>*I> • • • i*fcî3h • • •,3») 
£X 
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4 Performance Measures 
We derive the steady-state characteristics from the steady-state probabilities be-
cause the model is too complicated to derive the characteristics directly from the 
parameters (n, a, ft,...). Some of these characteristics will be calculated in Table 
1-5 (for n = 4 and n = 3) as examples. We can use these numerical results to 
investigate how parameters influence the characteristics. 

We employ the following usual notation: S(i,j) = 1, if t = j, (and 0 otherwise). 
The steady-state characteristics: 

(i) Mean number of jobs residing at the CPU 

1 n n—k 
= E E E aP(*> k ' 3)" 

»'=0 k=0 «=0 

(ii) Mean number of functional terminals 

1 n n - f c 

=n - E E E fcp(*> k< *)• 
i=0 k=0 »=0 

(iii) Mean number of busy terminals 

n n — k nb = E E (n ~ k ~ s)p(0, k> 
k=0 «=0 

(iv) Utilization of repairman 

n n—k n n—k Ur = E E p(l, *>«) + E E k>3)-
k=0»=0 k=l»=0 

(v) Utilization of CPU 
n —1n~ k 

ucpv = E Ep(°'fc>s)-
fc=0 « = 1 

(vi) Utilization of terminal t"/t = 1 , . . . , n / 

n n—k k a 

fi = E E E Ei1 ~ *(*»*'•) - *(»'. *))p(°;»i. • • • .«'*; n, • • -,}.)• 
k=0 » = 0 r = l o = l 

(vii) Expected response time of jobs for terminal »/» = 1 , . . . , » / 

_ _ E ? J o E ' = i ^ ( t " . i r ) p ( g ; » i , • • • J i , - - ] ' . ) 
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5 Numerical Results 
The algorithm described above was implemented on an IBM PC/AT in FORTRAN. 
We show several examples to illustrate how breakdowns influence the characteris-
tics. The running times were at about 50 seconds for n = 4 (Table 1-3), and 2 
seconds for n = 3 (Table 4-5). If we compare these results to the ones described in 
[1,10] we can see how scheduling strategy influences the characteristics. 

Case 1. Failure free system (See [10]). 

n = 4 a = 0.0001 ß = 9999.0 
nj = 2.195 fig = 4.0 UCPU = 0.906 

t A i Mi 1i n U>i Ui Ti 
1 0.500 0.900 0.0001 9999.0 1.0 0.429 2.658 
2 0.400 0.700 0.0001 9999.0 1.0 0.423 3.405 
3 0.300 0.600 0.0001 9999.0 1.0 0.452 4.045 
4 0.200 0.500 0.0001 9999.0 1.0 0.500 4.998 

Table 1. 

This case will be the starting point of our investigation. It can be used to test 
the results and to approximate a failure-free system described in [10]. The differ-
ence between these results and the ones in [10] is less than 0.01 for all calculated 
characteristics. The difference can be derived from the different calculating circum-
stances (e.g. different computer and programming language). On the other hand 
this case only approximates a failure-free system. 

Case 2. Terminal failure. 

n = 4 a = 0.0001 ß = 9999.0 
n ) = 1.253 ng --= 2.58 UCPU = 0.666 

t A< li Ti W I UI TI 
1 0.500 0.900 0.3200 0.4500 1.0 0.283 2.133 
2 0.400 0.700 0.1700 0.3400 1.0 0.335 2.602 
3 0.300 0.600 0.2200 0.5000 1.0 0.336 3.138 
4 0.200 0.500 0.1600 0.3000 1.0 0.373 3.842 

Table 2. 

In this example we can see how terminal failures influence the performance 
measures. The response times and the number of good terminals are less than in 
Case 1. That is, the system works as if there were less terminals. 
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Case 3. CPU failure. 

n = 4 a = 0.25 ß = 0.45 
ny = 2.195 na = = 4.0 UCpu = 0.583 

t A< Pi 7 i Ti Wi U{ Ti 
1 0.500 0.900 0.0001 9999.0 1.0 0.276 4.135 
2 0.400 0.700 0.0001 9999.0 1.0 0.272 5.296 
3 0.300 0.600 0.0001 9999.0 1.0 0.290 6.292 
4 0.200 0.500 0.0001 9999.0 1.0 0.321 7.775 

Table 3. 

If we compare these results with Case 1, it can be seen, that the failure of the 
CPU increases the response times and decreases the utilizations, as one can expect. 

It seems, that the FIFO (see in [l]) and the PS discipline gives nearly the same 
results investigating the influence of terminal breakdowns. We got greater CPU 
utilization in this model than in 111 (for each case). This is the reason why this 
model is more sensible to the CPU breakdowns (see the response times in Case 3). 

Case 4. PPS system (see [3]). 

n = 3 a = 0.0001 ß = 9999.0 
ny = 1.028 ng = 3.0 UCPU = 0.675 

t Ai Y-I 7 i n U>I U{ Ti 
1 0.200 0.400 0.0001 9999.0 1.0 0.508 4.831 
2 0.200 0.600 0.0001 9999.0 5.0 0.666 2.498 
3 0.200 0.800 0.0001 9999.0 125.0 0.796 1.277 

Table 4. 

This case can be used to test the algorithm (and the computer program) dis-
cussed above. A failure-free PPS system (described in [3]) is approximated by this 
example. The results are exactly the same as in [3]. 

Case 5. PPS system with CPU failure. 

n = 3 a = 0.1000 ß = 0.7000 
ny = 1.028 n g = 3.0 UCPU = 0.591 

i A, Pi 7 i n Wi Ui Ti 
1 0.200 0.400 0.0001 9999.0 1.0 0.445 5.521 
2 0.200 0.600 0.0001 9999.0 5.0 0.583 2.855 
3 0.200 0.800 0.0001 9999.0 125.0 0.696 1.459 

Table 5. 

This case shows, that the more a terminals uses the CPU (or the CPU's queue) 
the more the response time increases with the CPU failure. 
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Case 6. PPS system for n = 5. 

n = 5 a = 0.1000 ß = 0.7000 
ny = 2.278 NG = 4.3 UCPU = 0.777 

i M» 1 i n OJi Ui Tf 
1 0.200 0.400 0.1000 0.7000 1.0 0.217 15.6472 
2 0.300 0.700 0.0700 0.6000 5.0 0.319 5.836 
3 0.250 0.650 0.1500 0.4500 50.0 0.418 2.951 
4 0.220 0.600 0.1000 0.7600 15.0 0.406 4.706 
5 0.400 0.800 0.1200 0.4400 125.0 0.442 1.747 

Table 6. 

The program was run for n = 5 in this case. This was the largest n value that 
could be used. The running time was at about 4 minutes. 
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The Self-organizing List and Processor 
Problems under Randomized Policies 

T . Makjamroen* 

Abstract 
We consider the self-organizing list problem in the case that only one item 

has a different request probability and show that transposition has a steady 
state cost stochastically smaller than any randomized policy that moves the 
requested item, found in position t, to position j with some probability dij, i > 
j. A random variable X is said to be stochastically smaller than another 
random variable Y, written X <„ Y if Pr{X > Jfc} < Pr{Y > k}, for any 
k. This is a stronger statement than E[X] < E[Y|. We also show that the 
steady state cost under the policy that moves the requested item i positions 
forward is stochastically increasing in t. Sufficient conditions are given for the 
steady state cost under a randomized policy A to be stochastically smaller 
than that under another randomized policy B. Similar results are obtained 
for the processor problem, where a list of processors is considered. 

OPTIMAL LIST ORDER; MEMORY CONSTRAINTS; TRANSPOSITION 
RULE; RAMDOMIZATION 

0 Introduction 
A self-organizing list problem is characterized by a sequential list of n items subject 
to a reordering policy. At the beginning of each time period, an item is requested 
and the list is searched sequentially from the first position until the requested item 
is found. Each of these n items has an unknown probability of being requested. 
Let p = (pi,p2, • • • ,Pn) be the request probability vector, where p,- is the request 
probability of item t,i = 1 , . . . , n, and 0 < p,- < 1, Pi — 1. At the end of each 
period, the items on the list are reordered according to the reordering policy. The 
cost of each period is taken to be the position where the requested item is found. 
We are interested in the steady state costs under various policies. A reordering 
policy is called optimal if it minimizes the expected steady state cost for any given 
request probability vector p. The self-organizing list problem will now be called 
the list problem and the policy will mean the reordering policy. 

Kan and Ross [6] define a no-memory policy as a reordering policy that depends 
only on the position of the requested item and the current ordering. Some of 
the most studied examples of the no-memory policies are the transposition, move-
to-front, and move-i-position policies. Keeping the relative positions of all other 
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items unchanged, the move-»-position policy moves the requested item » positions 
closer to the front if the requested item is found at position j,j > i, otherwise the 
requested item is moved to the first position. Transposition is just move-l-position 
and move-to-front is move-(n— Imposition for a problem of n items. Hendricks [3,4] 
gives the steady state probability distributions of states under move-to-front ana 
transposition. See Hester and Hirschberg [5] for a recent survey of the list problem. 

Anderson, Nash and Weber [l] show by counterexample that transposition is 
not optimal. However, their counterexample not only moves the requested item 
but also changes the positions of other items. So it is still an open question if 
transposition is optimal among policies that move only the requested item, leaving 
the relative ordering of the rest unchanged. 

In the special case where only one item has a different request probability, Kan 
and Ross [6] and Phelps and Thomas [7] show that transposition is indeed optimal 
among policies that move only the requested item. We will show in Section 1.2 that 
transposition is optimal in a stronger sense. In particular, by extending the induc-
tion argument used by Phelps and Thomas, we can show that transposition has 
a steady state cost stochastically smaller than that of any randomized policy. Let 
C(p; A) be the steady state cost of the list problem with request probability vector 
p under policy A. Then C(p; A ) is stochastically smaller than C(p ;B) , written 
C ( p ; A ) <. t C(p; B), if P r { C ( p ; A ) > k) < P r { C ( p ; B ) > k}, k = 1, 2 , . . . , n. 
It follows immediately that E[c7(p; A)] < E[C(p;B)|. A randomized policy is a 
policy which, when an item is requested and found at position », moves that item 
to position j with some probability a^, £ y = i a-ij = 1, leaving the relative ordering 
of others unchanged. 

Section 1.1 defines the randomized policy and shows its properties. By the 
introduction of the randomized policy, we also show in Section 1.2 that move-
i-position has a steady state cost stochastically increasing in i. This partially 
supports the conjecture of Gonnett, Munro, and Suwanda [2]. Their conjecture 
says that if A and B are two no-memory policies such that if tne requested item is 
found at position t, it is moved forward A(t) and B(i) positions by the policies A 
and B respectively, and A(i) < B(i),i = 1 , . . . , n, then the expected steady state 
cost under A is smaller than or equal to that under B, but B converges to its 
asymptotic behavior more quickly than A. Furthermore, it also follows that if the 
cost is taken to be an increasing function of the position where the requested item 
is found, move-t-position will have an expected steady state cost increasing in i. 
A special case of this situation is found in the paging problem as also discussed by 
Phelps and Thomas [7] where for a fixed integer m , l < m < n , the cost is taken to 
be zero if the requested item is found in a postion less than m, and one otherwise. 

Tenenbaum and Nemes [9] consider two spectra of policies. Assuming that only 
one item has a different request probability, the policies in each of the two spectra 
are ordered by the values of their expected steady state costs. Each spectrum has 
transposition at one end with the minimum expected steady state cost and move-
to-front at the other with the maximum expected steady state cost. We will show 
in Section 1.2 that the steady state costs of these policies in each spectrum are 
stochastically smaller or larger than each other. 

A problem related to the list problem is called the processor problem which was 
studied by, among others, Topkis [10]. In the processor problem, we consider a 
sequential list containing an ordering of the n processors. Each of these processors 
has an unknown probability that it will successfully process a given job. At the 
beginning of each time priod, there is an arrival of a job to be processed. The job is 
attempted by the processors successively according to the ordering in the list until 
either one of the processors succeeds or all of them fail. Then the job is dismissed. 
The cost in each period is taken to be the number of processors attempted until 
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the job is processed, or, in the case that all n processors fail, it is taken to be n. 
At the end of each period, a reordering policy is applied in the same manner as 
in the list probelm. For example, we might move the successful processor to the 
beginning of the ordering (move-to-front), or we might just move it one position 
closer to the front (transposition). 

Topkis [10] gives the steady state probabilities of the move-to-front and move-
to-back policies and shows that move-to-front has a steady state cost stochastically 
smaller than move-to-back, which in turn, has a steady state cost stochastically 
smaller than the random policy where processors are equally likely to be in any of 
the n! orderings. 

