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ABSTRACT

MULTICAST ROUTING PROTOCOLS AND ARCHITECTURES
IN MOBILE AD-HOC WIRELESS NETWORKS

by
Beongku An

The basic philosophy of personal communication services is to provide user-to-user,

location independent communication services. The emerging group communication

wireless applications, such as multipoint data dissemination and multiparty confer-

encing tools have made the design and development of efficient multicast techniques

in mobile ad-hoc networking environments a necessity and not just a desire. Multicast

protocols in mobile ad-hoc networks have been an area of active research for the past

few years.

In this dissertation, protocols and architectures for supporting multicast

services are proposed, analyzed and evaluated in mobile ad-hoc wireless networks.

In the first chapter, the activities and recent advances are summarized in this

work-in-progress area by identifying the main issues and challenges that multicast

protocols are facing in mobile ad-hoc networking environments and by surveying

several existing multicasting protocols. a classification of the current multicast

protocols is presented, the functionality of the individual existing protocols is

discussed, and a qualitative comparison of their characteristics is provided according

to several distinct features and performance parameters.

In the second chapter, a novel mobility-based clustering strategy that facilitates

the support of multicast routing and mobility management is presented in mobile

ad-hoc networks. In the proposed structure, mobile nodes are organized into nonover-

lapping clusters which have adaptive variable-sizes according to their respective



mobility. The mobility-based clustering (MBC) approach which is proposed uses

combination of both physical and logical partitions of the network (i.e. geographic

proximity and functional relation between nodes, such as mobility pattern etc.).

In the third chapter, an entropy-based modeling framework for supporting and

evaluating the stability is proposed in mobile ad-hoc wireless networks. The basic

motivations of the proposed modeling approach stem from the commonality observed

in the location uncertainty in mobile ad-hoc wireless networks and the concept of

entropy.

In the fourth chapter, a Mobility-based Hybrid Multicast Routing (MHMR)

protocol suitable for mobile ad-hoc networks is proposed. The MHMR uses the

MBC algorithm as the underlying structure. The main features that the proposed

protocol introduces are the following: a) mobility based clustering and group based

hierarchical structure, in order to effectively support the stability and scalability,

b) group based (limited) mesh structure and forwarding tree concepts, in order to

support the robustness of the mesh topologies which provides "limited" redundancy

and the efficiency of tree forwarding simultaneously, and c) combination of proactive

and reactive concepts which provide the low route acquisition delay of proactive

techniques and the low overhead of reactive methods.

In the fifth chapter, an architecture for supporting geomulticast services with

high message delivery accuracy is presented in mobile ad-hoc wireless networks.

Geomulticast is a specialized location-dependent multicasting technique, where

messages are multicast to some specific user groups within a specific zone. An

analytical framework which is used to evaluate the various geomulticast archi-

tectures and protocols is also developed and presented. The last chapter concludes

the dissertation.
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CHAPTER 1

SUPPORTING MULTICAST IN MOBILE AD-HOC WIRELESS
NETWORKS: ISSUES, CHALLENGES AND CURRENT

PROTOCOLS

1.1 Introduction

The basic philosophy of personal communication services is to provide user-to-user,

location independent communication services. The emerging group communication

wireless applications, such as multipoint data dissemination and multiparty confer-

encing tools have made the design and development of efficient multicast techniques

in mobile ad-hoc networking environments a necessity and not just a desire. Multicast

protocols in mobile ad-hoc networks have been an area of active research for the past

couple of years. This chapter summarizes the activities and recent advances in this

work-in-progress area by identifying the main issues and challenges that multicast

protocols are facing in mobile ad-hoc networking environments, and by surveying

several existing multicasting protocols [1]. Specifically, it presents a classification of

the current multicast protocols, discusses the functionality of the individual existing

protocols, and provides a qualitative comparison of their characteristics according to

several distinct features and performance parameters. Furthermore, since many of

the additional issues and constraints associated with the mobile ad-hoc networks are

due, to a large extend, to the attribute of user mobility, we also present an overview

of research and development efforts in the area of group mobility modeling in mobile

ad-hoc networks.

As the technology and the popularity of Internet have grown dramatically

over the last few years, applications that require multicasting are becoming more

widespread. Multicasting provides an efficient way of transmitting data from a sender

to a group of receivers. A single source node or a group of source nodes sends identical

1



2

messages simultaneously to multiple destination nodes. Since in multicasting the

sender sends a single copy to all the receivers instead of broadcasting the data to

all the receivers or sending a separate copy to each individual receiver, there are

a lot of advantages associated with, which vary from bandwidth efficiency to lower

network and node overhead. For those reasons multicasting has emerged as one of

the most focused areas in the field of networking and many multicast protocols have

been proposed and developed in wired networks [2].

At the same time, mobile wireless networking has enjoyed dramatic increase

in popularity over the last few years. The advances in hardware design, the rapid

growth in the communication infrastructure, and the increased user requirement

for mobility and geographic dispersion, continue to generate a tremendous need for

dynamic mobile networking. The emerging wireless applications such as audio/video

conferencing, distance learning, e-commerce, and distributed and multiparty games

will benefit by multicast support in the underlying wireless and mobile networks.

Many of the emerging and existing wireless and mobile networks deploy widely

different technologies, protocols, and wireless links, and therefore, the support for

multicasting is an interesting challenge. Regardless of the network environment,

multicast communication is a very useful and efficient means of supporting group-

oriented applications. Supporting multipoint communications for emerging appli-

cations in wireless and mobile networks is an interesting challenge especially due to

the user mobility and limited resources. Multicasting techniques and approaches used

in conventional wired networks [3] [4] are not well suited for the mobile environment

due to the considerable overhead produced by periodic route messages and their slow

convergence to topological changes.
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There are currently two kind of wireless networks. The first is known as the

infrastructure-based network. The infrastructure needed to support such communi-

cation networks often includes the use of many fixed radio transceiver sites that serve

as the gateways for communication with wireless units. The fixed transceivers are

networked through fixed links. The second one is known as mobile ad-hoc network.

In such environments there are no dedicated base stations as in conventional cellular

networks, and all nodes interact as peers for data forwarding. This distributed

nature eliminates single points of failure and makes those mobile ad-hoc networks

more robust and survivable than other wireless networks.

In this dissertation, it is emphasized on the multicasting problem for mobile

ad-hoc networks. The multicast issues in the infrastructure-based networks are

somewhat less complex due to the availability of fixed infrastructure support for

multicast tree/mesh building and maintenance. The main engineering obstacles in

those networks have to do with the last hop delivery and membership tracking, and

are not discussed in this dissertation. In the ad-hoc networks, where all nodes may

be mobile/portable, the interconnection pattern changes between any two nodes over

a period of time, therefore multicast routing involves frequent route discovery and

the management of the tree/mesh structures for multicast using limited or scoped

broadcast. This chapter presents a first effort in the literature to identify, report,

and summarize the work in progress and the most recent advances in the area

of multicasting in ad-hoc networks. The main objective of this work is to reveal

the main philosophy of each protocol in the literature, identify commonalities and

differences among the various protocols, and categorize them accordingly. Among

our objectives, is to understand and compare the main design characteristics of the
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different protocols, to identify their corresponding strengths and drawbacks, and

finally present a comparative qualitative study.

The remaining of this chapter is organized as follows. In section 1.2 we identify

and describe the main issues and challenges that multicasting techniques have to

face and address in mobile ad-hoc networking environments. Section 1.3 examines

several multicast techniques designed for mobile ad-hoc networks, by first giving

a classification of those multicast techniques, then describing the functionality of

the individual existing protocols, and finally comparing their various character-

istics. Section 1.4 presents the impact of mobility modeling on multicast protocols'

performance.

1.2 Issues and Challenges

In general, the multicast routing protocols designed for infrastructure based wireless

networks (i.e. cellular networks) can not be used in ad-hoc networks, mainly for

the following three reasons: a) the routes in ad-hoc networks change frequently, b)

the fixed infrastructure does not exist for route (re) computation, and c) there are

power, coverage and bandwidth restriction. If such protocols were to be used in ad-

hoc wireless networks, the amount of processing and storage overhead may exceed

the limited capabilities of mobile nodes. It has been argued [5]that just routing table

updates can consume about half of the bandwidth even under medium mobility level

under certain conditions.

The development of efficient and applicable protocols to support the various

networking operations in mobile ad-hoc networks presents many issues and challenges

due to the fact that such networks have rapidly changing, random, multi-hop
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topologies. In this section, the main issues and requirements that existing and

future protocols should take into consideration are summarized.

• Dynamic multi-hop topology: The continuous and random movement of nodes

in mobile ad-hoc networks results in rapidly changing multi-hop topologies.

Since not every pair of nodes is within transmission range of each other, a packet

must often be relayed over several hops before reaching its final destination. In

addition, the ad-hoc wireless nodes may experience change of topology during

a multicast session. In general, strategies designed to support internetworking

and multicasting in mobile ad-hoc networks should handle such topological

changes with minimal overhead by limiting the scope of control packets that

may have to be generated and propagated after a change in topology.

• Routing information (in)accuracy: In mobile ad-hoc networks, the available

state information for routing inherently includes inaccuracies due mainly

to user mobility, variable delays or even loss of control packets. Multicast

protocols should attempt to reduce the impact of those inaccuracies on the

efficiency and reliability of their operation.

• Scalability: Scalability in ad-hoc mobile wireless networks presents more

complex problems than in wired or last-hop networks, due to the random

movement of nodes and the bandwidth and power limitations. The protocol

scalability is expressed in the efficient support of large numbers of users, links,

nodes, simultaneous sessions, etc.

• Interoperability and Adaptability: Current multicast solutions in ad-hoc

networks differ substantially from those offered in fixed networks or last-

hop networks. However hosts should be able to migrate freely among ad-hoc,
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fixed infrastructure wireless, and traditional wired networks. In order to offer

seamless and integrated multicast services, additional novel mechanisms should

be developed and supported for interoperation of fixed and wireless multicast

solutions. Additionally, hosts should be able to switch on the fly among

multiple mechanisms with the minimum of both effort and inconvenience (i.e.

packet loss).

• Network resource usage efficiency: With limitations of bandwidth and other

resources in wireless networks, the efficient construction and support of

multicast trees and other mesh topologies is very critical to successful commu-

nication in wireless ad-hoc networks. Keeping accurate state multicast infor-

mation at each router becomes impractical if the set of neighbors changes at

very high rate. On the other hand, excessive propagation of control infor-

mation (i.e. flooding) in highly mobile networks creates substantial overhead

and consumes a considerable amount of resources. There is an inherent trade-

off between efficient usage of network resources and robustness or reliability.

• Power Consumption: Another important factor is the limited power supply in

hand-held devices, which can seriously inhibit packet forwarding in an ad-hoc

mobile environment. Hence, techniques that take into account each node's

power metrics and try to minimize power consumption are more desirable and

provide a way to create more long-lived routes. There are two non-orthogonal

approaches to optimizing the power consumption in wireless ad-hoc networks.

The first is to minimize the overall power dissipated throughout the network

on the average under the techniques adopted. The second is to minimize the

average power dissipated by the individual nodes.
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• Reliability and Security: Reliable services are very important in some appli-

cations such as military battlefields and emergency operations that are

supported by mobile ad-hoc wireless networks. Offering reliable delivery

of data to a group of fast moving nodes that change their position contin-

uously adds substantial complexity to the already complicated problem of

efficient multicasting in ad-hoc networks. Moreover since multicast traffic may

pass through unprotected routers and/or links and since the nature of such

applications is many times of high security and importance (as is the case with

military applications), additional efforts should be devoted to provide secure

communication.

• Group membership (join/leave operation): Due to the user mobility, the

process of group management becomes of major concern in mobile ad-hoc

networks. Since nodes are constantly moving operations for leaving or joining

a multicast group, or leaving at some point and joining at another, could

place a significant amount of overhead in the multicast protocol. Thus group

membership protocols should efficiently process such membership changes in

order to minimize their impact on the overall protocols performance.

• Quality of Service (QoS): Many, if not all, of the above considerations

contribute to the user and/or network quality of service models. Many

applications require the support of a certain QoS for optimum performance.

Offering such kinds of applications particularly in a wireless environment places

additional limitations which need to be accounted for in developing protocols

in ad-hoc networks. Given the problems associated with the dynamics of the

nodes (i.e. fluctuating link characteristics, node movement), supporting end-

to-end QoS is a nontrivial issue that requires in-depth investigation. Currently,



8

there is a trend towards an adaptive QoS approach instead of the plain resource

reservation method with hard QoS guarantees.

• Mobility: In ad-hoc networks, all network components (nodes) may function

as routers and may move at high speeds and in random directions. This

node mobility could lead to inefficient multicast trees or mesh configurations,

loss of packets or incorrect routing, therefore placing additional constraints on

the design of multicast routing protocols that must overcome those mobility

problems in an efficient way. Mobility patterns add another dimension to the

problem of routing in mobile ad-hoc networks. Mobility contributes to a large

extent to almost all the previous issues and constraints. In evaluating the

performance of different techniques for ad-hoc networking, realistic mobility

modeling is crucial. Mobility models for ad-hoc networks range from random

individual models to more structured group-oriented models. Mobility of users

will not only impact the networking techniques such as routing, multicasting

and reconfiguration, but also the underlying physical layer constraints.

1.3 Existing Multicast Protocols

The goal of this section is to provide an overview of the recent progress in the

field of multicast protocol design and development in mobile ad-hoc networking

environments. We first classify the existing protocols according to a taxonomy

consisting of several distinct characteristics. Then, the main characteristics of

each protocol are discussed and highlighted with their respective strengths and

drawbacks. Finally, a qualitative comparison of the various protocols based on a

set of performance metrics is provided in mobile ad-hoc networks. It should be

noted here that this section does not intend to provide a full survey and quantitative
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performance comparison of all the various existing protocols. It rather presents a

first effort in the literature to identify, report, and summarize the work in progress

in the area of multicasting in ad hoc networks. However, a qualitative comparison

of the various protocols is provided.

In [6] a quantitative performance comparison study of a small subset of

the current multicast protocols for ad hoc networks is presented. In that study,

the authors simulated five protocols and presented results regarding some specific

performance parameters of the protocols, such as: packet delivery ratio and control

information as function of traffic load, mobility speed and multicast group size. Our

work evaluates all the current protocols from a different angle, trying to identify

the various design characteristics and strategies of the different protocols proposed

in the literature. As it will be seen in detail in the following sections, the scope

of our effort is more general and broader, in the sense that we try to reveal the

main philosophy of each protocol, identify commonalities and differences among the

various protocols, and categorize them accordingly. Among the primary objectives,

is the understanding and comparison of the main design characteristics of the

different protocols, as well as the evaluation of those protocols based on a set of

qualitative criteria and requirements, such as: routing philosophy, dependency on

other protocols, reliability, quality of service support provision etc.

1.3.1 Taxonomy

Several protocols have been developed for group-oriented communication in mobile

ad-hoc wireless networks. In general, these multicast routing protocols can be

classified as follows:

• Proactive Multicast Routing Protocols
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Figure 1.1 Classification of ad-hoc multicast routing protocols.

— Tree Based [7][8][9][10]

— Non-Tree Based [11][12]

• Reactive Multicast Routing Protocols

— Tree Based [13][14][15][16][17][18][19]

— Non-Tree Based [20][21][22][23]

• Hybrid Multicast Routing Protocols [24]

Figure 1.1 shows a schematic representation of these categories along with the

individual protocols that belong to each subgroup. 	 In the following subsections,
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we provide a discussion regarding the main characteristics, advantages and disad-

vantages of each category identified, which actually presents the basis used to classify

the various multicasting protocols.

