
An Efficient Multiple Object Vision Tracking System
using Bipartite Graph Matching

Matthew Rowan, Frederic Maire,

School of Software Engineering and Data Communication,
Queensland University of Technology,

PO Box 2434, Brisbane, Qld 4001,
Australia

mg.rowan@student.qut.edu.au , f.maire@qut.edu.au

Abstract

For application domains like 11 vs. 11 robot soccer league, crowd surveillance
and air traffic control, vision systems need to be able to identify and maintain
information in real time about multiple objects as they move through an environment
using video images. In this paper, we reduce the multi-object tracking problem to a
bipartite graph matching and present efficient techniques that compute the optimal
matching in real time. We demonstrate the robustness of our system on a task of
tracking indistinguishable objects. One of the advantages of our tracking system is
that it requires a much lower frame rate than standard tracking systems to reliably
keep track of multiple objects.

Key words

Multiple object tracking, Bipartite graph matching, Hungarian method, Linear
programming.

1. Introduction
Visual tracking is an area of computer vision with many practical applications,

and thus it is one of the field's sub-disciplines with the biggest potential impact. There
are good reasons to track a wide variety of objects, including airplanes, missiles,
vehicles, people, animals, and micro-organisms. While tracking single objects alone
in images has received considerable attention, tracking multiple objects
simultaneously is both more useful and more problematic. It is more useful because
objects we want to track often exist in close proximity to other similar objects. It is
more problematic because the objects of interest can touch, occlude, and interact with
each other. They can enter and leave the image and we must be able to tell the objects
apart. In addition, multiple object tracking must still deal with all the hard problems of
single object tracking, including running at a reasonable rate and adapting to changing
background conditions.

All the robust methods for single object tracking than can handle noise,
occlusions, and perform some form of error correction are probabilistic. They include
Kalman filtering (Foresti, 1999; Lienhart et al., 2003) and hidden Markov models
(Chen et al., 2001; Couvreur, 1996).

Multiple Object Tracking requires a different approach when the objects are
described using the same model. Instantiating several independent trackers for each
object is not a satisfactory solution because the independent trackers tend to join
together onto a single object. Methods for preventing this phenomenon include
interpreting the targets as blobs which merge and split (Intille et al 1997), enforcing a
minimum separation between targets (Rasmussen and Hager, 1998), the Condensation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10872916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Algorithm (MacCormick, 2000; Needham, 2001), the Probabilistic Data Association
Filter (PDAF) (Bar-Shalom and Fortmann, 1988; Intille et al 1997; MacCormick,
2000) and the Joint Probabilistic Data Association Filter (JPDAF) (Schmitt, 2002;
Chen et al., 2001; Rasmussen and Hager, 1998).

Surprisingly, only one paper in the literature on vision tracking uses a graph
matching process for multiple object vision tracking (Chen et al., 2001). However,
since the authors of this paper present results for tracking only 3 objects, we can
assume that all permutations were tested to find the optimal matching.

In Section 2, we present three different matching methods. In Section 3, we
compare experimentally these methods when applied to multiple object tracking.

2. A bipartite graph matching approach for multiple object tracking
One class in the bipartite graph corresponds to the expected positions of the

tracked objects. The other class corresponds to the blobs from within the current
image. Features such as size, position, colour, shape, and velocity can be extracted
from the object blobs. The entries of the adjacency matrix of the bipartite graphs are
the similarity measurements between blobs and tracked objects. Obviously, a
maximum weight matching corresponds to the best assignment of blobs to objects
(objects are matched to the corresponding blobs).

Unfortunately, from time to time the number of blobs found is different from the
number of expected objects. To make the two classes of the bipartite graph the same
size, we simply add dummy nodes to the smaller class (with similarity weight set to
0).

The matching speed is critical for a real time system. We have considered four
different matching algorithms; namely, the Permutation, Hungarian, Linear
Programming (LP) and Greedy Matching Methods.