Section 2.1 shows the properties of randomized policy when applied to the pro-
cessor problem with only one processor having a different success probability. In 
this special case, Ross [8] shows that the expected steady state cost under trans-
position is smaller than or equal to that under move-to-front. In Section 2.2, we 
also use randomized policies to obtain results closely parallel to those of the list 
problem. That is, the steady state cost under transposition is stochastically smaller 
than that under any randomized policy. Furthermore, the steady state cost under 
move-t-position is stochastically smaller than that under move-(t + Imposition. The 
steady state costs under the policies in the two spectra proposed by Tenenbaum 
and Nemes [9] are also ordered such that the steady state cost of each policy is 
stochastically smaller or larger than its neighbors in the same spectrum. 

1 The List Problem 
When only item 1 has a different request probability, the expected steady state 
cost can be written in terms of the expected position of the item 1. That is, by 
conditioning on whether item 1 is being requested, 

E[C(p; A) ] = C p E [ y l ( p ; A ) ] + P ^ - 1 ) E ' 1 + 2 + • + n ~ y i ( p ; A ) ' 

p(c - l )E[yi (p ; A ) ] + 

n - 1 
pn(n + 1) 

where Yi(p; A ) is the steady state position of item 1 of the list problem with request 
probability vector p under policy A , p i = cp,p2 — p,... ,pn = p, and c > 0. 

So when c > 1, we want to minimize E[yx(p; Aj] , and maximize it when c < 1. 
For the rest of the paper, we assume that c > 1. The results for c < 1 will be just 
the opposite. 

1.1 Randomized Policy 
A randomized policy is characterized by a matrix A = [A,yj„xn, where A,-y = 
Ylk=i fltki a n d Oij is the probability that given an item is requested and found at 
position t, it is moved to position j , where = 1 f ° r all t, and 0 < o,-y < 1. 
So Ai j is the probability that given the requested item is found at position t, it is 
moved to a position less than or equal to j . 

Given a policy A defined in a system of n items, define a related policy A d in 
a system of n — 1 items as follows. 

A < i = Wy] (n - l )x (n - l ) , 
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where Af}- = Ei=i afk, and 

ad = I ° i + 1 ' 1 
0 I <*+ij. 

+ «¿+1,2 , 3 = 1 
j + i , 3 > 2. (1.1) 

Let ir^ be the steady state probability that item 1 is at position t under policy A . 
That is, = Pr{Yi(p; A ) = t'}. Alternatively, we can say F i ( p ; A ) < , t Y i ( p ; B ) 
by using the notation { * / } <> t Define K * = Lemma 1.1 to Lemma 
1.4 below show the relationships between {ir/1} and {*fA} under the assumption 
that (Pi,P2i • • • Pn-i ) = (cPd> Pd} • • •, Pd)• Lemma 1.1 and Lemma 1.2 «ire also 
obtained by Phelps and Thomas [7], where they consider only policies that move 
the requested item, found at position t, to a fixed position r(t),r(t) < i. 

Lemma 1.1 Under policy A, for i = 2 , . . . , n, 

-.A ¡ A _ if A _ dA / dA 

Proo f . The transition matrix, showing only columns 1, r + 1 and n can be written 
as 

CP + P E E aij 
i=23=2 

cpa21 
cPa31 

cpanl 

0 
n r 

P E E a.'j t=r+iy=l 

cPar+l,r+l + 
cpar+2,r+i 

epan< r + i 
p(l - a „ „ ) 

cpann + p(n - 1) 

(1 .2) 

where 8 = r + £ E °ty 
i=r+2 j'=r+2 

Except the first column, column r + 1 contains zeros from row 1 to row r. Using 
the (r + l)8 t column of the transition matrix and suppressing the superscript A , 
we have 

cPar+l,r+l +p8 

+ E .cP°«>+i ,r»i 
t=r+2 

for r = 1 , . . . , n — 1. 
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Since p = , the above equation becomes 

\ t = r + l / = l ) 

— "V+l 

— "V+l 

c + n - 1 - CO r+l , r+l - f r + aO ) 
\ « = r + 2 / = r + 2 ) 

n » 

n -I- c ( l - o r + 1 > r + i ) - (r + 1) - Yh Z ) 
t ' = r + 2 j ' = r + 2 

— Z ) c o».r+l*« 
i = r + 2 

n 
— C ^ Oĵ +iTT,-, 

t = r + 2 

(1.3) 
where r = 1 , . . . , n — 1. 

For policy AD, using the r th column of the transition matrix of n — 1 items and 
noting that pd = we have in the same manner as (1.3) above 

"-(siH 
c + n — 2 — ca*r — i r — 1 + Y l J 2 

V i = r + l j = r + l 

n-1 i 
„ + c ( l - d ? r ) - ( r + l ) - E 4 

i=r+lj=r+l 

caln? 
n - l 

— y 1 -"•ir-'t 
i=r+1 

n - l 

Ed d 

i = r + l 

where r = 2 , . . . , n — 1. By the definition of af}- given in ( l . l ) , (1.4) becomes 

1 

\i=r + iy=l / 

(1.4) 

= *V n + c ( l - a r + 1 , r + 1 ) - ( r + l ) - ] C 
i=r+2j'=r+2 

- c Y! a « > + i , , f - i > 
• = r + 2 

(1.5) 
where r = 2, . . . , n — 1. FVom (1.3) and (1.5), (x2 , . . . , i r n ) and (fl^, • • • 
satisfy the same set of equations. We will use this fact to show that Ki = Kf_lti = 
2 , . . . , n, and this proves the Lemma. Since Kn = = 1 by definition, we use 
the induction hypothesis that Ki — Ki_ l t x = r + 1 , . . . , n. We will show that it 
is also true for i = r. But this follows immediately by dividing both sides of (1.3) 
and (1.5) by irn and ^ - i respectively. • 

If we know r f , » = 1 , . . . , n, then we know *fA, i = 1 , . . . , n — 1. The exact 
relationship is given in Lemma 1.2. 
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L e m m a 1.2 Under policy A, for i = 2 , 3 , . . . , n, 

P r o o f . Prom Lemma 1.1, we need to show that = (1 — H j 1 ) * ^ ! . By suppressing 
superscript A , 

n—1 n— 1 n 
1 = E ^ = E = <-1 E * = ^-li1 - *!)/*»• 

1 = 1 t '= l 1=2 

• 
Conversely, given ir?A, » = 1 , . . . , n — 1, we can compute nf, i = 1 , . . . , n, using 

Lemma 1.2 and the following Lemma 1.3. 

Lemma 1.3 Under policy A, 

A C(A2LF2 + «31^3 + ANL""N ) 
= . 

«21 + «31 + h a„i 

P r o o f . The Lemma is proved by using the first column of the transition matrix 
(1.2) and noting that p = • 

FVom Lemma 1.1 and Lemma 1.3, Lemma 1.4 below says that we can write Äy 
in terms of Äy+i, Äy+2, • • •, K n . Note that An = a n , i = 2 , . . . , n. So Lemma 1.3 
and Lemma 1.4 are equivalent when j = 1. 
Lemma 1.4 Under policy A, for j = 1, 2 , . . . , n — 1, 

Kf = 
c(A3+1JKf+1 + AJ+2,,Kf+2 + -.. + An]K£) 

3 Ai+1,} + ^y+2,y H 1- A. nj 

Proo f . From Lemma 1.1, K2 = K*, K3 = = Kf,..'., Ks = K? ' . By exactly 
the same argument, we have = K^'+i — • •• = -Ky+k-i, k = 2 , . . . , n — j + 1. 
From Lemma 1.3, 

c { 4 : l K t l + 4 r * t x + • • • + 
" l = di-i , di-' , . adi~* 21 ^ °31 ^ ^ n—y+1,1 

Now, by definiton (1.1), 

S21 — a31 + a32 
- a4 1 + a4 2 + o 4 3 

= ° y + l , l + ° i + l , 2 + • • • + a / + l , y 

= Al + U-

Similarly, = i4y+fc_i,y, k = 3 , . . . , n — j + 1. So follows the Lemma. • 
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1.2 Comparison of the Steady State Costs and Probabili-
ties of Two Lists under Two Different Policies 

Let S be the set of policies that the resulting probability distribution { t « } is 
decreasing in t when pi > p and increasing in t otherwise. The question of how to 
determine if a policy is in 5 will be addressed later. We are now ready to prove 
the following Theorem that compares {*<} of two different policies. 

Theorem 1.5 Let A and B be two policies such that, ¡or j = 1 , 2 , . . . , n — 1, k = 
j + 1,..., n, 

A y + i ,y + A y + 2 , y + H AKy -By+i ,y + -By+2,y + H BK] 

AJ+I,} + A y + 2 , y + • • • + A „ y ~~ -By+i .y + - S y + 2 , y + h BN)- ' 

(1.6) 
and at least one of these two conditions holds: 

(a) A S S and Bij is decreasing in i for all j = 1 , . . . , n, 
(b) B S S and A{j is decreasing in i for all j = 1 , . . . , n. 

Then <„t { f l f } for any p = (cp, p,..., p), c > 1. 

Proo f . We will prove this Theorem by induction. It is easily checked that the 
Theorem is true for n = 2. Assume that it is true for the problem of n — 1 items. 
Now given such policies A and B , their corresponding policies A d and B d also 
satisfy all the conditions above. We can check this by first noting by that by (1.1) 

Aij — aii + ai2 H 1" aij = a « + i , i + ° t + i , 2 + Oi+1,3 + H a » + i , y + i = A i + i , y + 1 . 

Therefore, Af - is also decreasing in t, and 

A3+l,3 + AJ+2,J + • • • + Akj + Ad + • • + Ad_ 1,3- 1 
AJ + 1,J + A)+2J + " • • + A „ y ¿1,3- 1 + A1+1,3-1 + • • 1,3- 1 

Bd-^ 3,3-1+Bf+1,3-1 + • •• + Bd_ 1,3- 1 
Bd. 3,3- 1 + Bf+1,3-1 + Bd. 1,3- 1 

Secondly, since A e 5, vA > > ••• >irA. B u t from Lemma 1.2, vfA = 
A 

YZ^x, so > ir$A > > jr^lj . This means A d g S. So we have the induction 
hypothesis that 

From Lemma 1.2, ^ + + • • • + r A = (1 - + * f A + • • • + n ^ J . 
All we need to show is that * A > ir f . From Lemma 1.2 and Lemma 1.3, 

>1 (1 A , A 21*IA + A 3 i ^ A + • • • + AnlTTdA1 TTj = C^l — TTj J . 
A 2 1 + A 3 1 + h A„ 1 
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A B 
Since > 7rf if and only if j ^ x > i - ^ » , we need to show that 

A21w*A + A31*jA + • • • + A^x*^ > B21 <B + + ••• + nni<B-i 
A2i+A31+ - + Anl ~ B21+B31+- + Bnl 

Assume first that (a) holds. Then', by (1.6) with j — 1 and, because Ad G 
S, *FA>*$A>-~>*F£I, 

B2i*iA + B 3 ^ + • • • + B n i n ^ i 
B2\ + B3\ + 1- Bn 1 

B21**B + B31**B + • • • + 
B2i + B3i + 1- Bn 1 

The second inequality follows from the assumption that B n is decreasing in t 
and from the induction hypothesis that { n f A } <> t { n f B } . 

Similarly, if (b) holds, 

+ A31x$A + --- + Anl > A2 l 7rfB + A31x*B + ••• + 
A 2 i + A 3 1 + 1- A n l ~ A 2 1 -I- A 3 1 H h A r e l 

> B21xjB +B31**B + -- + Bnln*Bx 

~ B21 + B31 + • • • + B„i 

• 
A consequence of this Theorem is that the steady state cost under policy A is 

stochastically smaller than the steady state cost under policy B . 
Corol lary 1.6 Under the conditions of Theorem 1.5, C ( p ; A ) <„ t C ( p ; B ) . 

P r o o f . Conditioning on whether item 1 is at the first position, for k = 2 

P r | c ( p ; A > Jfcj 

= n A P r|c (p ; A) > A i n t p j A ) = l } + ( l - ^ t ) P r { c ( p ; A ) > A ^ f a A ) ? l } 

- x J * P r { c ( p ; B ) > fc|n(p;B) - l } + ( 1 - ^ ) P r { c ( p ; A ) > A ^ f a A ) ? l } . 

Now given that item 1 is not at position 1, the probability that it will be at 
IT*4 . . dA position t, 2 < i < n, is ' x , which is exactly by Lemma 1.2. That is, given 

. 1 

item 1 is not at position 1, its probability distribution over { 2 , 3 , . . . , n) is the same 
as the probability distribution of over { l , 2 , . . . n — 1}. Using the induction 
hypothesis that the Corollary is true for the list of size n — 1, we have 

P r { c ( p ; A ) > fcinipjA) / l } = (1 — p) P r | c ( p d ; A d ) > fc — l j 

< ( l - p ) P r { c ( p d ; B < , ) > f c - l } 

= P r j c f a B j ^ f c l Y k f o B ) ? * ! } . 