1.3.1.1 Proactive Multicast vs. Reactive Multicast. Proactive Multicasting

Protocols maintain up-to-date multicasting information from each node to the other

nodes that are members of the multicasting groups in the network. In these protocols,

each node maintains one or more routing information tables. They maintain and

update the necessary multicasting information constantly and with no regard to when

and how frequently such multicasting routes are desired. Such proactive mechanisms

involve the constant and often generation and propagation of the appropriate multi-

casting related data to keep the associated tables and multicast topologies updated,

in order to keep track of the wireless link status changes in the networks. Those

protocols may consume substantial power and high bandwidth, especially in a highly

mobile environment where the topological changes are quite fast and often, and have

high storage capacity requirements. On the other hand, their implementation is

simple, and the source has always a route available to a multicast group to be used

immediately when a node has data to send to the multicast group.

Reactive Multicasting Protocols create multicast routes only on demand, that

is only when such routes are desired by the source node. Group membership and

multicast routes are established, maintained and updated on demand. Therefore, the

associated control overhead in those protocols heavily depends on the actual traffic

characteristics of the network. In general and under normal network operation, those

protocols reduce the channel overhead while at the same time they may introduce
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route acquisition delay since the source has to wait until the appropriate multicast

route is discovered.

1.3.1.2 Tree Based Multicast vs. Non-Tree Based Multicast. Tree-

based Multicasting Protocols use the tree mechanism as the vehicle to forward

multicast data to the appropriate destinations. Multicast trees provide an efficient

and simple way of creating a single path between source and destination pairs.

However, maintaining a routing tree for the purposes of multicasting packets when

the underlying topology changes frequently can incur substantial control traffic.

Additionally during periods of routing-table instability, mobile nodes may be forced

to stop forwarding packets while they wait for the multicast routing tree to be

reconstructed.

There are two kinds of approaches that implement the tree based multicasting

and have been adopted by the various multicast routing protocols. The first one "per-

source trees" distributes the traffic evenly in the network (assuming that sources and

receivers are evenly distributed) and do not require any aggregation of the traffic to

central points. However, in highly mobile networks such an approach may present

many problems that mainly stem from the fact that the packets may never reach

the destination since the network may find itself with obsolete routing tables which

may point towards the wrong direction. The remedy to such a problem is to increase

the routing update rate with mobility which in turn may result to increased control

traffic that may present difficulties in the scaling of the protocol.

The second tree-based approach is the "shared-tree" multicast technique

which partially overcomes the problem mentioned above. However, the shared tree

approach has the drawback that most of the traffic is generated on the backbone
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tree, rather than evenly distributed across the network and the paths are often not

optimal. This may actually lead to low throughput efficiency. Additionally as the

entire network moves fast and the membership changes dynamically, the "center

points" of the shared tree may be "off center" further aggravating the non optimality

of the paths.

Non-tree based multicasting protocols use other kind of approaches (i.e. mesh-

based topologies) to deliver data to the members of the multicast groups. A multicast

mesh is a subset of the network topology that provides at least one path (usually

more than one) from each source to each receiver in the multicast group. The

mesh provides richer connectivity among multicast members compared to tree-based

protocols. Having redundant paths among different nodes of the mesh group help

overcome the problems of node displacement and channel fading. Therefore, unlike

trees frequent reconfigurations may not be required and communication disruption

may rarely occur. On the other hand to achieve that target additional redundant

traffic may be generated in the network (i.e. some kind of flooding redundancy). The

advantages achieved by those approaches versus the drawback of the increase in the

traffic that may be introduced depend on the degree of connectivity and redundancy

among the nodes of the forwarding or mesh groups.

1.3.2 Comparison

In the following section, a set of parameters that we are going to use for the protocols'

qualitative comparison is presented. For each parameter, the set of possible values

is also provided. It is found that most of the papers surveyed do not explicitly

address each of these considerations. The following is an attempted comprehensive

list of parameters that provides for a fair and meaningful basis for comparison

between the individual multicast routing protocols. This comparison provides a
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first effort to characterize and identify the qualitative behavior of the various multi-

casting protocols, and is by no means exhaustive or quantitative. Therefore, no

parameters such as time and communications complexity of the various protocols,

that may require a detailed modeling, simulation and/or analysis of each technique,

are evaluated here.

1. Routing Philosophy: (Flat, Hierarchical)

2. Multicast Control Overhead: (High, Low)

3. Route Acquisition Delay: (High, Low)

4. Quality of Service Support: (Yes, No)

5. Reliability: (High, Medium, Low)

6. Reaction to High Mobility: (Good, Medium, Poor)

7. Scalability Property: (Good, Medium, Poor)

8. Need for Underlying Unicast Routing Protocol: (Yes*, Yes, No)

9. Flooding: (Yes, Limited, No)

10. Support of Multiple Routes: (Yes, No)

11. Supportability and Maturity: (University, IETF, Others)

Regarding the "Flooding" parameter and its associated values, within the

content of this paper, the value "Limited" refers to the flooding of control only infor-

mation within a forwarding group, while the value "Yes" refers to cases where data

flooding is required. Similarly, the values of the parameter "Need for Underlying

Unicast Routing Protocol" have the following meaning. "Yes*" refers to those

multicast protocols where their operation depend on specific underlying unicast

routing protocol(s). "Yes" refers to cases where the corresponding multicast routing



15

protocols require the use of any underlying unicast routing protocol and do not

depend on specific implementations or routing algorithms, while "No" means that

no separate underlying unicast routing protocol is required to support the multi-

casting operation.

Regarding the "Routing Philosophy" parameter two categories (values), "flat"

or "hierarchical" are identified. Within the context of this proposal and comparison,

the attribute "flat" is assigned to protocols where all nodes act (physically and

logically) as peers in the network and there is not any kind of traffic aggregation to

"central points" , while the value "hierarchical" is assigned to those protocols that

either explicitly or implicitly build some kind of hierarchy. The hierarchy could be

based on the use of multiple levels (i.e. multiple mobility levels, creation of backbone

etc.), or on the use of special nodes that may act as information concentrators such

as, core nodes, RPs, clusterheads etc. However, in the special case where the concept

of core nodes is used for limiting only control information, and those nodes are not

necessarily used as data forwarding core nodes then the corresponding protocol is

identified as "flat".

Finally, it should be noted that most of the values used in this qualitative

evaluation have relative meaning (i.e. this is a comparative evaluation), and no

absolute values are used. Table 1.1 presents the comparisons of multicast routing

protocols.

1.4 Impact of Mobility Modeling on Multicast Protocols' Performance

In order to evaluate in depth the performance of the various multicasting protocols,

a large number of parameters should be evaluated under different scenarios and

conditions. Metrics that can been used include [6], but are not limited to: packet
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Table 1.1 Comparisons of Multicast Routing Protocols in Mobile Ad-hoc Wireless
Networks

delivery ratio, number of data packets transmitted per data packet delivered, number

of control bytes transmitted per data bytes delivered, number of control and data

packets transmitted per data packet delivered.

All those parameters should be evaluated under different scenarios such as:

mobility patterns, number of senders, multicast group size, network traffic load,

network size and density, etc. Many of those scenarios or procedures have been

used in the past for the evaluation of many different protocols in wired and wireless

networks. However, the attribute of mobility, as described before adds an additional

dimension to the evaluation of multicasting in networks with mobile nodes. As we can

see from the discussion in the previous sections, many of the issues and challenges

associated with the mobile ad-hoc networks stem from that fact: user mobility.

Among the main objectives of the protocol's performance evaluation process is to

define an effective operating region and estimate the overhead of the protocol's
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components within this region. To achieve that, one of the most important factors

is to determine the sensitivity of each of the system's/protocol's components to the

transmission range and mobility of nodes.

In wireless networks, mobile nodes can move in many different ways. Mobility

modeling attempts to describe the mobility behavior of an individual node or a set

of nodes. Mobility models are commonly used to analyze newly designed systems or

protocols in both cellular and ad-hoc wireless networks. There is no doubt that the

the node mobility behavior influences most of the performance related parameters.

Ad-hoc networks are more sensitive to mobility than cellular wireless networks since

in the latter the base stations are stationary providing a core fixed backbone network,

and the state related to routing and multicasting information changes only when a

mobile user leaves the cell, irrespective of relative connectivity with other mobile

users. While in cellular networks mobility models are mainly focused on individual

movements since communications are primarily point to point rather than among

groups, in ad-hoc networks communications are often among teams which tend to

coordinate their movements. Hence, the need arises for developing efficient and

realistic group mobility models in addition to the individual mobility models for ad-

hoc networks, especially when evaluating multicast protocols that involve commu-

nication among teams. Those models may be used to optimize the design of the

multicast strategies and are used as realistic models for the motion patterns in order

to evaluate the various protocols' performance. Most of the earlier research on

mobility patterns was based on cellular networks [25]. Recently, mobility models

have been explored also in ad-hoc networks.

In general, the existing mobility models may be classified according to the

strategy of the dependent behavior among mobile nodes (i.e. individual mobility
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and group mobility), as well as according to the mechanisms used to get the main

elements that govern the next moving time interval (i.e. random mobility and pre-

information aided mobility). In ad-hoc wireless networks, the mobility models focus

on the motion behavior between mobility epochs, which are the smallest time periods

in which we can assume that a mobile node moves in a constant direction at a constant

speed.

In the random mobility model, the speed and direction of motion in a new time

interval have no relation to their past values in the previous epoch. In pre-information

aided mobility, the speed and direction of individual motion in a new time interval

is related to their past values (i.e. previous values, predefined trajectory). A group

mobility model for dependent behavior in ad-hoc networks must capture both motion

dependencies over time epochs and the relationship among members of the same

group. This team relationship makes it possible to partition the network into several

groups, each one with its own mobility behavior. Most of the mobility models that

have been developed and used in the literature deal with the motion behavior of the

individual nodes ([23] [26] [27] [28] [29] [30] [31]).

It is strongly believed that in order to evaluate the various multicast protocols

under realistic environments and obtain meaningful results we need to use group

mobility models in addition to the modeling of each individual node in order to

capture the motion dependencies over time and the relationship among the nodes.

Therefore, the development of realistic group mobility models to be used for the

evaluation of the various multicasting and routing protocols in ad-hoc networks is

more a need rather than a desire. However, the group mobility modeling development

has been an under appreciated area and very few efforts are reported in the literature

regarding the modeling of the group behavior. In the following, a brief overview
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of representative existing group mobility models is presented, by noting that the

purpose of this discussion is to emphasize on the need of group mobility modeling

and to register the first few efforts towards this direction.

RPGM: In the Reference Point Group Mobility(RPGM) model [32], each

group (set of nodes) has a logical center. The center's motion defines the entire

group's motion behavior(group trajectory), including location, speed, direction,

acceleration, etc. Each node is assigned a reference point which follows the group

movement.

Figure 1.2 describes the RPGM with a two-group model [32]. V: presents the

motion vectors of each group. The reference point of a node moves from RP(τ)

to RP(τ  + 1) with the group motion vector GM(Vgi). The new node position is

generated by adding a random motion vector RA/ to the new reference point RP(τ +

1). The length of the random motion vector RA/ is uniformly distributed within a

certain radius centered at the reference point and its direction is uniformly distributed

between 0 to 360 degree. The random vector GA') is independent from the node's

previous location. The RPGM defines a sequence of check points(path) to model

the motion behaviors of group. When the group center reaches a new check point, it

computes the new motion vector Vgi from current check point and next check point

locations.

This model can be used to model a battlefield situation where different

battalions are carrying out same operations in different areas; or to model the rescue

operation in a disaster recovery area where multiple rescue teams are randomly

spread out over a given area (yet each group may have a unique motion pattern); or

to model the interaction between exhibitors and attendees in a convention scenario
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Figure 1.2 The RPGM model.

where attendees may roam from room to room to attend demos and/or project

presentations.

ECRM: The Exponential Correlated Random Mobility(ECRM) [33] model

reproduces all possible movements, including individual and group, by adjusting the

parameters of a motion function. The new position of a network element (group

of nodes or individual nodes) b(t + I) is a function of the previous position b(t,

to which a random deviation 77' is added. The model is described by the following

equation:

where, b(t) is the position (r, 9) of a group or a node at time t, T is a time constant

that regulates the rate of change, a is the variance that regulates the variance of

change, s is the speed of the node, and r is a Gaussian random variable.
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Using this model, the movement of each group as a whole is controlled indepen-

dently of the movements of other groups and nodes within the group. At each time

step, a group moves a random distance in a randomly selected direction. The τ and

a variables, specified separately for the distance and direction, control the nature of

the movement. In general, smaller values of τ result in more random movement, and

larger values of a result in more variation from a given direction. Within a group,

all nodes have the same set of τ and a variables; nodes in different groups may have

different sets of variables.

This mobility model permits representation of typical node movements in a

tactical network, such as the maneuvers of a battalion consisting of several squads

of soldiers. The squads may be represented as groups that move as a whole; the

soldiers within a squad, while exhibiting some randomness of movement, are aligned

with the overall movement of their squad. ECRM requires a complete set of (τ , a)

per group to define the motion of entire network. The drawback is that it is not easy

to force a given motion pattern by selecting the parameters.

1.5 Concluding Remarks

In this chapter, the activities in the work-in-progress area of the development of

multicasting protocols are presented in mobile ad-hoc networks, by identifying the

main issues and challenges that multicast protocols are facing in these environments,

and by surveying several existing multicasting protocols. This chapter presents a

first effort in the literature to classify all the current multicast protocols, discusses

the functionality of the individual existing protocols, and provides a qualitative

comparison of their characteristics according to several distinct features and

performance parameters, such as: routing philosophy, dependency on other protocols,
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reliability, scalability property, mobility support, quality of service support provision

etc. The main objectives of this chapter are to identify the various design character-

istics and strategies of the different protocols proposed in the literature, reveal the

main philosophy of each protocol, identify commonalities and differences among the

various protocols, and categorize them accordingly.

Furthermore, since many of the additional issues and constraints associated

with the mobile ad-hoc networks are due to a large extend, to the attribute of user

mobility, an overview of research and development efforts is presented in the area

of mobility modeling in mobile ad-hoc networks, to be used as means to provide

a realistic environment to carry out the performance evaluation process of multi-

casting protocols. Since in ad-hoc networks communications are often among teams

which tend to coordinate their movements, and multicasting protocols deal by default

with the dissemination of information to groups of nodes, our discussion mainly

emphasizes on the need to design, develop and use advanced realistic mobility models

that provide for the modeling and emulation of the motion of individual nodes as

well as of motion patterns of the corresponding groups and their interrelations.



CHAPTER 2

MOBILITY-BASED CLUSTERING
IN MOBILE AD-HOC WIRELESS NETWORKS

2.1 Introduction

In this chapter, a novel mobility-based clustering strategy that is suitable for appli-

cation is presented in mobile ad-hoc networks [34][35][36][37]. In the proposed

structure, mobile nodes are organized into nonoverlapping clusters which have

adaptive variable-sizes according to their respective mobility. The mobility-based

clustering (MBC) approach [38][39] we are proposing uses combination of both

physical and logical partitions of the network (i.e. geographic proximity and

functional relation between nodes, such as mobility pattern etc.). In order to

characterize the degree of mobility, a node exhibits with respect to its peers for a

given period of time, we introduce the concept of relative mobility in the clustering

process. The performance evaluation of our method is accomplished via modeling

and simulation. The performance results demonstrate that our clustering algorithm

generates stable clusters and reduces significantly the need for clusterhead changes,

therefore making the proposed technique suitable for implementation in mobile

ad-hoc networks.