The Permutation Method enumerates all possible matchings. The running time of
this method is exponential in the number of tracked objects. Practically, no more than
about 8 objects can be tracked this way with current hardware speeds.

The Hungarian Method finds the maximum matching in (n))) logn (m(n O + ,

where n is the number of objects and ��
�

�
��
�

�
=

2
n

m is the number of edges in the bipartite

graph (Schrijver,2003). The Hungarian method incrementally improves an initially
empty matching by finding augmenting paths in the bipartite graph. Let

);,(EWUG = be a bipartite graph, with colour classes U and W . Let REw →: be
a weight function on the edges. Start with an empty matching M . Given the current
matching M , let MD be the directed graph obtained from G by orienting each edge
e in M from W to U , with length ew=eλ , and orienting each edge e not in M

from U to W , with ew−=eλ . Let MU and MW be the set of vertices in U and W ,

respectively, missed by M . If there is an alternating path from MU to MW , find the
shortest such path, P , and replace M with the set difference of M and the edges of
P . Iterate until no path exists from MU to MW can be found. It can be shown that
this procedure return a maximum weight matching.

The maximum matching can also be formulated as a Linear Programming
problem. Let w be the weight vector indexed by edges (iw is the weight of the ith

edge), let x be the characteristic vector of the matching (1=ix if the ith edge is

included in the matching, otherwise 0=ix), and let A be the vertex-edge incidence

matrix. Then the maximum weight matching x is the solution of xwTmax subject to
system of inequalities 1≤Ax and 0≥x , where the inequalities between vectors are
component wise. The remarkable result is that the solutions of linear program are 0-1
vectors that represent the maximum matchings of the associated graph.

The greedy matching algorithm starts with an empty matching and incrementally
builds a good matching by greedily inserting edges one at a time. The next edge
added to the current matching is the maximal weight edge that is incident to no edge
of the current matching. Although the greedy matching algorithm is the fastest
algorithm for building a good matching, it does guarantee to return the best matching
(maximum weight matching).

3. Experimental results

The images were captured using an analogue camera input through a Matrox
Meteor II frame grabber card which digitalizes the frames as a Tagged Image File
Format (tiff) image using the RGB colour space. This allows for up to approximately
30 frames per second to be captured which corresponds to approximately 30
milliseconds per frame. The resolution of the frames was 320 by 240 pixels.

We will first discuss the relative speeds of the matching algorithms, then we will
explore the sensitivity of the quality of the different object tracking with respect to the
object matching algorithms and similarity measures. All algorithms were
implemented in Matlab. The computer used was a Pentium 4 running at 1.5 GHz with
512MB of RAM. The LP optimization was done with Matlab optimization toolbox.
Figure 1 shows that the permutation method breaks down rapidly. The Hungarian
method performs well but was not dependable for real time use when tracking more
than 10 objects, because of the variance in the running time of the Hungarian method.
The LP method proves to be very fast and was able to handle perfectly the tracking of
over 30 objects in real time.

Figure 1 Comparison of the running times

Figure 2 Trajectories over 90 frames

Although the greedy method outruns all the other methods tested, it must be
stressed that the greedy method does not guarantee to return a maximum matching.

To compare the effectiveness of the matching methods, 90 frames of 8 to 20
objects moving over a non-uniform surface was captured (see example in Figure 2).
The frame rate was 33.95 frames per second (29.45 milliseconds per frame). The lines
displayed the objects’ trajectories through the 90 frames. Each dot on the line
identifies the time when a matching took place.

To test the robustness of the tracking process the matching was performed at
slower frame rates. This process creates a larger distance between the objects and
makes tracking much more difficult. The results of the slower frame rate testing show
that the tracking can be performed in real time at slow frame rates. Overall, CPU time
is saved as fewer calls to single object detection functions are made.

Figure 3 Comparison of matching methods. Row 1; maximum matching, predicted position
similarity. Row 2; maximum matching, last position similarity. Row 3; greedy matching,
predicted position similarity.

