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An algorithm is presented for determining the star height of reset-free events
and strictly locally testable events.

1. INTRODUCTION

Eggan (1963) posed the problem of determining the star height of regular
events, and presented regular events of arbitrary star height, which are strictly
locally testable. McNaughton (1967) established the pathwise homonorphism
theorem, and presented an algorithm for determining the star height of pure-
group events. Cohen and Brzozowski (1970}, and Cohen (1970, 1971) investigated
many properties of star height, some of which provide algorithms for determining
the star height of certain reset-free events.

In this paper we obtain an algorithm for determining the star height of reset-
free events and strictly locally testable events. The class of reset-free events
properly contains the class of pure-group events, and it is known that there
exist strictly locally testable events of arbitrary star height over the two letter
alphabet (Hashiguchi and Honda, 1976). It turns out that we can reduce the
problem of determining the star height of any event in our class to the problem
for a finite set of related star events and their root events. As a corollary we
present a star event whose star height is equal to that of its root event.

2. PRELIMINARIES

We assume that the reader is familiar with regular events, regular expressions,
and finite automata. In this section we present notation and some definitions.
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Let 2 be a finite nonempty alphabet; Z*, the set of all words over 2 A, the null
word; 2, the set of all nonnull words over Z; and ¢, the empty event. For any
k >0, 2(k) is the set of words over 2 of length less than or equal to k. For
w € 2%, /(w) is the length of w, and #Q the cardinality of the set Q. In this paper
“regular expressions” use only the operators union (U), concatenation (),
and star (*). Let | E | be the regular event represented by a regular expression E.

Derintrion 2., The apparent star height 4,(E) of a regular expression E
is defined inductively as follows:

(1) Forael, A and ¢, h(a) = h,(A) = k() = 0.
() By By) = hy(ByEy) = max{h,(Ey), hy(Ey)}, and h(E*) — h(E) + 1.

Derintrion 2.2, 'The star height 4(R) of a regular event R is defined by
h(R) = min{~ (E) | E is a regular expression representing R}.

Let o = (X, Q, M, S, F) be a (finite) automaton over an input alphabet 2,
where Q is the set of states, M is the transition function from Q x (XU {A})
to 22, and S, F C Q are the sets of initial states and final states, respectively.
o/ is deterministic if M is a (partial) function from Q x X to Q. M is extended
to O X 2% — 2@ in the usual way. The event accepted by &7 is denoted by
R(oZ), and R(f) = {we Z* | M(S, w) NF £ ¢}. When .S and F are irrelevant
to the context, 7 is denoted by the triple (&, Q, M>. «>(sf), or <> when no
ambiguity arises, is the relation of strong connectedness over Q. ]+ (&)
(or T]¢> ) is the negation of «>(Z) ( <> ). Thus for any ¢, ¢’ €0, g ¢
iff ¢ € M{q, 2*), and g€ M{q', Z*). o/ is strongly connected (s.c.) if for any g¢,
g €0, g+ ¢'. A subautomaton of &/ is an automaton & = (X, O, , M;>
such that Q) C O, and for all (g, @) € O; X (ZU{A}), My(q, a) CM(q,a) N O, .
A section of & is a maximal s.c. subautomaton of 7. A section & = <{Z, Q,,
My> of of is trivial if #0;, = 1, and My(0Qy, 2) = ¢. For O, CQ, & — [Oy]
is the maximal subautomaton of &7 whose set of states is QO — O, . OQ(«) is
the set of states of o7.

DerintTioN 2.3. The (cycle) rank (/) of an automaton & is defined
inductively as follows:

(1) If all sections of &7 are trivial, then r(«?) = 0.

(2) If o/ has a nontrivial section, then #(2f) = max{min{r(# — [q]) |
g€ O(&)} | & is a nontrivial section of o7} -- 1, where if Q(%) = {¢}, then

(&) — lgh) = 0.
Any g e Q is a rank center of & if r{() = r(L — [q]) + 1.
Levma 2.1.  For any automaton 7, v(Z) = max{r(5L) | & is a section of </},
Eggan (1963) established the following theorem.
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Eggan’s theorem. For any regular event R, A(R) = min{r(/) | &/ is an
automaton accepting R}.

By Eggan’s theorem, we assume the following (1), (2), and (3) in the rest
of the paper.

(1) For any automaton ¢ = (Z, Q, M, S, F and g€ Q, g M(S, 2%),
and M(q, Z*¥) " F # ¢.
(2) g4 is a special symbol such that for any automaton o, qq & O(H).

(3) For any automaton & = <(Z, Q, M), M; is the function from
(0 U{gs}) X (ZU {X}) to 29Va such that forallae XU {A}, and g € 0V {gs,
if M(q, a) # &, then Mg, a) = M(q, a); otherwise M(q, a) = {ga}. My is
extended to 20V x 25 — 20(Vaa in the usual way.

For any automaton of = (X, Q, M), and ¢, £ C O, we define At ) =
{we Z* | for each get, M(q, w)Nt ¢}, and (¢, ', )) ={we2*| for
some g € ¢, M(q, w) N t' % ¢}. For a regular event R C X*, o/[R] is the reduced
automaton accepting R, and Rt = R* — {A}. For Ry, Ry, R;C 2% R\R;,
R,/R,, and R)\R,/R, are the events, {y € Z* | xy € R, for some x e R},
{xc Z* | wy € R, for some y € Ry}, and {y € Z* | xyz € R, for some x € R, , and
z € R}, respectively. A regular event R C J* is a star event if R = R*. For
a star event R C 2% we define the root (event) of R, root(R) = R — (R")%

Note that R = (root(R))*.

TuroreM 2.1. (Cohen and Brzozowski, 1970). For any regular event
RC2* and R, Ry C 2%, h(R\R|Ry) < h(R).

CoROLLARY 2.1. For any deterministic automaton o/ = (X, Q, M) and q,
g €Q,if g q', then i(L(q, 9)) = (¢, 9))-

Proof. Assume ¢ = M(q, w), and ¢ = M(q', w') for w, w'e2*. Then
(g, q) = w'\(q, q), and (g, q) = w\#(q, g). By the theorem the result
follows.

For a deterministic automaton & = (X, Q, M>, we define 2, (&) =
{ac X | forallge O, M(q, a) + ¢, and M(q, a) ¢ M(Q — {g}, @)}, and 2() =
{acZ| for all qeQ, M(q a) =¢, or M(q, a)¢ M(Q — {g}, a)}. Clearly
2 () C Z(Z). A regular event R C 2* is (1) a pure-group event, and (2) a
reset-free event if (1) 2 = Z,(</[R]), and (2) 2 = Z{(A[R]), respectively.