As mentioned before, management functions, routing and multicasting, and

scalability in ad-hoc mobile wireless networks present more complex problems

than in wired or last-hop networks, due to the random movement of nodes, the

bandwidth and power limitations, and the lack of fixed infrastructure. A major

challenge in mobile ad-hoc, multimedia networks is the ability to account for

location management and resource allocation so that routing/multicasting functions

and bandwidth reservations can be efficiently placed on them. It should be noted

that in cellular (single-hop) networks accountability is made easy by the fact that

23



24

all stations learn of each others requirements usually through a control station (i.e.

base station). Similarly, the use of base station simplifies the problem of routing

and multicasting in cellular networks. However, this solution can be extended to

mobile ad-hoc (multihop) networks by creating clusters of nodes in such a way that

resource allocation and management functions can be controlled and implemented

efficiently [40].

Mobile node clustering and group based hierarchical structures can be used

to effectively support scalable multicasting techniques and mobility management

functions in mobile ad-hoc networks. In general, the goals of clustering are the

efficient utilization of radio channel resources and the reduction of overhead [41].

For example, at the MAC layer, by using different spreading codes across clusters

the interference is reduced and the spatial reuse is enhanced. Moreover, while in

cellular networks communications are primarily point to point rather than among

groups, in ad-hoc networks communications are often among teams which tend to

coordinate their movements. This collaboration among members of the same team

makes it possible to partition the network into several groups, each with its own

mobility behavior. For instance, each multicast group corresponds to a particular

user group with common characteristics (e.g., tank battalion in the battlefield, search

team in a search and rescue operation, professionals on the move belonging to the

same company, students within the same class, etc.). A different mobility pattern

can be defined for different groups or formations. Those observations have motivated

our research in using mobility based clustering approaches and group based hierar-

chical structures in order to facilitate the implementation of efficient and scalable

multicasting techniques and mobility management functions in ad-hoc networks.
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Specifically, in this chapter a mobility-based clustering (MBC) approach that

uses combination of both physical and logical partitions of the network , as well as

the concept of relative mobility to characterize the degree of mobility of a node with

respect to its peers are proposing. The performance results for the algorithm it is

proposed with the corresponding results of other existing clustering algorithms are

compared. The performance evaluation of the various clustering algorithms is done

in terms of the achievable stability of the created clustered topology. The obtained

numerical results verify the considerable improvement on the cluster stability that

can be achieved by our algorithm, therefore making MBC algorithm an ideal vehicle

for the implementation of efficient multicasting and management functions.

The remaining of this chapter is organized as follows. Section 2.2 provides some

discussion about the objectives of clustering and the existing clustering techniques for

mobile ad-hoc networks. In section 2.3, the proposed clustering approach is presented

by first providing some definitions and then describing the operation of the method.

Section 2.4 contains the performance evaluation of the proposed method, and section

2.5 concludes this chapter.

2.2 Clustering and Background

Clustering is the method which attempts to organize unlabeled feature vectors into

groups(clusters) such that points within a cluster are more similar to each other

than to vectors belonging to different groups(clusters). In conventional cellular

networks(single-hop), where there are fixed base stations connected by a wired

backbone, communications between two mobile nodes that are only one hop away

from a base station, is achieved through fixed base stations and the wired backbone.

In this case, clustering is used to select and allocate channel groups to all the base
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stations within a system, to achieve efficient frequency reuse. In multihop mobile

wireless networks, clustering is the method which aggregates nodes into groups

(clusters) to provide a convenient framework for the development of important

features(i.e routing, bandwidth allocation, mobility and topology management). For

every subset of nodes (cluster) one node is selected as the clusterhead of the cluster.

The clusterhead acts as a local coordinator of transmissions within the cluster. It

differs from the base station concept in current cellular systems, in that it does not

have special hardware and in fact is dynamically selected among the set of stations.

However, it performs additional work with respect to ordinary stations, and therefore

it may become the bottleneck of the cluster. An efficient clustering scheme tends

to preserve its structure when a few nodes are moving and the topology is slowly

changing. Otherwise, high processing and communications overheads will be paid to

reconstruct the clusters.

In general, clustering provides a convenient framework for the development

and deployment of important features and management procedures, such as

channel access, code separation, power control, bandwidth allocation and mobility

management. The objective of the clustering procedure is to find a feasible inter-

connected set of clusters covering the entire node population. A good clustering

algorithm should be stable to radio motion, that is should not change cluster

configuration drastically and often, when a few nodes are moving and the motion

is coordinated, as is the case with mobile ad hoc networks supporting military

communications. Otherwise, the clusterheads will lose control of their clusters and

thus their role as local coordinators and managers [41].

In general, there are two families of distributed clustering algorithms. One is

the lowest-ID algorithm [42], where the lowest-ID node in a neighborhood is elected
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as the clusterhead. The other one is the highest-connectivity (degree) algorithm [43].

In this case the highest connectivity (degree) node in a neighborhood becomes the

clusterhead. One of the most important criterion in clustering is stability. The

frequent changes of cluster head may adversely affect the performance of other

protocols such as scheduling and resource allocation which rely on it. In the lowest-

ID algorithm if there is the lowest-ID node with highest mobility, the cluster has

to re-elect its clusterhead every time the lowest-ID node moves into other clusters.

Similarly in the highest-connectivity algorithm if the highest-connectivity node has

high mobility, the cluster has to re-elect its clusterhead when the highest-connectivity

node moves into other clusters.

Moreover, in [44] an adaptive hybrid scheme in which node mobility based

parameters are introduced to bound the probability of intra-cluster path failure was

proposed. In this work, the authors assumed the existence of some underlying

proactive intra-cluster routing algorithm and they utilize path availability infor-

mation maintained by this routing protocol to determine cluster feasibility. Mobility

based criteria were also utilized in the scheme proposed in [45]. However, that scheme

builds clusters that consist only of a set of nodes that are adjacent to a clusterhead.

In this chapter, the adaptive and dynamic creation of multi-hop clusters

depending on both individual node and group mobility characteristics is adopted.

The clustering approach proposed in this chapter, namely the Mobility Based

Clustering (MBC) is based on mobility concepts (individual mobility, group mobility)

[32] and the availability of position information via a reliable position locating system

(i.e. GPS). It uses combination of both physical and logical partitions of the network

(i.e. geographic proximity and functional relation between nodes, such as mobility

pattern etc.), as well as the concept of relative mobility to characterize the degree
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of mobility of a node with respect to its peers, without the need of an underlying

unicast routing protocol. The mobility-based hierarchical clustering algorithm MBC

may result in variable-size clusters depending on the mobility characteristics of the

nodes. A group may consist of clusters that present similar mobility character-

istics. Several groups can be hierarchically merged into one group depending on the

mobility of each group.

The introduction of the concept of relative mobility in order to characterize

the degree of mobility a node exhibits with respect to its peers for a given period of

time, is mainly motivated by the observation that mobile ad hoc networks support

multipoint communications among nodes that demonstrate group-oriented mobility

patterns [32] [33] and tend to coordinate their movements. Since the objective is

the creation of adaptive clusters for the purpose of geomulticasting and multicasting

support, our approach uses directly individual and group mobility information, and

does not depend on the use of any underlying routing protocol. This is different from

the algorithm proposed in [44] [46] that adaptive clustering schemes are proposed

using a probabilistic model that characterizes the future availability of network links

maintained by some underlying unicast proactive routing algorithm, and therefore

implicitly they adapt to mobility.

In general, a node with high relative mobility is more prone to unstable behavior

than a node with less relative mobility and therefore should not be elected as

clusterhead. A node may compute its relative mobility by exchanging its mobility

profile with current and potential peer nodes. As a node moves, its relative mobility

may also change, and therefore the relative mobility of a node must be periodically

reevaluated to allow for adaptation to future states of the network.
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2.3 MBC: Mobility-Based Clustering

The clustered topology in a mobile ad-hoc network can be modeled as follows.

Consider a network topology which is modeled by a graph G = (V, E), where V is

the set of nodes, and E is the set of bi-directional links which operate independently

in each direction. The distance d(x, y) of two nodes x and y of G is defined to be

the minimal number of hops between nodes x and y. A cluster CZ C V is a set of

nodes, where for any two nodes x, y E CZ , d(x, y) < L. Namely, any two nodes in

a cluster are at most L- hops away, where L is a parameter that depends on the

network stability. Let us define by W the set of all feasible clusters C i . A cluster

coverage K1 in our clustered topology is defined as follows:

Figure 2.1 presents a sample network topology while Figure 2.2 and Figure 2.3

describe the basic concept and structure of the mobility-based clustering, respec-

tively. In the following, let us denote by v(m, t), the velocity vector of node 771 and

v(n, t), the velocity vector of node n at time t. Please note that velocity vectors

v(m, t) and v(n, t) have two parameters, namely speed and direction. The relative

velocity vector v(m, n, t) between nodes in and n at time t is defined as:

Then, the relative mobility, Mm,n,T, between any pair (m, n) of nodes during time

period T is defined as their absolute relative speed averaged over time T . That is:
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where N is the number of discrete times t2 that velocity information is calculated and

disseminated to other nodes within time interval T. We define two kinds of cluster

mobilities as follows. CM1i  presents the motion behavior(speed, direction) of a

cluster CZ as a whole. To obtain CMi as defined here, we add the velocities(vectors)

of all nodes in the cluster Ci , and then average over the total number of nodes in

the cluster. Thus:

where M2 denotes the number of all nodes in the cluster, C 2 . CM2i  represents the

motion behavior(uncertainity) of nodes within a cluster, C 2 . To obtain CM2i  as

defined here, we add the relative mobilities for all node pairs(m, n) in the cluster C2 ,

and then take average over the total number of all node pairs in the cluster. Thus:

where Ni denotes the number of all node pairs (m, n) in the cluster C2. These two

cluster mobilities are used to group clusters hierarchically.

In the following section, a description of the proposed mobility-based algorithm

is provided in order to construct and maintain the various clusters.

Step 1 : Mobility Information Dissemination

Each node n periodically disseminates its velocity information(v(n, t 2 ), i = 1, 2, ...)

which have speed and direction to its neighboring nodes.

Step 2 : Calculation of Mobility Metrics

Upon reception of node's n velocity information, each node m calculates its relative



Figure 2.1 The system topology.

velocity between itself and node n respectively. Specifically for every neighbor n,

the node m under consideration calculates parameter v (m, n, t) according to relation

(2.2). Then periodically(with period T), each node m calculates the relative mobility

Mm,n,T between itself and node n.

Step 3 : Initial(Tentative) Cluster Construction

Lets denote by Sm the set that includes node m and all the nodes from which node m

receives mobility information. Among the nodes of Sm , the node-i with the lowest ID

that satisfies the following condition: Mm,i,T < Thmob, i E Sm  is selected as tentative

clusterhead (TCH). That is:

Then, node m requests clustering(i.e to become part of this clusterhead's cluster) to

node TCH. It should be noted here that the mobility threshold Thmob is a design
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Figure 2.2 The basic concept of mobility-based clustering.

parameter of the algorithm and can be used to control the stability of the generated

clusters in different networks. Moreover, different mobility threshold parameters

that may change dynamically and adaptively during the operation of the network

can be used, in order to provide a realistic representation of a mobile ad-hoc network

where random mobility and group mobility patterns can occur simultaneously.

Step 4 : Cluster Merging

If a tentative clusterhead(TCH1 ) is to be included into another cluster(TCH2 )

according to step 3, then the child cluster (the tentative cluster(TCH 1 )) joins

into the parent cluster(uppercluster, TCH2) with its current cluster members.

There is an upperbound(i.e., L hops) rule for culster merging. After merging the

clusterheads(CHs), the higest-parent cluster's head is selected as the clusterhead(CH)

of the new generated cluster. Each node in the child cluster(TCH 1 ) holds TCH1

information(mobile id). TCH1 holds its parent clusterhead information(mobile id),

and so on. The new generated CH holds routing information of all nodes within the



(b) Mobility-based clusters with L < 3

(c) Hierarchical structure

Figure 2.3 Hierarchical supporting structure with MBC.
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new cluster.

Step 5 : Cluster Maintenance/Reconstruction

When a node m in cluster C Z moves into a cluster Cj , if a node n in the cluster

Cj satisfies the condition: Mm ,n ,T < Thmob, and node n is the clusterhead of the

cluster Cj then node m requests clustering to node n(no clusterhead change). If

these conditions are not satisfied, node m repeats step 5 during its motion.

2.4 Performance Evaluation

In this section, the framework that is used to evaluate the algorithms' performance,

as well as some numerical results are presented. The performance of the proposed

algorithm with the corresponding performance of the lowest-ID algorithm [42] and

the highest-connectivity (degree) algorithm [43] is compared. Since the frequent

changes of cluster head may adversely affect the performance of the network as well

as the operation of all the other related protocols and management functions, the

emphasis of the algorithm performance evaluation is placed on the stability of the

created clustered topology.

2.4.1 Framework

The performance evaluation of the protocol is accomplished via modeling and

simulation using the Optimized Network Engineering Tool (OPNET). A mobile ad-

hoc network consisting of 200 nodes that are placed randomly within a rectangular

region of 10 km x 10 km is modeled in the simulation. Each node is modeled as an

infinite-buffer, store-and-forward queuing station, and is assumed to be aware of its

position with the aid of a reliable position location system(i.e., GPS). Moreover the
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mobile nodes are assumed to have constant radio range of Z=1000m. Therefore, we

may interpret this behavior as follows: any packet can be received error free within

the transmission range of a node (i.e. radius of Z from the transmitter), but is lost

beyond Z. Since packet delivery is guaranteed to any destination in the range of the

source, we are able to further reduce the complexity of our model by eliminating

retransmission at the data link layer.

Throughout the study, it is assumed that a link fails, or reappears, as a

node goes out or in transmission range of another node, due to the mobility of the

nodes. Note that in our model, it is possible for a node to receive multiple packets

from different neighbors simultaneously. All those packets are placed in the nodes'

receiving queue to be served by the node (in an order determined by OPNET).

Mobile nodes are assumed to be moving around throughout the network. Two

different mobility scenarios are considered in this study. In the first one (in the

following we refer to as mobility 1) the speed and the direction of each move are

uniformly distributed, with speed range [0, 72 km/h] and direction range [0, 27],

respectively.

In the second mobility scenario (in the following we refer to it as mobility

2), a group-based mobility pattern is modeled. Specifically, nodes are grouped into

several groups, where we assume that nodes in the same group have similar mobility

characteristics (e.g. similar but not the same speed and moving direction). At the

initial movement, the speed and the direction of each mobile in the same group are

selected with the same initial speed( v int ) and direction(θint) respectively within the

speed range [0, 72 km/h] and direction range [0, 27r]. After the initial movement, at

every movement the speed and direction of each mobile are selected independently

within the range [vref - 10 km/hr, v ref + 10 km/hr] and [θref - 7r/6, θref + 7/6], where
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f is the previous mobile speed and θ re/ is the previous mobile direction respectively.

As a result mobile nodes belonging to the same group present some similarity in the

direction towards which they are moving. Initially, each group consists of 10 nodes,

however, as the system evolves the number of nodes per group changes dynamically.

If a mobile arrives at the boundary of the given network coverage area, the node

reenters into network.