A 2 i * r + A31n«A + • • • + A „ 1 j t „ _ 1 

A 2 I + A 3 1 + •• • + A nl 

> 



The Self-organizing List and Processor Problems under Randomized Policies 291 

Therefore, 

Pr{<7(p;A) > fc} 

< T* P r j c ( p ; B ) > fc|n(p;B) = l } + (1 - P r { c ( p ; B ) > ¿ ^ f o B ) ft l } 

< * f Pr j c ( p ; B ) > fc|Fi(p;B) = l } + (1 - * ? ) P r { c ( p ; B ) > ¿ ^ f o B ) ft l } 

= P r { ( p ; B ) > f c } . 

The second inequality follows from the fact that irf > 1rf and, when pi > p, 
P r { c ( p ; B ) > fc|yx(p;B) = l } < Pr{(7(p;B) > fc|Yi(p;B) ft l } . • 

By Lemma 1.2 and Corollary 1.6, transposition is optimal in the sense that it 
has a steady state cost stochastically smaller than any randomized policy. Let T 
denote the transposition policy. 

Corollary 1.7 For any policy A , C ( p ; T ) < t i C(p; A ) . 

Proo f . Given c > 1, Phelps and Thomas [7] show that n j > nf for any policy 
Z that moves the requested item strictly forward by using the fact that = 
(l — 7r Since this fact also holds for any randomized policy A as shown in 
Lemma 1.2, so irj" > and thus { t ^ } } by the same induction argument 
in Theorem 1.5. The Corollary then follows by Corollary 1.6. • 

The next question is how we know if A G S. The counterexample below shows 
that not every policy A is in S even with Ai}• nonincreasing in t for all j. 
A counterexample: 

Let A be a policy characterized by the following matrix. 

A = 

0 

1 

1 — £ 

0 

0 

1 

1 - e 

0 0 

0 

1 

1 - e 
e 

Let e be some small number. The policy A almost always moves the requested 
item one position closer unless the requested item is founded at position 2 where 
it stays put with probability 1 — e and moves to position 1 with probability e. By 
selecting small enough e, we can get the values of Ki, as given by Lemma 1.4, to 
approach cn~' arbitrarily close for t > 2. The value of K i t as also given by Lemma 
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1.4, is 

c(ecn~2 + e c n - 3 + h ec + e) 

c j c " - 1 - 1) 
( n - l ) ( C - l ) ' 

With c = 3 and n = 6, = 72.6 while K2 = 34 = 81. So here K{ is not 
decreasing in i when c > 1. Thus not every policy has {«",-} decreasing in i when 
c > 1. • 

The following Proposition gives a sufficient condition for A 6 5 , This sufficient 
condition turns out to be true for any policy A under which the distribution of 
the number of positions to move the requested item is independent of the position 
where it is found. In other words, there is only one distribution for all positions. 
Call these policies position independent. One can interpret a position independent 
policy as one that uses a mixture of move-t-position, t = 1 , . . . , n — 1. 
Propos i t ion 1.8 A policy A 6 5 if, for j = 1,... ,n — 1, 

Aj + iJ ^ Anj < Ai+i,j H y An-i,j < . . . < A1++ 3 
Aj + 2,j + l + 1" An,j+1 A]+ 2,3 + 1 + 1- An_i i J + x Ay+ 2 , j + l 

(1.7) 

Proo f . Since Af j = A i + i j + i , a condition similar to (1.7) holds for A d . By the 
induction hypothesis, AD £ 5 and n f A > IRDA > • • • > ^n- i - So by using Lemma 
1.1 we have > nf > •• • > k a and > > • • • > K * . Thus it remains to 
show that 7TJ4 By Lemma 1.3, this means we have to show 

A2lK$ + + ''' + > A21 + A3 i + • • • + Anl 

K* + • • • + An2^A A32 + A*2 + h An2 

Rewrite the nominator on the left hand side of the above inequality as follows. 

A21KA +A31Ka +-+AnlKA = KA{A21 + A31+-+Anl) 

+ (KA_, - Ka)(A21 + A 3 I + • • • + A N - I . I ) + 

••• +(^-Ka)(A21 + A31) + (Ka-Ka)A21 

The left hand side of the last inequality becomes 

K£(A21 + A3i + 1- Ani) + (KA_X ~ K*)[A2i + A 3 ! + ••• + A n _ l t l ) + - • • 
^ ( A 3 2 + A42 + - - + A n 2 ) + - • 

• • • + [KA - Ka){A21 + A3X) + [Kf - K*)A21 
• • + (KA_i ~ Ka)(A32 + A4 2 + • • • + A „ - 1 i 2 ) + -•• + № - K*)A32' 

and because KA — > 0, » = 2 , . . . , n — 1, it is greater than the right hand side 
if 

A 2 I + A 3 1 + H AnI A 2 I + A 3 1 H H A N _ X | I < A 2 I + A 3 1 

A32 + A 4 2 + H A„2 — A 3 2 -T- A42 + B 
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which is just (1.7) with j = 1. This follows from the fact that, f < f^a if f < g, 
where a, 6, c and d are positive. • 

We will show next that (1.7) holds for any position independent policy that 
moves, with probability a,-, X -̂TQ1 = requested item i positions forward 
if it is found at a position greater than or equal to i + 1. Otherwise the policy 
moves the requested item to the first position. Thus, a,-y = Oi-i>j > 1, and 
ciii = o,-_i + a,- + • • • + an_ i . Let A; = °fc be the probability that the 
requested item is moved more than or equal to t positions. Thus, 

An = a,i + cm + • • • + oi}- = (o,-_i + (- a„_ j ) + Oi-2 H h a,_y = A,_y. 

So (1.7) becomes 

Ai + A 2 + < A j + A 2 + • • • + A n - 2 < _ < A t + A 2 

AI + A2 + • • • + 3 „ - 2 ~ Ai+A2 + H A „ _ 3 Ai ' 

which can be shown to be true by just cross-multiplying terms on each side of each 
inequality and noting that A,- is decreasing in t by its definition. Thus we have 
proved the following Lemma. 

L e m m a 1.9 Let A. be a position independent policy that moves requested item i 
positions with probability ai, ^"Jq1 â  = 1. Then A S S. 

When a0 > 0, we can look at the embedded Markov chain when the items 
actually change positions. The probability that item 1 is at position t in this 
embedded Markov chain will be equal to the proportion of time item 1 is at position 
t in the original chain. The policy governing the embedded chain is characterized 
by 

ai — i_'ao > * — Ij • • • i ni a n d a0 — We can, without loss of generality, restrict 
ourselves from now on to the position independent policies that always move the 
requested item at least one position closer to the front, unless it is already at the 
first position. 

When two position independent policies A and B are compared, (1.7) of Propo-
sition 1.8 becomes, for k = 1 , . . . , n — 1, 

M + A2 + • • • + Ak B i + B 2 + - + B k 

Ax + A2 + ... + An_! ~ Bj. + B2 + ... + Bn_!' (L8) 

An interpretation of this condition (1.8) is as follows. Let XA be the renewal 
time of some renewal process with Pr{X j 4 = »} = o<, t = 1 , . . . , n — 1, and ao = 0. 
Then the equilibrium renewal time of XA, called XA, will be distributed by 

pr{x* < *} = 3 + 3 + - - - + 3 
- A 1 + A 2 + - + A „ _ 1 

Therefore, (1.8) means XA <„t Xf. Theorem 1.5 combined with Corollary 1.6 
can be restated for position independent policies as follows. 

Theorem 1.10 Given two position independent policies A and B such that 
XA <,t X*, then <st } and C ( p ; A ) < ( t C ( p ; B ) for p = 
[cp,p,...,p),c > 1. 
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Proo f . Direct application of Theorem 1.5, Corollary 1.6 and Lemma 1.9. • 

Note that the condition that is decreasing in » in Theorem 1.5. becomes A{ 
is decreasing in t which is true by its definition. An immediate result of Theorem 
1.10 is that moving » positions closer is better than moving » + 1 positions closer. 
Formally, 

Corollary 1.11 The steady state cost under move-i-position policy is stochastically 
smaller than that under move-(i + 1)-position policy. 

Proo f . Direct application of Theorem 1.10. • 

Tenembaum and Nemes [9] examine two spectra of policies. For each spectrum, 
they show that the policies are ordered by their expected steady state cost, having 
tranposition at one end of the spectrum with minimum expected steady state cost 
and move-to-front at the other with maximum expected steady state cost. It can be 
shown that this also results directly from Theorem 1.5 and Corollary 1.6, and not 
only are the policies ordered by their expected steady state cost but their steady 
state costs are also stochastically smaller or larger than each other. 

The first is a spectrum of policies POS(A;), k — 1 , . . . , n where the requested item 
found at position j is moved to position k if j > k, and it is moved one position 
closer to the front if j < k. We can write the matrices A and B representing 
policies POS(fc + 1) and POS(fc) respectively as follows. 

1 
1 1 

0 1 

0 1 

A = 1 1 
O i l 

1 

1 

0 0 0 1 1 
1 1 
1 1 1 

Col. ( ! ) • •• (A: + 1) 
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1 

1 1 

0 1 

B = 

0 0 0 1 1 
1 1 
1 1 1 

Col. (1) . . . ( * ) . . . (n) 

The upper triangles of both matrices A and B consist of zeros. It can be easily 
checked that both policies A and B are in S as they satisfy (1.7) of Proposition 1.8. 
Moreover, all the conditions of Theorem 1.5 are also satisfied. We can then make 
a stronger statement that the steady state cost under POS(fc 4-1) is stochastically 
smaller than the steady state cost under POS(fc). 

The second is a spectrum of plicies SWITCH(A;),k — l , . . . , n , where the re-
quested item found at j is moved one position closer if j > k, and is moved to the 
first position if j < k. A1 the conditions of Theorem 1.5 and (1.7) of Proposition 
1.8 are satisfied by the following matrices A and B representing SWITCH(fc) and 
SWITHC(fc + 1) respectively. 

Row 

A = 

•• 1 
1 l .. .. 1 1 
0 0 .. .. 0 1 1 
; 0 1 '• 

0 . 1 

* 1 
0 0 • • 0 0 0 • • 0 

1 
1 1 

( 1 ) 

(k) 

in) 
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Row 

B = 

0 0 

1 
1 1 
0 1 

: o 

0 0 0 

1 1 
O i l 

(1) 

( f c + 1 ) 

(n) 

The upper triangles of A and B also consist of zeros. Similarly, the steady state 
cost under SWITCH(ifc) is stochastically smaller than that under SWITCH(Jb + 1). 

2 The Processor Problem 
Let C(p; A ) now be the steady state cost and Yi(p; A ) the steady state position of 
processor 1 of the processor problem with success probability vector p under policy 
A . When only processor 1 has a different success probability, the expected steady 
state cost, conditioning on the position of processor 1, can be written as 

n 
£ [ C ( p ; A ) ] = JS7 [C(p; A ) j (p; A) = »] ^ 

; = i 

= [l + î i ( l + g + - - - + gB - 3 ) ] ir i 

+ E [(i + « + ••• + <Tx) + a (g- 1 + j + • • • + g" - 2 ) ] * t = 2 

+ ( l + g + ' + g " - 1 ) * » 

i - g i g " 1 pi - p sr i-1 
= — - P — 

where p = (pi ,p , . . . ,p), gi = 1—Pi, g = 1—p and -K, is the steady state probability 
that processor 1 is at position ». Prom (2.1), since g* is decreasing in t, if pi > p 
and the position of procesor 1 under policy A is stochastically smaller than under 
policy B, the expected steady state cost under policy A will be smaller than the 
expected steady state cost under policy B . For the rest of the paper, we assume 
that pi > p. 
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2.1 Randomized Policy 
Define the randomized policy A and its related randomized policy Ad in exactly 
the same way as in the list problem. Also let -rf be the steady state probability 
that processor 1 is at position i under policy A . Define Kf = xf/ic*. Lemma 2.1 
to Lemma 2.4 below show the relationships between and { n f A } under the 
assumption that (p?, pi,..., p ^ ) = (pi, p , . . . , p). 

L e m m a 2.1 Under policy A , for i = 2,..., n, 

= = 1. 