Let k > 1 be an integer. For w e X* of length >k, Li(w), Ry(w), and I;(w)
are the initial segment of @ of length %, the terminal segment of w of length &,
and the set of interior segment of  of length &, respectively. k(w) is the set,
I(w) U {L(w), Ry(w)}. If L(w) < k, k(w) = ¢. For RC ¥, define Ly(R) =
{Lw) | we RN ZEZ*X}, RYR) = {Ry(w) | we RN Z*Z*}, and I(R) =
{xel(w) | we RN I:Z*). RC Z* is strictly k-testable if for all we Z* of
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length > &, w e R iff Ly(w) € Ly(R), I{w) C I,(R), and Ry(w) € Ri(R). RC Z*
is strictly locally testable if it is strictly k-testable for some & >= 1.

In the rest of this section, let R C 2* be regular, and & = (Z, Q, M, {5}, F)
the reduced automaton accepting R.

DerFiNiTION 2.4. A problem on &7 is a triple (¢, Ry, ¢') such that ¢, ' C Q,
R, C(t, t'), and Ry is regular. T(s/) is the set of problems on .. For each
(t, Ry, V') € T(s7), define the solution r,(t, R,, ¢') by

"l Ry, t') = min{r(.f) | 4 is an automaton and Ry C R(&Z) C (¢, ¢')}

An automaton %/ is (1) a candidate, and (2) a proper candidate for (¢, R, , ') €
T() if (1) Ry C R(=f) C (¢, t'), and (2) Ry C R(,) C (8, '), and r(F)) =
7ty Ry, t'), respectively.

The following lemma connects the problem of determining A(R) to the
problem of determining 7,,(¢, R, , t') for (¢, R, , t') € T(sZ).

Levmma 2.2, A(R) = r,(s, R, F).

Levma 2.3. Forall (4, Ry, £), (4, Ry , £}) € T(eF),

(1) 7,0 Ry, ¥') = 0 4ff Ry is finite;

2 Ft=1t,and t' =1y, then (t, Ry U Ry, ') € T(H), and r,(¢t,
Ry U Ry, t') = max{r,(f, Ry, t'), 7,(8, Ry, t')};

(3) if ¥ Cuy, then (t, RyR,, 1)) € T(H), and r, (¢, RyR,, 1) < max{r,(¢,
Ry, 1), rm(ty, Ry s 11)};

4) ift =1, then (¢, RY, t) € T(A), and r,(t, R¥, 1) < v, Ry, ) + 1.

The following definition will be used to check whether or not an arbitrary
automaton 7, is a candidate for some (¢, R, , t') € T(sZ).

DrriNiTION 2.5. For any automaton & = <X, Qy, M, , Sy, Fo> and t C Q,
I'le, o4, t] is the mapping from Q, to the power set of O U {g;} such that
forall ge Qy, I'lsZ, A, t1(q) = Ma(t, H(So > ¢ U))-

LevmMa 2.4. For any automaton 4y, q, ¢ € Q(4), and t, t' C Q,
s, oy, t1q') 2 MoI'[, Ay, 1)), (e 4)- ‘

Definition 2.5 and Lemma 2.4 are explained as follows: I'[<Z, o4, , £](g) is
the set of states in Q U {g,} to which .7 moves from some state in £ C Q by M,
reading some word in (S, , g, ). Here, 24(S, , ¢, U) is the set of words by
which .4, moves from some g5 € S to g. Lemma 2.4 asserts that the set of states
in Q U {g4} to which &/ moves from some state in £ C Q by M, reading some
words in 24(S,, ¢, ) includes MI'[oZ, o7, tl(g), (g, ¢')) for any g€ Q.
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3. Tue Star Hricur ofF ReserT-Free EVENTS

In this section we obtain an algorithm for determining the star height of
reset-free events. Throughout this section, let RC2* be reset-free, and
o = {(Z, O, M, {s}, F> the reduced automaton accepting R. T'is the set of
problems on 7. K is the syntactic semigroup of R, and « the homomorphism
mapping 2* onto K such that for all v, w € 2%, o(v) = a(w) iff for all g O,
M(q, v) = M(q, w). Let M, be the “reverse” transition function from Z* x 22
to 29 such that for all we Z* and t C Q, My(w, t) = {gc O | M(q, w) € t}.
For all weX*, we define Q(w) = {ge O | M(q, w) % ¢}, and M[w] is the
function from Q(w) to M(Q, ) such that for all g € Q(w), M[w](g) = M(q, w).

Lemma 3.1. For all we X*, if Q(w) # ¢, then M[w) is bijective.

Proof. 'The proof is by induction on £(w). If £(w) < 1, the lemma is obvious,
If w = w'aq, ' € 2%, ac X, and O(w) # ¢, then Q(w"), O(a) # ¢, and for any
g, ¢ € Q(w) with g 5= ¢/, M[w](q) = M(g, w'a) = M(M(g, »'), a) = M[a]
(M[=')(q)) #= Mla}(M[z'(¢)) = Mw](¢', w), where the inequality follows
by the inductive hypothesis. This implies that M[w] is bijective.

Cororrary 3.1. For all v, we X*, and t, t', t" C Q,

(1) if My(t, v) = My(¥, ©), and g, ¢ My(t, v), then t = t';

(2) of My(t, ) CF, and My(t', w) Ct, then #ft = #t', My(t, v) = t, and
Myt w) = t;

() if My(#, w) = t", and My(t, vw) = t", then My(t, v) = ¢

DeriNtTioN 3.1. we X* is identity-like (w.r.t. (&) if for all ge Q(w),
M(q, =) = q. [K,] is the set of identity-like words in Z*(w.r.t. (&7)).

Levma 3.2. There exists an integer ¢ > 1 such that for all we 2%, we is
identity-like.

Proof. We shall define a mapping 8 from O X X* to the set, {i | is an
integer, and 1 <C ¢ << #0}. Let (g, wye Q X 2*. Leti =0 and j > 1 be the
smallest integers such that M(q, w®) = M(q, w*+). If M(g, wf) = ¢, put
B(g, w) = i. Otherwise put (g, w) = j. Note that in the latter case, M(q, #%) =
M(q, wi*?) = M(M(q, '), ), and ¢ = M(q, #’) by Corollary 3.1. Consider
the set B = {B(q, w) | (¢, w) € O X Z*}. Clearly #B <C #0. Let e be the least
common multiple of all integers in B. Then the lemma follows.

In the rest of this section, e denotes the integer defined in the preceding lemma.

The following lemma, which resembles Theorem 4 in McNaughton (1967),
presents certain deterministic properties of transitions in nondeterministic
automata.

