207 research outputs found

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let kNk \in \mathbb{N} and let GG be a graph. A function f:V(G)2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of xV(G)f(x)\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    Further Results on the Total Roman Domination in Graphs

    Full text link
    [EN] Let G be a graph without isolated vertices. A function f:V(G)-> {0,1,2} is a total Roman dominating function on G if every vertex v is an element of V(G) for which f(v)=0 is adjacent to at least one vertex u is an element of V(G) such that f(u)=2 , and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertices. The total Roman domination number of G, denoted gamma tR(G) , is the minimum weight omega (f)=Sigma v is an element of V(G)f(v) among all total Roman dominating functions f on G. In this article we obtain new tight lower and upper bounds for gamma tR(G) which improve the well-known bounds 2 gamma (G)<= gamma tR(G)<= 3 gamma (G) , where gamma (G) represents the classical domination number. In addition, we characterize the graphs that achieve equality in the previous lower bound and we give necessary conditions for the graphs which satisfy the equality in the upper bound above.Cabrera Martínez, A.; Cabrera García, S.; Carrión García, A. (2020). Further Results on the Total Roman Domination in Graphs. Mathematics. 8(3):1-8. https://doi.org/10.3390/math8030349S1883Henning, M. A. (2009). A survey of selected recent results on total domination in graphs. Discrete Mathematics, 309(1), 32-63. doi:10.1016/j.disc.2007.12.044Henning, M. A., & Yeo, A. (2013). Total Domination in Graphs. Springer Monographs in Mathematics. doi:10.1007/978-1-4614-6525-6Henning, M. A., & Marcon, A. J. (2016). Semitotal Domination in Claw-Free Cubic Graphs. Annals of Combinatorics, 20(4), 799-813. doi:10.1007/s00026-016-0331-zHenning, M. . A., & Marcon, A. J. (2016). Vertices contained in all or in no minimum semitotal dominating set of a tree. Discussiones Mathematicae Graph Theory, 36(1), 71. doi:10.7151/dmgt.1844Henning, M. A., & Pandey, A. (2019). Algorithmic aspects of semitotal domination in graphs. Theoretical Computer Science, 766, 46-57. doi:10.1016/j.tcs.2018.09.019Cockayne, E. J., Dreyer, P. A., Hedetniemi, S. M., & Hedetniemi, S. T. (2004). Roman domination in graphs. Discrete Mathematics, 278(1-3), 11-22. doi:10.1016/j.disc.2003.06.004Stewart, I. (1999). Defend the Roman Empire! Scientific American, 281(6), 136-138. doi:10.1038/scientificamerican1299-136Chambers, E. W., Kinnersley, B., Prince, N., & West, D. B. (2009). Extremal Problems for Roman Domination. SIAM Journal on Discrete Mathematics, 23(3), 1575-1586. doi:10.1137/070699688Favaron, O., Karami, H., Khoeilar, R., & Sheikholeslami, S. M. (2009). On the Roman domination number of a graph. Discrete Mathematics, 309(10), 3447-3451. doi:10.1016/j.disc.2008.09.043Liu, C.-H., & Chang, G. J. (2012). Upper bounds on Roman domination numbers of graphs. Discrete Mathematics, 312(7), 1386-1391. doi:10.1016/j.disc.2011.12.021González, Y., & Rodríguez-Velázquez, J. (2013). Roman domination in Cartesian product graphs and strong product graphs. Applicable Analysis and Discrete Mathematics, 7(2), 262-274. doi:10.2298/aadm130813017gLiu, C.-H., & Chang, G. J. (2012). Roman domination on strongly chordal graphs. Journal of Combinatorial Optimization, 26(3), 608-619. doi:10.1007/s10878-012-9482-yAhangar Abdollahzadeh, H., Henning, M., Samodivkin, V., & Yero, I. (2016). Total Roman domination in graphs. Applicable Analysis and Discrete Mathematics, 10(2), 501-517. doi:10.2298/aadm160802017aAmjadi, J., Sheikholeslami, S. M., & Soroudi, M. (2019). On the total Roman domination in trees. Discussiones Mathematicae Graph Theory, 39(2), 519. doi:10.7151/dmgt.2099Cabrera Martínez, A., Montejano, L. P., & Rodríguez-Velázquez, J. A. (2019). Total Weak Roman Domination in Graphs. Symmetry, 11(6), 831. doi:10.3390/sym1106083

    Roman Census: Enumerating and Counting Roman Dominating Functions on Graph Classes

    Get PDF

    From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs

    Full text link
    [EN] Let G be a graph with no isolated vertex and let N (v) be the open neighbourhood of v is an element of V (G). Let f : V (G) -> {0, 1, 2} be a function and V-i = {v is an element of V (G) : f (v) = i} for every i is an element of{0, 1, 2}. We say that f is a strongly total Roman dominating function on G if the subgraph induced by V-1 boolean OR V-2 has no isolated vertex and N (v) boolean AND V-2 not equal empty set for every v is an element of V (G) \ V2. The strongly total Roman domination number of G, denoted by gamma(s)(tR) (G), is defined as the minimum weight omega(f) = Sigma(x is an element of V(G)) f (x) among all strongly total Roman dominating functions f on G. This paper is devoted to the study of the strongly total Roman domination number of a graph and it is a contribution to the Special Issue "Theoretical Computer Science and Discrete Mathematics" of Symmetry. In particular, we show that the theory of strongly total Roman domination is an appropriate framework for investigating the total Roman domination number of lexicographic product graphs. We also obtain tight bounds on this parameter and provide closed formulas for some product graphs. Finally and as a consequence of the study, we prove that the problem of computing gamma(s)(tR) (G) is NP-hard.Almerich-Chulia, A.; Cabrera Martinez, A.; Hernandez Mira, FA.; Martín Concepcion, PE. (2021). From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs. Symmetry (Basel). 13(7):1-10. https://doi.org/10.3390/sym13071282S11013

    Total Roman Domination Number of Rooted Product Graphs

    Full text link
    [EN] Let G be a graph with no isolated vertex and f:V(G)->{0,1,2} a function. If f satisfies that every vertex in the set {v is an element of V(G):f(v)=0} is adjacent to at least one vertex in the set {v is an element of V(G):f(v)=2}, and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertex, then we say that f is a total Roman dominating function on G. The minimum weight omega(f)= n-ary sumation v is an element of V(G)f(v) among all total Roman dominating functions f on G is the total Roman domination number of G. In this article we study this parameter for the rooted product graphs. Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of rooted product graphs in terms of domination invariants of the factor graphs involved in this product.Cabrera Martinez, A.; Cabrera García, S.; Carrión García, A.; Hernandez Mira, FA. (2020). Total Roman Domination Number of Rooted Product Graphs. Mathematics. 8(10):1-13. https://doi.org/10.3390/math8101850S11381
    corecore