
HAL Id: hal-00527614
https://hal.archives-ouvertes.fr/hal-00527614

Submitted on 19 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parking functions, labeled trees and DCJ sorting
scenarios

Aïda Ouangraoua, Anne Bergeron

To cite this version:
Aïda Ouangraoua, Anne Bergeron. Parking functions, labeled trees and DCJ sorting scenarios. Re-
comb Comparative Genomics 2009, 2009, Hungary. pp.24-35. �hal-00527614�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50048031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00527614
https://hal.archives-ouvertes.fr


Parking functions, labeled trees

and DCJ sorting scenarios∗

Aı̈da Ouangraoua1,2 and Anne Bergeron2

1 Department of Mathematics, Simon Fraser University, Burnaby (BC), Canada
aouangra@sfu.ca

2 Lacim, Université du Québec à Montréal, Montréal (QC), Canada.
bergeron.anne@uqam.ca

Abstract. In genome rearrangement theory, one of the elusive questions
raised in recent years is the enumeration of rearrangement scenarios be-
tween two genomes. This problem is related to the uniform generation of
rearrangement scenarios, and the derivation of tests of statistical signifi-
cance of the properties of these scenarios. Here we give an exact formula
for the number of double-cut-and-join (DCJ) rearrangement scenarios of
co-tailed genomes. We also construct effective bijections between the set
of scenarios that sort a cycle and well studied combinatorial objects such
as parking functions and labeled trees.

1 Introduction

Sorting genomes can be succinctly described as finding sequences of rearrange-
ment operations that transform a genome into another. The allowed rearrange-
ment operations are fixed, and the sequences of operations, called sorting scenar-
ios, are ideally of minimal length. Given two genomes, the number of different
sorting scenarios between them is typically huge – we mean HUGE – and very
few analytical tools are available to explore these sets.

In this paper, we give the first exact results on the enumeration and rep-
resentation of sorting scenarios in terms of well-known combinatorial objects.
We prove that sorting scenarios using DCJ operations on co-tailed genomes can
be represented by parking functions and labeled trees. This surprising connec-
tion yields immediate results on the uniform generation of scenarios [1, 13, 18],
promises tools for sampling processes [6, 10, 12] and the development of statisti-
cal significant tests [7, 11, 16, 21], and offers a wealth of alternate representations
to explore the properties of rearrangement scenarios, such as commutation [4,
20], structure conservation [3, 8], breakpoint reuse [15, 17] or cycle length [22].

This research was initiated while we were trying to understand commuting
operations in a general context. In the case of genomes consisting of single chro-
mosomes, rearrangement operations are often modeled as inversions, which can
be represented by intervals of the set {1, 2, . . . , n}. Commutation properties are

∗Date: January 10, 2009.
Manuscript under preparation.



described by using overlap relations on the corresponding sets, and a major tool
to understand sorting scenarios are overlap graphs, whose vertices represent sin-
gle rearrangement operations, and whose edges model the interactions between
the operations. Unfortunately, overlap graphs do not upgrade easily to genomes
with multiple chromosomes, see, for example, [14], where a generalization is given
for a restricted set of operations.

We got significant insights when we switched our focus from single rearrange-
ment operations to complete sorting scenarios. This apparently more complex
formulation offers the possibility to capture complete scenarios of length d as
simple combinatorial objects, such as sequences of integer of length d, or trees
with d vertices. It also gives alternate representations of sorting scenarios, using
non-crossing partitions, that facilitate the study of commuting operations and
structure conservation.

In Section 3, we first show that sorting a cycle in the adjacency graph of
two genomes with DCJ rearrangement operations is equivalent to refining non-
crossing partitions. This observation, together with a result by Richard Stanley
[19], gives the existence of bijections between sorting scenarios of a cycle and
parking functions or labeled trees. We give explicit bijections for both in Sec-
tions 4 and 5. We conclude in Section 6 with remarks on the usefulness of these
representations, on the algorithmic complexity of switching between representa-
tions, and on generalizations to genomes that are not necessarily co-tailed.