Finally, throughout this simulation, the mobility threshold Thmob is selected as

follows. Let mmob be the average value of all mobility information that the node m

received and 6,2„b its corresponding standard deviation. Then Thmob  is selected as:

Thmob = mmob + k∂mob, where k is constant and can be changed according to the

network under consideration and the desired cluster stability. In this study parameter

k was chosen as k = 1.5 based on experimentation.

2.4.2 Numerical Results and Discussion

The metrics used in this study to measure and evaluate the stability of the created

clustered topology are the following: 1) Number of cluster changes, that represents a

measure of the rate of clusterhead changes (or construction of new clusters), and 2)

Number of cluster change nodes, that represents a count of how many nodes switch

from one cluster to another (or construct new clusters). In addition in the following

graphs, we present the evolution of the number of clusters and the corresponding

average number of nodes in a cluster, as the system evolves.

Specifically, Figure 2.4 presents the numerical results for mobility model

1 (mobility 1) under three different clustering algorithms: lowest-ID algorithm,

highest-connectivity (degree) algorithm, and MBC algorithm. Similarly, Figure 2.5

shows the corresponding results under the group mobility scenario (i.e. mobility

2). As can be seen by the first set of figures (Figure 2.4), lowest-ID and highest-
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connectivity algorithms demonstrate similar behavior, with lowest-ID performing

slightly better than the highest-connectivity algorithm in this experiment. However,

MBC algorithm outperforms both of them by improving the cluster stability metrics

by more than 50%. The improvement is considerably higher in the second set

of experiment (Figure 2.5) where MBC algorithm reduces the clusterhead change

ratio by approximately 10 times compared to the lowest-ID algorithm and 20 times

compared to the highest-connectivity algorithm. This is achieved because MBC

algorithm takes advantage of the similarity that several nodes demonstrate in this

experiment due to the group mobility pattern assumed. However, as mentioned

before such mobility patterns represent the node mobility more accurately than the

random one in realistic mobile ad-hoc environments where communications are often

among teams which tend to coordinate their movements.

2.5 Concluding Remarks

In this chapter, a mobility-based clustering approach that can be applied in wireless

mobile ad-hoc networks is proposed in order to facilitate the implementation of

efficient mobility management solutions and multicasting strategies. Our proposed

cluster architecture consists of variable-size clusters that may change adaptively

according to nodes' mobility. The proposed MBC algorithm uses combination of

both physical and logical partitions of the network (i.e. geographic proximity and

functional relation between nodes, such as mobility pattern etc.), as well as the

concept of relative mobility that characterizes the degree of mobility of a node with

respect to its peers. The performance evaluation of our algorithm demonstrated that

MBC outperforms considerably the lowest-ID and highest connectivity clustering

algorithms and improves the stability of the clustered topology, by reducing signif-
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(c) MBC

Figure 2.4 Stability for mobility scenario 1.



(c) MBC

Figure 2.5 Stability for mobility scenario 2.
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icantly the number of clusterhead changes under different mobility scenarios. The

proposed cluster architecture provides for a very robust infrastructure, which is not

easily disrupted by mobility and can support stable paths (reduction of routing

overhead) and cost effective mobility management solutions.



CHAPTER 3

AN ENTROPY-BASED MODEL FOR SUPPORTING AND
EVALUATING STABILITY IN MOBILE AD-HOC WIRELESS

NETWORKS

3.1 Introduction

In this chapter, an entropy-based modeling framework for supporting route stability

is proposed in mobile ad-hoc wireless networks. The basic motivations of the

proposed modeling approach stem from the commonality observed in the location

uncertainty in mobile ad-hoc wireless networks and the concept of entropy.

Entropy [47][48] presents the uncertainty and a measure of the disorder in a

system. There are some common characteristics among self-organization, entropy,

and the location uncertainty in mobile ad-hoc wireless networks. These common

characteristics have motivated our work in developing an analytical modeling

framework using entropy concepts and utilizing mobility information as the corre-

sponding variable features, in order to support route stability in self-organizing

mobile ad-hoc wireless networks.

The corresponding methodology, results and observations can be used by the

routing and multicasting protocols to select the most stable route between a source

and a destination, in an environment where multiple paths are available, as well as

to create a convenient performance measure to be used for the evaluation of the

stability and connectivity in mobile ad-hoc networks.

3.2 The Modeling

Every self-organizing system capable of change has certain variable features that can

take on different values. For example, a particle can have different positions, move

with different speeds, and have different directions. All these variable features can
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Figure 3.1 The modeling: basic concepts.

determine the characteristics of the system. Figure 3.1 presents the basic concepts

of the modeling.

In the following section, consider a mobile ad-hoc wireless network and let's

denote by Mm the number of neighboring nodes of a mobile node m, and by S in

the corresponding set. is is also associated with each node m a set of variable

features denoted by am,n where node n is a neighbor of node m. In this chapter, two

nodes are considered neighbors if they can reach each other in one hop (e.g. direct

communication). These variable features am ,n represent a measure of the relative

speed among two nodes and are defined rigorously later in this section. Any change

of the system can be described as a change of variable values am,n in the course

of time t such as am,n(t)--›-am,n(t + Δt). In the following, it is assumed that nodes

exchange periodically mobility information [38] as well as other local information

(e.g. node ID) with their neighbors [40].

Also denote by v(m, t), the velocity vector of node m and by v(n, t), the velocity

vector of node n at time t. Please note that velocity vectors v(m, t) and v (n, t) have
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two parameters, namely speed and direction. The relative velocity v(m, n, t) between

nodes m and n at time t is defined as:

Then, the relative mobility between any pair (m, n) of nodes during some time

interval t is defined as their absolute relative speed averaged over time At . As

mentioned before the variable features considered here is the relative mobility

between two nodes.Therefore we have:

where N is the number of discrete times t i that velocity information can be calculated

and disseminated to other neighboring nodes within time interval A t . Based on this,

the entropy AO, A t ) can be defined at mobile m during time interval t . The

entropy can be defined either within the whole neighboring range of node m (e.g.

within setSm), or for any subset of neighboring nodes of interest. In general, the

entropy Am  (t, Δ t ) at mobile m is calculated as follows:

In this relation by Fm , the set (or any subset) of the neighboring nodes of node

in is denoted, and by C(Fm ) the cardinality (degree) of set Fm . If it is wanted to

calculate the local network stability (with reference to node m), then Fm refers to the

set that includes all the neighboring nodes of mobile node m (e.g. Fri, = Sin ), while

if it is interested in the stability of a part of a specific route then Fm represents the

two neighboring nodes of mobile node m over that route. As can be observed from
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the previous relation, the entropy H m(t, Δt)is normalized so that 0 <=Hm(t, Δt)

<=1. It should be noted that the entropy, as defined here, is small when the change

of the variable values in the given region is severe and large when the change of the

values is small [48].

In the following section, it is described how to apply this modeling framework

in order to measure the route stability. The local route (or the part of the route that

represents the links of the path associated with an intermediate node), is stable if

Hm(t, Δ t ) is large while the local route is unstable if Hm(t, Δt)is small. However, in

general in a mobile ad-hoc network the route between a source and destination may

traverse multiple intermediate nodes (hops). Figure 3.1 presents the basic concepts

of the modeling. Let's present the route stability (RS) between two nodes k and

during some interval A t as -y = RSk,l(t, Δt). Two different measures to estimate

and quantify end to end route stability are defined and evaluated, denoted by 7 1 =

RSkl(t , Δ t ) and 72 RSk,l^2(t, Δt) and defined as follows respectively:

and

where IV, denotes the number of intermediate mobile nodes over a route between the

two end nodes (k, l). Parameter -y 1 (72 ) can be used to measure the route availability

and stability. That is, if 7 1 (72 ) is large, there is available route and the route is

stable during some time interval A t , while if -y 1 (72 ) is small, even though there may

be an available route, the route may be unstable.



Figure 3.2 The modeling for clustered networks.

3.3 Extension of the Modeling for Supporting Multicast Services

As explained before in this dissertation, in mobile ad-hoc networks communications

are often among teams which tend to coordinate their movements. This collabo-

ration among members of the same team makes it possible to partition the network

into several groups, each with its own mobility behavior. Therefore, in this section

the model and concepts presented in the previous section are extended and apply

them into a clustered self-organizing mobile ad-hoc wireless network [38] in order

to support multicast services. Specifically, in order to analyze the network stability

and behavior in these cases, an approach is proposed and developed where cluster

mobility characteristics are utilized as the corresponding feature variables in the

proposed entropy based model. Figures 3.2 (a) and (b) illustrate the local network

stability and the route availability respectively, with relation to the cluster mobility

characteristics.

Denote by CM i the mobility cluster parameter that presents the motion

behavior (speed, direction) of a cluster C i as a whole. To obtain CM i , the velocities



46

(vectors) of all nodes in the cluster Ci are added, and then are averaged over the

total number of nodes in the cluster. Thus:

where Mi denotes the number of all nodes in the cluster, Ci . In this case, the entropy

can be defined either within the whole neighboring range of cluster C i (e.g., within

the set Si ), or for any subset of neighboring clusters of interest.

In the following, the entropy Hci at cluster Ci is defined as:

In this relation by Gi , the set (or any subset) of the neighboring clusters to cluster

i is denoted, and by C(G i ) its cardinality (degree). If it is wanted to calculate the

local network stability (with reference to cluster C i ), then by G i let's denote the set

that includes all the neighboring clusters of cluster Ci (e.g. Gi = Si ), while if it is

interested in the stability of a part of a specific multicast route then Gi represents

the two neighboring clusters of cluster C i over that route. As can be observed from

the previous relation, the entropy H (t, A t ) is normalized so that 0 <= Hci (t, Δt)

<=1.It should be noted that the entropy, as defined here, is small when the change

of the variable values in the given region is severe and large when the change of the

values is small [48].

In the following, it is described how to apply this modeling framework in

order to measure the route stability in the clustered self-organizing mobile ad-hoc
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wireless networks to support multicast services. In Chapter 4, MHMR uses mobility-

based clustering (MBC) as underlying structure and clusterhead(CH)-based mesh

structure to support multicast services. First, these two structures(i.e., MBC and

mesh) and the cluster entropy Hci(t, Δ t ) are used and route stability γc 1 (γc2) are

calculated over these two structures(i.e, MBC and mesh) by the following relations

(3.7), (3.8) and (3.9). The local route (or the part of the route that represents the

links of the path associated with an intermediate CH node), is stable if 1-1,, (t, t)

is large while the local route is unstable if A 2 (t, t ) is small. However, in general

in the clustered(i.e., MBC) mobile ad-hoc network the route between a source and

destination may traverse multiple intermediate CH nodes. The route stability (RS)

between two nodes k and 1 is presented during some interval A t as 7, = RSk,Ic(t, t ).

Two different measures are defined and evaluated to estimate the route stability,

where Nτc is the number of clusters over the route between two nodes k and 1.

Parameter γc1 (γc2)can be used to measure the path availability and stability. That

is, if (7D is large, there is available route and the route is stable during some time

interval t , while if yy (7D is small, even though there may be an available route,

the route may be unstable.
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3.4 Evaluation and Discussion

In order to evaluate the proposed modeling framework and corresponding parameters,

a mobile ad-hoc network consists of 50 nodes that are placed randomly within a

rectangular region of 1km x 1km is modeled. Each node is assumed to have constant

radio range of Z=200 meters. That is, any pair of nodes within a distance of Z

meters are considered to be neighbors. Throughout the evaluation, it is assumed

that a link fails, or reappears, as a node goes out or in transmission range of another

node, due to the mobility of the nodes. Mobile nodes are assumed to be moving

around throughout the network. The speed and the direction of each move are

uniformly distributed, with speed range [0, vmax km/hr] and direction range [0, 27],

respectively. If a mobile arrives at the boundary of the given network coverage area,

the node reenters into network.

Two sets of experiments are performed. In the first one (refer to as Experiment

1), our objective is to evaluate the potential use of the developed framework and

parameters as the decision factor in selecting the most stable routes, between a

source and a destination whenever multiple routes are available, as well as to gain

some insight about estimating the potential stability of a selected route. Therefore,

one communication pair of nodes and at various points are selected during the system

operation we select three different routes between the source and destination (in the

following Tables they are denoted by Routel, Route2 and Route3, respectively). At

the same time of route selection, the expected corresponding route stability 7 1 and 72

is calculated based on relations (3.4) and (3.5) in the general mobile ad-hoc networks

and route stability and based on relations (3.8) and (3.9) in the clustered mobile

ad-hoc networks respectively, for each one of these routes. Moreover, for each one

of the routes the lifetime of the route is measured, that is the time from route
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establishment until the specific route breaks. In order to assess the capability of the

proposed method, the route stability is evaluated, and its effectiveness under different

environments is studied, in Tables 3.1, 3.2 and in Tables 3.5 and 3.6, respectively.

The corresponding results for two different mobility scenarios (refer to as mobilityl

with vmax=20 km/hr and mobility2 with v max =40 km/hr) are presented. The results

reported here correspond to three different points (identified in the Tables as point

1, point 2 and point 3 respectively) during the operation of the system where we

selected new routes between the source and destination. As it is observed from

these Tables, the lifetime of the route between a pair of end nodes is large when the

route stability estimated by our proposed model is high. As expected, in Table 3.1

and Table 3.5(mobility1) the route stability and route lifetime present better values

than the corresponding ones in Table 3.2 and Table 3.6(mobility2) respectively, since

mobile nodes are moving with lower speed and therefore, overall the system presents

a more stable topology.

In the second experiment (referred to as Experiment 2), the overall average

route availability and stability between different pair of nodes (source and desti-

nation) are evaluated, without considering any specific path or route for each pair.

Specifically, in this experiment three different pair of nodes are considered and

a review of the available connectivity between these pairs of nodes is presented.

Therefore, a time interval of A t = 5 seconds is considered as the time interval where

mobiles exchange information, and calculate the route stability within that time

interval, while at the same time we calculate new routes between the different pair

of nodes, if required. Table 3.3, Table 3.4 and Table 3.7, Table 3.8 present the corre-

sponding numerical results (average values for the whole duration of the experiment)

in the general mobile ad-hoc wireless networks and the clustered mobile ad-hoc
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wireless networks for supporting multicast services respectively. In these Tables, it is

represented by Routel, Route2 and Route3 the three corresponding communicating

pairs of nodes. The route availability denotes the percentage of time that a route was

available between the source mobile node and the corresponding destination mobile

node during the experiment. As can be seen from Table 3.3, Table 3.4 and Table 3.7,

Table 3.8, the routes with higher estimated route stability values (as calculated by

relations equation (3.4), (3.5) and (3.8), (3.9) respectively) have also higher measured

route availability. As expected, in Table 3.3 and Table 3.7(mobility1), the route

stability and availability present better values than the corresponding ones in Table

3.4 and Table 3.8 (mobility2), since mobile nodes are moving with lower speed and

therefore overall the system presents a more stable topology. As can be concluded

from all the results presented in this section, the proposed model and corresponding

parameters provide a very good measure to estimate, quantify, and evaluate the end

to end stability in dynamic mobile ad-hoc networks.

3.5 Concluding Remarks

In this chapter, an entropy-based modeling framework is proposed for supporting

and evaluating route stability in mobile ad-hoc wireless networks. The basic

motivations of the proposed modeling approach stem from the common concepts

of location uncertainty in mobile ad-hoc wireless networks and entropy. The corre-

sponding results have demonstrated that the proposed modeling can be used as the

ideal vehicle by various routing protocols for evaluation, selection and assignment

of priorities to various routes according to route stability, in order to enhance

the offered connectivity and QoS [49]. Furthermore, the proposed concepts and

approaches have been extended and applied into a clustered self-organizing mobile
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ad-hoc wireless network for supporting multicast services.