643/40[3-3
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Levma 3.3. Lett, ' CQ, and ofy = <X, Qy, My, Sy, Fy) be an automaton.
Then R(s4,) C o4(¢, t') iff for all q, q' € Qy, the following (1), (2), and (3) hold,
where I' = 't , &%, t]:

(1) g2 I9);

(2) ifqel,, then I'(g)C t';

(3) for any v, weX*, if vesd g ¢'), and we (g, q), then I'(q) =
My(I(q), v) = My(w, I'(q)), and #I'(q) = #I'(¢)-

Proof. Tt is easy to see that R(e4) C &/(t, ') iff (1) and (2) hold. Assume
that R(s4) C (2, '), ve (g, ¢'), and we (g, g) for g, ¢ € Q,, and v,
we 2*. Then (3) follows from (1), My(I'(g), v) C I'(q"), M4I(q), w)C I'(g),
and Corollary 3.1.

DerFiNrTioN 3.2, Let o4, = <2, Qo , My, {4y}, Fyy be a deterministic auto-
maton.

(1) For each w e R(), the section-wise transition of w in & is a sequence,
sow. (w0, ) = (qu1+ %1 > G125 @ »ee> Ami > D1 » ¥m > Gma)> SUCh that (i) m > 1,
Gy = 9, qma €F, and w = w@X%y ** @y 4%, , and (i) for i = 1,..., m, and
J=1leym—1, ¢1,95€Q0, ¢ Gi> G2 = Mo(qnr» %), @2 "1 Gisr1>
a;€ 2, and 5,11 = M(g2, 4;). s.w.(w, Qo , %) is the sequence, (¢11, G125 To1 »
Goz veees Gt > Ima)-

(2) A complete subevent of 57 is an event, Ry = Hya,H, ** a, 4H,, ,
such that for some w e R(o4), s.w.(w, ) = (qu1 ¥1» G15> @1 »eees Gt » Tona »
Xm s sz)’ and Hz = %(Qz‘l ’ 912) N [KI] O‘—la(xz') for i = 1"": m. S'W'(RO 4 "Q{O)
is the sequence, (¢u1 , (%), G1z s A1 5er Tt > Gz » A Xm)s Gmz)- Cr(Hp) i the set
of complete subevents of .27, .

LEMMA 3.4. For any reduced automaton sy, C{s4) is finite, and R(4) =
{we Ry | Ry € C);-

DerINITION 3.3. Let o, = (Z, Oy, My, {0}, Fo» be a deterministic auto-
maton, 'RO € Cf(%)’ and S'W'(‘RO 4 ‘%) = (QIl ’ 0‘(‘701)’ Q125 A1 505 Dp1 > Gt >
Al(%y)y o) Lt o =<2, Oy, My, Sy, F;> be an automaton. A sequence,
(1 5> @) € (O1)™, is a complete sequence of 4 W.r.t.(Rq , %) if (1) there exist
%€ [K)], 2me[Kj] o lo(x,)[K], and 2 €[K] - o tal®;) - [K] - @; - [K] for
i=1,.,m—1 such that ¢, € My(S;, %)y My(qu > 2m) NFy # ¢, and g;q €
My(q;, 2;) fori = 1,..., m — 1, and (2) for eachi = 1,..., m, and w € Z(¢s , ),
xwy € 4(q; , ¢;) N [K;] for some x € [K]], and y € 2*.

The following lemma resembles the lemma to Theorem 6 in McNaughton

(1967).
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Lemma 3.5, Let t, £ CQ, &, = (2, Oy, My, (a5}, Fo) be a deterministic
automaton, R(s4y) C (8, 1), Rye C{s), and o4 =<2, Oy, My, Sy, F;> be
a candidate for (t, R(s4,), t')e T. Then there exists a complete sequence of <7,
w.rt(R,, ).

Proof. We shall construct a complete sequence of 2 w.r.t. (R, %4). Let
sow. (Ry, ) = (qu» %)), Gizs G1seees Gmcys G > HFm)y Gmg), a0d &; €
A5y 5 Gs) for §=1,..., m. For each i >0, and j = 1,..., m, define By =
{ve (g, 9n) | {(v) <i}. By is finite. Put 2y = (21)%(2y)° - ()% where
By = {vy, v ,..., v}. We note that for each ve By;, 5, = xvy for some
xel[K;], and yeX*. Now put 2, = (2)"%@ ~ &y 1(2m) % , where
n=#0, . Thens.w. (2;, ) = (a1, (3:)™1 Qra> @ 5o Uy > Goa 5 (Bim) %o
Gms), and 2; € Ry C R(of). Consider the transitions induced by 2, in & . Since
n = #Q,, there exists a sequence, (¢iy, ip - Gim) € (Q1)™, such that
Sy, da> U) 0 K] # by gy B) O ([(Kilow) # b Slglys Ghsra) O
(1K} %@l K;)) # 6 for j — Lo, m — 1, and (gl » gi) O (3)" 7 ¢ for
k= l,..,m. Put o(&) = (g1, Gia s §im)- Consider the infinite sequence,
4(0), o(1), 4(2),.... Since m and # are finite, there exists 4(f) which appears
infinitely many times in the sequence, 4(0), (1), 4(2),... . It is easy to see that
4(7) is a complete sequence of &4 w.r.t. (R, &), which completes the proof.

DEeriNiTION 3.4. An automaton <7, = (X, Qy, My, S,, Fo» is a subset
automaton of & if (1) Q,C 29, (2) &, is deterministic, (3) #S, = #F, = 1,
(4) for all ¢, ¢’ € Qy and a e X, M(q, a) = ¢’ only if My(g, a) C ¢’, and (5) for
all w, o’ € R(oA), s.w. (w, Oy, &) = sw. (@', Oy, ). It is a complete subset
automaton of & if it is a subset automaton of &7, and for S, = {4}, and F, = {f},
s€4y, and fy CF. Let s.a. (&), and cs.a. (&) be the sets of subset automata
and complete subset automata of &7, respectively. For any CCcsa. (&),
define R(C) = {w e R(s4) | & € C}, and #(C) = max{r(«4) | &, € C}.

Lremma 3.6, For any Sy € cs.a. (), R(s4) C R.
We are now ready to state an algorithm for determining the star height of reset-free
events.

AvGoritEM 3.1. For a reset-free event R C 2*, and the reduced automaton
o accepting R,

h(R) = min{r(C) | C C c.s.a. (), and R(C) = R}.

