1,058 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Performance Enhancement of Routing in MANETs by using EOMD

    Get PDF
    Usually large scale of network applications requires communication of the single copy of same information packets simultaneously to many destinations. Applying the infrastructure- based multicast routing protocols in Mobile Ad hoc wireless Networks (MANETs) is a big challenge task. The circumstances that make Multicasting in ad hoc networks is extra intricate than in wired networks are node mobility, Interference of Wi-Fi alerts and broadcast nature of the communication. Tree based Protocols aren't suitable for common topology modifications as an excessive amount of overhead for updating the filter information and additionally no longer suitable for partition or isolation. The major impact of routing for multi-hop MANETs comes due to mobility of the node, as performance is prone to modifications in network topology. When any link breaks, the direction should be repaired or changed, similar to direction preservation or route discovery, respectively. The rerouting process charges in radio bandwidth and battery energy, and the extra routing latency can also affect QoS for community packages, degrading communication performance. The ODMRP is more robust to mobility and unreliable wireless links as its core layout relies on periodic floods of path discovery and renovation. ODMRP periodically reconstructs the ?forwarding mesh? on a fixed quick interval. The path refresh is the most essential parameter because it has the important effect at the protocol overhead. We proposed an Extended - On Demand Multicast Routing Protocol with motion detection (EOMD), which reduces communication overhead and performance improvisation in mobile Ad-Hoc Network in Mobility

    Multicast outing protocols and architectures in mobile ad-hoc wireless networks

    Get PDF
    The basic philosophy of personal communication services is to provide user-to-user, location independent communication services. The emerging group communication wireless applications, such as multipoint data dissemination and multiparty conferencing tools have made the design and development of efficient multicast techniques in mobile ad-hoc networking environments a necessity and not just a desire. Multicast protocols in mobile adhoc networks have been an area of active research for the past few years. In this dissertation, protocols and architectures for supporting multicast services are proposed, analyzed and evaluated in mobile ad-hoc wireless networks. In the first chapter, the activities and recent advances are summarized in this work-in-progress area by identifying the main issues and challenges that multicast protocols are facing in mobile ad-hoc networking environments and by surveying several existing multicasting protocols. a classification of the current multicast protocols is presented, the functionality of the individual existing protocols is discussed, and a qualitative comparison of their characteristics is provided according to several distinct features and performance parameters. In the second chapter, a novel mobility-based clustering strategy that facilitates the support of multicast routing and mobility management is presented in mobile ad-hoc networks. In the proposed structure, mobile nodes are organized into nonoverlapping clusters which have adaptive variable-sizes according to their respective mobility. The mobility-based clustering (MBC) approach which is proposed uses combination of both physical and logical partitions of the network (i.e. geographic proximity and functional relation between nodes, such as mobility pattern etc.). In the third chapter, an entropy-based modeling framework for supporting and evaluating the stability is proposed in mobile ad-hoc wireless networks. The basic motivations of the proposed modeling approach stem from the commonality observed in the location uncertainty in mobile ad-hoc wireless networks and the concept of entropy. In the fourth chapter, a Mobility-based Hybrid Multicast Routing (MHMR) protocol suitable for mobile ad-hoc networks is proposed. The MHMR uses the MBC algorithm as the underlying structure. The main features that the proposed protocol introduces are the following: a) mobility based clustering and group based hierarchical structure, in order to effectively support the stability and scalability, b) group based (limited) mesh structure and forwarding tree concepts, in order to support the robustness of the mesh topologies which provides limited redundancy and the efficiency of tree forwarding simultaneously, and c) combination of proactive and reactive concepts which provide the low route acquisition delay of proactive techniques and the low overhead of reactive methods. In the fifth chapter, an architecture for supporting geomulticast services with high message delivery accuracy is presented in mobile ad-hoc wireless networks. Geomulticast is a specialized location-dependent multicasting technique, where messages are multicast to some specific user groups within a specific zone. An analytical framework which is used to evaluate the various geomulticast architectures and protocols is also developed and presented. The last chapter concludes the dissertation

    Upgraded Scalable Virtual Treebased Multicast Routing Protocol for Secured Packet forwarding in MANET's