P r o o f . Similar to Lemma 1.1, the Lemma is proved by using the column r + 1 of 
the transition matrix, which is given by 

1 - qr +qrPlar+1<r+i + qrqlP £ " = r + 2 ?*'~r~2 Ey = r + 2 aH + 

9r+1Piar+2,r+l 

? r + 1 Pl a » ,r+i 

• 

L e m m a 2.2 Under policy A, for i = 2,3,..., n, 

P r o o f . Same as Lemma 1.2. • 

L e m m a 2.3 Under policy A, 

WA = Eil( a21*2 + 1a31*3 + •" • + \ 
1 hP\ a2i + 7a3i + h qn~2anl J' 

P r o o f . Similar to Lemma 1.3, the Lemma is proved by using the first column of 
the transition matrix, which is given by 

P I + 9 L P E , N = 2 ? , 2 E Y = 2 °»Y + 9 " V 
9Pla21 
i2Pla31 

i " 1Piani 

• 
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Lemma 2.4 Under policy A , for j = 1 , 2 , . . . , n — 1, 

^ = Piff ( A > + ^ K U i + + • • • + q n ~ } ~ 1 A n ] K A \ 
' qiP \ Ay+1,y + gAy+2,y + -- +qn-'~1An,- J' 

P r o o f . Same as Lemma 1.4. • 

2.2 Comparison of the Steady State Costs and Probabili-
ties of Two Problems under Two Different Policies 

We can now state a result similar to Theorem 1.5 that compares the steady state 
probability {jr,-} under two different policies. As in the list problem, let S be the 
set of policies under which the resulting probability distribution {«¿ } is decreasing 
in t when pi > p and increasing in t otherwise. 

Theorem 2.5 Let A and B be two policies such that, for j = 1, 2 , . . . , n — 1, k = 
j + 1 , . . . , n, 

Ay+i,j + gAj+3,y + • • • + qk-j-1Akj > 5y+1 ,y + <?fly+2,y + • • • + g^^By 
Ay+1,y + gAy+2,y + • • • + qn~>-lAnj - Bj + u + qBJ+2,j + • • • + qn->~xBni ' 

(2.2) 

and at least one of these two conditions holds: 

(a) A 6 S and Bij is decreasing in i for all j = 1 , . . . , n, 
(b) B g S and A,y i*5 decreasing in i for all j = 1 , . . . , n. 

Then <Jt { jrf } for any p = (pi, p , . . . ,p),pi > p. 

P r o o f . Same as Theorem 1.5 because if A,y is decreasing in t for all j then so is 
A,-y. _ • 

It should be noted that (1.6) and (2.2) are not equivalent when Â y and Bi j 
are decreasing in t for all j, even though (2.2) gives (1.6) when q = 1. A simple 
counterexample can be constructed as follows. Suppose (1.6) is true. Let j = 1 
and A2 i + A31 + 1- Anl = B21 + B31 + • • • + Bnl, with A2 i = B21. So by 
(1.6), (A21, A 3 1 , . . . , A „ i ) majorizes (B2i, B31,..., Bnl). With the fact that q* is 
decreasing in t, we have 

A21 + qA31 + ••• + q"-2Anl > B21 + qB31 + • •• + qn~2Bnl, 

which means 

A21 ^21 
A21 + qA31 + • • • + qn~2Anl ~ B21 + qB31 + • • • + qn~2Bnl' 

This contradicts (2.2) for j = 1 and k = 2. 
A consequence of Theorem 2.5 is that the steady state cost under policy A is 

stochastically smaller than the steady state cost under policy B. 

Corol lary 2.6 Under the conditions of Theorem 2.5, C ( p ; A ) < , t C ( p ; B ) . 
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P r o o f . Same as Corollary 1.6. • 
By exactly the same reason as in Corollary 1.7, transposition has a steady state 

cost stochastically smaller than any randomized policy. 

Corol lary 2.7 For any policy A , C ( p ; r ) < ( t C(p; A ) . 

P r o o f . Same as Corollary 1.7. • 
A counterexample similar to that in Section 1.2 can be made to show that not 

every randomized policy is in S. A sufficient condition for a policy A to be in S 
turns out to be the same as in the list problem. That is, when pi > p, {i",^} is 
decreasing in t when (2.3) below, which is (1.7) of Proposition 1.8, holds. 

Propos i t i on 2.8 A policy A 6 S if, for j = 1 , . . . , n — 1, 

Aj+i ,y H h Any < Ay+i.y H V A „ - i , y < < Ay+1|y + Ay+2 ,y 

Ay+2,y+i + f" A„,y+i Ay+ 2 ,y+l + V A n _ l j + i Ay + 2 , y + i 

(2.S) 

Proo f . By the same argument as in Proposition 1.8, A S S if, for k 

Ay+i,y + gAy+2 ,y + • • • + qk~i-1 Akj 

Ay+2,y+i + 9Ay+3>y+1 + • •• + qk-i~2 AkJ+1 

< Ai+1,3 + <lAj+ 2,y + • • • + g fc~y~2Afc-i,y 

~ ^y+2,y+i + 1A}+3,j+i + • • • + qk~:>-3Ak-u+1 ' 

It is then sufficient to show that (2.3) implies (2.4). By cross-multiplying and 
rearranging terms, (2.4) is equivalent to 

gAfcy Ay+i,y + h Afc_i,y 
Ay+i,y + ?Ay+ 2 ,y + h qk~3~2Ak-it]- Ay+i,y + h A fc_i,y 

= j + 3 , . . . , n , 

(2.4) 

< Afc,y y+1 Ay+2,y+l + 1- Afc_i,y y+i 
Ay+2,y+1 + gAy+3,y+i + 1- qk 3 3At-i,y+i Ay+2,y+i H h Afc-i,y+i 

(2.5) 

Now, 
Afc,y + i 

Ay +1,y + h A f c - i j Ay+ 2 ,y+i + 1- A f c _ l i J + 1 

Ay+i,y H H Afcy 
Ay+2,y+1 H 1" Afc,y+1 

< Ay +1,y + h A f c - i ,y 
AJ+2,3+1 + ' ' " + Afc_i,y+i 

(2.6) 
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where the inequality on the right hand side of the equivalence is given by (2.3). 
Also from (2.3), for m < k — 1, 

A] + H h Amy ^ A y + 2 , y + l + • • • + A m > y + 1 

A3 + l,3 + 1- -¿fe-io -¿j'+i.y+i + 1- -4fc-l,y+l 

and because q% is decreasing in t we have 

A]+i,j + gAy+2,y + •-• + q k ->~ 2 A k - l t y 
Ay+i,y + Ay+2,y H h Ajt_i,y 

?^y+2,y+i + ?2Ay+3,y+i + • • • + qk~3~2Akti+i > 
A»"+2,y+l + ^y+3,y+l H 1- -¿k,y+l 

(2.7) 

Then (2.5) follows from (2.6) and (2.7). • 
Thus for the processor problem, by the same argument as in Lemma 1.9, any 

position independent policy is also in S. Formally, 

Lemma 2.9 Let A. be a position independent policy that moves the succesful pro-
cessor I positions with probability a,-, a»' = 1- Then A E S. 

Proo f . Same as Lemma 1.9. • 
We can then restate Theorem 2.5 combined with Corollary 2.6 for position 

independent policies as follows. 

Theorem 2.10 Given two position independent policies A and B such that, for 
k = l , . . . , n - 1 , 

At + qA2 + • • • + g^Afc > Bx + qB 2 + • • • + gfc_15fc 

A1+qA2 + -- + qn~2 An-i B1+qB2 + -- + qn~2Bn 

(2.8) 

then { a / } <,t {wf } and C(p; A ) <,< C(p;B) for any p = ( P l , p , . . . , P ) , P l > p. 

Proo f . Direct application of Theorem 2.5 Corollary 2.6 and Lemma 2.9. • 
There is no obvious interpretation of (2.8), unlike (1.8), as in the list problem. 

However, (2.8) yields the same monotonicity result as in the list problem that 
move-t'-position has a steady state cost stochastically smaller than move- (t + 1)-
position. Let A and B represent the move-t-position and move-(t + Imposition 
policies respectively. Then, 

Ai = A2 = • • • = Ai = 1, Ai+i = Ai+1 = • • • = An-i = 0 

B\ = B2 = • • • = Bi+i = 1, Bi+2 = Bi+3 = • • • = = 0. 
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Therefore, for k = 1 , . . . , n — 1, 

Ai + g A 2 + - + g f c ~ 1 A f c _ 1 + q+-+qk~l 

A1 + gA2 + --- + g " - 2 A „ _ 1 ~ 1 + g + • • • + g - 1 

> 1 + g + • • - + gfc~x 

1 + g + • • • + g«' 
J31 + qB2+-+ qk~^k 

Bx + qB2 + ••• + g"-25„_r (2-9) 

We have proved the following Corollary. 

Corol lary 2.11 The steady state cost under the move-i-position policy is stochas-
tically smaller than that under the move-{i + Imposition policy. 

P r o o f . By (2.9) and Theorem 2.10. • 
By Theorem 2.5, it also holds, as in the case of the list problem shown in Section 

1.2, that the policies in the two spectra of Tenenbaum and Nemes [9] tire ordered 
such that the policies in each spectrum have steady state costs stochastically smaller 
or larger than each other. 
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Computing Maximum Valued Regions 

G. J. Woeginger*^ 

Abstract 
We consider the problem of finding optimum connected configurations 

in the plane and in undirected graphs. First, we show that a special case 
concerning rectilinear grids in the plane and arising in oil business is NP-
complete, and we present a fast approximation algorithm for it. Secondly, 
we identify a number of polynomial time solvable special cases for the corre-
sponding problem in graphs. The special cases include trees, interval graphs, 
cographs and split graphs. 

1 Introduction 
P r o b l e m statement and applications. In this paper, we deal with the MAXI-
MUM VALUED REGION problem (MVR, for short) which is defined as follows. We 
are given a subdivision of a rectangle into equisized squares. Every single square 
has some (known) positive value. The problem is to find for a given number k a 
connected subregion of the rectangle that consists of exactly k squares and that 
has the maximum overall value under these conditions. 

Practical applications of MVR arise e.g. in the context of oil business, cf. 
Hamacher, Joernsten and MafEoli [6]. Suppose a company is searching for oil at 
many places of some large area and assigns values to the pieces of land according to 
the results of these trial prospects. The places form some regular (rectilinear) pat-
tern as described above. Afterwards, the company will buy the 'best' k landpieces; 
assuming unit prices for the land we exactly arrive at MVR. 
A related graph prob lem. The corresponding problem in vertex-valued graphs 
is to find a connected subgraph on k vertices with maximum overall value. We call 
this graph problem the Maximum Valued Subtree problem, MVS for short. Problem 
MVS is known to be NP-complete for arbitrary graphs (see [6]). It is easy to see 
that MVS restricted to gridgraphs becomes MVR. 
K n o w n results. Hamacher et al. [6] introduced the problem MVS and proved 
it to be NP-complete for arbitrary graphs. They also developped a branch-and-
bound scheme for MVS, and gave an integer program formulation. As a main open 
problem they asked whether the restriction of MVS to gridgraphs can be solved in 
polynomial time. Maffioli [8] derived a polynomial time algorithm for solving MVS 
in trees. 

"TU Graz, Institut für Theoretische Informatik, Klosterwiesgasse 32/11, A-8010 Gras, Austria. 
Electronic mail: gwoegiQigi.tu-graE.ac.at 

tThis research was supported by the Christian Doppler Laboratorium für Diskrete 
Optimierung. 
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O u r results. We prove that MVR (and hence the restriction of MVS to gridgraphs) 
is NP-complete and we give a polynomial time approximation algorithm with worst 
case guarantee;O [*/k) (Ee. the* approximation- algorithm, always .outputs absolution 
with value'at least the optimum value divided by c\/k). 