We can determine the right side of the equation by constructing all finitely
many complete subset automata of .o/, determining their rank, and obtaining
the events accepted by them. In the rest of this section, we shall prove the
correctness of the algorithm. Clearly A(R) < min{#(C) | C C c.s.a. («7), and
R(C) = R}. We shall prove that the converse of the inequality also holds.
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LemmMa 3.7. For any oy = (2, Oy, My, {t}, {t}> € s.a. (2), if #t =
then 1) = r.(t, R(Hy), 1.

Proof. Clearly 7,,(t, R(s4), t') < r(4). We shall prove that 7, (¢, R(<#), ¥') >
7(4,) by induction on r,,(¢, R(24), t'). If (¢, R(s4,), ') = 0, then the inequality
is obvious. Assume 7,,(f, R(=4), t') > 0. Let Ry € Ci(24), and s.w. (R, o) =
(911 ’ O‘(xl)’ Qizs D 5eees Q1 s Gumd > O‘(xm), 9m2)- Let VQ{l = <Z’ Ql ’ Ml ’ Sl ’ Fl>
be a proper candidate for (¢, R(4), '). By Lemma 3.5, there exists a complete
sequence, (% s G2 5eees q'/n) € (Ql)m Of'% w.r.t. (RO ’ %) Let %z = <27 Qoi ’ M0i>,
and F; = (&, Qy;, My;> be the sections of & and & such that ¢; € Q,,,
and ¢; € O, for i = 1,..., m. Now it will suffice to show that #(%;) < 7(%,)
for ¢ = 1,..., m. Let ¢; € O;; be a rank center of &;. Let I' = I'[.«, 4, t].
By Corollary 3.1 and Lemma 3.5, one can see that I'(g;) = ¢;; C O. Put t, =
I'(g;). Let s.a. (%; , t,) be the set of automata which belong to s.a. (), and are
stbautomata of %; — [¢,]. Clearly #( ;) << max{r(sty) | o, € s.a. (L, b)) -+ L.
To complete the proof, we shall show that for each o4, € s.a. (F;, 1), r{o%) <
S — [g)]). (Note that /() — (S — g) + 1). Let oty — <, Oy, My,
fth ) € sa. (o, to). Let F;— [g)] — <5 Oy, My). Define S, —
' €0, | I(g") = 1}, and F, = {g" € Oy | [\g") — 1} Let o, — (Z, Q;, M,
S;, Fy>. By Corollary 3.1, and Lemma 3.3, one can see that R{«Z) C R(s7;) C
Lty , ty). Thus 7,(t, , R(), ty) < r() < (S — [gi])- By the inductive
hypothesis, () < 7ty , R(s), t,). Hence #(s) < 1(F;; — [q;]), completing
the proof of the lemma. '

To complete the proof of correctness of Algorithm 3.1, we shall show that
A(R) = min{r(C) | C C cs.a. (&), and R(C) = R}. Let o = (X, Oy, My, S,
F> be a proper candidate for (s, R, F). Thus 7(«/;) = KR), and R(s4) = R.
It will suffice to show that for each R, € C{«7), there exists o4, € c.s.a. (&) such
that R, C R(o4), and #(#) < r(4). Let Rye CHZ), and s.w. (B, &) =
(q11 > A%1), 1> @y 55 Ay > Ty 5 HXm), Gomo) with x; € /(g , o) fori = 1,..., m.
In the following we shall construct some o7, € c.s.a. (&) such that Ry C R(s4),
and 7(e%;) < #(=4). By Lemma 3.5, there exists a complete sequence, (¢; ,..., ) €
(0", of & wrt. (Ry, o). For each i = 1,..., m, let F; =<2, Q,5, My,
and %, = <2, Qy;, M,,> be the sections of &7 and & such that ¢, € Oy, and
g; € Oy; . Let I’ be the function I'le/, &7 , 4]. Put t; = I'(g;) fori = 1,..., m. By
definition of I, it is easy to see that g;; € ¢, . Let %, be the automaton, {Z, Oy, ,
M, , {8}, {t;}>, such that Oy, = {tC O | t = M(t;, v) for some g€ Oy, and
vedgy, Qht, = M(t;, x;), and for each g, ¢ € Qy;and a € 2, My(g, a) = ¢
iff M(q, a) = ¢'. It is easy to see that F; € s.a. (), and o/(g; , gp) N
[K;] ala(x;) C R(H,) C (2, , t;) by Corollary 3.1, and Lemma 3.3. Moreover
we have #(%,;) < 7(4) as explained below. Define S; = {ge Oy, | I'(q) = ¢},
and F; = {ge Qy; | I'(g) = #;}. Let 4, = <Z, Oy;, My;, S;, F;). By Corollary
3.1, and Lemma 3.3, R(«4;) C (%, , t;). One can see that 2, is a candidate for
(t;, R(%,), t;) as follows. Consider any we R(H,). Since &; is strongly
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connected, M(#;,v) = t; for some veX* Then M(g, , (wv)’) = ¢; . By
Corollary 3.1, and Lemma 3.3, one can see that R(%;) € R(«4;). Thus r, (¢,
R(S), 1) < r(shy) < r(e4). By Lemma 3.7, (%) < ().

Now consider any Q; and Qg for 1 <7 <j <{m. Let te Qy and ' € Q; .
It is easy to see that for some ¢z € Oy, and ve ¥, ¢, M(t, v) O, and
Gio 1> Mgy, ). It t = ¢, then M(t, v°) = ', and M(g,, , v°) = g, , which
is a contradiction to ¢;, "] <> M(g,y, ©). Thus Qy; N Qg = ¢. Now it is easy
to see that one can construct &7 € c.s.a. (/) such that r(o4) < A(R), and
R, C R(s4,) by a series connection of %, , [a,], S, Hlas),..., H[a,_,], and
S 0 the obvious manner. This completes the proof of Algorithm 3.1.

Lemma 3.7 provides the following corollary.

CoroLLary 3.2. (McNaughton (1967), Cohen (1970)). If #F = 1, then
MR) = r().

Remark 3.1. One can alternatively prove (%) = #n(%,) for i =1,.,m
in the above proof using the pathwise homomorphism theorem in McNaughton

(1967).

Remark 3.2. Tt is known that there exists a regular event R such that A(R) <
min{r(C) | C € c.s.a. (Z[R]) and R(C) = R}. (See Example 6.3 in Cohen and
Brzozowski (1970)).

Remark 3.3. Cohen (1970) presented the hollowing theorem. Let R C X*
be a regular event with the finite intersection property, i.e., for all x, v e X%,
#\R = y\R, or ¥\R N ¥\R is finite. Then A(R) = »(-/[R]).