2 Preliminaries

Genomes are compared by identifying homologous segments along their DNA
sequences, called blocks. These blocks can be relatively small, such as gene cod-
ing sequences, or very large fragments of chromosomes. The order and orienta-
tion of the blocks may vary in different genomes. Here we assume that the two
genomes consist of either circular chromosomes, or co-tailed linear chromosomes.
For example, consider the following two genomes, each consisting of two linear
chromosomes:

Genome A: (a -f -b e -d) (-c g)
Genome B: (a b c) (d e f g)

The set of tails of a linear chromosome (x1 . . . xm) is {x1,−xm}, and two
genomes are co-tailed if the union of their sets of tails are the same. This is the
case for genomes A and B above, since the the union of their sets of tails is
{a,−c, d,−g}.

An adjacency in a genome is a sequence of two consecutive blocks. For ex-
ample, in the above genomes, (e -d) is an adjacency of genome A, and (a b) is
an adjacency of genome B. Since a whole chromosome can be flipped, we always
have (x y) = (−y −x).

The adjacency graph of two genomes A and B is a graph whose vertices are
the adjacencies of A and B, and such that for each block y there is an edge



a f db c g

a b dc e f
41 32 5 1 2

3

4

5

(-b e)

(e -d)

(-f -b)(-c g )

(a -f)

g

e

Fig. 1. At the left, the adjacency graph of genome A = (a -f -b e -d) (-c g) and
genome B = (a b c)(d e f g) is represented by dotted lines. The sign of a block
is represented by the orientation of the corresponding arrow. If the – single – cycle
is traversed starting with an arbitrary adjacency of genome B, here (a b), in the
direction of the small arrow, then the 5 adjacencies of genome B will be visited in the
order indicated by the numbers 1 to 5. At the right, the cycle has been spread out,
showing that any DCJ operation acting on two adjacencies of genome A that splits the
cycle can be represented by two cuts on the cycle (12345).

between adjacency (y z) in genome A and (y z′) in genome B, and an edge
between (x y) in genome A, and (x′ y) in genome B. See, for example, Figure 1.

Since each vertex has two incident edges, the adjacency graph can be decom-
posed into connected components that are cycles. The graph of Figure 1 has a
single cycle of length 10.

A double-cut-and-join (DCJ) rearrangement operation [5, 23] on genome A

acts on two adjacencies (x y) and (u v) to produce either (x v) and (u y), or
(x −u) and (−y v). In simpler words, a DCJ operation cuts the genome at two
places, and glues the part in a different order.

The distance between genomes A and B is the minimum number of DCJ
operations needed to rearrange – or sort – genome A into genome B. The DCJ
distance is easily computed from the adjacency graph [5]. For circular chromo-
somes or co-tailed genomes, the distance is given by:

d(A,B) = N − (C + K)



where N is the number of blocks, C is the number of cycles of the adjacency
graph, and K is the number of linear chromosomes in A. Note that K is a
constant for co-tailed genomes. A rearrangement operation is sorting if it lowers
the distance by 1, and a sequence of sorting operations of length d(A,B) is called
a parsimonious sorting scenario. It is easy to detect sorting operations since, by
the distance formula, a sorting operation must increase by 1 the number of cycles.

A DCJ operation that acts on two cycles of the adjacency graph will merge
the two cycles, and can never be sorting. Thus the sorting operations act on a
single cycle, and split it into two cycles. The central question of this paper is
to enumerate the set of parsimonious sorting scenario. Since each cycle is sorted
independently of the others, the problem reduces to enumerating the sorting
scenarios of a cycle. Indeed, we have:

Proposition 1. Given scenarios S1, . . . , SC of lengths ℓ1, . . . , ℓC that sort the
C cycles of an adjacency graph, these scenarios can be shuffled into a global
scenario in

(

ℓ1 + ℓ2 + . . . + ℓC

ℓ1, ℓ2, . . . , ℓC

)

=
(ℓ1 + ℓ2 + . . . + ℓC)!

ℓ1!ℓ2! . . . ℓC !

different ways.

Proof. Since each cycle is sorted independently, the number of global scenarios is
enumerated by counting the number of sequences that contains ℓm occurrences
of the symbol Sm, for 1 ≤ m ≤ C, which is counted by a classical formula. For
each such sequence, we obtain a scenario by replacing each symbol Sm by the
appropriate operation on cycle number m.