For the graph problem MVS, we will identify several polynomial time solvable 
subcases, e.g. MVS in trees, interval (graphs ¡and cographs. It turns out that MVS 
and the famous STEINER TREE problem are closely related in the following sense: 
The investigated restrictions to the various 'famous' graph classes (as described in 
Johnson [7]) are either NP-complete for both problems or polynomial time solvable 
for both problems. 
Organization of the paper . In Section' 2, we give the NP-completeness proof 
for MVR,Mand,;in: Section, 3;;oiiri.approximatibñoalgorithm .is described'^and ana-
lyzed. sSection, 4 de^.fwith.treelike;graph.classescforiwhich. MVS. is. polynomial 
time solvable-by, a, dynamic- prqgrammiiig approach. :Section; 5 summarizes. >some 
other results on special graph.classes (interval graphs,xographs and split.graphs). 
Section 6 contains,the discussion.,;,. . . : . .'.,, .,. - „,,;;: 

2 NP-completeness of the Región Problem 
To give a precise presentation of the problem and our method, we will .need the 
following definitions. A gridpoint in the Euclidean pláné' is á :pbint 'with1 both" 
coordinates integer. Two gridpoints are called adjacent iff they are at distance,, 
orie^fr'om ^each' other.' This 'adjacency1 relation'induces1 an' infinite -• graph .on' 'tHe-
gridpoints: A 'regioW-is1 á set of- 'gricipoints that' is connected' in1 this- infinite1 graph.1 

" f ó Á X i M Ü i i í ' . R E G I O N ; P R O B L E Í Í Í { M Y F C ) ^ . . . " ; " J V I F V.: 
Input . A rectangular region # = [1,..,. ri] ̂ x j l .... njfwith^,sidelength:in;;,%yalue„,-. 
function c, : R r-"; ZZjr^a.jpositiye integer fc;an intégeí.bound .CVii: ! ,•• <<J. 
•¡Questions. Does'. ther.e'existoa£region;;/ii G;lRlofpexactly!'A;;rpoints'- with •total'" 
valué c[R') '^C T' - • - ' •< vo.. i .... . ... . . . • .-..-. .... -1, . - . < . , .'-n^ a , 

: We will show that the.NP-complete planar. Steiner-Tr.ee problem..(cf^Garey^and, 
Johnson [3]) is polynomial time reducible to our problem MvR. 
; I. . tmUvi ; s,;j.0i'.>t<::9YI0 , ' i i ><-('- Vf'-yr1 K02:? OS,' i'.'! 
«•:;"• '̂ STEINER 'T'REE\INi!PLvANAR•'GR;APHS-(PST) ri^,'" ¡V--;- : . ! v . , i! V ?i 

c / input'v" A; pianar^g^apn G t r = ' (^„E) -,. a weight w( :' jj.—-ZZ; * a ..subset•. f. i 
< ^ ii'te£er"bound ¡V,?*- . V ; V a.,'. 

h Question.¿Doesthere e^ta^S.teine^Tree Tl=n(Vx,.ET) of Giqr.,A\(i.'e. 
'' does there'iexist a'subtree T61-G'with X C'W,) such that ... Olii- f ' i - - « •>••>•:,!>r: 1 •'»> •• >x — ; v ' ' -1 • " 

**T • n- .t •:'•>;»RI;;ru'..'i -l." :u •-••"fy .. V,-; :•'. '• brj; , • 
We start.-with an i^W'-i '^i '• 
is' solvable' if and' only if PST issolvable.' To' simplify the presentation,* we will also1, 
use negative values for points in problem MVR. Since .exactly, k points, have.to be 
chosen,, adding,- adarge positive constant to .all values yields.-an equivalent- problem 
with positive values. -3-1 1 >../,-• ion: 

3 "In'a first siejy^we"cdtti^ute^awree<rfftt«br planar /oVouit bf'th^ grap'h'&. Such a 
layout maps the vertices of G to (pairwise disjoint) horizontal line segments'arid 
maps the edges of G to (pairwise disjoint) vertical line segments, with all endpoints 
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8 

1 

Figure 1: A planar graph and its rectilinear planar layout. 

of segments at positive integer coordinates. Two horizontal vertex-segments are 
connected by a vertical edge-segment, if and only if the corresponding vertices are 
adjacent in the graph. Figure 1 shows a drawing of a planar graph together with 
its rectilinear planar layout. 

Rosenstiehl and Tarjan [9] show how to compute a rectilinear planar layout for 
planar graphs with n vertices in O(n) time. The height of their layout is at most 
|V|, and the width is at most 2|V| — 4. Most important, one can choose an arbitrary 
vertex to become the bottom horizontal vertex-segment of the layout. We choose 
some vertex x in X to become the bottom segment. 

In the second step, we stretch the rectilinear planar layout in horizontal and 
vertical directions by a factor of two, i.e. we multiply the coordinates of all endpoints 
by 2. This ensures that points on distinct segments are at distance at least two, 
unless they correspond to a vertex-edge incidence. 

In the third and last step, we finally transform the layout into a weighted region 
for problem MVR. We distinguish five types of gridpoints: vertex-points, edge-
points, link-points, dummy-points and fill-points. The vertex-points, edge-points 
and link-points together cover exactly all gridpoints on the line segments of the 
stretched rectilinear planar layout. 

• For each vertex v in X (the set that has to be spanned by the Steiner "free), 
we choose an arbitrary gridpoint on the horizontal line segment corresponding 
to v and make it a vertex-point G(v). The value c of every point G(v) is set 
to M := Y,e€E «»(e) + 1. 

• For each edge e in E, we choose an arbitrary gridpoint on the vertical line 
segment corresponding to e and make it an edge-point G(e). The value c(G(e)) 
equals the weight —ui(e). 

• All points lying on line segments of the stretched rectilinear planar layout 
that are neither vertex-points nor edge-points become link-points and receive 
a value of 0. 
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Figure 2: The upper part of the constructed region instance. 

Now let n„, ne and nt denote the number of vertex-, edge- and link-points, respec-
tively. Set k = n„ -I- ne + ni and observe that k & 0(|V|2). 

• We create a connected region of k points just below the layout, separated from 
the layout by a single row of unused gridpoints (in other words, the topmost 
points in this new region are at distance two from the lower border of the 
layout). Moreover, we connect this region by a single gridpoint in this unused 
row to the vertex-point corresponding to vertex x G X. The gridpoints in 
this new region and this single gridpoint constitute the set of dummy-points. 
All of them have value 0. 

• Finally, we enclose the vertex-, edge-, link- and dummy-points by a rectangle 
(obviously, the sidelength of this rectangle is polynomial in |K|). All points 
in this rectangle to which we did not assign a value till this moment are the 
fill points; they have value — |X| • M — 1. 

An illustration for this construction is given in Figure 2, where the graph depicted 
in Figure 1 is transformed in its corresponding region. The vertices in X are 1, 
4 and 7 and the corresponding vertex-points in the region are marked by a " O " . 
The edge-points are marked by an "e", and the link-points by a Empty space 
corresponds to fill points. For reasons of readability and space, we did not show all 
dummy-points (marked by an "x") that lie below the bottom "O " -

We claim that the constructed instance of MVR has a solution with value at 
least C = • M — W if and only if there exists a Steiner Tree of G for X with 
weight at most W. W.l.o.g. we assume W < w(e) = Af — 1> as otherwise the 
PST is trivially solvable. 

(only if) Assume there exists a region R' with value at least |X| • M — W. Since 
the only points with positive value are exactly the |X| vertex-points with value M 
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and since W < M — 1 holds, R' must contain all the vertex-points. Since all 
fill-points have value — |X| • M — 1, no fill-point appears in R'. 

Obviously, the dummy-points (outside of the layout!) cannot help in connecting 
the vertex-points. Hence, the connections must result from the edge- and from the 
link-points. Vertex-points on two distinct horizontal segments can be connected to 
each other only via points on the vertical edge-segments. Using link-points (with 
value 0) is no problem, but in the middle of each edge there sits an edge-point, 
substracting u>(e) from the value of region R'. In order to connect all vertex-points 
while substracting at most W from the total value |X| • M of all vertex-points, 
we must find a connected configuration that has edge-weight at most W and that 
contains X. This exactly yields the claimed Steiner Tree. 

(if) Now assume we are given a Steiner TVee with edge-weight at most W. We 
start with putting into the region R' all gridpoints on line segments corresponding 
to edges and vertices used in the Steiner Tree. Hence, it contains all vertex-points 
(with total value |Jf| • M) , some edge-points (with total value at most W) and a 
number of link-points with zero value. By the definition of k, the overall number 
of these points is at most k. To get a region with exactly k points, we add an 
appropriate number of dummy-points to R' such that R' remains connected. As 
all dummy points have zero value, the total value of the constructed R' is at least 
\X\-M-W. 

Summarizing, we have proven the following theorem. 

Theorem 2.1 Problem MVR is NP-complete. • 

3 A Heuristic for M V R 
In this section we analyze the following fast and simple heuristic for the region 
problem MVR (for convenience we assume throughout this section that k — a2 is 
a square number). 

Take the highest value axes-parallel quadratic region Q* with sidelength 
y/k. 

Clearly, this quadratic region can be found in 0(kn2) time and a slightly more 
sophisticated implementation runs in o(Vk n2) time. Our main interest is to de-
termine the worst case quality of Q* compared to the optimum region R*. 

Let k = a2. Consider a staircase, consisting of a / 2 vertical and at/2 horizontal 
line segments where each line segment contains exactly a gridpoints. All gridpoints 
on the staircase receive value one, all other gridpoints receive value zero. Then the 
optimum region R* has value k, whereas no square with sidelength a can cover more 
than 2a gridpoints on the staircase. Hence, for this configuration our heuristic is a 
factor of Cl(>/k) away from the optimum. It is easy to see that the staircase is also 
a bad configuration for the more general heuristic where we do not only consider 
axes-parallel squares but also arbitrary (not necessarily axes-parallel) rectangles. 

Surprisingly, OiVk) is also the worst that can happen as will be shown in the 
remaining part of this section. We cover the optimum region R* by an orthogonal 
grid with gridlength a and vertices that are integer points shifted by the vector 
(1/2,1/2). This grid is called the A-grid and it partitions the plane into A-cells. 
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Lemma 3.1 Atmost .10a of the lA-cells contain 'a point of R*.' 

Proof. . , Denote rby, ,Víi the set -of- aÜL. A;cells, that..contain,-at;least one):poiiit of 
R*.rTw;o Á-cells-,4!,and.Á2 in]yR.are called adjacent iff A,/contains a^gridpoint 
Pi & R*-,..!•-< i:, < 2,.suchvthat P i and p2 are at distance one. Let T = .(Vjt> Er) 
be an arbitraryspanning tree of the graph,induced by this adjacency relation. We 
root T at an arbitrary leaf ofrT;j this defines fathers_and sons,,:and-by the choice, of 
the,root.no vertex has.morethan .three sons-, - ,r . • .... 
, ..Then we repeat the following two stepsj'oyer and oyerJagain. until T- contains 
less tlian'-lO vertices. "(The "tree.is processed in",a b^Upm-up^fashion from the leaves 
towards' the "root. Step 1 rémóves'iubtreés, that . are "paths on, four vertices, and 
btep 2 removes branching subtrees). 

. v. cc J". v ; h o ujb:: zyf£ •¡cu:::"' ¡ r¿ s'. -' ' • "u 
V (Stepi;!) ..• Assume, ^contains a^veií.ex ,v whose.only •descendants, forma <••£••. 

t,jT.'(;,:pathion., three /yeRtices ui,<V2iand :Vs ̂ su<&Za subgraph.. isxaUed' type-íb-. o * 
a <%,! /au6^rapA).;,ThenxthetCojrMpOnding foj^A-ceUs-contain atleasta points ^jy , 
.. d-r «of JZ.v-The only interesting case ;occurs when the A^cells corresponding'' — 
,-, - :-.;,to.u, vi;:U2>and «¿ form a 2 X2rConiiguration'.' W-.l.o.g.let.v berthe lower r\-. '; ; 
í.»-.. J.left; A-cellin;this;configuration-, and-let.,y._be. connectedjto^its.father ¡via;. .-
¿¿at,' ..its left side.-£:Thenjthisfleft.jside. must be>linkedy to, the-diámetric A-,cell "> ' 

d2. A-cell «2 is at distance a from the left side of v, and there are at 
least a vertices necessary to link them. 
We iteratively removejajl type-l; subgraphs from.T..-?.->' / .v. 