One can alternatively prove that A(R) = r{/[R]) as follows. We may assume
that 2(R) > 0. Let /[R] = & = (Z, Q, M, {5}, F>. Put & = max{{(w) | we
BRNY\R for some x, ye2* with x\R £ y\R} 4+ 1. For each w e Ry(R),
there exists a unique state g{w) € Q such that M(g(w), w)€F, and let o/[w]
be the automaton, (&, Q(w), M(w), {5}, {g{w)}>, where Q(w) ={ge Q| A (q,F) N
2*a = ¢}, and M(w) is the restriction of M to O(w) X X — Q(w). One can
see that (1) &Z[w] is reset-free, (2) &Z[w] = H[R[w], (3) #{/) = max{r{=/[w]) |
we R(R)}, and (4) R — X(k — 1) = (Rfwy) " w; U - U (Rfw,,) - w,, , where
R(R) = {w, ,..., w,}. Then A(R) = max{h(Rjw)|we R (R)} by (4) and
Theorem 2.1, and #(.e7) = max{A(R[w) | w € Ry(R)} by (1), (2), (3) and Corollary
3.2. Hence #(R) = r{).

4. THe StarR HEeigHT OF STRIcTLY LocaLLy TESTABLE EVENTS

In this section we obtain an algorithm for determining the star height of strictly
locally testable events. We first present an alternative characterization of strictly
locally testable events.
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Dermvition 4.1, Let & > 0 be an integer. A regular event R C 2% is k-reset
if for all x, ye X* and we X%, xw\R, yw\R # ¢ implies xw\R = yw\R. An
automaton & = {2, Q, M, S, F) is k-reset if it is deterministic, and for any
we 2% #M(Q, w) < 1. A regular event (an automaton) is reset if it is k-reset
for some & = 0.

Prorosttion 4.1. For any k > 0, and any regular event R C X%, the following
are equivalent:

(1) R is k-reset.
(2) SA[R] is k-reset.

(3) R is accepted by some k-reset automaton.

Prorosition 4.2. R C X* is reset iff it is strictly locally testable.

The proposition follows from the following two lemmata,

Lemmva 4.1. If RC X* is k-reset for some k = O, then it is strictly (k - 1)-
testable.

Proof. Let RC 2% be k-reset, and & = (Z, Q, M, {5}, F> = o/[R]. Let
we ZFAXE If we R, then Ly, (@) € Ly 1(R), Rya(w) € Ry iy(R), and I, 4 (w) C
I,.1(R) by definition. Conversely let L, 1(w) € Ly 1(R), Ry 1(w) € Ry1(R), and
Ia(w) C Iy (R). Assume that £(w) >k + 2. (In case #(w) < k42, the
argument is similar). Let w = wyaya, = a,,, w; € 2%, m > 2, and g, X for
= 1,.., m Put gy = Mys, wy), and ¢; = My(s, wya, +* a;) for i = 1,..., m.
Since L. (w) €L, 1(R), g5 7 g4 - Let w; = bw;, be X, and wye Z*. Then
wiay €I, (R). Since &/ is k-reset, M(Q, wa) = M(M(Q, »}), @) =
{M(qy, a)} = {g,} and gy # g, . By the same arguments, ¢, ,..., g,, 7 g4 . Since
Ry (@) € Ry, ((R), and o7 is k-reset, it follows that M(Q, R, (w)) = {g,} CF.
Hence w € R, completing the proof.

Lemma 4.2, If R C X% is strictly k-testable for some k = 1, then it is (k -+ 1)-

reset.

Proof. Assume that R C X* is strictly k-testable. Let x, y e 2%, w e X%
and xw\R, yw\R 5 ¢. Let 2 € xw\R. Then xwz € R. Since yw\R £ ¢, ywz, € R
for some z,€ 2*. Then Ly(ywz) = L,(ywz) e Li(R), Ry(ywe) = Ry(xwz) e
Ry (R). Moreover I (ywz) = I(yw) U [i(wz) CI(R). Thus ywzeR, and
xw\R C yw\R. Similarly yw\R C xw\R. Hence xw\R = yw\R, completing the
proof.

Remark.4.1. For any k =1, (01*-1 U 1%*-10) is k-reset, but not strictly

k-testable since 01720 ¢ (01%1 U 1%-10). Conversely (0* U 0%!) is strictly
k-testable, but not k-reset.
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For any w = aya, - a, € X+, a;€ X for i = 1,..., m, " is the reverse of w,
wT = a,a, , " a . T = X Forany RCX* RT = {wT |weR}.

ProposITION 4.3. If R C X* is k-reset for some k = 0, then RT is k-reset.

Proof. Let [R] = o =<, Q, M, {s},F>, and R be k-reset. Let x,
yeX* welX¥ and Rjwx, Rjwy # ¢. Let ze Rjwx. Then zwxec R. Since
Rlwy # ¢, zgwy e R for some zy€2*. Since R is k-reset, {M(s, zwy)} =
M(Q, wy) = {M(s, zgwy)} CF. Thus ze Rfwy, and Rfwx C Rjwy. Similarly
Rjwy C R|wx, completing the proof.

The following lemma reduces the problem of determining the star height of
strictly k-testable events to the problem of (k¢ — 1)-reset events.

Lemma 4.3. If R C X* is strictly k-testable for some k = 1, then (1) Z\R/Z
is (k — 1)-reset, and (2) h(R) = h(Z\R/X).

Proof. Let R C X* be strictly k-testable, and Ry = Z\R/2

(1) Let x, yeZ*, weZ*, and xuw\R,, yw\R, # ¢. Let zcxw\R,.
Then for some a, be Z, axwsb € R, Since yw\R, # ¢, a'ywz'b’ € R for some
a, b X and 2’ € 2*. Consider a'ywsb. It is easy to sce that L{a'ywzb) € L,(R),
Ry(a'ywzb) € Ry(R), and I}{a'ywzb) = k(yw) U k(wz) CI(R). Then z € ya\Ry,
and xw\R, C yw\R, . Similarly yu\R, C xw\R, . Thus xw\R, = yw\R, .

(2) By Theorem 2.1 what must be proved is that A(R) < A(Z\R/Z).
Clearly R = (RN ZQ2k + 1)) U (R — Z(2k + 1)), and (R) = (R — Z(2k - 1))
since RN X2k + 1) is finite. We shall prove that AR — 22k 4+ 1)) <
ME\R|Z). Let X X 2 = {{ay, by)yes (@ , by)), and ZFHL 5 D1 = {(x, , y),...,
(%, ¥p)}- Then D\R[X = a)\R[by U - U a,\R/b,,, and R — Z2k + 1) =
(2 \RY) Yy Y - U 2,(%,\R] Y1) ¥, - Now it will suffice to show that for any »,
ye X W\R[y) < ME\R/Z). Leta, ye 2, x = ax’, y = v'b,and a, be 2.
Then *\Rjy = {ge 2% | '3y’ € a\R/b} = {g€ 2* | x'zy’ € ZH\R[Z+}, and
a\R/b C Z\R[XZ C ZH\RjX+. Then

\Rly = {z € ¥ | ¥’y € D\RZ} = ¥\(Z\R[Z)]y'.