3 Representation of scenarios as sequences of fissions

A cycle of length 2n of the adjacency graph alternates between adjacencies of
genome A and genome B. Given a cycle, suppose that the adjacencies of genome
B are labeled by integers from 1 to n in the order they appear along the cycle,
starting with an arbitrary adjacency (see Fig. 1). Then any DCJ operation that
splits this cycle can be represented by a fission of the cycle (123 . . . n), as

(123 . . . p‖q . . . t‖u . . . n)

yielding the two cycles:

(123 . . . pu . . . n) and (q . . . t).

We will always write cycles beginning with their smallest element. Fissions ap-
plied to a cycle whose elements are in increasing order always yield cycles whose
elements are in increasing order. A fission is characterized by two cuts, each
described by the element at the left of the cut. The smallest one, p in the above
example, will be called the base of the fission, and the largest one, t in the the
above example, is called the top of the fission. The integer at the right of the
first cut, q in the example, is called the partner of the base.



In general, after the application of k fissions on (123 . . . n), the resulting set
of cycles will contain k + 1 elements. The structure of these cycles form a non-
crossing partition of the initial cycle (123 . . . n). Namely, we have the following
result, which is easily shown by induction on k:

Proposition 2. Let k ≤ n− 1 fissions be applied on the cycle (123 . . . n), then
the k + 1 resulting cycles have the following properties:

1) The elements of each cycle are in increasing order, up to cyclical reordering.

2) [Non-crossing property] If (c . . . d) and (e . . . f) are two cycles with c < e, then
either d < e, or c < e ≤ f < d.

3) Each successive fission refines the partition of (123 . . . n) defined by the cycles.

A sorting scenario of a cycle of length 2n of the adjacency graph can thus be
represented by a sequence of n−1 fissions on the cycle (123 . . . n), called a fission
scenario, and the resulting set of cycles will have the structure (1)(2)(3) . . . (n).
For example, here is a possible fission scenario of (123456789), where the bases
of the fissions have been underlined:

(1234‖5‖6789)→ (12346789)(5)
(1234678‖9‖)(5)→ (1234678)(5)(9)

(1‖234678‖)(5)(9)→ (1)(234678)(5)(9)
(1)(2‖346‖78)(5)(9)→ (1)(278)(346)(5)(9)

(1)(2‖7‖8)(346)(5)(9)→ (1)(28)(346)(5)(7)(9)
(1)(28)(3‖46‖)(5)(7)(9)→ (1)(28)(3)(46)(5)(7)(9)

(1)(2‖8‖)(3)(46)(5)(7)(9)→ (1)(2)(3)(46)(5)(7)(8)(9)
(1)(2)(3)(4‖6‖)(5)(7)(8)(9)→ (1)(2)(3)(4)(5)(6)(7)(8)(9)

Scenarios such as the one above have interesting combinatorial features when
all the operations are considered globally, and we will use them extensively in
the sequel. A first important remark is that the smallest element of the cycle is
always ‘linked’ to the greatest element through a chain of partners. For example,
the last partner of element 1 is element 2, the last partner of element 2 is element
8, and the last partner of element 8 is element 9. We will see that this is always
the case, even when the order of the corresponding fissions is arbitrary with
respect to the scenario. The following definition captures this idea of chain of
partners.

Definition 1. Consider a scenario S of fissions that transform a cycle (c . . . d)
into cycles of length 1. For each element p in (c . . . d), if p is the base of one or
more of the fissions of S, let q be the last partner of p, then define recursively

SupS(p) = SupS(q),

otherwise, SupS(p) = p.



In order to see that Sup(p) is well defined, first note that the successive
partners of a given base p are always in increasing order, and greater than p.
Moreover, the last element of a cycle (c . . . d) is never the base of a fission. For
example, in the above scenario, we would have SupS(1) = SupS(2) = SupS(8) =
SupS(9) = 9.

The following lemma is the key to most of the results that follow:

Lemma 1. Consider a scenario S of fissions that transform a cycle (c . . . d) into
cycles of length 1, then SupS(c) = d.

Proof. If c = d, then the result is trivial. Suppose the result is true for cycles of
length ≤ n, and consider a cycle of length n+1. The first fission of S will split the
cycle (c . . . d) in two cycles of length ≤ n. If the two cycles are of the form (c . . . d)
and (c′ . . . d′), then c′ is, in the worst case, the first partner of c, and cannot be
the last since c 6= d. Let S′ be the subset of S that transform the shorter cycle
(c . . . d) into cycles of length 1. By the induction hypothesis, SupS′(c) = d, but
SupS(c) = SupS′(c) since the last partner of c is not in (c′ . . . d′).

