446,646 research outputs found

    An Efficient Multiple Object Vision Tracking System using Bipartite Graph Matching

    Get PDF
    For application domains like 11 vs. 11 robot soccer league, crowd surveillance and air traffic control, vision systems need to be able to identify and maintain information in real time about multiple objects as they move through an environment using video images. In this paper, we reduce the multi-object tracking problem to a bipartite graph matching and present efficient techniques that compute the optimal matching in real time. We demonstrate the robustness of our system on a task of tracking indistinguishable objects. One of the advantages of our tracking system is that it requires a much lower frame rate than standard tracking systems to reliably keep track of multiple objects

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Re-verification of a Lip Synchronization Algorithm using robust reachability

    Get PDF
    The timed automata formalism is an important model for specifying and analysing real-time systems. Robustness is the correctness of the model in the presence of small drifts on clocks or imprecision in testing guards. A symbolic algorithm for the analysis of the robustness of timed automata has been implemented. In this paper we re-analyse an industrial case lip synchronization protocol using the new robust reachability algorithm.This lip synchronization protocol is an interesting case because timing aspect are crucial for the correctness of the protocol. Several versions of the model are considered, with an ideal video stream, with anchored jitter, and with non-anchored jitter

    Re-verification of a Lip Synchronization Protocol using Robust Reachability

    Get PDF
    The timed automata formalism is an important model for specifying and analysing real-time systems. Robustness is the correctness of the model in the presence of small drifts on clocks or imprecision in testing guards. A symbolic algorithm for the analysis of the robustness of timed automata has been implemented. In this paper, we re-analyse an industrial case lip synchronization protocol using the new robust reachability algorithm. This lip synchronization protocol is an interesting case because timing aspects are crucial for the correctness of the protocol. Several versions of the model are considered: with an ideal video stream, with anchored jitter, and with non-anchored jitter

    Slack-Time Computation for Temporal Robustness in Embedded Systems

    Get PDF
    International audienceWe propose to handle execution duration overruns (temporal faults) in real-time embedded systems. When a temporal fault occurs, the slack time can be dynamically determined and assigned to the faulty task in order to complete its treatment. This mechanism improves the temporal robustness of real-time systems. We demonstrate that an approximate slack stealer algorithm like the MASS algorithm is a good solution for real-time embedded systems. We validate the feasibility of this approach by an implementation on the Lego Mindstorm NXT platform

    Average-cost based robust structural control

    Get PDF
    A method is presented for the synthesis of robust controllers for linear time invariant structural systems with parameterized uncertainty. The method involves minimizing quantities related to the quadratic cost (H2-norm) averaged over a set of systems described by real parameters such as natural frequencies and modal residues. Bounded average cost is shown to imply stability over the set of systems. Approximations for the exact average are derived and proposed as cost functionals. The properties of these approximate average cost functionals are established. The exact average and approximate average cost functionals are used to derive dynamic controllers which can provide stability robustness. The robustness properties of these controllers are demonstrated in illustrative numerical examples and tested in a simple SISO experiment on the MIT multi-point alignment testbed
    corecore