92,387 research outputs found

    Event-Object Reasoning with Curated Knowledge Bases: Deriving Missing Information

    Full text link
    The broader goal of our research is to formulate answers to why and how questions with respect to knowledge bases, such as AURA. One issue we face when reasoning with many available knowledge bases is that at times needed information is missing. Examples of this include partially missing information about next sub-event, first sub-event, last sub-event, result of an event, input to an event, destination of an event, and raw material involved in an event. In many cases one can recover part of the missing knowledge through reasoning. In this paper we give a formal definition about how such missing information can be recovered and then give an ASP implementation of it. We then discuss the implication of this with respect to answering why and how questions.Comment: 13 page

    Combinatorial bases for multilinear parts of free algebras with double compatible brackets

    Full text link
    Let X be an ordered alphabet. Lie_2(n) (and P_2(n) respectively) are the multilinear parts of the free Lie algebra (and the free Poisson algebra respectively) on X with a pair of compatible Lie brackets. In this paper, we prove the dimension formulas for these two algebras conjectured by B. Feigin by constructing bases for Lie_2(n) (and P_2(n)) from combinatorial objects. We also define a complementary space Eil_2(n) to Lie_2(n), give a pairing between Lie_2(n) and Eil_2(n), and show that the pairing is perfect.Comment: 38 pages; 10 figure

    Biconed graphs, edge-rooted forests, and h-vectors of matroid complexes

    Full text link
    A well-known conjecture of Richard Stanley posits that the hh-vector of the independence complex of a matroid is a pure O{\mathcal O}-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph is a graph with two specified `coning vertices', such that every vertex of the graph is connected to at least one coning vertex. The class of biconed graphs includes coned graphs, Ferrers graphs, and complete multipartite graphs. We study the hh-vectors of graphic matroids arising from biconed graphs, providing a combinatorial interpretation of their entries in terms of `edge-rooted forests' of the underlying graph. This generalizes constructions of Kook and Lee who studied the M\"obius coinvariant (the last nonzero entry of the hh-vector) of graphic matroids of complete bipartite graphs. We show that allowing for partially edge-rooted forests gives rise to a pure multicomplex whose face count recovers the hh-vector, establishing Stanley's conjecture for this class of matroids.Comment: 15 pages, 3 figures; V2: added omitted author to metadat

    Parking functions, labeled trees and DCJ sorting scenarios

    Get PDF
    In genome rearrangement theory, one of the elusive questions raised in recent years is the enumeration of rearrangement scenarios between two genomes. This problem is related to the uniform generation of rearrangement scenarios, and the derivation of tests of statistical significance of the properties of these scenarios. Here we give an exact formula for the number of double-cut-and-join (DCJ) rearrangement scenarios of co-tailed genomes. We also construct effective bijections between the set of scenarios that sort a cycle and well studied combinatorial objects such as parking functions and labeled trees.Comment: 12 pages, 3 figure

    The Bergman complex of a matroid and phylogenetic trees

    Get PDF
    We study the Bergman complex B(M) of a matroid M: a polyhedral complex which arises in algebraic geometry, but which we describe purely combinatorially. We prove that a natural subdivision of the Bergman complex of M is a geometric realization of the order complex of its lattice of flats. In addition, we show that the Bergman fan B'(K_n) of the graphical matroid of the complete graph K_n is homeomorphic to the space of phylogenetic trees T_n.Comment: 15 pages, 6 figures. Reorganized paper and updated references. To appear in J. Combin. Theory Ser.
    corecore