If the two cycles are of the form (c . . . d′) and (c′ . . . d), consider S1 the subset
of S that transform the cycle (c . . . d′) into cycles of length 1, and S2 the subset
of S that transform the cycle (c′ . . . d) into cycles of length 1. We have, by the
induction hypothesis, SupS1

(c) = d′ and SupS2
(c′) = d, implying SupS(c) =

SupS(d′) and SupS(c′) = d. However, c′ is the last partner of d′, thus SupS(c) =
SupS(d′) = SupS(c′) = d.

4 Fission scenarios and parking functions

In this section, we establish a bijection between fission scenarios and parking
functions of length n − 1. This yields a very compact representation of DCJ
sorting scenarios of cycles of length 2n as sequences of n− 1 integers.

A parking function is a sequence of integers p1p2 . . . pn−1 such that if the
sequence is sorted in non-decreasing order yielding p′

1
≤ p′

2
≤ . . . ≤ p′n−1

, then
p′i ≤ i. These sequences were introduced by Konheim and Weiss [9] in connection
with hashing problems. These combinatorial structure are well studied, and the
number of different parking functions of length n− 1 is known to be nn−2.

Proposition 2 states that a fission scenario is a sequence of successively refined
non-crossing partitions of the cycle (123 . . . n). A result by Stanley [19] has the
following immediate consequence:

Theorem 1. There exists a bijection between fission scenarios of cycles of the
form (123 . . . n) and parking functions of length n− 1.

Fortunately, in our context, the bijection is very simple: we list the bases of
the fissions of the scenario. For example, the parking function associated to the
example of Section 3 is 48122324. In general, we have:

Proposition 3. The sequence of bases of a fission scenario on the cycle (123 . . . n)
is a parking function of length n− 1.



Proof. Let p1p2 . . . pn−1 be the sequence of bases of a fission scenario and let
p′
1
p′
2
. . . p′n−1

be the corresponding sequence sorted in non-decreasing order. Sup-
pose that there exists a number i such that p′i > i, then there are at least n− i

fissions in the scenario with base p ≥ i + 1. These bases can be associated to
at most n − i − 1 partners in the set {i + 2, i + 3, i + 4, . . . , n} because a base
is always smaller than its partner, but this is impossible because each integer is
used at most once as a partner in a fission scenario.

In order to reconstruct a fission scenario from a parking function, we first
note that a fission with base pi and partner qi creates a cycle whose smallest
element is qi, thus each integer in the set {2, 3, . . . , n} appears exactly once as a
partner in a fission scenario.

Given a parking function p1p2 . . . pn−1, we must first assign to each base pi a
unique partner qi in the set {2, 3, . . . , n}. By Lemma 1, we can then determine
the top ti of fission i, since the set of fissions from i + 1 to n − 1 contains a
sorting scenario of the cycle (qi . . . ti). Algorithm 1 details the procedure.

Algorithm 1 [Parking functions to fission scenarios]
Input: a parking function p1p2 . . . pn−1.
Output: a fission scenario (p1, t1), . . . , (pn−1, tn−1).

Q← {2, 3, . . . , n}
For p from n− 1 to 1 do:

For each successive occurrence pi of p in the sequence p1p2 . . . pn−1 do:
qi ← The smallest element of Q greater than pi

Q← Q \ {qi}
S ← {(p1, q1), (p2, q2) . . . , (pn−1, qn−1)}
For i from 1 to n− 1 do:

S ← S \ {(pi, qi)}
ti ← SupS(qi)

For example, using the parking function 48122324 and the set of partners
{2, 3, . . . , 9}, we would get the pairings, starting from base 8 down to base 1:

(

pi : 4 8 1 2 2 3 2 4
qi : 5 9 2 3 7 4 8 6

)

Finally, in order to recover the second cut of each fission, we compute the
values ti:

(

pi : 4 8 1 2 2 3 2 4
ti : 5 9 8 6 7 6 8 6

)

For example, in order to compute t4, then S = {(2, 7), (3, 4), (2, 8), (4, 6)}, and
SupS(3) = SupS(4) = SupS(6) = 6.