The similarity matrix was constructed using either the last positions or the
predicted positions of the objects against the positions of the blobs. The objects were
then matched to the blobs found in the next frame until the matching was performed
over all the frames. The table of images in Figure 3 shows the results of the tracking
on 8 objects. In the first row, the predicted position similarity measure was used. In
the second row, the last position similarity measure was used. The tracking is better
with the more sophisticated similarity measure. The third row of Figure 3 shows that
the greedy matching gets confused more easily than the maximum matching.

 It can be observed (see Figure 4) that the tracking of the 8 objects (marbles) is
still successful at a rate of less than 4 frames per second. The first matching is
incorrect for the two pairs of marbles about position (70,160) and (110,140). This is
not unexpected, because for this very first matching the similarity measure used is
only based on the position as no estimation of the velocity is available at that time.
However, the successive matchings are correct.

Figure 4 Low frame rate, maximum matching, predicted position similarity measure.

4. Conclusion

The experimental results presented in this paper clearly demonstrate that
computing the maximum weight matching with respect to a good similarity measure
yields a robust multiple object tracking system. In the experiments we conducted, the
computation of the maximum matching was started from scratch at each time step.
Further gain could be achieved by seeding the search algorithms with information
from the previous maximum matching.

References
[1] Bar-Shalom, Y. and Fortmann, T. E. (1988) Tracking and Data Association,

Academic Press, San Diego, CA.

[2] Chen, Y., Rui, Y. and Huang, T. (2001) ‘JPDAF Based HMM for Real-Time
Contour Tracking’, In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Vol. 1 Kauai, Hawaii, 08–14 December 2001, pp. 543-550.

[3] Chen, H.-T., Lin, H.-H. and Liu, T.-L. (2001) ‘Multi-Object Tracking Using
Dynamical Graph Matching’, In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Vol. 2 Kauai, Hawaii, 08–14 December 2001, pp.
210-217.

[4] Couvreur, C. (1996) ‘Hidden Markov Models and Their Mixtures’, Faculte
des Sciences - Department de Mathematiques, Universite Catholique de Louvain,
Louvain.

[5] Foresti, G. L. (1999) ‘Object Recognition and Tracking for Remote Video
Surveillance’, In IEEE Transactions on Circuits and Systems for Video Technology,
Vol. Volume: 9 Issue: 7, pp. 1045 -1062.

[6] Intille, S. S., Davis, J. W. and Bobick, A. F. (1997) ‘Real-Time Closed-World
Tracking’, In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Juan, Puerto Rico, June 1997, pp. 697-703.

[7] Lienhart, R., Liang, L. and Kuranov, A. (2003) ‘A Detector Tree of Boosted
Classifiers for Real-Time Object Detection and Tracking’, In IEEE International
Conference on Multimedia & Expo, Microcomputer Research Labs, Intel
Corporation., Baltimore, Maryland. July 6-9, 2003.

[8] MacCormick, J. and Blake, A. (2000) 'A probabilistic exlusion principle for
tracking multiple objects' International Journal of Computer Vision, 39, 57-71.

[9] Needham, C. J. and Boyle, R. (2001) ‘Tracking Multiple Sports Players
through occlusion, congestion and scale’, In Proceedings British Machine Vision
Conference, Vol. 1 School of Computing, University of Leeds, Manchester, UK,
September 2001, pp. 93-102.

[10] Rasmussen, C. and Hager, G. (1998) ‘Joint Probabilistic Techniques for
Tracking Objects Using Multiple Part Objects’, In IEEE/RSJ International
Conference on Intelligent Robots and Systems, Vol. 1 Victoria, BC, October 13-17,
1998, pp. 191-196.

[11] Schmitt, T., Hanek, R., Buck, S. and Beetz, M. (2002) ‘Probabilistic Vision-
based Opponent Tracking in Robot Soccer’, Institut fur Informatik, Munchen,
Germany.

[12] Schrijver, A. (2003) Combinatorial Optimization, Springer-Verlag, Berlin
Heidelberg, Germany.