By Theorem 2.1, the result follows.

In the rest of this section we shall present an algorithm for determining
the star height of reset events. Let R C 2* be k-reset, and & = (Z, O, M, {s},
Fy = o[R].If k = 0, then R = ¢, or R = X for some X, C %, and it is easy
to determine A(R). We assume that 2 > 1. For each g€ Q, define X(%, q) =
{weZ*% | M(Q, w) = {¢g}}. For any automaton &, = (X, Q,, M,, S,, Fp>,
define R[A] = R((Z, Oy, My, Oy, Op>). We note that R[4 = Z*\R{a4)/Z*.

Lemma 4.4. For any section & of o, q, ¢ € Q(S), and any subautomaton
sty of A, if & is a subautomaton of <4, , then h(R(h)) = h((q, ¢)).



278 HASHIGUCHI AND HONDA

Proof. 1f h(s4(q, ¢')) = 0, the assertion is obvious. Assume that A(#(q, ¢')) >
1, and % is a subautomaton of o, . Let &, = (Z, Qp, My, S, , Fy>. Then there
exist x, y e Zt2*, gy S,, and ¢, €F, such that ¢ = M(q,, %), and ¢, =
My(q', y). Let Z(&, ¢') = {21, 05 ,..., 0}, and for each veZ(k, ¢'), define
Ry(v) = (x\R(s4)/vy) - v. By Theorem 2.1, it will suffice to show that

(g, ¢') — 2k — 1) = Ry(vy) U " U Ry(oy,).
One can see that

(g, q)— 2k —1) ={ze(q, ¢') | # = 2 for some v € Z(k, q')}
= {z | 2 = gyv and xzyvy € R() for some v e X(k, ¢')}
= Ry(21) U+ U Ry(vy).

This completes the proof.

Lemma 4.5. (1) Forany q,q' € Q,if g« ¢/, then {4(q, q)) = WL (q, ¢')) =
Wst(q', ) = W75 7))
(2) MR) = WR[]) = max{h(s/(q, ) | ¢, ¢ € O} = max{h((g, ¢') | ¢,
g €Qand g ¢’} = max{h(</(g, q)) | g€ O}

Proof. (1) is immediate from Lemma 4.4. (2) Put B = max{i(24(q, ¢'})) | ¢,
q e} §=max{h((g,q)) g ¢cQ and g ¢}, and L = max{h(=/(q,
7)) | g€ O}. Clearly L < § < B. From (1), L = .S. We shall prove that (a)
B < S, (b) k(R), H(R[/]) < B, and (c) L < A(R), MR[/]). For any g, ¢' € Q,
we can obtain a regular expression representing 2/(g, ¢') from the set of regular
expressions, {wel* | f(w) < HOIV{E || E| = (g, q;) for some ¢,
¢, € O with g, <> ¢,}, by concatenation and union. Thus B < S. Similarly (R),
h(R[/]) < B. By Lemma 4.4, L < k(R), h(R[/]). This completes the proof.

CororLiary 4.1. (1) AR) = max{A(R[F]) | & is a section of S/}, (2) If
o s s.c., then h(R) = h(/(q, q)) for any g € Q.

In Section 2, we define the set of problems T'(%7) on the reduced automaton =/
in connection with the problem of determining A(R(s/)). When &7 is reset,
we define the set of problems on R[#/] as in the following definition.

DermviTioN 4.2.  T(R) is the set of problems on R, {R, | R, is regular and
R, C Z*\R/Z*}. For each Ry € T(R), define the solution 7,,(R,) by

7m(Ro) = min{r(s7,) | o, is an automaton, and R, C R[.o4] C Z*\R/2*}.

We say an automaton .27, is (1) a candidate, and (2) a proper candidate for
R,e T(R) if (1) R, C R[] CZ*\R/Z*, and (2) R, C R[s4) C Z*\R/Z*, and
r(H) = r(Ry), respectively.
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ProrosiTioN 4.4. A(R) = r,(R).

Proof. Let o/ be an automaton such that R(s4) = R, and r(4) = A(R).
Then 4, is a candidate for Ry, and r,,(R) < r(%4) = h(R). Conversely let .27,
be a proper candidate for R, . Then A(R) = A(Z*\R/Z*) = WIZ*\R(o4)/2%) <
hR(sAy)) < r() = 1) by Lemma 4.5, and Theorem 2.1.

ProrositioN 4.5. For any Ry T(R), r,(Ry) == O iff R, is finite.

LemMa 4.6. For any Ry, R, R, € T(R),
(1) if Ry C ZHRy/Z*, then r,,(Ry) < rm(Ry):
(@) 7m(Ro U Ry) = max{r,(Ro), 7(Ro)};
(3) if RyC R, - Ry, then r,(Ry) < max{ro(Ry), rn(Ro)};
(4) if Ry = R Ry, then v, (Ry) = max{r,(Ry), ,u(Ro)};

(5) for any i,j > 0, and Ry, Ry C %, 1,,(Ry) = 1, Z\Ry D), r,(Ry) =
Pl RO\R,RY), and if R, is finite, then r,,(Re) = 7,(Ry U R}).

Proof. (1) and (2) are clear. (3) Let o = (X, O, , M;> and «f, = (2, O,,
M,> be proper candidates for R, and R, , respectively. Consider any we R, .
Letw = ww, , w; € Ry and w, e R, . If £(w;) < 2k, put H; = {w;} fori =1, 2.
If (w;) =2k, put H; = v R, O;, M;, S;,F) v, where w; = oxv/,
o0 € Zh we I, S = {ge Oy g€ MQs , o)}, and F — {g O, | Mg, o) +
¢} for ¢ = 1, 2. Now put Ry(w) = H, - H, . It is easy to see that w e Ryw),
Ry(w) C ZR\R[Z*, and 7,(Ry(w)) < max{r,,(R)), 7n(Ry)}. Consider the set,
B = {Ry(w) | we Ry}. Since X?* is finite, B is finite, and Ry = Ry U Ry U -+
U Ry, , where B = {Ry , Rys ..., Ry} Thus 7,,(Ry) < max{#,(R,), 7, (R}
(4) We note that Ry, R, CY M\ Ry/Z*. By (1), 7(Ry) = max{r,,(R), 7,,(Ry)}
The converse inequality follows from (3). (5) The last two statements and
Yu(Ro) = 1(ZHRy[Z7) are clear. We shall prove that 7, (R;) < 7, (Z8\R,/Z7).
Let o4 be a proper candidate for Z8\Ry/27. Let {(v, w, x, ¥) | v € L(R,),
vw L (Ry), %y € Ry y(Ry), and y € Ry(Ro)} == {(vy, wy, %5, Y1)y (Un, Wy,
%u, y)}. Then Ry — Z(i+ j -+ 2k — 1) C o, RIAlfx) 23, U - U
O\ RLA %) % 9 © EARIZ*, Thus 7,,(R) < 7,o(RLAY) = 7, ZA R,
completing the proof.