Since we know, by Theorem 1, that fissions scenarios are in bijection with
parking functions, it is sufficient to show that Algorithm 1 recovers a given
scenario in order to prove that it is an effective bijection.



Proposition 4. Given a fission scenario of a cycle of the form (123 . . . n), let
(pi, qi, ti) be the base, partner and top of fission i. Algorithm 1 recovers uniquely
ti from the parking function p1p2 . . . pn−1.

Proof. By Lemma 1 , we only need to show that Algorithm 1 recovers uniquely
the partner qi of each base pi. Let p be the largest base, and suppose that p has
j partners, then the original cycle must contain at least the elements:

(. . . p p + 1 . . . p + j . . .).

We will show that p + 1 . . . p + j must be the j partners of p. If it was not the
case, at least one of the j adjacencies in the sequence p p + 1 . . . p + j must be
cut in a fission whose base is smaller than p, since p is the largest base, and
this would violate the non-crossing property of Proposition 2. Thus Algorithm 1
correctly and uniquely assigns the partners of the largest base. Suppose now that
Algorithm 1 has correctly and uniquely assigned the partners of all bases greater
than p. The same argument shows that the successive partners of p must be the
smallest available partners greater than p.

Summarizing the results so far, we have:

Theorem 2. If the adjacency graph of two co-tailed genomes has C cycles of
length 2(ℓ1 + 1), . . . , 2(ℓC + 1), then the number of sorting scenarios is given by:

(ℓ1 + ℓ2 + . . . + ℓC)!

ℓ1!ℓ2! . . . ℓC !
∗ (ℓ1 + 1)

ℓ1−1
∗ . . . ∗ (ℓC + 1)

ℓC−1
.

Each sub-scenario that sort a cycle of length 2(ℓm + 1) can be represented by a
parking function of length ℓm.

Proof. Sorting a cycle of length 2(ℓm + 1) can be simulated by fissions of the
cycle (12 . . . ℓm +1), which can be represented by parking functions of length ℓm.

The number of different parking functions of length ℓm is given by (ℓm + 1)
ℓm−1

.
Applying Proposition 1 yields the enumeration formula.

5 Fission scenarios and labeled trees

Theorem 1 implies that it is possible to construct bijections between fission
scenarios and objects that are enumerated by parking functions. This is notably
the case of labeled tree on n vertices. These are trees with n vertices in which
each vertex is given a unique label in the set {0, 1, . . . , n−1}. In this section, we
construct an explicit bijection between these trees and fission scenarios of cycles
of the form (123 . . . n).

Definition 2. Given a fission scenario S of a cycle of the form (123 . . . n), let
(pi, qi) be the base and partner of fission i.

The graph TS is a graph whose nodes are labeled by {0, 1, . . . , n− 1}, with an
edge between i and j, if pi = qj, and an edge between 0 and i, if pi = 1.



In the running example, the corresponding graph is depicted in Figure 2 (a).
We have:

Proposition 5. The graph TS is a labeled tree on n vertices.

Proof. By construction, the graph has n vertices labeled by {0, 1, . . . , n− 1}. In
order to show that it is a tree, we will show that the graph has n− 1 edges and
that it is connected. Since each integer in the set {2, 3, . . . , n} is partner of one
and only one fission in S and S contains n − 1 fissions, TS has exactly n − 1
edges. Moreover, by construction, there is a path between each vertex i 6= 0 and
0 in TS , thus TS is connected.

Before showing that the construction of TS yields an effective bijection, we
detail how to recover a fission scenario from a tree.

Algorithm 2 [Labeled trees to fission scenarios]
Input: a labeled tree T on n vertices.
Output: a fission scenario (p1, t1), . . . , (pn−1, tn−1).

Root the tree at vertex 0.
Put the children of each node in increasing order from left to right.
Label the unique incoming edge of a node with the label of the node.
Relabel the nodes from 1 to n with a prefix traversal of the tree.
For i from 1 to n− 1 do:

pi ← The label of the source p of edge i.
ti ← The greatest label of the subtree rooted by edge i.
Remove edge i from T

The following proposition states that the construction of the associated tree
TS is injective, thus providing a bijection between fission scenarios and trees.

Proposition 6. The trees associated to different fission scenarios are different.