    Get PDF
    ABSTRACT: Now a day's Mobile ad-hoc networks became a popular subject for research due to its wide utilization in different areas, and various studies have been made to increase the performance of ad hoc networks and support more advanced mobile computing and applications. Multicasting is a useful operation that facilitates group communications in MANETs. There are some problems of the existed mobile computing applications are multicast group membership management, zone construction and efficient forwarding of packets to all the group members over the dynamic network topology for a large group size or network size. This paper concentrated specifically, on efficient packet forwarding through a virtual-zone-based structure, and the location service for group members is integrated with the membership management. Both the control messages and data packets are forwarded along efficient tree-like paths, but there is no need to explicitly create and actively maintain a tree structure. The stateless virtual-tree-based structures significantly reduce the tree management overhead, support more efficient transmissions, and make the transmissions much more robust to dynamics. By upgrading the USVGM protocol with virtual-zone-based structure and tree-like paths we achieved higher performance and reliable and scalable data packet forwarding. Our simulation results demonstrate that Upgraded SVGM (USVGM) has high packet delivery ratio, low control overhead and multicast group joining delay under all test scenarios, and is scalable to both group size and network size. Keywords: USVGM, LAM, MZRP, LGT, LGS I. INTRODUCTION MANET is a collection of wireless nodes that can dynamically be set up any where and anytime without using any preexisting network infrastructure. It is an autonomous system in which mobile hosts connected by wireless links are free to move randomly and often act as routers at the same time. The traffic types in ad hoc networks are quite different from those in an infrastructure wireless network. Due to its popularity and wide advantages MANET are applied to different applications including battlefield communications, emergency relief scenarios, law enforcement, public meeting, virtual class room and other security-sensitive computing environments. Multicasting is a powerful scenario in MANET's environment. The design of the multicast scheme in MANET is more complex because of the dynamic change in the network topology and the limited bandwidth availability. Previous researches designed some ad hoc network routing protocols LAM [3], MZR

    Supporting Protocols for Structuring and Intelligent Information Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    The goal of this dissertation is the presentation of supporting protocols for structuring and intelligent data dissemination in vehicular ad hoc networks (VANETs). The protocols are intended to first introduce a structure in VANETs, and thus promote the spatial reuse of network resources. Segmenting a flat VANET in multiple cluster structures allows for more efficient use of the available bandwidth, which can effectively increase the capacity of the network. The cluster structures can also improve the scalability of the underlying communication protocols. The structuring and maintenance of the network introduces additional overhead. The aim is to provide a mechanism for creating stable cluster structures in VANETs, and to minimize this associated overhead. Further a hybrid overlay-based geocast protocol for VANETs is presented. The protocol utilizes a backbone overlay virtual infrastructure on top of the physical network to provide geocast support, which is crucial for intervehicle communications since many applications provide group-oriented and location-oriented services. The final contribution is a structureless information dissemination scheme which creates a layered view of road conditions with a diminishing resolution as the viewing distance increases. Namely, the scheme first provides a high-detail local view of a given vehicle\u27s neighbors and its immediate neighbors, which is further extended when information dissemination is employed. Each vehicle gets aggregated information for road conditions beyond this extended local view. The scheme allows for the preservation of unique reports within aggregated frames, such that safety critical notifications are kept in high detail, all for the benefit of the driver\u27s improved decision making during emergency scenarios

    Adaptive Multicast on Mobile Ad Hoc Networks Using Tree-Based Meshes With Variable Density of Redundant Paths

    Get PDF
    Multicasting has been extensively studied for mobile ad hoc networks (MANETs) because it is fundamental to many ad hoc network applications requiring close collaboration of multiple nodes in a group. A general approach is to construct an overlay structure such as multicast tree or mesh and to deliver a multicast packet to multiple receivers over the overlay structure. However, it either incurs a lot of overhead (multicast mesh) or performs poorly in terms of delivery ratio (multicast tree). This paper proposes an adaptive multicast scheme, called tree-based mesh with k-hop redundant paths (TBM k ), which constructs a multicast tree and adds some additional links/nodes to the multicast structure as needed to support redundancy. It is designed to make a prudent tradeoff between the overhead and the delivery efficiency by adaptively controlling the path redundancy depending on network traffic and mobility. In other words, when the network is unstable with high traffic and high mobility, a large k is chosen to provide more robust delivery of multicast packets. On the other hand, when the network traffic and the mobility are low, a small k is chosen to reduce the overhead. It is observed via simulation that TBM k improves the packet delivery ratio as much as 35% compared to the multicast tree approach. On the other hand, it reduces control overhead by 23–87% depending on the value of k compared to the multicast mesh approach. In general, TBM k with the small value of k offers more robust delivery mechanism but demands less overhead than multicast trees and multicast meshes, respectively
    • …
    corecore