-i (Step 2). Next, we consider some vertex w of-degreeat least-two with n o j ; n 
descandants of degree at least two (to must exist, unless Step 1 deleted 
all but three vertices; in this case we terminate). 
Vertex to has at most three sons, and since T doesmot contain any type- ? 
1 configuration any more, each of its sohs"has at most two descendants. 
Summarizing, the maximal subgraph of T rooted at to contains at most , , 

' ° - o • lb.A-cells'.' On the.dther hand', the 'A-cell córrespbndin'gtó to^hasoutside'"' 
^ J "connections'onrat least three of its foiir sides (óne to its father,1 arid'at''' "> 

least two to its sons). Two of these outside connections'-must' l ie^ñ' ' ; 

opposite sides of the cell, and in order to link them to each other, the 
•'JA-céÜ1müsVcontairií'á't^lea!st á p o i n t s ' ó f 7 2 * . ' '•BV '•""-i' ' '• 
We remove the maximal subgraph of T rooted at to from T and return 
to. Step 1. , 

. . y..t'.I-J " ''....i: jív.1.'.- . ','..' i: : ' • .>-.• ."•;.'•:- -p 
To finishothe proof of the lemma, we .observe that each:removal'operation:in Step 1 
and 2 removes^(i) atjinostclO A-cells-and-.(ii) at least a .points OÍTJ2*._/Because of 
(ii), at most fc/a removal operations are performed and because-of (i), T,contains 
at most 10fc/a '= ' l0a A-cells.' . ' • v- : / • - n ; D .i' ' in'r - J >. . x.q.o" i> . ., ' "t;1-'- i'iw. . -;s kiL.'-.xn^ - ' 
ThéorémcSt2 ' TKere exist coñstdñfaTex-^'-ei > 0 süch^that the heuristic detects 
-for all- instances ^¿region Q* whose 'value 'is at' least' the[ value- of-R*1 divided by 
íc{y/ky'ahd1'tÍtere exist instances for whi'cÚ' the 'palue óf Q* js^at most .the "valtte* of 
H* divided by c2\/kl ' ' i' v:-v " : r"'1'' ' " ' " r^ 

Proo f . We prove the statement' for ct = 10 and c2 = 1/2.'' ' ; - i e ' : : ! - ' ' ' ' ' '' 
Applying Lemma, 3.1 andan averaging, argument, we see .that, there .exists an 

-'A-cell An such that the póintsiniZ* n A0 have "overall valúe •atleast' the optimum .• -J _ • V..' . . 'f— 31 í • . •;• -'•.- ' .-'J- ' •'• Blij.f 1J •;'-.'.i «ií.f.j.--;-••.. t 
-value divided byjlOy k.: Since-all-other gridpoints in AQ have nonnegatiye-value, 
the Value of iQ*cis at least the valué of Í2*ldiyidedr!by l0\/fc.' " ' J ' . ' i 
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The lower bound follows from the staircase configuration described at the be-
ginning of this section. • 

Remark. The factor 10 in the statement of Lemma 3.1 is not the smallest possible. 
A more elaborate argument decreases the factor down to 4. For our purposes, any 
constant factor suffices. 

4 Results for Trees 
In this section, we consider the following problem corresponding to MVR in graphs. 

MAXIMUM VALUED SUBTREE PROBLEM ( M V S ) 
Input . A graph G = (V, E); a value function c : V —• IN; a positive integer k 
and an integer bound C. 
Prob lem. Does there exist a fc-subtree T of G with total value at least C ? 

For general graphs, problem MVS is NP-complete since MVR is a special case of 
MVS. We will present a polynomial time result for trees. As usual, we assume that 
the input graph G is given by its adjacency list, i.e. for each vertex v G V we have 
a list of its neighbors in G. The number of vertices in G will always be denoted by 
n. A tree on k vertices will also be called a k-tree or a k-subtree. 

Subsection 4.1 analyzes a related matrix problem and Subsection 4.2 gives an 
0{nk2) algorithm for MVS on trees, The algorithms are based on Dynamic Pro-
gramming approaches. Maffioli [8] derived another (more complicated) polynomial 
time algorithm for MVS in trees with the same running time as our solution. 

4.1 A Matrix Problem 
In this subsection we will analyze a matrix problem that is closely related to the 
MVS-problem. Let M be a matrix with nonnegative integer entries that consists 
of d rows and k columns. We define that the entry in the t-th row and j-th column 
has value M¡,- and weight j. For 0 < j < k, we denote by MAXVAL(M, j) the 
maximum value for which there exists a subset Sj of the entries in M fulfilling the 
following conditions. 

• Sj contains at most one entry from every single row in M, 

• the overall weight of Sj equals j, and 

• the overall value of Sj is MAXVALjii(j). 

Lemma 4 . 1 For a d x k matrix M, all numbers M A X V A L ( M , 0 ) , . . . 
. . . , MAXVAL(A/, k) can be computed in overall time 0(k2d). 

Proo f . We apply the Divide and Conquer paradigm to solve the problem by the 
following recursive procedure. 

(1) We divide matrix M by a horizontal line into an upper and into a lower 
submatrix of equal size. We call these two submatrices U and L. 

(2) We recursively calculate all numbers MAXVAL({7, *) and MAXVAL(L, *). 
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(3) We determine MAXVAL(M , *) from MAXVAL((7, *) and MAXVAL(L , *) ac-
cording to the formula 

M A X V A L ( M , j ) = m a x МАХУАЬ({ / , j - *') + M A X V A L ( L , I ) o<»<y 

for all j, 0<j<k. 

The correctness of the algorithm is obvious. Since the Divide-Step (1) takes only 
constant time and the Merge-Step (3] is done with at most к2 operations, the time 
complexity T(d, k) fulfills the inequality 

T(d,k) < 2T(d/2,k) +k2. 

Standard calculations yield T(d,k) < dT(l,k) + dk2, and consequently the time 
complexity is at most 0(dk2). • 

4.2 Trees 
Now let the tree G = (V, E) constitute an instance of MVS with n = |V| = \E\ + 1. 
We root G at an arbitrary vertex r. This assigns to every vertex v (with exception 
of the root r) a unique father f(v). With every vertex v € V, we associate the 
maximal subtree rooted at v. Let vi,v2,... ,v„ be an enumeration of the vertices 
in V such that each v comes before its father /(t>). Such an enumeration can easily 
be found in O(n) time. 

We introduce a two-dimensional integer array AR[t,y] with n(k + 1) entries. 
The rows are indexed by the vertices V{ in the above enumeration, and the columns 
are indexed by the numbers from 0 to k. 

The meaning of "AR[t,y] = to" is that "the maximum value j-subtree 
of T(u,) that also contains its. root Vi, has value to". 

Lemma 4.2 The values of all entries in AR can be calculated in 0(k2n) time. 

P r o o f . We consecutively calculate all rows of AR, starting with the row corre-
sponding to vi and ending with the row corresponding to vn = r. 

If Tfa) consists of the single vertex we set AR[»,0] = 0, AR[», l] = e(t^) and 
all other entries in AR[t, *] to —oo. 

If T(u.) consists of at least two vertices, we consider the sons vmi, vmj,..., vmi 

of Vi, where d = deg(vj) — 1. In order to compute AR[t,y], we must find the 
optimum partitioning of the number j — 1 into d nonnegative numbers j\,. •. ,jd 
that maximizes E ? = i AR[t>mi, У,]. But this exactly amounts to solving the matrix 
problem treated in Section 1 on the submatrix M of AR[*, *] generated by the 
rows corresponding to the vertices vmi, u m , , . . . , vmi. According to Lemma 4.1, 
this problem can be solved in 0(k2d) time. Finally, we add to each of the к 
resulting numbers the value c(vi) of the root of this subtree. 

To get the overall time complexity for computing AR[*,*], we have to sum up 
the Jfc^deg^) — 1) steps for every with at least one son plus the к steps for every 
Vi without a son. This is clearly dominated by k2 deg(uj) e 0(k2n). • 
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Theorem 4.S For trees, the problem MVS can be solved in 0(k?n) time and 0(kn) 
space. 

Proo f . Assume that the maximum value A:-subtree T is spanned by vertices W = 
I t o i , . . . , tUfcl and let to denote the unique vertex in W whose father is not in W. 
Then the value of T equals AR[to, A;]. Conversely, each entry in AR[*, j ] corresponds 
to a j-subtree. 

Hence, the maximum number in the fc-th column of AR[*,*] gives the value 
of the maximum value fc-subtree. The time complexity follows from the preceding 
lemma, the space complexity is determined by the sue of AR. • 

Remark . We only showed how to find the value of the maximum value fc-subtree. 
If we also want to find the corresponding k-subtree, we have to store for each entry 
in AR[*, *] its 'history' consisting of at most k — 1 predecessor entries as used in 
the dynamic program. This increases the time and the space complexity both by a 
factor of k. 

5 Other Graph Families 
This section deals with interval graphs, cographs and split graphs. We derive 
polynomial time results for the former two graph families and an NP-completeness 
proof for the latter family. 

5.1 Interval Graphs 
The vertices of an interval graph G = (V, E) can be represented by intervals on the 
real line in such a way that two intervals intersect if and only if the corresponding 
vertices are adjacent. Most NP-complete graph problems become polynomial time 
solvable when restricted to interval graphs, cf. [5,7]. 

W.l.o.g. we may assume that intervals corresponding to distinct vertices have 
distinct endpoints. To find the MVS of a vertex-valued interval graph, we use the 
following decomposition of a connected interval graph G: The interval with the 
rightmost right endpoint is called the head of G. In general, there will be several 
intervals covering the left endpoint of the head. Among those intervals we choose 
that one with leftmost left endpoint, and we call it the neck of G; its endpoints are 
denoted by nj and n r . The remaining intervals either belong to the body of G (if 
their right endpoint lies to the left of n r) or to the hairs of G (if their right endpoint 
lies to the right of n r ) . Intuitively speaking, the body intervals are connected to 
the head via the neck. The hair intervals are directly connected to the head (their 
left endpoints are to the right of nj, and their right endpoints are covered by the 
head). 

Now sort the intervals from left to right according to their right endpoint 
and call the resulting sequence Ii,...,Jn. We construct a twodimensional array 
AR[1 . . . |V|, 1 . . . A:] such that the maximum valued subtree with head 7y and con-
sisting of k' vertices (1 < k' < k) has value AR[J, A:']. We compute all values in 
AR[*,*], starting with level AR[1, *] and going up to level AR[M, *]. The initializa-
tion steps are trivial, hence we only show how to compute AR[J, A:'] for some fixed 
j > k'. 

By definition, I j constitutes the head of the optimum subgraph G'(j, k') we are 
looking for. There are at most n— 1 possibilities for the neck of G'(j, A/). There are 
at most 0(k2) pairs (fcj, k2) with sum A^-fA^+2 = k', where kx denotes the number 
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of hairs and k2 denotes the number of body-vertices. For fixed head and neck and 
for fixed numbers ki and k2, the value of the optimum G'(j,k') can be found in 
the following way. The body is the maximum valued connected subgraph on k2 + 1 
vertices and with our neck as new head; its value has already been computed and 
we find it in constant time. The hairs are the kx most precious intervals with left 
endpoints to the right of the left endpoint of the neck, and with right endpoints 
covered by the head. We claim that the optimum value for the kt hairs can be 
calculated in constant time with O(nk) preprocessing for every head. 

For a fixed head h, we enumerate all intersecting intervals sorted by their left 
endpoints from left to right in O(n) time (in a preprocessing step, we sort all 
intervals by their left endpoints; if we deal with a fixed head, we run thru this list 
and select all intersecting intervals). We run through this enumeration from right 
to left and always store the k most precious values in a balanced tree: if the current 
interval has a value larger than the minimum in the tree, we remove the minimum 
and insert the value of the current interval (in case the tree has less than k vertices, 
we just insert the new value). Hence, we know in every single step the 1 < k' < k 
largest values and can compute their sum in 0(k) time. 

Theorem 5.1 For interval graphs, the problem MVS can be solved in 0(k2n2) time 
and O(kn) space. 

Proof . The approach described above takes 0(kik2n + kn) time for each of the n 
possible heads. Hence, the overall time is in 0(fc2n2). The space requirements are 
dominated by the space of array AR. • 

5.2 Cographs 
In this section, we give a polynomial time algorithm for MVS in cographs. 
Definition 5.2 For r > 2 disjoint graphs Gi = (Vit Ei) with V{ n Vy = 0 for 
i ], the union Ui=i defined as the graph (U,r=1 Vit |T=i EA. Their product 
X,-=1G, is obtained by first taking the union of the r graphs and then adding all 
edges (v,-, vy) with E V|, vy 6 Vy and i ^ j. • 

Definition 5.3 The class of cographs is the smallest set of graphs fulfilling the 
following rules. 

1. The graph with one vertex and no edges is a cograph. 

2. If Gi, 1 < » < r are cographs with pairwise disjoint vertex sets, then their 
union is a cograph. 

S. If Gi, 1 < t < r are cographs with pairwise disjoint vertex sets, then their 
product is a cograph. • 

To each cograph G = [V,E), we associate a corresponding rooted tree T = 
( I , F ) , called the cotree of G and reflecting the above definition in the following 
way. Each non-leaf vertex in the tree is labeled either with U (union-vertex) or 
x (product-vertex) and has two or more children. If two non-leaf vertices are 
connected by an edge, then they have different labels. Each vertex x E I of the 
cotree corresponds to a cograph Gx = (Vx, Ex), and a leaf corresponds to a single-
vertex graph. A union-vertex (product-vertex) corresponds to the union (product) 
of the cographs associated with the children of the vertex. Finally, the entire 
cograph is given by the cograph associated with the root r E I of the cotree. Corneil, 
Perl and Stewart [2] have shown that one can decide in linear time 0(|V| + |-E|), 
whether a graph is a cograph, and build the corresponding cotree. 
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T h e o r e m 5.4 For a cograph G = (V, E), the problem MVS can be solved in 0(k2n) 
time and O(kn) space. 