Proof. Suppose that two different scenarios S1 and S2 yield the same tree T .
Then, by construction, if T is rooted in 0, for each directed edge from j to i in
T , if j = 0 then pi = 1 otherwise pi = qj . Moreover, in a fission scenario, if fission
i is the first operation having base pi, then its partner is qi = pi + 1, otherwise
the non-crossing property of Proposition 2 would be violated. So, using these two
properties, the sequences of bases and partners of the fissions in the two scenarios
can be uniquely recovered from T , and thus S1 and S2 would correspond to the
same parking function.

The tree representation offers another interesting view of the sorting proce-
dure. Indeed, sorting can be done directly on the tree by successively erasing the
edges from 1 to n− 1. This progressively disconnects the tree, and the resulting
connected components correspond precisely to the intermediate cycles obtained
during the sorting procedure.



(a) (b) (c) (d)

3

1

2

3

0

30

4
5

7

2

83

4
5

7

7

3

74 5

0

346

1

5

1 8

6 2

4 9

8

6 2

6 27

8

2

1 8

65

1 8

81

Fig. 2. Construction of a fission scenario. (a) The unrooted tree TS . (b) The tree is
rooted at vertex 0, and the children of each node are ordered. (c) The labels of the
nodes are lifted to their incoming edges. (d) The nodes are labeled in prefix order from
1 to 9. The order of the fissions are read on the edges, the source of an edge represent
the base p of the fission and its target is the partner. For example, fission #1 has base
4, with partner 5.

For example, Figure 3 gives snap-shots of the sorting procedure. Part (b)
shows the forest after the three first operations, the fourth fission splits a tree
with six nodes into two trees each with three nodes, corresponding to the cycle
splitting of the fourth operation in the running example.

6 Discussion and conclusions

In this paper, we presented results on the enumeration and representations of
sorting scenarios between co-tailed genomes. Since we introduced many combina-
torial objects, we bypassed a lot of the usual material presented in rearrangement
papers. The following topics will be treated in a future paper.

The first topic is the complexity of the algorithms for switching between
representations. Algorithms 1 and 2 are not meant to be efficient, they are rather
explicit descriptions of what is being computed. Preliminary work indicates that
with suitable data structure, they can be implemented in O(n) running time.
Indeed, most of the needed information can be obtained in a single traversal of
a tree.

The second obvious extension is to generalize the enumeration formulas and
representations to arbitrary genomes. In the general case, when genomes are not
necessarily co-tailed, the adjacency graph can be decomposed in cycles and paths,
and additional sorting operations must be considered, apart from operations that
split cycles [5]. However, these new sorting operations that act on paths create
new paths that behave essentially like cycles.

We also had to defer to a further paper the details of the diverse uses of these
new representations. One of the main benefits of having a representation of a
sorting scenario as a parking function, for example, is that it solves the problem



1

(b)

1

(a)

1

(c)

1

(d)

1

(e)

2
74

2
4 7

3

2
7

2
5 7

2

83

6

5
7

7

4

83

6

4
5

7

7
2

83

6

5 7

7 83

6

5 7

7 83 7

4 9

8

6

4 9
1 8

6

4 9

8

6

4 9

8

6

4 9

6565 65 65 65

Fig. 3. Sorting directly on a tree: erasing successively the edges 1 to n simulates cycle
fissions by creating intermediate forests. In part (b), the fourth fission will split the
tree corresponding to cycle (234678) into two trees corresponding to the two cycles
(346) and (278).

of uniform sampling of sorting scenarios [2]. There is no more bias attached
to choosing a first sorting operation, since, when using parking functions, the
nature of the first operation depends on the whole scenario. The representation
of sorting scenarios as non-crossing partitions refinement also greatly helps in
analyzing commutation and conservation properties.

References

1. Y. Ajana, J-F. Lefebvre, E. R. M. Tillier, and N. El-Mabrouk. Exploring the
set of all minimal sequences of reversals - an application to test the replication-
directed reversal hypothesis. In WABI ’02: Proceedings of the Second International
Workshop on Algorithms in Bioinformatics, pages 300–315, London, UK, 2002.
Springer-Verlag.

2. E. Barcucci, A. del Lungo, and E. Pergola. Random generation of trees and other
combinatorial objects. Theoretical Computer Science, 218(2):219–232, 1999.

3. S. Bérard, A. Bergeron, C. Chauve, and C. Paul. Perfect sorting by reversals
is not always difficult. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 4(1):4–16, 2007.