Table 3.1 Experiment 1 in general mobile ad-hoc networks: 	 Route
Stability(vmax=20km/hr)

Table 3.2 Experiment 1 in general mobile ad-hoc networks: 	 Route
Stability(vmax =40km/hr)

Table 3.3 Experiment 2 in general mobile ad-hoc networks: 	 Route
Stability(vmax=20km/hr)
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Table 3.4 Experiment 2 in general mobile ad-hoc networks: 	 Route
Stability(vmax=40km/hr)

Table 3.5 Experiment 1 in clustered mobile ad-hoc networks: 	 Route
Stability(vmax =20km/hr)

Table 3.6 Experiment 1 in clustered mobile ad-hoc networks: 	 Route
Stability(vmax=40km/hr)
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Table 3.7 Experiment 2 in clustered mobile ad-hoc networks: 	 Route
Stability(vmax=20km/hr)

Table 3.8 Experiment 2 in clustered mobile ad-hoc networks: 	 Route
Stability(vmax=40km/hr)



CHAPTER 4

MOBILITY-BASED HYBRID MULTICAST ROUTING
PROTOCOL IN MOBILE AD-HOC WIRELESS NETWORKS

4.1 Introduction

Multicasting protocols for infrastructure-based wireless networks have mainly focused

on just the last-hop extension environments of wire-line networks. The multicast

routing protocols [50] [51] [52] [53] [54] designed for infrastructure based networks can

not be used in mobile ad-hoc wireless networks mainly for the following reasons: a)

the routes in ad-hoc networks change frequently, b) the fixed infrastructure does not

exist for route (re) computation, and c) there are power, coverage and bandwidth

restrictions.

In this chapter, a Mobility-based Hybrid Multicast Routing (MHMR) protocol

suitable for mobile ad-hoc networks is presented. In our proposed structure, we use

mobility-based clustering and group mobility-based hierarchical structures which use

mobility information(individual mobility, group mobility) and position information.

This is motivated by the observation that in mobile ad-hoc wireless network nodes

participating in multicasting are very inclined to group-oriented communication and

operation.

As part of the overall proposed multicast protocol, the MBC clustering method

proposed in Chapter 2 which is based on the combination of the concepts of mobility

and distributed clustering algorithms (i.e. such as the lowest-ID algorithm and the

highest connectivity degree algorithm) is used. For every group of nodes (cluster),

one node is selected as the clusterhead of the cluster. Among the groups of nodes

(clusters) that are created based on the proposed clustering method, the protocol

supports the creation of mesh structures, that is, it creates a subgraph of the group

node graph (i.e. clusterheads), in order to provide limited redundancy (versus no

54
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redundancy or broadcasting techniques). The maximum number of possible paths

between nodes is based on mobility patterns. Additionally the most stable paths

(with minimum chance of disruption) as opposed to shortest or otherwise optimal

paths are used for multicasting.

The remaining of the chapter is organized as follows. Section 4.2 describes the

overall MHMR infrastructure. Specifically, subsection 4.2.1 introduces the concept

of mesh structure, subsection 4.2.2 describes the multicast group construction and

maintenance procedures in order to create the limited mesh structure, and subsection

4.2.3 presents the data forwarding strategy. Section 4.3 contains the performance

evaluation of the proposed strategy, while section 4.4 concludes the chapter.

4.2 The MHMR Infrastructure

The Mobility-based Hybrid Multicast Routing (MHMR) protocol mainly consists of

two basic architectures. The first architecture includes the mobility-based hierar-

chical clustering algorithm for supporting multicast [6]. This is used to form hierar-

chical clusters according to individual and group mobility, thus forming a hierarchical

control structure. This structure was described in detail chapter 2. In the second

structure a mesh is created as a subgraph of clusterheads' (CHs) graph to function as

the routing infrastructure. The proposed algorithm first creates and maintains the

underlying structure(i.e, mobility-based hierarchical clustering) and then selects the

data forwarding structure over the created mesh topology. However, as mentioned

above the mesh is based on the clusterheads, and not on all the members of the

networks.
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4.2.1 The Mesh Structure

Tree-based multicast routing schemes [6] have been used extensively in computer

networks, internets, and wireless multi-hop networks because of their simplicity.

However, when the underlying topology changes, the routers using tree-based

methods may be forced to stop their operation and additional control traffic may

occur during the tree-reconstruction phase. The inherent redundancy in mesh

topologies can help overcome this problem. However, constructing mesh structure

among all multicast members in dynamic mobile wireless networks is not feasible,

especially in large-scale networks since it may generate high overhead and control

traffic.

In MHMR, a limited mesh structure is proposed over the clusterheads only,

that are created by the underlying mobility-based clustering described in the previous

section. Figure 4.1 shows our clusterhead(CH)-based mesh structure. It should be

noted that the mesh structure is a subgraph of the CHs only, and not a subgraph of

the overall network. Thus, only CHs may become members of a mesh structure(i.e.,

limited mesh structure). Since the underlying structure for MHMR is very robust,

the recomputation of multicast routes may not be necessary for every link breakage.

Let Gm = (Vm , Em ) represent an undirected mesh graph, where Vm is the set of CHs,

and Em is the set of links between them. Let s E Vm, denote the clusterhead of a

multicast source in the mesh and r E Vm represent the corresponding receiver in the

mesh. For a given set of CHs (s(source), r(receiver)), Ms,τ = (Vs,r, Ls,r) represents

the mesh that is rooted at the source s to receiver r, where Vs ,τ represents the set of

CHs in Ms,r and L s ,r represents the set of links in Ms ,τ . One of the main objectives

of our protocol is to construct a robust mesh structure in a cost effective way. To

achieve this, Boundarycast and BoundaryCrosscast[29] are used and a simple loop-
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Figure 4.1 Mesh structure.

free method is introduced. These techniques are described in detail in the next

section.

4.2.2 Multicast Group Construction and Maintenance

In the following section, the steps of the proposed multicast group construction and

maintenance procedures are described. Figure 4.2 presents a schematical represen-

tation of the main steps involved in these procedures.

Step 1: When a source node that is already a member of a multicast group has

multicast packets, it sends the packets to its CH. In the proposed mobility-based

clustering, each node keeps next node-id to its CH, and the CH maintains routing

information proactively within its cluster. When a non-multicast member node

wants to become a member of a multicast group, it requests multicast membership

to its CH. If its CH is not a member of the multicast group, the CH requests

multicasting to its neighbor CHs as described in step 2 - step 5.
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Step 2: The CH generates and advertises a JOIN REQUEST to its neighbor

CHs using the Boundarycast and BoundaryCrosscast procedures[29]. The JOIN

REQUEST consists of the address of the multicast group the node wishes to join,

the source node ID, and source CH ID. Boundarycast is used to facilitate the

forwarding of JOIN REQUEST within a cluster. In Boundarycast each CH sends

JOIN REQUEST only to its boundary nodes to limit the propagation. Boundary

node information can be obtained from the proposed underlying clustering structure

and are proactively maintained in each CH. When a boundary node receives a

JOIN REQUEST from the CH, the boundary node executes the BoundaryCrosscast

operation. BoundaryCrosscast is used for routing between clusters. In Bound-

aryCrosscast each boundary node sends JOIN REQUEST to only its neighbor

boundary nodes (limited search) within its neighbor cluster. Routing between

clusters is implemented using on-demand based protocol that establishes paths by

executing BoundaryCrosscast (i.e., limited path-search query and response method).

Step 3: When a CH that is not a member of the multicast group receives a non-

duplicate JOIN REQUEST, it stores the upstream CH ID (to source CH) and

forwards the messages to all neighbor CHs in accordance with the Boundarycast and

BoundaryCrosscast techniques, except the one that received the request from.

Step 4: When an existing multicast clusterhead (CH) member receives the JOIN

REQUEST, it responds to upstream CH(to source CH) with a JOIN REPLY and

the CH creates or updates the source entry in its multicast member table. This

table stores the multicast address, the source node ID, the source CH ID and the

time when the last JOIN REQUEST is received. Then, the CH just forwards the
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first received JOIN REQUEST (non-duplication) to its nearby CHs and the same

process is repeated. If no JOIN REQUEST is received from a source CH within a

given period, that entry is removed from the multicast member table.

Step 5: When a inter-node (non-CH) between CHs receives a JOIN REPLY, it

checks if the next node ID matches its own ID. If it does, the node realizes that it is

on the path to the source. Then it forwards the JOIN REPLY to its upstream node

(to source CH). When a CH receives a JOIN REPLY, it checks if the next CH ID

of one of the entries matches its own ID. If it does, it updates the mesh table with

its own upstream (to destination) CH ID information and forwards to the upstream

(to source) CHs. The JOIN REPLY is finally propagated to the multicast source CH.

Step 6: When a multicast source want to leave the multicast group, it sends a stop

message to the source CH and the source CH just stops sending JOIN REQUEST,

since it does not have any multicast data to send to the group. When a receiver

no longer wants to receive messages from a particular multicast group, it does not

request multicast to its CH for the multicast group. The CH removes the corre-

sponding entries from its multicast member table if the multicast member is not

updated within a pre-specified time interval.

4.2.3 Data Forwarding Strategy

Although the MHMR creates a mesh infrastructure for multicast routing, the

multicast packet forwarding is done only on a source based tree. The trees are

constructed over the given mesh structure and can be created dynamically depending

on the mesh stability. The main objective of data forwarding strategy is to reduce the
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unnecessary routes for bandwidth saving purposes. In our data forwarding strategy,

the selected tree routes over mesh might be stable during some time duration(T),

with the help of the mobility-based underlying structure. Let Gt = (Vt , Et ) represent

the directed multicast tree over the given mesh structure, where V t is the set of CHs

and Et is the set of links between CHs. The tree is a subgraph of the given mesh

structure (i.e., V C Vm and Et C Em ). Let also s E V denote a multicast source in

the tree. The multicast data forwarding over the tree infrastructure saves redundant

transmissions leading to efficient usage of the scarce bandwidth. In the following,

the main steps of the proposed data forwarding strategy are outlined. Figure 4.3

provides a schematic representation of the main steps involved in this process.

Step 1: Source CH forwards multicast data to its neighbor CHs over the mesh.

Step 2: When a node CHi receives the first data packet, CAi checks whether it

has other upstream(to source CH) clusterhead CHk over the mesh. If it does, then

it sends a FORWARD REJECT message to its other upstream CHs (i.e, all CHk )

over the mesh routes to inform them that it has already received the data packet.

Any CHi  receiving data packet can repeat this operation after some time(Tr), where

Tr depends on the network stability(mobility). Although in the current version of

MHMR, based on this procedure, a tree-based forwarding topology is created, it is

possible in unstable environments to apply the procedure described here adaptively,

in the sense that it may be deviated from the strict tree topology to allow more

additional paths to deliver the data to improve data delivery reliability, at the

expense of additional bandwidth consumption. For instance, if the network is quite

unstable, the FORWARD REJECT message can be sent adaptively to some (and
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not all) of its upstream CHs.

Step 3: When a node CAk receives a FORWARD REJECT message, the CHk

does not forward data packets any more to its downstream C Hi that sent the

FORWARD REJECT message during some time(T f ), where Tf depends on the

network stability(mobility).

Step 4: Resources(bandwidth) can be reserved on the selected forwarding routes.

In the current version of the MHMR protocol, any specific bandwidth reser-

vation scheme (i.e. step 4) has not been implemented. Instead it is assumed that

there is sufficient bandwidth over the selected tree. The work for the design and

development of efficient bandwidth reservation schemes that can be implemented in

the MHMR protocol is currently in progress.

4.2.4 Data Structures

In the following section, the data structures that are required for the implementation

of the MHMR algorithm are summarized.

• Mesh table: Mesh table contains next CH information (to receivers). Mesh table

consists of current CH ID, next CH ID and route information(node-id, hops)

between current CH ID and next CH ID. Mesh table is created on demand

between CHs and is used for data forwarding to multicast members CHs.

• Cluster table: CH maintains its cluster memberships and routing information

for all nodes within its cluster. This information is periodically updated and

maintained proactively in the table.
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• Node-to-CH table: Each node within cluster maintains next node information

to its CH. This information is periodically updated and maintained proactively

in the table.

• Multicast member table: Each CH holds multicast group member information

within its cluster. This table stores the multicast address, the source node ID,

the source CH ID and the time when the last JOIN REQUEST is received.

4.3 Performance Evaluation

In this section, the protocol's performance is evaluated. In subsection 4.3.1 the

modeling and simulation framework that are used to evaluate the protocol's

performance are described, while in subsections 4.3.2 and 4.3.3 the performance

metrics used throughout this study as well as the specific experiments that were

conducted and the corresponding results are presented. The emphasis of the

protocol's performance evaluation is placed mainly on its efficiency and effec-

tiveness. Understanding the protocol's efficiency in addition to its effectiveness gives

us the ability to study and discuss relative strengths, weaknesses, and applicability

to various situations. The achieved performance of MHMR are also compared with

the corresponding performance of ODMRP[20] which uses reactive (i.e., on-demand)

and forwarding group concepts.

4.3.1 Simulation Scenario and Framework

The protocol's performance evaluation is accomplished via modeling and simulation

using the Optimized Network Engineering Tool (OPNET). A mobile ad-hoc network

consisting of 50 mobile nodes that are placed randomly within a rectangular region of



(a) Multicast Join Request Operation

(b) Multicast Join Reply Operation

(c) Mesh Structure after Multicast Group
Construction

Figure 4.2 The procedures for multicast group construction.



(a) Mesh Structure after Multicast Group
Construction

(b) Forwarding Tree Creation Operation

(c) Forwarding Tree over Mesh Structure

Figure 4.3 Strategy of data forwarding tree creation over mesh structure.
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1000 m x 1000 m is modeled in the simulation. Each node is modeled as an infinite-

buffer, store-and-forward queuing station, and is assumed to be aware of its position

with the aid of a reliable position location system. Moreover, the mobile nodes are

assumed to have constant radio range of Z=300 m. Therefore, this behavior may be

interpreted as follows: any packet can be received error free within the transmission

range of a node (i.e. radius of Z from the transmitter), but is lost beyond Z. The main

objective of this study is to evaluate the efficiency and effectiveness of the multicast

routing strategy, and therefore our study is mainly focused on network layer details,

while simplified models are assumed for the data link layer. Throughout the study,

we assume that a link fails, or reappears, as a node goes out or in transmission range

of another node, due to the mobility of the nodes.

Mobile nodes are assumed to be moving around throughout the network. Two

different mobility scenarios are considered in this study. In the first one (in the

following we refer to it as mobility 1), the speed and the direction of each node's move

are uniformly distributed, with speed range [0, v max km/h] and direction range [0,

27], respectively. The speed and direction are updated independently for each node

every A t seconds (in our simulation t = 5seconds). In the second mobility scenario

(in the following it is referred to as mobility 2), a group-based mobility pattern is

modeled. Specifically, nodes are grouped into several groups, where it is assumed that

nodes in the same group have similar mobility characteristics (e.g. similar but not

the same moving direction). At every movement, the speed of each mobile is selected

independently within the range [0, v max km/h]. Regarding the moving direction of

the mobiles, at the beginning of the simulation a starting moving direction is selected

randomly for each group (different groups have different initial directions). Every

mobile belonging to a group selects independently its actual moving direction within
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a range of (-7r/6, +7r/6) with reference to its own group's original selected direction.