P r o o f . We will compute two twodimensional arrays ARC[X, A;'] and ARA[X, A:'], 
where the rows correspond to the vertices x of the cotree and where 0 < k' < k 
holds. Once more, we start the computation of the array values at the leaves and 
go up to the root. ARC[X, A;'] stores the largest possible value of any connected 
subgraph on k' vertices of the cograph Gx associated with x, and A R A [ X , kf] stores 
the corresponding value for arbitrary (not necessarily connected) subgraphs. 

The initialization is straight forward and we only show how to compute 
A R C [ X , *] and A R A [ X , *] for a non-leaf vertex x. The computation of A R A [ X , A:'] 
is easy: We simply take the k' most valuable vertices in the corresponding cograph. 
Applying e.g. the matrix algorithm from Subsection 4.1 this can be performed in 
0{k2n) overall time for all vertices in the cotree. The computation of A R C [ X , k'\ is 
more envolved; we have to distinguish between union- and product-vertices x. For 
a union-vertex x, A R C [ I , k1} equals the maximum of ARC|S, fc'] over all sons s of 
x in the cotree (as a union operation cannot change connectivity properties of the 
graph). For a pro duct-vertex x with sons . . . , sp, we perform two computations 
to find ARC[x, A:']: 

(i) We compute the maximum value of ARAJSX, ki) + . . . + A R A [ S p , fcp] over all 
p-tuples (ki,... ,kp) with sum k' and at least two non-zero fc,- (by applying 
the matrix algorithm). Since this maximum value results from at least two 
distinct sons of x, the corresponding graph is connected. 

(ii) We compute max,- ARC[S,-, A;'J. By the definition of ARC[S,-, *], the corre-
sponding graph is again connected. 

Obviously, the maximum of the two values computed in (i) and (ii) yields 
ARC[X, A:']. 

The entry ARC[r, A:] for the root r of the cotree gives the desired value of the 
MVS. Since the cotree has 0(n) vertices, the claimed time and space complexity 
follows from the discussion in Subsection 4.1. • 

5.3 Split Graphs 
A graph G = (V, E) is a split graph, if there is a partition of its vertices into an 
independent set / and in a clique C (and arbitrary edges between I and C), see 
Golumbic [4]. 

T h e o r e m 5.5 Problem MVS restricted to split graphs remains NP-complete. 

P r o o f . By reduction from the NP-complete SET-COVERING PROBLEM: Given 
a set S = ( 1 , . . . , p } and subsets Ax,..., Aq C S, the SET-COVERING PROBLEM 
consists in finding r subsets A, - , , . . . , A<r with Uy=1 A^. = ( 1 , . . . , p} . This problem 
is known to be NP-complete [3]. 

We construct a split graph on p + q vertices that are labeled by some label in 
( l , . . . ,p, A i , . . . , Aq}. The vertices A i , . . . , A , form a clique, the vertices 1 , . . . , p 
form an independent set. We introduce an additional edge from t to At> iff t £ A t j 
holds. All vertices 1 , . . . , p receive value 1, all other vertices receive value 0. Finally, 
we set A; = p + r and ask whether there exists a subtree with value at least p. 
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Trees Intervalgraphs 
L J L J 

Figure 3: Containment relations for some of the treated graph classes. 

In case such a tree exists, it uses all p vertices with value 1 and r vertices 
belonging to the clique must connect them; this yields the existence of a small set 
cover. In case a set cover with at most r subsets exists, we choose the corresponding 
r vertices in the clique and all p vertices not in the clique; clearly, the spanned graph 
is connected and of value p. • 

Remark. We observe that there exists a simple approximation algorithm for MVS 
in split graphs with (tight) worst case guarantee 2: We simply take the k/2 most 
valuable vertices t>i,..., vk /2 a n d for every » some clique vertex c,- adjacent to t>,-. 
Obviously, the resulting spanned graph is connected and its value is at least half of 
the optimum possible value. 

6 Discussion 
In this paper, we investigated the computational complexity of two closely related 
combinatorial problems, called MVR and MVS. The geometric problem MVR was 
shown to be NP-complete, and a polynomial time approximation algorithm was 
derived. The graph problem MVS is NP-complete for arbitrary graphs, but it can 
be solved efficiently on many well known special graph classes by applying Dynamic 
Programming techniques. 

Figure 3 summarizes some of our results for MVS. Directed arcs represent 
containment of the lower graph class in the upper graph class. For classes with 
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a solid frame, MVS is NP-complete, and for classes with a dashed frame, MVS is 
polynomial time solvable (for exact definitions of all graph classes cf. Johnson [7l). 
Cographs, trees, interval graphs and split graphs were treated in this paper. Tne 
NP-completeness result for split graphs implies NP-completeness for chordal graphs 
and for perfect graphs. NP-completeness of MVS for bipartite graphs can be seen 
easily (by subdividing the edges of an arbitrary graph, assigning value sero to the 
new vertices and replacing k by 2k — 1), and this also yields the NP-completeness 
for comparability graphs. Finally, a polynomial time algorithm for directed path 
graphs can be derived by standard Dynamic Programming techniques (the method 
is analogous to that we applied to trees and cographs, and left to the ambitious 
reader as an exercise). 

Moreover, for planar graphs we have proven the following results. MVS on grid-
graphs (and consequently on arbitrary planar graphs) is NP-complete. However, 
the restriction to outerplanar and series-parallel graphs (these two classes are sub-
sets of the partial 2-trees) can be solved in polynomial time. Bodlaender [l] derived 
an 0(k2n) algorithm that solves MVS in partial if-trees, where K is not part of 
the input. 

The most intriguing open problem is to construct polynomial time approxima-
tion algorithms for the geometric problem MVR with constant worst case guarantee 
(or prove that such algorithms do not exist). 
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On the Boolean structure of fuzzy logical 
systems: a counter example 

J. Dombi ** Gy. Lencses * 

Abstract 

The article of Murthy, Pal and Majumder [l] gives a new interpretation 
of the connectives in fuzzy sets claiming that these connectives preserve the 
whole Boolean structure of ordinary set theoretic operations. In our paper a 
counter example is given where the property of associativity is not valid for 
the new connectives. 

Introduction 

Many authors attempt to construct fuzzy logical systems preserving as- many 
Boolean properties as it is possible. It is well known that to preserve the whole 
Boolean structure of set operations when extending them pointwisely to [0,1] val-
ued membership functions of fuzzy sets is not possible (see e.g. [2]). For instance 
excluded middle law and idempotence are incompatible for fuzzy sets if we demand 
that the result of the operation in any point must be dependent only on the value 
of the membership functions in this point. 

C.A. Murthy et al. [l] try to solve this problem by defining operators the result 
of which may be dependent not only on the value of membership functions but 
also on their relative natures. They claim that the operators ® and © defined 
in their article fulfil all of the Boolean properties. If it were true, then these new 
operators should be preferred to any other earlier construction. 

We will show, however, a counter example where the operators ® and © 
do not fulfil some Boolean properties. It will be shown that the operators are ill-
defined, and we will point out why it is impossible to prove some of the Boolean 
properties of the operators © and © by the Theorems 1-7 of the cited paper. 
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1 Preliminary definitions 
First of all we have to recall the definitions of C.A. Murthy et al. [1]. 

1. 1 Properties of the operators 

They claim that the operators © and © fulfil the following properties. Here 
A,B,C are fuzzy sets in a universe X, HAJHB, etc. are membership functions of 
A, B, etc., Ac is the complement of A. 

Pi - Ha © = 0 for all x 6 X 

P2' HA © AC i 1 ) = 1 for all i € X 

P3 : commutativity 
HA 0 B ( I ) = HB ©A{X) 
HA © B ( I ) = HB © A(X) 

P4 : associativity 
HA Q ( B Q C ) ( X ) = H ( A © B ) Q c W 

HA © (B © c){x) = H(A © B) © c[x) 

Ps : idempotency 
HA ®A{X) = HA{X) 
HA @ A{X) = HA(X) 

P6 : distributive laws 
HA © ( B © c){x)=H(A © B ) © (A ©<?)(*) 
HA © (B © c ) ( « ) = M ( x © B) © (A @ c ) ( * ) 

P7 : identity 
HA ©0(*) = HA{X) 
HA © x{x) — HA{X) 

pg : a) absorption laws 
b) DeMorgan's laws 
c) involution laws 

Pa : 0 < HA © B < MM(NA,HB) 
1>HA © B > m a x ^ . / i s ) 

In the following HA,HB,HC are denoted by f,g,h respectively, FIA © B is denoted 
by / © g, etc. 

1. 2 Definition of type I membership functions 

Let the domain Q = [a, 6] be a closed interval in R, and let / be a membership 
function with the following properties: 
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a ) / : Q —• [0,1] is continuous 
bj HQ) = [o, l] ^ 
C) / { a , 6} ç {0,1} 

f is a type I membership function if it fulfils the next assumption: 
Let a < xo < b such that / increases (decreases) at xo. Then there exist x\ and 

x2 such that 

a < xi < x0 < x2 < b and f(xi) = 0 ( / ( x i ) = l) , / ( x 2 ) = 1 

( / ( x 2 ) = 0) and / is nondecreasing (nonincreasing) at all x G (x l t x2). 

1. 8 Definition of © and © . 

a) Murthy et al. first define a set Ax for every / membership function and for 
every point x € [a, 6] as follows: 

A. = 

[0, f[x)] if / is nondecreasing at x 
[1 — / (x ) , l] if / is nonincreasing at x 
any finite set if / (x ) = 0 
[0,1] i f / ( * ) = ! 

Bx and Cx are similarly defined for the functions g and h in any point x. 

b) Then © and © are defined by 

( / © ff)(x) = A(AX n Bx) 

[f © g)(x) = X(AxUBx) 

where A is the Lebesgue measure on R. 

2 A counter example 
We give an example, where the property of associativity (P4) of © does not hold. 

Let us consider the © operator. If we use it two times, one after another 

( ( /©<?)© *)(«) 
then according to the definition 1.3 in each step first of all we have to determine 
sets: 

- in the first step: the sets Ax and Bx, 
- in the second step: the set Dx connected with ( / © gr)(x) by definition 1.3a, 

and the set Cx. 

But it is easily possible that Dx = Ax C\BX is not valid (e.g. when / is increasing 
and g is decreasing at x). In this case the properties of Lebesgue measure in 
connection with ordinary sets cannot be automatically used to prove associativity 
and distributivity as it was done in Part \fl oft the cited paper. 

Let us see a counter example where J|,'ft are type I membership functions 
and the associativity of © does not h^dt L.et Q = [0,1], / , g and h be piecewise 
linear membership functions as shown in. figure 1. 
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Fig. 1. Functions f, g, h 

Here f, g and h are type I membership functions. But g © h does not belong 
to the same type because (g © /i)([0,1]) = [0, 0.7]. See figure 2. 

Since for all x € [0,1] f(x) < g(x), and / and g are nondecreasing at all 
x 6E (0,1), so / © g = f on the whole interval [0,1], according to the definition of 
© . On the interval (0.3,0.7) the functions / , g, /© g(= f),g© h are nondecreasing 
and h is nonincreasing. 

So ( / © <7)(0.5) = / ( 0 . 5 ) = 0.3. 
Let the set connected to / © g at the point 0.5 be Do.s (see definition 1.3a). 

Then Do.s = [0,0.3], because / © g is nondecreasing at 0.5. Co.5 = [0.2,1], because 
h is nonincreasing at 0.5. 

So ( ( / © g) © h)(0.5) = A (A) . s n C 0 . 5 ) = 0.1 
Similarly since g © h is increasing at 0.5, and (g © h) (0.5) = 0 .6, so Eo.s = 

[0.0.6], where Eo.s is the set connected to g® h(0.5) by definition 1.3a. In addition 
/(0.5) = 0.3, A0.5 = [0,0.3] and so 

(/ © {g © h))(0.S) = A(A0.6 n ^0 .s ) = 0.3 

That is ((/ © g) © A)(0.5) ¿ (f M ( j k© ,/i)(0.5) 
This result contradicts to the 'property of associativity of © . 
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Fig. 2. Function g © h 

3 Concluding remarks 
1. The definition of © and © is suitable only for type I membership functions. 

How can the set Ex be determined for the function g © h in Fig. 2. at the 
point x = 0.7? Here g ® h attains its maximum value, g © /i(0.7) = 0.7, 
but this value is not equal to 1. 