ProrositiON 4.6. For any Rye T(R), 7,(Ry) = max{r, (R[F)) | & is a
section of Z[Ry]}.

Proposition 4.6 follows from Lemma 4.6 immediately.

In the sequel, we obtain an algorithm for determining 7,,(R,) for all R, € T(R).
Let Rye T(R). By Proposition 4.6, we may assume 2/[R;] is s.c. Let 2, =
HRy] = <{Z, Qy, My>. For t C Q, define 2(t) = {vw | v, w e Z¥, M(Q, v) N
t ¢, and g, ¢ My, w)}, L(t, t) = root(/(%, ¢)), and R(sf,, t) = R[] N
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L(z, t). We say that t C Q is a possible rank center of . if R[e4]C
ZHR(, , 1)} Z*. Let p.c. (24) be the set of possible rank centers of 24 .

Lemma 4.7. For any t C Q, x, € 2%, and y, y' € 2%, if xyy'z €L(t, 1), then
xy ¢ (Q, 1, V) or y'z ¢ (1, Q).

Proof. Assume that xyy'z € L(t, 1), xy € (Q, £, ), and y'z € (¢, Q). Then
My(t, xy) C ¢, and My(t, ¥'t) = My(t, xyy's) Ct, which is a contradiction to
xyy'z e L(z, t).

Lemma 4.8. For any tCQ, if tépc. (), then r,(Ry) = ru(Rl4] —
ZEZW(HTF).

Proof. Assume t¢p.c. (<4). One can see that 7,(Ry) = ry(R[]) =
r(R[Hy] — Z*Z%(t)E*) by Lemma 4.6.(1). Then it will suffice to show that
R[4) — Z(2K) C R[] — Z*X%(t)2*. Assume that for some weX*2%,
w e R[] N Z*EM(HI*. Let w = %Yo¥s%;, ¥, % € X% ¥y, yy €25, and
Yo¥1 € X¥(t). Consider any z € R[.o]. Since o is s.C., %9 Yo y1%1 020 %o Yo € R[4
for some v, o' € 2%, Then M(t, y10,020'%,5,) = My(t, yo) C ¢. Let

!
V1 VBV X Yo == Uy "7 Uy »

and v, €L(t, t) for i = 1,..., m. Then ze Z¥\R(s4,, t)*/2*. This is a contra-
diction to #¢ p.c. (). Hence R[] — Z(2k) C R[] — Z*Z*(#)2*, com-
pleting the proof.

PropostTioN 4.7. Let Rye T(R), 7,(Ry) > 0, and A[Ry] = 4, be s.c. Then
7u(Ro) = minfr(R(st , 1)) | £ pc. ()} + 1.

Proof. Itis easy to see that for each # € p.c. (), 7u(Rp) < 7 (R(<, ) + 1.
Conversely let o = <, O, M;> be a proper candidate for R,. Let g, Q)
be a rank center of & . Put t = {ge Q | for some v e 2%, gy€ M(Q,; , ) and
{q} = M(Q, v)}. By Lemma 4.7, one can see that ZB\R(A) , £)] 2" C R[4 — [g0]]-
Thus #,,(Ry) = 7() = r(, — [qo)) + 1 = ru(R( , 1)) + 1. Now it is left
to show that ¢ € p.c. (7). Assume that ¢ ¢ p.c. (). One ca see that ZR\(R[p] —
SHZ(1)5%)| % C R, — [qo]). Thenr(=4) = r(sA — [g0]) + 1 = ru(Rl4] —
Z*52()5*) + 1 by Lemma 4.6.(1), which is a contradiction to Lemma 4.8,
This completes the proof.

Proposition 4.7 can be restated as follows.

CoroLLarY 4.2. Let Ry T(R), r,(Ry) > 0, and SZ[Ry] = o, be s.c. Then
T(Ry) = min{r, (R[] — Z*2¥()2%) | 1< O} + L.

Proof. By the above proof, we can see that 7, (Ry) = rm(R[4] —
Zxe() %) + 1 for some ¢t C Q. By Lemma 4.8 and the proposition, it will
suffice to show that for any £ & p.c. (%), R[] — Z*Z(1)2* 2 R(s4 , ). By
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Lemma 4.7, we can see that for each x € R(, 1), ¥ ¢ ZFZ%(t)2*, This
completes the proof.

CoroLiary 4.3. Let Rye T(R), and S[R)| = 4, be s.c. If there exist Xy,
2, C 2, and Ry, R, C R[4 such that X\ "2, = ¢, Ry CZ*, R, CZ,, and
2,2 N ERR[EF = ¢, then v, (Ry) 2 min{r (R), ru(Ry)} + L.

Proof. By Corollary 4.2, it will suffice to show that for any ¢ C Q, (R[] —
ZEZU(NZY) Z min{r,(Ry), (R} Let t C Q. If (Z¥R/ZF) N J%(1),
(ZRR[E*) N Z¥(E) o4 ¢, then 225, N IMR/Z* £ ¢, a contradiction. Thus
(ERREF) N Z¥(t) == ¢ or (ZF\Ry/Z*) N Z?(¢) = ¢. Then R, C R[] —
ZHREWE*, or R, C R[] — Z*Z2(£) 2%, and the result follows,

Propositions 4.4 ~ 4.7 provide the following algorithm for determining the
star height of reset events,

Avcoritam 4.1. Let R C Z* be k-reset, kR > 1, and <7 the veduced automaton
accepting R as above. Determine v(sf) by definition, and determine v,{R) by the
procedure below with ro(R) = r{&f). Put R) = r,(R).

Procedure. Let Rye T(R) with vo(Ry) given.

Step 1. If Ry is finite, or ro(Ry) == 0, then put r,,(R;) = 0. Otherwise proceed
to Step 2.

Step 2. Let {& | L is a nontrivial section of S[Ry} == {F .., P} For
eachi = 1,..., m, and t € p.c. (S, apply Procedure to R(; , ) withri(R(S; , 1)) =
75(Ry) — 1 to determine v,,(R(S , 1)).