As a result, mobiles belonging to the same group present some similarity in the

direction towards which they are moving. Initially, each group consists of five nodes,

however as the system evolves the number of nodes per group changes dynamically.

For both mobility scenarios (i.e. mobility 1 and mobility 2), the results

presented in the following subsection correspond to three different values of v.:

20km/hr, 50 km/hr and 80 km/hr, to represent slow, medium and high moving

speeds, respectively. If a mobile arrives at the boundary of the given network

coverage area, the node reenters into the network. Multicast members are selected

randomly. Finally, throughout this study, the mobility threshold Thmob described

in section 2.1 is selected as follows. Let mmob be the average value of all mobility

information that the node m received and &nob its corresponding standard deviation.

Then, Thmob is selected as: Thmob = mmob + kδmob, where k is constant and can

be changed according to the network under consideration and the desired cluster

stability. In this simulation, parameter k was chosen as k = 1.5 based on experi-

mentation.

4.3.2 Performance Metrics

The performance metrics that it is used in this paper for the evaluation purposes are

the following:

• Packet delivery ratio (PDR): It is defined as the number of data packets

delivered to multicast receivers over the number of data packets supposed to be

delivered to multicast receivers. This ratio represents the routing effectiveness

of our strategy.
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• Control overhead: It is defined as the average number of control packets related

to the route creation process that are received by a node per multicast data

delivered.

• Delay: It is defined as the average latency time for multicast route creation

between multicast source and receivers.

In this chapter, the performance metrics were studied mainly in two dimensions:

mobility and scalability. Since in mobile ad-hoc networks one of the most distinct

characteristics is mobility, the protocols' performance is evaluated as a function

of mobility speed, in order to study and determine their applicability in different

networking environments. Moreover, in order to investigate the scalability of the

respective protocols we investigated the protocols' behavior as we varied the multicast

group size. As it is mentioned before, the performance of MHMR is also compared

with the corresponding performance of ODMRP [20] under the same networking

scenarios. ODMRP applies on-demand routing techniques to avoid channel overhead

and improve scalability. In ODMRP, group membership and multicast routes are

established and updated by the source on demand. While a multicast source has

packets to send, it periodically broadcasts to the entire network a member adver-

tising packet. This periodic transmission refreshes the membership information and

updates the route. This process of constructing and updating the routes from sources

to receivers builds a mesh of nodes, the forwarding group. The forwarding group

consists of a subset of nodes that is responsible of forwarding the multicast packets

via mesh-based topology rather than multicast tree scheme. It supports shortest

paths between any member pairs. All nodes inside the forwarding group forward

multicast data packets. The created mesh subnetwork provides richer connectivity
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among multicast members compared to trees. Hence unlike trees frequent reconfig-

urations are not required. As an on-demand routing mechanism, ODMRP reduces

unnecessary channel overhead. As long as the number of members is high (dense

networks), the forwarding group creates richer connectivity among members and

therefore this mesh makes the protocol quite robust to speed. On the other hand,

since routes are setup on demand, delay is increased. Also the richer the connectivity,

the higher the effect of the forwarding group concept on network congestion.

4.3.3 Numerical Results

Figure 4.4 (Figure 4.10) illustrates the packet delivery ratio of the protocol as a

function of mobility for a given Packet Transmission Rate (PTR) of 5 packets/sec in

mobility 1 (mobility 2) scenario. As seen by the results of this figure, MHMR shows

very good performance in highly dynamic situations where both random or group-

oriented mobility patterns are supported, which means that the fact that our protocol

uses a tree structure for data dissemination does not affect significantly its effec-

tiveness. The reason is that in our protocol the tree is selected and created based on

the underlying structure of the created mesh topology of the clusterheads. Therefore

the impact of a link break is minimal on the protocol's capability of delivering the

data to the appropriate destinations. Similar behavior is observed in Figure 4.5

(Figure 4.11) where the packet delivery ratio achieved by the protocol is presented

as a function of the packet transmission rate for mobility 20 km/hr, for the mobility

1 (mobility 2) case.

In Figure 4.6 (Figure 4.12), the scalability property of the protocol is presented

by presenting the packet delivery ratio as a function of the multicast group size in

mobility 1 (mobility 2) case with mobility speed of 20 km/hr. As it is demonstrated

in these figures, MHMR was not affected by the number of multicast members. This
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Figure 4.4 Packet delivery ratio as function of mobility speed (random mobility).

Figure 4.5 Packet delivery ratio as function of PTR (random mobility).
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Figure 4.6 Packet delivery ratio as function of multicast group size (random
mobility).

Figure 4.7 Control overhead for route creation as function of mobility speed (random
mobility).
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Figure 4.8 Control overhead for route creation as function of number of senders
(random mobility).

Figure 4.9 Delay for route creation as function of mobility speed (random mobility).
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behavior trend is similar to the one presented by flooding technique and ODMRP

protocol [20]. The reason that the protocol is not affected by the membership

group size, while for other mesh-based protocols their behavior may vary with the

multicast group size, is that in MHMR the mesh structure mainly depends on the

underlying mobility-based clustering algorithm, and not on the number of receivers,

as in other protocols [i.e. CAMP[11]]. Furthermore, the fact that our protocol uses

group-mobility characteristics to create the underlying structure contributes to the

improved stability and scalability of MHMR under mobility 2 scenario.

Figure 4.7 (Figure 4.13) show the control overhead associated with the multicast

route creation and maintenance as a function of the number of senders for mobility

1 (mobility 2) scenario for speed vmax = 20km/hr, while Figure 4.8 (Figure 4.14)

presents the control overhead as function of mobility speed for mobility 1 (mobility

2) scenario. The control overhead includes all the signals (packets) that need to

be exchanged among the various nodes in order to create and maintain the routes

and clusters. As can be seen from Figure 4.7 (Figure 4.13), the control overhead

associated with MHMR increases only slightly with increasing number of senders,

while the corresponding control overhead in ODMRP increases drastically. The

reason is that MHMR uses clustering as the underlying structure, and at a large

extend the overhead associated with MHMR is due to the cluster creation and

maintenance, that is performed proactively and in some sense is independent of the

number of senders and/or receivers. In this case, only a small amount of additional

control signals has to be exchanged for the actual support of the multicast commu-

nications. As a result, the overall overhead has lower dependence on the number of

senders, compared to other reactive approaches. For instance, as observed in Figure

4.7 (Figure 4.13) since ODMRP uses on-demand method for route creation, the corre-
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sponding number of control signals drastically increases with increasing number of

senders.

As it is observed from Figure 4.8 (Figure 4.14), the control overhead remains

relatively constant as the speed increases (i.e. only slightly increases with increasing

speed). The reason is that the updates (for clustering and route creation and

maintenance) are operated periodically. However, the number of control signals for

the updates may slightly increase with speed during this period because although

the mobility-based clustering approach groups nodes that present similar mobility

characteristics, as mobility increases the structure (e.g., neighbors of a node)

is changing more drastically, and therefore more control signals nay need to be

exchanged within each update period.

Figure 4.9 (Figure 4.15) presents the average delay (latency time) for route

creation to multicast members. The delay includes all the latency times that need

to be spent between source and all multicast members for route creation. As can

be seen from Figure 4.9 (Figure 4.15), the delay of MHMR is less than the corre-

sponding delay of ODMRP. The main reason is that, as explained before, MHMR uses

hybrid (reactive and proactive) approach while ODMRP just uses reactive approach.

Furthermore, the delay increases only slightly with the increasing mobility speed.

One of the main reasons is that the MBC method that is an integrated part of the

MHMR strategy creates a very stable underlying structure that reduces significantly

the need for clusterhead changes [38] [39]. However, even though the underlying

structure is stable, as the speed increases the probability that the mesh structure

and the created routes may be broken also increases, and therefore the delay may

increase as well.
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Figure 4.10 Packet delivery ratio as function of mobility speed (group mobility).

Figure 4.11 Packet delivery ratio as function of PTR (group mobility).
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Figure 4.12 Packet delivery ratio as function of multicast group size (group
mobility).

Figure 4.13 Control overhead for route creation as function of mobility speed (group
mobility).
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Figure 4.14 Control overhead for route creation as function of number of senders
(group mobility).

Figure 4.15 Delay for route creation as function of mobility speed (group mobility).
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As can be seen from Figure 4.13, Figure4.14 and Figure 4.15, the performance

(i.e., control overhead and delay) of MHMR in mobility 2 scenario (i.e., group

mobility) is much better than the corresponding performance under mobility 1

scenario (i.e. Figure 4.7, Figure 4.8 and Figure 4.9). The main reason for that is

that one of the MHMR's design features and principles is the use of an underlying

structure that depends upon nodes' mobility patterns, and thus, as a natural result,

it provides improved performance when the participating nodes present similar

mobility characteristics as in the case of group-oriented movements and communi-

cations, where the changes of the underlying structure are less drastic.

4.4 Concluding Remarks

In this chapter, a Mobility-based Hybrid Multicast Routing protocol (MHMR)

suitable for mobile ad-hoc networks is proposed. As part of the MHMR protocol, a

mobility-based clustering (MBC) approach that uses combination of both physical

and logical partitions of the network is used. This architecture is mainly used to

form hierarchical clusters and provides the underlying structure for the implemen-

tation of the multicast protocol. The main features that MHMR introduces can be

summarized as: a) mobility-based clustering and group based hierarchical structure,

in order to effectively support the stability and scalability, b) group-based (limited)

mesh structure and forwarding tree concepts, in order to support the robustness of

the mesh topologies which provides "limited" redundancy and the efficiency of tree

forwarding simultaneously, and c) combination of proactive and reactive concepts

which provide the low route acquisition delay of proactive techniques and the low

overhead of reactive methods.
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The performance evaluation of MHMR demonstrate the proposed multicast

protocol's efficiency in terms of packet delivery ratio, scalability, control overhead and

end-to-end delay, as a function of mobility, packet transmission, multicast group size,

and number of senders, and therefore indicate that MHMR provides a very efficient

dynamic multicast strategy that is suitable for application in large scale mobile ad-

hoc networks. Furthermore, the numerical results demonstrated, as expected, that

our protocol's improved performance is even more significant in the case of group-

oriented movements. Since in mobile ad-hoc networks the multicasting applications

are usually among teams that tend to coordinate their movements, our protocol

provides the ideal vehicle for the support of multipoint communications in mobile

ad-hoc networks.



CHAPTER 5

GEOMULTICAST: ARCHITECTURES AND PROTOCOLS
FOR MOBILE AD-HOC WIRELESS NETWORKS

5.1 Introduction and Background

Geomulticast is a specialized location-dependent multicasting technique, where

messages are multicast to some specific user groups within a specific zone. While

conventional multicast protocols define a multicast group as a set of nodes with

a multicast address and geocast defines a geocast group as all the nodes within a

specified zone at a given time, a geomulticast group is defined as a set of nodes of

some specific groups within a specified zone. In general, multicast is more efficient

than multiple unicasts and broadcasts in terms of communication costs. Cost consid-

erations are more critical in mobile ad-hoc wireless networks because these networks

present dynamic, sometimes rapidly changing, random, multihop topologies and

the mobile nodes communicate with each other over wireless links. In this chapter,

architectures and protocols for supporting geomulticast services [55][56] are proposed

in a cost effective way and with high message delivery accuracy in the challenging

environment of mobile ad-hoc wireless networks.

The problem of geocasting has become an active research topic over the last

few years. In [57] the problem of GPS based geographic addressing and routing

in networks with a fixed infrastructure is considered. This work focuses mainly on

the integration of the concept of physical position into the current design of the

Internet, thus assuming fixed geographic routers. To support geocast services, the

authors used location aware routers, multicast routing modifying IP multicast, and

an application layer solution using extended Domain Name Service (DNS). When

no fixed infrastructure is available, as in ad-hoc networks, a mechanism distributed

among all the mobile nodes of the network has to be provided for maintaining position

79
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awareness. This requires that the position coordinates of each node are disseminated

throughout the network. In [23][58] geocasting protocols in networks with no fixed

infrastructure were considered. In that paper, the flooding algorithm was used to

deliver packets to mobile nodes within a specific area (geocast area). With the use

of the forwarding zone concept, geocast packets are forwarded by a smaller set of

nodes as compared to just geocast flooding.

Recently, the use of geographic position as a means of routing has become

increasingly popular in mobile, ad-hoc networks. In [59] the authors, based upon ZRP

(Zone Routing Protocol) [29] scheme and the GPS query optimization mechanism,

have proposed a routing mechanism with the objective to reduce the number of the

route queries within the ZRP protocol. This scheme (GZRP) examines an adaptation

of the reactive part of ZRP and uses the position of neighboring mobile nodes, thereby

taking advantage of the Global Positioning System (GPS) within the ZRP protocol.

In [60] a routing protocol that combines the advantages of reactive protocols, such as

the Dynamic Source Routing (DSR) protocol [31][61], with the improved performance

that can be achieved by the location based solutions to reduce delay, bandwidth and

energy, is provided and evaluated.

In [62] a mechanism for the efficient dissemination of geographic position infor-

mation in ad-hoc networks, is presented. The basic principles of this scheme is that

each node should adapt its own dissemination frequency locally, according to its own

mobility rate, and that the greater the distance separating two nodes, the slower they

appear to be moving with respect to each other. Thus, nodes that are far apart, need

to update each other's position less frequently than nodes closer together. Based on

this dissemination concept several multipoint communication protocols for mobile

ad-hoc wireless networks have been proposed in the literature [e.g. [63] and [64]].
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In [64] a simulation based detailed performance evaluation that compares various

characteristics, such as throughput, end-to-end delay and overhead of several on-

demand routing protocols for mobile ad-hoc networks is presented. Furthermore,

[65][66] considered and studied the problem of congestion control in mobile ad-hoc

networks, with the objective of reducing dynamically the amount of traffic routed

through a node which is temporarily congested.

In general, geomulticast combines geocast and multicast for dynamic message

delivery to a specific group within a geomulticast zone. If a specific geographic

zone is very large and there are many different kind of groups within this zone, it

does not need to broadcast to all nodes within the specific zone. In this chapter,

several geomulticast zone formulation methods are introduced that range from simple

specific techniques (i.e. circle with given radius) to the most general case where the

zone is formulated arbitrarily. In general, a geomulticast zone is represented by some

closed n-sided polygon, where each vertex of each polygon is represented using GPS

coordinates. The general zone formulation method may involve high overhead if

the target area (geomulticast zone) is very complicated. Therefore, several approx-

imation methods for geomulticast zone representation are used to reduce routing

overhead. For the implementation of an efficient geomulticast strategy to support

location-dependent services, the mapping of the boundaries of the specific area to the

mobile nodes within this area is required. In mobile cellular networks, the mapping

is obtained in a cost effective and timely manner using the given cellular structure.

In mobile ad-hoc wireless networks, there are no fixed base stations. However, we

may extend this concept to ad-hoc networks if we use clustering techniques to cluster

the various mobile nodes.
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In this chapter, the mobility based clustering (MBC) approach that was

proposed and evaluated in Chapter 2 is used, as the underlying structure to facilitate

the support of geomulticast services in a similar manner with the cellular networks.

Using this structure as the basis, a direction guided routing (DGR) protocol which

creates cluster-head based limited mesh structure within a guided region is proposed.

The objective of the DGR is to deliver packets with reliability and reduced overhead.