2. Why is the proof of associativity wrong in [1]? The cited paper uses the 
following argumentation to prove the Boolean properties of © and © : 
"the operations are ordinary set operations and the Lebesgue measure satisfies 
similar properties in connection with ordinary sets". This reasoning would 
be correct only if in composite operations the sets Ax, Bx, etc. connected 
to the membership functions were inherited. That is if f(x) = (g © h)lx) 
and AX) Bx. Cx are obtained from definition 1.3a, then Ax = Bx D Cx for 
all x € [a, 6]. Murthy et al. prove this only for the case when f,g and h 
are type I membership functions (see Theorems 1-7 in [1]). If, however, the 
result function / does not belong to the same type then the above equality 
for the sets Ax, Bxt Cx is not true usually. (See e.g. the function g © h. in 
our counter example.) 
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On minimal and maximal clones 

L . Szabó** 

1 Introduction 
A composition closed set of finitary operations on a fixed universe A containing all 
projections is a clone. For example the set J of all projections and the set O of 
all operations on A are clones. The clones, ordered by inclusion, form an algebraic 
lattice L with least element J and greatest element O. For |A| = 2, L is the 
well-known countable Post lattice [5], but already for |A| > 2 there are 2K° clones. 
For A finite L has finitely many coatoms, called maximal clones , and they are 
fully known ([7],[81). On the other hand L has finitely many atoms, called minimal 
clones, and are fully known only for lAl < 3 ([3], [5]). It is also known (see e.g. [6]) 
that the meet of all maximal clones is J, ana the join of all minimal clones is Ó. 

The aim of the present paper is to show that in general there are three maximal 
clones with meet J and there are three minimal clones with join O; moreover, for 
a prime element universe, two maximal clones, resp., two minimal clones have the 
above properties. 

2 Preliminaries 
Let A be a fixed universe with |A| > 2. For any positive integer n let O '" ) denote 
the set of all n-ary operations on A (i.e. maps An —» A) and let O = U^Li O^"^ . 
For 1 < t < n let e" denote the n-ary t-th projection (trivial operation). Further let 
J = {e?|l < t < n < oo} . The operations in O \ J are called non trivial operations. 
By a clone we mean a subset of O which is closed under superpositions and contains 
all projections. The set of clones ordered by inclusion form a lattice L in which 
every meet is the set-theoretical intersection. For F C O denote by [F] the clone 
generated by F, and instead of [ { / } ] we write [/]. 

A minimal clone, resp., a maximal clone is an atom, resp., a dual atom of L. It is 
well-known that L is an atomic and dually atomic algebraic lattice, and has finitely 
many minimal clones and maximal clones. Furthermore, the intersection of all 
maximal clones is J, and the minimal clones generate O (see e.g. Í6j). The maximal 
clones tire fully known and was given by I. G. Rosenberg ([7], [8]). For |A| = 2, L 
is the well-known Post lattice [5]. Considering the Post lattice we immediately see 
that for two element set there are three maximal clones with intersection J and the 
intersection of two maximal clones cannot be J. Moreover, there are three minimal 
clones with join O and the join of two minimal clones cannot be O. 
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A subset F C O as well as the algebra (A, F) is primal or complete if the clone 
generated by F (i.e. the set of all term functions of (A, F)) is equal to O; F as 
well as the algebra (A, F) is functionally complete if F together with all constant 
operations is primal. 

A ternary operation / on A is a majority function if for all x, y G A we have 
f(x,x,y) = f(x,y,x) = / ( y , x,x) = x; / is a Mal'tsev function if / ( x , y, y) = 
f(y>y>x) = x f ° r all x ,y e A. An n-ary operation t on A is said to be an t-th 
semi-projection in > 3, 1 < t < n) if for all xi,..., x n G A we have t ( x i , . . . , x „ ) = 
Xi whenever at least two elements among x i , . . . , x n are equal. We are going to 
formulate Rosenberg's Theorem ([7], ]8]) which is the main tool in proving our 
results. First, however, we need some further definitions. 

Let n,h> 1. An n-ary operation / 6 o W is said to preserve the h-ary relation 
p C Ah if p is a subalgebra of the /i-th direct power of the algebra (A; / ) . Then the 
set of operations preserving p forms a clone, which is denoted by Polp. We say that 
a relation p is a compatible relation of the algebra {A, F) if F C Polp. A binary 
relation is called nontrivial if it is distinct from the identity relation and from the 
full relation. 

An h-ary relation p on A is called central if p ft Ah and there exists a non-void 
proper subset C of A (called the center of p) such that 

(a) ( a j , . . . , a/,) €E p whenever at least one Oi G C( 1 < t < h); 

(b) p is totally symmetric, i.e. ( o i , . . . , a^) € p implies ( a i „ , . . . , € p for every 
permutation <f> of the indices 1 , . . . , h] 

(c) p is totally reflexive, i.e. ( a i , . . . , a^) € p if a,- = ay for some i ^ j ( l < t, j < h). 

Let h > 3. A family T = { © i , . . . , 6 m } (m > 1) of equivalence relations on A is 
called h-regular if each (1 < t < m) has exactly h blocks and Qy = 9 j n . . . n © „ , 
has exactly hm blocks (i.e. the intersection Hi^i arbitrary blocks Bi of 
0; (t = 1 , . . . , m) is nonempty). The relation determined by T is 

Xt = { ( a i , • • • > <*h) G Ah : o i , . . . , a/, are not pairwise incongruent 

modulo 0,- for all t ( l < t < m)}. 

Note that /i-regular relations are both totally reflexive and totally symmetric. 
Now we are in a position to state Rosenberg's Theorem: 

Theorem A (I. G. Rosenberg [7],[8]). A subset of O is a maximal clone if and 
only if it is of the form Polp for a relaton p of one of the following six types: 

1. a bounded partial order; 

2. a binary relation { (a, a?r)|a G A} where x is a permutation of A with |A|/p 
cycles of the same length p (p is a prime number); 

3. a quaternary relation { (a j , a2 , a3 , o<) e A4Jai + a2 = a3 + a 4 } where (A; + ) 
is an elementary abelian p-group (p is a prime number); 

4. a nontrivial equivalence relation; 

5. a central relation; 

6. a relation determined by an h-regular family of equivalence relations. 
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Moreover, a finite algebra A = (A, F) is primal if and only if F С Polp for no 
relation p of any of the above six types. 

3 Results 
From now on A is supposed to be the set { 0 , . . . , A; — 1} with к > 2. 

Theorem S. l There exist three maximal clones such that their intersection is J . 
Moreover, if к is a prime number then there are two maximal clones such that their 
intersection is J. 

Proo f . For any a € A define a binary relation pa on A as follows: 

Pa = { (s , y)|z = a or у = a or x = y}. 

Observe that pa is a central relation with center {a} . Choose two fixed point free 
permutation о and r on A of prime orders such that {a, r } generates a transitive 
permutation group on A. If A: is a prime number then we can choose a and r with 
a = т. Then, by Theorem A, Polpa (a G A), Polcr and Polr are maximal clones. 
Put F = Ро1р0П Polcrfl Polr. We show that F = J. 

Consider the algebra A = (A; F). Then po is a compatible relation, a and r 
are automorphisms of A . Therefore, by the choice of a and r, Aut A is transitive, 
which implies that every operation of A is surjective. Moreover, if тг £ Aut A then 

Po* = yjrJK®, y) G po} 

is also a compatible relation of A . Therefore, by the transitivity of Aut A , we have 
that pa is a compatible relation of A for every a & A. From this it follows that for 
every distinct a, 6 G A 

Pab- РаПрь = { ( a , 6 ) , ( 6 , a ) } U { ( x , x ) | x G A } 

is also a compatible relation of A . 
It is well-known that if a surjective operation preserves a central relation then 

it preserves its center (see e.g. [9]). Thus we have that every operation in F 
is idempotent. Suppose that A nas a nontrivial operation. Then it has either 
a nontivial binary operation or a majority function or a Mal'tsev function or a 
nontrivial semi-projection among its term functions (see e.g. [4]). 

First consider the case when A has a nontrivial binary term function / . Let 
a,b G A be arbitrary distinct elements. Then from (a, b), (b, b) G pab we have 
that (f(a,b),b) = (f[a,b),f{b,b)) G P a b , implying that / (a , 6) = a or / (a, 6) = b. 
Suppose that f(a, b) — a and choose an arbitrary element с G A with с ф a,b. Then 
(a,a),(6,c) 6 рьс implies that ( / (o , c),o) = ( / (a , c), f(a, b)) G рьс and f[a,c) = a. 
This fact together with the transitivity of Aut A shows that / is the first projection, 
a contradiction. If f(a, b) = b then a similar argument yields that / is the second 
projection. 

Now let d be a majority term function of A , and let a,b,c € A be pairwise 
different elements. Then d(a,b.c) is different from two of the elements a,b,c, 
say from a and b. Then (а, о), (Ь, о), (с, с) £ рь implies that (d(a,b,c),a) = 
(d(a, b, c), d(a, a, c)) 6 рь, a contradiction. 

If t is a Mal tsev function among the term functions of A , then for any 
two distinct elements a, b ф 0, (a, 0), (0,0), (0,6) G po implies that (a, 6) = 
(t(a,0,0), (t(0,0,6)) G p0, a contradiction. 
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Finally, let I be a nontrivial ii-ary first semi-projection among the term 
functions of A. Since I is not the first projection, there are a, a j , . . . ,an 6 A 
such that l(a, a2,..., a„) = 6 / a. Choose c 6 A with c ^ a, b. Then 
(°i c)i (°2i °)i • • -.i (°m e pa implies that (6,c) = (Z(a,a2 , . . . ,an),l(c,a,..., a)) e 
pa, a contradiction. This completes the proof. 
Theorem 3.2 There exist three minimal clones such that their join is O. More-
over, if k is a prime number then there are two minimal clones such that their join 
is O. 

Proof . First consider the case when k is a prime number and let a be the per-
mutation (0 1 . . . A; — 1) on A. Clearly, [<7] is a minimal clone. Define a ternary 
operation / on A as follows: 

f(x, y, z) = max(min(x, y), min(x, z), min(y, z)) 

for all x, y, z € A. Then f is a majority function and I/] is a minimal clone (see e.g. 
[6]). We show that / together with a generates O. Put F = {/, 0}. 

Taking into consideration Theorem A, we have to show that F C Polp for no 
relation of any of the types (l)-(6). Since <r generates a transitive permutation 
group, it is easy to show that it cannot preserve a relation of type (l) and (5). 
Moreover, making use of the fact that A; is a prime number, one can show easily 
that 0 do not preserve a relation of type (4). Furthermore, / being a majority 
function - as it is well-known (see e.g. [4]) - ao not preserve a relation of type (3) 
and (6). Finally suppose that p is a relation of type (2) determined by a permutation 
•K with F C Polp. Then TT is an automorphism of the algebra A = (A; F). Since 
•k and a commute we have that IT is a power of 0, and then a is also a power 
of -k (k is prime). Hence o is an automorphism of A . Therefore, we have that 
1 = /(0,1,2) = /((fc-l)CT,Oor, la) = f(k- 1,0,1)0- = l<r = 2, a contradiction. This 
completes the proof when A: is a prime number. 

Now suppose that k is not a prime, and let p be a prime number such that 
k/2 < p < k. Consider the permutations 0 = (0 1 . . . p — 1) and r = (A: — p k — 
(p — 1) . . . k — 1) on A. Clearly, [cr] and [r] are minimal clones. Define a ternary 
operation d on A as follows: 

\ _ / *> if 1 = !/> 
V1) S/iz) ^ otherwise. 

Then d is the well-known dual discriminator, which generates a minimal clone,(see 
e.g. [2]). We show that a and r together with d generate O. Put F = (d, <7, r } . 

Again, by Theorem A, we have to show that F C Polp for no relation of any of 
the types (l)-(6). Suppose that F C Polp for a relation of one of the type (l)-(6). 
It is known that {d} is a functionally complete set (see e. g. [1]). Therefore d 
Polp if Polp contains all constant operations. Hence p is of type (2) or a unary 
centred relation. Since [a] and [r] generate a transitive permutation group, they do 
not preserve a unary central relation.. 

Finally suppose that p is a relation of type (2) determined by a permutation 
Observe that if IT is of order q then TT is the product of k/q cycles of the same 

length q. Moreover, since k is not a prime number, we have q < k/2. Then JT 
commutes with <r and.r. Let Or = t. If t > p — 1 then for all j € (0 ,1 , . . . , p — 1} we 
have jic = Oct-'tt = 0•ko} = ia} = », showing that * is not injective, a contradiction. 
Hence t < p, and for all j 6 {0 ,1 , . . . , p — 1} we have j% = 0<xJ7r = On a3 = io3 -
Qo'o3 = Oa3 o* = jtj* showing that «- contains the cycle cr' of length p. Therefore 
we have p = q < k/2, a contradiction. This completes the proof. 
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Problem 1 Find all natural numbers k for which there exist two maximal clones 
on the set { 0 , . . . , k — 1} such that their intersection is J. 

Problem 2 Find all natural numbers k for which there exist two minimal clones 
on the set {0,... ,k — 1} such that their join is O. 
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