6 research outputs found

    Melt Scheduling to Trade Off Material Waste and Shipping Performance

    Get PDF

    A rolling horizon approach for the locomotive routing problem at the Canadian National Railway Company

    Full text link
    Cette thèse étudie le problème du routage des locomotives qui se pose à la Compagnie des chemins de fer nationaux du Canada (CN) - le plus grand chemin de fer au Canada en termes de revenus et de taille physique de son réseau ferroviaire. Le problème vise à déterminer la séquence des activités de chaque locomotive sur un horizon de planification donné. Dans ce contexte, il faut prendre des décisions liées à l'affectation de locomotives aux trains planifiés en tenant compte des besoins d'entretien des locomotives. D’autres décisions traitant l'envoi de locomotives aux gares par mouvements à vide, les déplacements légers (sans tirer des wagons) et la location de locomotives tierces doivent également être prises en compte. Sur la base d'une formulation de programmation en nombres entiers et d'un réseau espace-temps présentés dans la littérature, nous introduisons une approche par horizon roulant pour trouver des solutions sous-optimales de ce problème dans un temps de calcul acceptable. Une formulation mathématique et un réseau espace-temps issus de la littérature sont adaptés à notre problème. Nous introduisons un nouveau type d'arcs pour le réseau et de nouvelles contraintes pour le modèle pour faire face aux problèmes qui se posent lors de la division de l'horizon de planification en plus petits morceaux. Les expériences numériques sur des instances réelles montrent les avantages et les inconvénients de notre algorithme par rapport à une approche exacte.This thesis addresses the locomotive routing problem arising at the Canadian National Railway Company (CN) - the largest railway in Canada in terms of both revenue and the physical size of its rail network. The problem aims to determine the sequence of activities for each locomotive over the planning horizon. Besides assigning locomotives to scheduled trains and considering scheduled locomotive maintenance requirements, the problem also includes other decisions, such as sending locomotives to stations by deadheading, light traveling, and leasing of third-party locomotives. Based on an Integer Programming formulation and a Time-Expanded Network presented in the literature, we introduce a Rolling Horizon Approach (RHA) as a method to find near-optimal solutions of this problem in acceptable computing time. We adapt a mathematical formulation and a space-time network from the literature. We introduce a new type of arcs for the network and new constraints for the model to cope with issues arising when dividing the planning horizon into smaller ones. Computational experiments on real-life instances show the pros and cons of our algorithm when compared to an exact solution approach

    Integrated Production-Inventory Models in Steel Mills Operating in a Fuzzy Environment

    Get PDF
    Despite the paramount importance of the steel rolling industry and its vital contributions to a nation’s economic growth and pace of development, production planning in this industry has not received as much attention as opposed to other industries. The work presented in this thesis tackles the master production scheduling (MPS) problem encountered frequently in steel rolling mills producing reinforced steel bars of different grades and dimensions. At first, the production planning problem is dealt with under static demand conditions and is formulated as a mixed integer bilinear program (MIBLP) where the objective of this deterministic model is to provide insights into the combined effect of several interrelated factors such as batch production, scrap rate, complex setup time structure, overtime, backlogging and product substitution, on the planning decisions. Typically, MIBLPs are not readily solvable using off-the-shelf optimization packages necessitating the development of specifically tailored solution algorithms that can efficiently handle this class of models. The classical linearization approaches are first discussed and employed to the model at hand, and then a hybrid linearization-Benders decomposition technique is developed in order to separate the complicating variables from the non-complicating ones. As a third alternative, a modified Branch-and-Bound (B&B) algorithm is proposed where the branching, bounding and fathoming criteria differ from those of classical B&B algorithms previously established in the literature. Numerical experiments have shown that the proposed B&B algorithm outperforms the other two approaches for larger problem instances with savings in computational time amounting to 48%. The second part of this thesis extends the previous analysis to allow for the incorporation of internal as well as external sources of uncertainty associated with end customers’ demand and production capacity in the planning decisions. In such situations, the implementation of the model on a rolling horizon basis is a common business practice but it requires the repetitive solution of the model at the beginning of each time period. As such, viable approximations that result in a tractable number of binary and/or integer variables and generate only exact schedules are developed. Computational experiments suggest that a fair compromise between the quality of the solutions and substantial computational time savings is achieved via the employment of these approximate models. The dynamic nature of the operating environment can also be captured using the concept of fuzzy set theory (FST). The use of FST allows for the incorporation of the decision maker’s subjective judgment in the context of mathematical models through flexible mathematical programming (FMP) approach and possibilistic programming (PP) approach. In this work, both of these approaches are combined where the volatility in demand is reflected by a flexible constraint expressed by a fuzzy set having a triangular membership function, and the production capacity is expressed as a triangular fuzzy number. Numerical analysis illustrates the economical benefits obtained from using the fuzzy approach as compared to its deterministic counterpart

    Rolling horizon scheduling in a rolling-mill

    No full text
    This paper treats a production planning problem in an aluminum manufacturing plant characterized by milling equipment subject to wear and replacement, furnaces with limited capacities and precedence rules and timing implied by temperatures and alloy types. We describe a rule-driven mathematical model and present an efficient rolling horizon schedul-ing algorithm based on tabu search as well as computational results
    corecore