4. A. Bergeron, C. Chauve, T. Hartman, and K. St-onge. On the properties of
sequences of reversals that sort a signed permutation. Proceedings Troisièmes
Journes Ouvertes Biologie Informatique Mathématiques, pages 99–108, 2002.

5. A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrangements.
In WABI ’06: Proceedings of the Sixth International Workshop on Algorithms in
Bioinformatics, volume 4175 of LNBI, pages 163–173, 2006.

6. M. D. V. Braga, M-F. Sagot, C. Scornavacca, and E. Tannier. Exploring the
solution space of sorting by reversals, with experiments and an application to evo-
lution. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
5(3):348–356, 2008.



7. D. A. Dalevi, N. Eriksen, K. Eriksson, and S. G. Andersson. Measuring genome
divergence in bacteria: a case study using chlamydian data. Journal of Molecular
Evolution, 1(55):24–36, 2002.

8. Y. Diekmann, M-F. Sagot, and E. Tannier. Evolution under reversals: Parsimony
and conservation of common intervals. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 4(2):301–309, 2007.

9. A. G. Konheim and B. Weiss. An occupancy discipline and applications. SIAM
Journal of Applied Mathematics, 14:1266–1274, 1966.

10. B. Larget, D. L. Simon, and J. B. Kadane. Bayesian phylogenetic inference from
animal mitochondrial genome arrangements. Journal Of The Royal Statistical So-
ciety Series B, 64(4):681–693, 2002.

11. A. McLysaght, C. Seoighe, and K. H. Wolfe. High frequency of inversions during
eukaryote gene order evolution. In Comparative Genomics: Empirical and Ana-
lytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of
Gene Families, pages 47–58. Kluwer Academic Press, 2000.

12. I. Miklós and J. Hein. Genome rearrangement in mitochondria and its compu-
tational biology. In RECOMB ’04 Workshop in Comparative Genomics, volume
3388 of LNBI, pages 85–96. Berlin: Springer-Verlag, 2004.

13. I. Miklós, T. B. Paige, and P. Ligeti. Efficient sampling of transpositions and
inverted transpositions for bayesian mcmc. In WABI ’06: Proceedings of the Sixth
International Workshop on Algorithms in Bioinformatics, pages 174–185, 2006.

14. M. Ozery-flato and R. Shamir. Sorting by translocations via reversals theory.
Journal of Computational Biology, 14(4):408–422, 2007.

15. P. Pevzner and G. Tesler. Human and mouse genomic sequences reveal extensive
breakpoint reuse in mammalian evolution. Proceedings of National Academy of
Sciences USA, 100(13):7672–7677, 2003.

16. D. Sankoff, J-F. Lefebvre, E. R. M. Tillier, A. Maler, and N. El-Mabrouk. The
distribution of inversion lengths in bacteria. In RECOMB ’04 Workshop in Com-
parative Genomics, volume 3388 of LNCS, pages 97–108. Berlin: Springer-Verlag,
2004.

17. D. Sankoff and P. Trinh. Chromosomal breakpoint reuse in genome sequence
rearrangement. Journal of Computational Biology, 12(6):812–821, 2005.

18. A. C. Siepel. An algorithm to enumerate all sorting reversals. In RECOMB
’02: Proceedings of the Sixth annual International Conference on Computational
biology, pages 281–290, New York, NY, USA, 2002. ACM.

19. R. P. Stanley. Parking functions and noncrossing partitions. Electronic Journal of
Combinatorics, 4:2–0, 1997.

20. K. M. Swenson, Y. Dong, J. Tang, and B.M.E. Moret. Maximum independent sets
of commuting and noninterfering inversions. In 7th Asia-Pacific Bioinformatics
Conference, To appear, 2009.

21. A. W. Xu, B. Alain, and D. Sankoff. Poisson adjacency distributions in genome
comparison. Bioinformatics, 24(16):i146–i152, 2008.

22. A. W. Xu, C. Zheng, and D. Sankoff. Paths and cycles in breakpoint graphs of
random multichromosomal genomes. Journal of Computational Biology, 14(4):423–
435, 2007.

23. S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-
mutations by translocation, inversion and block interchange. Bioinformatics,
21(16):3340–3346, 2005.