Two geomulticast membership management strategies which depend on geolocation

storage position are presented and investigated. The first strategy is used to reduce

the delivery error while the second one aims to minimize the delay. Moreover, a

framework is defined and formulated in order to evaluate the performance of the

design alternatives used for the support of geomulticast services in mobile ad-hoc

networks. Based on this framework, the performance of the proposed architectures

and protocols are evaluated, and via a numerical study some insight is gained about

the impact of the various design parameters and operational characteristics, on the

system performance.

The remaining of the chapter is organized as follows. Section 5.2 describes in

detail the proposed architectures and protocols for supporting geomulticast services.

In section 5.3, the performance analysis framework used to evaluate geomulticast

architectures and protocols is provided. Section 5.4 presents the corresponding

numerical results and some discussion, while section 5.5 concludes this chapter.

5.2 Architectures and Protocols for Geomulticast

In the following section, the proposed architecture for supporting cost-effective

geographic message services to special user groups is presented in mobile ad-hoc

wireless networks. Since bandwidth and energy limitations are very critical issues
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in mobile ad-hoc wireless networks, the proposed architectures (mechanisms) place

special emphasis on their efficiency. The main questions and issues that are addressed

in such an architecture include the following: i) How do we formulate the target

area? ii) How do we efficiently represent the target area? and iii) What is the

mechanism to efficiently send a message to the target area in order to minimize the

overhead and wasted bandwidth?

5.2.1 Geomulticast Zone Formulation and Representation

To support geomulticast, it is first needed to define the geomulticast zone formu-

lation method. In this chapter, several methods that range from simple specific

zone formulation techniques (i.e. circle with given radius) to the most general case

are considered where the zone is formulated arbitrarily (Figure 5.1). Here it is

assumed that the service is of local interest. For example, it is likely that the group

of interest would include people within close proximity of a particular area. In a

military scenario, a brigade commander may wish to know which ground troops

have penetrated a certain area. The boundaries of the geomulticast zone are simply

presented by the zone representation methods described in the following and sent

along with the geomulticast join request. In specific cases, the sender could be

a mobile node that wishes to reach other mobile nodes around it, within a given

radius. In this case, the geomulticast zone, is a circle of given radius around the

sender. Examples may include finding soldiers or police groups within given distance

around the sender.

Generally, geomulticast zones can be represented by a n-sided polygon (Figure

5.2) specified by the GPS coordinates of the corresponding n points (vertices) (x1,

y1) ,•••, (xn, yn), where line segments connect points (xi-1, yi-1) and (xi, yi), i = 1 ,...,

n. A sender would send a message to mobile nodes within the specified geographical



Figure 5.1 Geomulticast zone formulation.

Figure 5.2 General geomulticast zone representation.



Figure 5.3 Geomulticast zone representations.

area (geomulticast zone) defined by the closed polygon. However, this general zone

formulation method may involve high overhead if the target area (geomulticast zone)

is very complicated. Therefore, several approximation methods are used for geomul-

ticast zone representation to reduce routing overload, as follows: circular represen-

tation, elliptical representation, and rectangular representation. Figure 5.3 provides a

graphical illustration of these representation methods. The choice of the appropriate

representation method may depend on the actual application and desired accuracy.

Circular Representation is the simplest method. Only the center (x, y) position

and radius are needed for geomulticast zone representation. However, large unnec-

essary additional regions may be included into the geomulticast zone. The Elliptical

Representation method requires the center(x, y) position, length(a), height (b), and

the slope angle a. If a is equal to b, this method is the same as circular represen-
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tation method. Arbitrary parks and battle fields can be represented by this method.

Finally the Rectangular Representation needs four position information: (x1, Y1),

(x2 , y2), (x3, y3) and (x4, y4). This method for example can be applied when the

target area (geomulticast zone) is a highway.

5.2.2 Network Structure and Components

Figure 5.4 presents a high level description of the proposed network architecture for

supporting geomulticast in mobile ad-hoc wireless networks. As mentioned above,

the key idea of the proposed network structure is the extension of cellular network

concepts into mobile ad-hoc wireless networks to support geomulticast services in a

stable and cost-effective way [67]. Our network structure for supporting geomulticast

services consists of the following elements and components: Geomulticast Control

Office (GeoCO), clusterheads (CHs), mobile nodes (MNs). The functions performed

by CH and GeoCO are similar to those performed by BS (base station) and MSC

(mobile switching center) respectively in cellular networks. In our structure the

source clusterhead (CH) plays the role of GeoCO. The main function of GeoCO is the

membership management (i.e. geomulticast group construction and maintenance).

In the following section, some parameters that is will be used throughout the

remaining of the chapter are defined. A geomulticast zone as defined before represents

a geographical area that includes a set of mobile nodes S1 whose members may or

may not be members of the specific geomulticast group under consideration. The

geomulticast group defines a subset K of nodes that belong to set S i , that have

the same geomulticast ID. Moreover, let us denote by M1 the set of clusterheads

that serve any part of a specific geomulticast zone, by M2 the set of clusterheads

that serve any part of a specific geomulticast zone with geomulticast member mobile

nodes, and by N the set of all active mobile nodes that are served by the the M 1 CHs



Figure 5.4 Network architecture for supporting geomulticast.

(i.e. all mobile nodes, either inside or outside the geomulticast zone). Furthermore,

let us define by d(S1 ), d(M1 ), d(M2 ), d(N), and d(K) the degree (cardinality) of sets

S1 , M1, M2, N and K respectively. It should be noted here that the actual relations

among the cardinalities of the above sets depend on the topology and distribution

of nodes in the network. For instance there may be cases where nodes that belong

to set N do not belong to set S1 (they are outside the geomulticast zone while they

are served by CHs that serve some part of a specific geomulticast zone), while there

may be cases where all the nodes that belong to set N belong to set S i as well.

The corresponding relations are depicted in Figure 5.5 for a specific geomulticast

scenario. The same reasoning can apply to the other parameters as well. However,

the following relations are always true: d(M 1 ) >= d(M2 ) > 0, and d(N) >= d(K) >=0.

5.2.3 Underlying Structure

For the implementation of an efficient geomulticast strategy to support location-

dependent services, the mapping of the boundaries of the specific area to the mobile

nodes within this area is required. To achieve this in mobile ad-hoc wireless networks
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Figure 5.5 Geomulticast scenario example.

where no infrastructure exists, clustering techniques is used to initially cluster the

various mobile nodes. As mentioned before, the clustering approach used in this

chapter, namely the Mobility Based Clustering (MBC) is based on mobility concepts

(individual mobility, group mobility) [32] and the availability of position information

via a reliable position locating system (i.e. GPS). It uses combination of both physical

and logical partitions of the network (i.e. geographic proximity and functional

relation between nodes, such as mobility pattern etc.), as well as the concept of

relative mobility to characterize the degree of mobility of a node with respect to its

peers, without the need of an underlying unicast routing protocol.

5.2.4 Direction Guided Routing

In this section, a direction guided routing (DGR) protocol which creates cluster-head

based limited mesh structure within a guided region is proposed. This guided region
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can be adjusted based on the network stability and specifications. The objective of

the DGR is to deliver packets with reliability and reduced overhead (i.e., limited

mesh structure using position information). Figure 5.6 depicts the mesh route

structure and the route search operation. In the following section, the detailed steps

of the proposed algorithm are described.

Step 1: Sender(source) specifies(formulates and represents) the geomulticast zone

and calculates the distance(Lo ) between the source (xs, Ys) and the center point(xe,

yc ) of the geomulticast zone. Next the sender transmits the geomulticast messages

to the clusterhead(CH) via next node, where the message packet header holds

the geomulticast zone boundary information, and next node-id information can be

obtained from the underlying structure (i.e., MBC).

Step 2: When the source CH receives the geomulticast message, the Source CH

generates a GeoJOIN REQUEST message and advertises it to its neighbor CHs by

Boundarycast and BoundaryCrosscast operations [29]. The GeoJOIN REQUEST

consists of geomulticast zone boundary information, geomulticast group ID the node

wishes to join, the source node ID, and source CH ID. Boundarycast is used to

facilitate the forwarding of GeoJOIN REQUEST within a cluster. Each CH sends

GeoJOIN REQUEST only to its boundary nodes to limit the propagation. Boundary

node information can be obtained from the proposed underlying clustering structure

(i.e., MBC) and is proactively maintained within each CH. When a boundary node

receives a GeoJOIN REQUEST from the CH, the boundary node executes the

Boundarycast operation. BoundaryCrosscast is used for routing between clusters

and each boundary node sends the GeoJOIN REQUEST message to only its neighbor
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boundary nodes (limited search) within its neighbor clusters.

Step 3: When a node (non-CH node) receives a GeoJOIN REQUEST message, first it

checks whether it is inside or outside the geomulticast zone by comparing (mapping)

the geomulticast zone's boundary information in the message header with its position

information. If it is inside the geomulticast zone, the node accepts the GeoJOIN

REQUEST message and sends the message to the CH. If it is outside of geomulticast

zone, it calculates the distance(d i ) from its current position(x i , y2 ) to the geomul-

ticast zone center (xc , yc) and the distance(d s ) from its current position(xi, yi ) to the

sender(source)(x s , ye ). The node accepts the GeoJOIN REQUEST and sends the

message to the CH if all the following three conditions are satisfied: 0 d i < d2- 1 , ii)di

< L0 , iii)(ds + di ) < Dth , where di and di-1 are the distances from node's current

position(xi, yi) and previous position(xi-1 , Yi-1) to the geomulticast zone center(xc,

ye ) respectively. If any of the above conditions are not satisfied, the node rejects the

GeoJOIN REQUEST message. The objective of the use of threshold Dth is to reduce

the overhead associated with the route discovery process by limiting the region that

is involved with the propagation of the related messages. It should be noted that

the choice of Dth depends on the network stability and mobility, as well as on the

trade off between the breadth and the overhead of the route discovery/search process.

Step 4: When a CH receives the GeoJOIN REQUEST, the CH stores the upstream

(to source CH) CH ID in the CH table and checks the geomulticast membership

information. In the next section, we present two membership management strategies

for supporting geomulticast services. There are two operations in step 4. First, if

there are geomulticast memberships, it replies with GeoJOIN REPLY to its upstream
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(to source CH) CHs using CH table information. When each CH receives GeoJOIN

REPLY message, the CH stores the downstream (to geomulticast zone) CH ID.

When the source CH (i.e., GeoCO) receives the GeoJOIN REPLY message, the first

operation is completed. In the second operation, the CH forwards the GeoJOIN

REQUEST to its neighbor CHs by using step 2 and step 3 while there are neighbor

CHs.

Step 5: While the source CH holds the GeoJOIN REPLY message during a specified

time interval, the CH transmits the geomulticast packets over the mesh routes to the

geomulticast members within the geomulticast zone.

5.2.5 Geomulticast Group Construction and Maintenance

In this section, two geomulticast membership management strategies which depend

on the geolocation storage position are presented and discussed. In the first strategy,

each mobile node holds its geolocation information via GPS while in the second

strategy each CH holds geolocation information of all its members. In the following

we present the main operational steps for each strategy.

Strategy 1

Step 1: When a CH receives a GeoJOIN REQUEST, the CH simply relays this

information to all the MNs in its respective service area.

Step 2: The MNs compare their geolocation with the geomulticast zone boundaries

included in the GeoJOIN REQUEST message and decide whether they are inside or



(a) Route search operation
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(b) Mesh route structure

Figure 5.6 Direction guided routing (DGR).
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outside the geomulticast zone.

Step 3: If a MN decides that it is inside the geomulticast zone and has the geomul-

ticast group ID, then it returns a positive response to the CH, where geomulticast

ID is generated and transmitted from source CH and is used to identify a specific

multicast group. Please see step 2 in Direction Guided Routing.

Step 4: The CH checks the geomulticast memberships periodically. If there are

geomulticast memberships, it replies with GeoJOIN REPLY message to the GeoCO

(its source CH) using CH table information.

Figure 5.7 (a) describes the signal flow of geomulticast membership management

strategy 1. Following the notation introduced in subsection 3.2.2 the number of

messages, in worst case, transmitted across the network under this strategy is:

((d(N) + d(K)) + d(M1 ) + d(M2)). If we denote by A the arrival rate of geomulticast

sessions then the signaling load per time unit due to geomulicast in the network is:

Strategy 2

Step 1: Each MN periodically updates with its geolocation the CH that belongs to.

Step 2: CHs maintain a table of the geolocations for the mobile nodes currently

within their respective clusters.



Figure 5.7 Signal flows for geomulticast group construction and management.

Step 3: When a CH receives a GeoJOIN REQUEST, the CH compares the geomul-

ticast zone boundary information with the geolocation information of its members

and checks the geomulticast ID.

Step 4: If there are geomulticast memberships in the CH, it replies with GeoJOIN

REPLY message to the GeoCO (its source CH) using CH table information.

The main objective of strategy 2 is to reduce the delay during the geomulticast

session setup process. When a geomulticast session arrives, the most recent geolo-

cation updates from all mobiles are used to decide about the geomulticast group

membership. The number of messages transmitted across the network, when a

geomulticast session arrives is: (d(M1 ) + d(M2)), and therefore the signaling load

per time unit due to geomulticast is: λ(d(M1) + d(M2)). However, in this signaling

load we need to add the signaling load that results from the periodic updates of

the geolocation information that each mobile node generates. This additional load
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depends on the update time interval, and can be immense with increasing number

of mobiles and decreasing update intervals. It should be noted here that there is a

trade off between the signaling load and the probability of error in the geomulticast

group membership. This trade off, which is closely related to the periodic update

interval, is discussed and studied in more detail in the following sections. If it is

denoted by L the set that represents all the active mobile nodes in the network, by

d(L) the cardinality of set L, and by a the rate at which geolocation updates are

generated by a mobile node (e.g. updates per time unit) the signaling load due to

geomulticast session setup is: λ(d(M1) + d(M2)) + ad(L). Figure 5.7 (b) describes

the signal flow of geomulticast membership management strategy 2.

5.3 A Framework for Performance Analysis and Evaluation

In this section, a framework is defined and formulated in order to evaluate the

performance of the design alternatives, algorithms and implementations used for

geomulticast services in mobile ad-hoc wireless networks. Since one of the main

objectives of the efforts is to design architectures that support geomulticast services

with high delivery accuracy in the following subsection, the probability of geomul-

ticasting error (GeoError), Pge , and the Accuracy of Geomulticast Packet Delivery

(AGPD) are introduced and defined as performance measures.

The probability of GeoError Pge , (Figure 5.8), Pge , refers to the probability of

occurrence of either of the following events: a) a mobile that is inside the geomulticast

zone does not receive the geomulticast message for some time, and b)a mobile that

is not in the geomulticast zone does receive the geomulticast message for some time.

Let us denote by T the geolocation update time interval and by Te the GeoError time

interval for a specific mobile due to either one of the two events described above (see
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figure 5.8). The first event may occur when a mobile that was initially (e.g. at

time t = 0) outside the geomulticast zone and therefore the CH has identified it as a

non-member of the geomulticast group during the membership identification process,

has moved in the meantime inside the geomulticast zone (e.g. after some time T9 ),

however has not yet updated its CH with its new geolocation position (i.e. before

the new geolocation update point t = r, which means before the expiration of the

update time interval T). In this case for some time interval T e the mobile node will

not be receiving the geomulticast messages, although during this time interval it is

within the geomulticast zone and intends to be member of the geomulticast group.