Step 3. Determine r,,(Ry) by the following two equations:
(1) 7l Ro) = max{r,(R(F)) | 7 = ..., m};
(2 foreachi = 1,..., m, v {R(F7)) = minfr, (R(F, )} | t& pe. (F)} + L.

Remark 4.2. Eggan (1963) presented the following class of regular events
of arbitrary star height inductively. Let q,€ 2,7 == 1, 2, 3,....
(1) E, =a,E, = (afafa;), F, = ay, and F, = (afafa).
(2) E, = (Ef,Ff a0,), and F, is obtained from E, by adding 2% — 1
to the subscripts of all a; .

Then h(} Ef |) = &.

One can alternatively prove that A(] Ef |) == k& as follows. One can see that
| Ef | is 1-reset by noting for each a € X, g appears at most once in the expression
Ey . By Proposition 4.4, it will suffice to show that for each [ Ef |, i < &,
7ul] Ef |} = 1. Clearly (] Ef |) <{i. Conversely note that for all we | EF |,
| Ef | = w\| Ef |. Thus o/[| Ef |] is s.c. One can prove that 7,(] E¥|) =1
by induction on 7, using Lemma 4.6 and Corollary 4.3.
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In the rest of the paper we shall present an alternative algorithm for deter-
mining the star height of 1-reset events.

DerinttioN 4.3, Let o = (X,0Q,, M,> be an automaton.

(1) E(o4%)is the set of edges in .o, that is, E(%) = {(¢, 2, ¢) 1 ¢, 4" €Oy,
ac X U{A}, ¢ € Mg, a), and if @ = A, then ¢ # ¢'};

(2) Any E,C E(o4) is an ‘“‘admissible” set of edges in .7 if for some
01500, 8y ={(9,4,9)19€0:,ae 2V {A}, ' € Mg, a), and g, ¢ M,y (O, , a)};

(3) a.e. (o) is the set of admissible sets of edges in .27;

(4) For any E; € E(24), o, — E, is a subautomaton of <7, , (X, Q, , M,>,
such that for all ¢,9 €Q,, and ae XU {A}, g’ € M (q, a) iff ¢’ € M(q, a), and
(9 4,9)¢E,.

DrriNiTION 4.4. Let o, = (2,0,, M,> be an automaton.

(1) For any subautomaton <4 = (X,0;, M;> of 7, the edge rank
ety , o) of o4 w.r.t. o, is defined inductively as follows:

(1.1) If all sections of 27 are trivial, then e(27, , 24) = 0;

(1.2) If o7 has a nontrivial section, then e(. , %) = max{min (% —
Ey N E(S), o) | Eg € a.e.(s)} | F is a section of o} -+ 1.

(2) The edge rank e(.%) of .o, is defined by
o) = ey, h)-

Lemmva 4.9. For any automaton 54, , and a subautomaton <2, of <4, , e(H, , ;)
= max{e(.F, ) | F is a section of o4}, and e(sdy) < r(o4).

AvcoriteM 4.2. Let R C 2* be 1-reset. Then I(R) = e(o/[R]).

Proof. Let o[R] = (Z,0, M, {s}, F>. We define the set of problems on &7,
To(#), as follows: To() == {&, | o, is a subautomaton of .o, and Q(4)) = O}.
For each o, € Ty(), 7,,(R[.4,)) is defined as above. By Proposition 4.4, it will
suffice to show that for each &4 € To(H), ro(R[HA]) = (4, ). Let o, =
(Z,0, M;>. The proof is by induction on #E(s). If #E(s/) =0, then
ey, ) = r(R[H]) = 0. Let #E(s4,) > 0. By Proposition 4.6 and Lem-
ma 4.9, we may assume that 27, is s.c. By Corollary 4.2, and definition of (5%, , 57,
it will suffice to show that for each ¢ C Q, 7,,(R[.#] — Z*Z¥1)2*) = e(f, — K,
o), where By = {(q, a,¢') | get,ac X, ¢’ € M(q, a), and g, & My(2, a)} N E(4).
We may assume that R[] + R[] — Z*2%(t)2*. We show that R[sf) —
TR E* = R[, — E,]. Let w e R[4, — E,], and assume that @ ¢ R[<] —
ZRP2)Z*. Since w e R[], it follows that we Z*Z%(t)2*, Then for some
v,, v, € X% and a, b € X, ab e X*(1), and w = v,abv, . By definition of X%(z), for
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some ¢, ¢" €0, and ¢' €1, M(q, a) = q', M(q’, b) = ¢", and g, ¢ My(z, b). Then
(¢, b, ¢") € E,y, and w ¢ R[4, — E], which is a contradiction. Thus R[.of — E]
C R[] — Z*2%(1)2*. Similarly R[] — Z*2%(1)2* C R[4, — E,]. By the in-
ductive hypothesis, e(-fy, — Ey, &) = r (R[S — Egl) = 7, (R[] — Z*Z2(8)2%).
This completes the proof.

CorOLLARY 4.4. If for any te{t' CQ | #t' = 2}, the set {(¢,a,9") | g€t
acZ, ¢ = Mg, a) and q, ¢ M (2, a)} is empty, then I(R) = r(sZ).

ExampLe 4.1. There exists a [-reset automaton o7 such that e(.2?) << r(.%).
Let of = <2> Qa M>122{0! 1’ 27 394: 5}’ Q :{90» 915925935 9a> 95}’ and
for all ¢;, ¢;€ O, and ke X, q; = M(q;, k) iff j = k, and one of the following
holds: (1)7,7{0,1,2},(2)7€{0,1,2},7€{3,4,5},andj =7 + 3,(3) i€ {3, 4, 5},
je{0,1,2},andi =45+ 3,0r (4)7,je{3,4, 5}, and { = j 4 1 (mod 3). (As 2
graph representation, 27 consists of two main circles, the inner circle containing
Go» 91, o, and the outer circle containing ¢, , ¢,, ¢5, and the set of edges
defined as above).

One can see with some efforts that #(&/) = 4, and e(.&f) = e(, o — E) + 1

=3, where B, ={(¢,4,¢)|9¢{q0, 01,9} ac2, ¢ = M(q,a), and q,¢
M9y, 91, ¢}, 9)}

ExampLe 4.2. There exists a star event R such that Z{R) = h(root(R)).
Let o/ be as in Example 4.1. Let R = ##(q,, g,)- Then A(R) = e{oZ) = 3.
Moreover one can see that A(root(R)) = MR — [¢]]) = e[ — [g,]) = 3.
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