The mobile node will become a member of the intended geomulticast group

and will start receiving the corresponding messages at the next geolocation update

point. Similarly, the second event may occur when a mobile node that was initially

(e.g. at time t = 0) inside the geomulticast zone and its CH has identified it as

a member of the geomulticast group during the membership identification process,

has moved in the meantime outside the geomulticast zone (e.g. after some time T9 ),

however has not yet updated its CH with its new geolocation position (i.e. before

the new geolocation update point t = r, which means before the expiration of the

update time interval r). In this case for some time interval Tel the mobile node will

continue to receive the geomulticast messages, although it is outside the geomulticast

zone and is not supposed to be member of the geomulticast group.

From the above discussion, it is obvious that the rate of geomulticast zone

boundary crossing, Ac , before the geomulticast membership list is updated is one

of the most significant contributors to the total probability of GeoError, especially

when the geomulticast membership decision is made at the network level, where the

mobiles need to send periodic updates of their geolocation to the clusterhead (i.e.
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strategy 2). Overall the geomulticast error probability depends on the packet to

mobility ratio, i.e. how often a user receives a packet and how mobile the node is,

as well as on the geolocation update time interval. Optimization of location update

mechanism and interval has been a subject of intense research in the framework of

cellular networks mainly for location management [68] [69] [70] [71] [72]. In general,

there is a strong and complicated relation between the update interval and other

system and traffic parameters. Here, a framework is developed in order to evaluate

the effects and associated trade offs, and some insight is gained about the optimum

location update interval through a numerical study.

Specifically, the effect of the mobile node geolocation periodic update interval

on the packet delivery accuracy and the associated overhead (signaling load) is

studied. As this update interval decreases, the probability of geomulticast error

decreases as well at the cost of increased signaling traffic and processing in order

to maintain accurate mobile node position information at the CH, propagate the

updated information from each individual node to the clusterhead(CH), and compare

(map) this position to the geomulticat zone boundary information.

5.3.1 The Model

For the purposes of the performance evaluation, in this work the movement of the

mobile nodes is modeled by a random and uniform model ([72][73][74]). This model

assumes that the mobile nodes move with constant velocity during time interval

T in a random direction 0 that is uniformly distributed in [0,27r]. Considering a

geomulticast area with perimeter S where p mobile terminals per unit area are located

the rate of geomulticast zone boundary crossing per unit time (average number of

mobile nodes crossing the area border per unit of time), denoted by A, is [72][73]:



Figure 5.8 The model.

where β denotes the activity ratio of mobiles (in the following without loss of

generality we may assume i3 = 1), and V is the average mobile node velocity. For

example, if the geomulticast zone is represented by a circle with radius R then

A, λc= 2ρ VR.In general A, depends on the actual size of the geomulticast zone, the

network density, and the mobility pattern of the mobile nodes (e.g. velocity).
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It is assumed that the number of messages that arrive at a mobile node during

a time t is a Poisson random variable with rate λa. Moreover, let us denote by t e the

random variable that represents the GeoError time interval (i.e. the time between

the point that a mobile is erroneously considered (or not considered) member of the

geomulticast session due to the two events described before, and the point until the

next position update). Assuming that the interval between two boundary crossing of

a mobile is much longer than T, which should be case in any practical system, then

it is proved that t e has a uniform distribution in interval [0, T]. That is the density

function fe (te ) Of te is:

In the following, the derivation of the density function fe (te ) of te is in detail

presented. Suppose that a mobile node resides in a geomulticast zone for a period is

and E[t s] = 1 where let ii be the mobility of a mobile node(i.e., the rate that theto
mobile node leaves a geomulticast zone). In other words, 1/μ is the expected residual

time of the mobile node in a geomulticast zone. Figure 5.9 presents the time diagram

for geomulticast services. In the following, some preliminary results that will be used

throughout the proof of the claim that t e has an uniform distribution (e.g., relation

(5.2)) are first obtained.

Let's consider Figure 5.9 and f be the density function of the traveling time

of a mobile node in geomulticast zone. The relationship between t, and te is

Thus, the density function f e for te is



Figure 5.9 The time diagram for geomulticast services.

Since the message arrivals forms a Poisson Process with rate A c, and because

of the excess life property[75] of the exponential distribution, the probability of n

message arrival[76][77] during the time period t e is

Let u be the probability that there are message arrivals during the time duration Te .

The probability u* = 1 — u that no message arrives during Te is

Let q = (i + 1)T — t e , then equation (5.7) is rewritten as
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In the following, it is considered that the residual time in a geomulticast zone

can be represented by Gamma distribution. Depending upon the values of the

associated parameters, it can be shaped to represent many distributions as well as

measured data. For example, one may measure the mobile residual time in geomul-

ticast zone in a real network, and the measured data can be approximated by a

Gamma distribution as the input to the model. If fs (t) is a Gamma density function

/7 , 77 (0 with the shape parameter 'y and the scale parameter η [78], then fs (t) = fγ,η(t)

and the distribution function F3 (t) = Fγ,η(t) = f:,=0 fγ,η(q)dq. Equation (5.9) is

rewritten as

The values of P'7 ,η_Ac, (ir) and Fγ,η((i + 1)r)) can be obtained from the Gamma

distribution function table [78]. If 7 is a nonnegative integer, then from [79]
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term in the right-hand side is the j th moment of the Geometric distribution with

probability function Pk = (1 - 6-111(e-in i-1 for i > 1 and the moment generating

function

The j th moment of the geometric distribution can be obtained by differentiating

equation (5.19) j times with s = 0. Thus equation (5.18) is rewritten as
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Let's consider the case when the mobile node residual(traveling) time in a

geomulticast zone is very long; i.e., 1/μ-->∞. From equation (5.21), it is obtained

where
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where Xj,l is a constant with respect to n (0< 1 < j < 7) and X.1- 1 ,7- 1 =1. Equation

(5.29) is rewritten as

•I

rewritten as

From Equation (5.22), (5.27), and (5.33), it is obtained

Suppose that a mobile node resides in a geomulticast zone for a period t3 and

E[ts] = InIn other words , 1 is the expected residual time of the mobile node in

a geomulticast zone. The number of geolocation update messages sent from mobile

node to its clusterhead(CH) is [ts/T]. Let w be the expected number of geolocation

update messages sent during a time unit. Then
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If F, is a Gamma distribution Fr,η with a nonnegative shape parameter γ (where 

= 'yip), then Equation (5.40) is rewritten as
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Based on the above results and observations, it can be easily shown that if the

interval between two boundary crossings of a mobile node is much longer that r,

then te has an uniform distribution in interval [0, 7] . This statement is proved as

follows. If te has a uniform distribution, then its density function fe (te) of te is:

For message arrival rate λa,the probability that no message arrives during teis e-λate

according to equation (5.5), and the probability that a message arrives during the

time period te is

Equation (5.48) is the same as (5.34).

The probability of k message arrival [76] during time Te is

Since as mentioned before t e follows a uniform distribution between [0, 'r], it can be

easily shown based on the properties of conditional expectation, E[error packet rate

7 that the average rate of error (E[error packet rate]) message arrival
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= 2 * λc * λa *T/
2 

* h (5.51)

where it is multiplied by two to account for the two cases of possible errors that may

occur and correspond to the occurrence of the two events described in the beginning

of section 3, and by h we denote the percentage of the total number of nodes within

the zone, that are members of the geomulticast group under consideration (for the

special case that all nodes within the zone are geomulticast members it has h = 1,

otherwise h < 1). Then, the probability of GeoError(Pge ) can be calculated as

follows:

where B denotes the average number of nodes within the geomulticast zone that are

geomulticast members. Based on the model under consideration, the total number of

nodes within a zone of area F is given by p * F, and therefore h = p*F. Substituting

this in the previous relation we obtain:

The Accuracy of Geomulticast Packet Delivery(AGPD) can be defined as:

Of course, one would like to reduce the probability of GeoError and therefore

increase the Accuracy of Geomulticast Packet Delivery. When geomulticast
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management strategy 2 is employed, this could be done by having the mobiles

to update their location often (i.e., small 7). However, location updates consume

wireless resources and processing power and should not be too frequent. On the

other hand as mentioned before, infrequent updates may result in errors in packet

delivery. In the following section, a cost function is developed to quantify the

trade off between the penalty associated with the occurrence of errors in packet

delivery and the associated cost for supporting certain degree of accuracy in the

proposed geomulticast architecture. Only the cost is considered directly related to

the geomulticast session setup, the update of the geolocation and the loss of packets

due to the inaccuracy of position information as a result of the node mobility and

the geolocation update time interval, while other cost associated with functions such

as cluster construction and maintenance, system maintenance etc., is the same for

different cases (depends only on the underlying structure) and is not considered

here. Therefore, the following estimated cost contain: the average cost per time

unit of geolocation updates, the average cost per time unit of geomulticast session

setup and the average error cost (penalty) per time unit, due to the inaccuracy of

position information as a result of the node mobility and the geolocation update

time interval. Let's denote by c3 the per signal cost for geomulticast session setup,

by c9 the cost of a single geolocation update per node, and by Cerro,. the GeoError

cost per time unit. Then the corresponding average cost per time unit, Costtotal Cost total,is:

Let's denote by c am,, n = 1, 2, ..., the cost of loosing n calls. Then the corre-

sponding average GeoError cost per time unit, Cerror is:
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For the sake of simplicity in the following, it can be reasonably assumed that the

cost of loosing the nth message arrival after geomulticast zone boundary crossing by

a mobile node is independent of n. Thus, Vu, c„, = nc1. Consequently:

Finally, substituting relation (5.62) in (5.58) we get:

5.4 Numerical Study and Discussion

In this section, some numerical results are presented that it is obtained based on the

analytical framework it is developed in the previous section, as well as via modeling

and simulation using the Optimized Network Engineering Tool (OPNET). The aim

of this numerical study is to evaluate the performance of the proposed architectures

and obtain some insight about the impact on the overall system performance, of the

design parameters, as well as of various operational parameters and characteristics

such as mobility, geolocation update rate, geomulticast group size, etc.
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5.4.1 Evaluation Framework

A mobile ad-hoc network consisting of 50 mobile nodes that are placed randomly

within a rectangular region of 1000 m x 1000 m is modeled for the purposes of this

study. The results presented in the following section correspond to the use of circular

geomulticast zone with radius R (150 m - 300 m). The mobile nodes are assumed to

have constant radio range of Z=300 m. Throughout our study, it is assumed that a

link fails, or reappears, as a node goes out or in transmission range of another node,

due to the mobility of the nodes. Mobile nodes are assumed to be moving around

throughout the network. The speed and the direction of each move are uniformly

distributed, with speed range [0, 80 km/h] and direction range [0, 27r], respectively.

One geomulticast source node (sender) is used while the geomulticast members are

selected randomly within the geomulticast zone.

5.4.2 Numerical Results and Discussion

One of the main objectives of this numerical evaluation is to study the accuracy

of geomulticast packet delivery. As mentioned before, accuracy of geomulticast

packet delivery is defined as the number of geomulticast data packet delivered to

multicast receivers over the number of geomulticast data packets supposed to be

delivered to multicast receivers. In this numerical study, the performance metrics are

studied mainly in two dimensions: mobility and scalability. Since in mobile ad-hoc

networks one of the most distinct characteristics is mobility the system's performance

is initially evaluated as a function of mobility speed, in order to study and determine

its applicability in different networking environments. Moreover, the scalability of

the proposed architecture and algorithms by studying the corresponding behavior

are investigated as the multicast group size is varied, the multicast zone size and the

packet generation rate. Finally, some insight is obtained about the trade-off between
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the accuracy of the geolocation packet delivery service and the geolocation update

interval.

Specifically, Figure 5.10 illustrates the accuracy of geomulticast packet delivery

(AGPD) as a function of mobility for packet arrival rate (PAR) 5 packets/sec,

geomulticast zone with Radius 250 m and geolocation update time interval T = 1

sec. As demonstrated in this figure the AGPD shows very good performance even

in highly dynamic situations. One of the reasons that contribute to this is that the

underlying structure that results from the use of MBC strategy is very stable and the

route selection is based on the corresponding created mesh structure. This means

that the impact of a link break on protocol's capability of delivering the data to

the appropriate destinations is minimal. Similar behavior is observed in Figure 5.11

where the accuracy of geomulticast packet delivery achieved by our architecture is

presented as a function of the packet arrival rate for mobility 40 km/hr, geomulticast

zone with Radius 250 m and geolocation update time interval T = 1 sec.

Figures 5.12 and 5.13 demonstrate the scalability property of our protocol.

Specifically, Figure 5.12 presents the accuracy of geomulticast packet delivery as a

function of the geomulticast zone size (i.e., radius R) for mobility 40 km/hr, PAR

5 packets/sec and geolocation update time interval T = 1 sec, while Figure 5.13

illustrates the accuracy of geomulticast packet delivery (AGPD) as a function of

geomulticast memberships for mobility 40 km/hr, PAR 5 packets/sec and geomul-

ticast zone with Radius 250 m for three different values of T. As it can be seen from

both these figures, the proposed architecture posses the scalability property, since

the the accuracy of geomulticast packet delivery ratio remains relatively constant

with the change of the geomulticast zone size and the geomulticast group size.
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Figure 5.14 presents the accuracy of geomulticast packet delivery (AGPD) as

a function of geolocation update time interval (i.e., r) for mobility 40 km/hr, PAR

5 packets/sec and geomulticast zone with Radius 250 m. From this figure it can be

seen that AGPD is decreasing with the increase of r. However, as it is discussed

before, this is accompanied with a decrease in signaling load due to the position

update generation process.

Figure 5.15 presents the control overhead for route creation and maintenance

associated with the proposed structure and strategies for PAR 5 packets/sec and

geomulticast zone with Radius 250 m. Note that the overhead contains all the

control signals (packets) that need to be exchanged among the various nodes in

order to create and maintain the routes and clusters. The control overhead can

be changed (i.e., increased or decreased) by the direction range control parameter,

Dth, that controls the mesh route search range (region). In this study, Dth = 1.5*

Lo is used, where (L0 ) is the distance between the source (sender)(x s , ys ) and

the center point(x e , y, ) of the geomulticast zone. As it can be seen from Figure

5.15 the control overhead remains relatively constant (i.e., only slightly increases

with increasing speed). The reason is that the updates (for clustering and route

creation and maintenance) are operated periodically. However, the number of control

signals for the updates may slightly increase with speed during this period because

although the mobility-based clustering approach groups nodes that present similar

mobility characteristics, as mobility increases the structure (e.g. neighbors of a

node) is changing more drastically, and therefore more control signals may need to

be exchanged within each update period.
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5.5 Concluding Remarks

Geomulticast is a specialized location-dependent multicasting technique, where

messages are multicast to some specific user groups within a specific zone. In

this chapter, architectures and protocols are proposed to support geomulticast

services with high packet delivery reliability in mobile ad-hoc wireless networks.

The main elements of these architectures and protocols include: a mobility based

clustering method to be used as the underlying structure, techniques for geomulticast

zone formulation and representation, and a direction guided geomulticast routing

strategy. The direction guided routing (DGR) protocol creates cluster-head based

limited mesh structure within a guided region, in order to deliver packets with relia-

bility and reduced overhead to the final destinations. Moreover, two geomulticast

membership management strategies which depend on geolocation storage position

are also presented and investigated. The first strategy is used to reduce the message

delivery error while the second one aims to minimize the session setup delay.

An analytical framework is also presented in order to evaluate the performance

of the design alternatives for algorithms and implementations used for geomulticast

services. The probability of GeoError and the accuracy of geomulticast packet

delivery are derived and the tradeoff between the geolocation update interval and

signaling load is discussed. The performance evaluation of the proposed architectures

has demonstrated their efficiency in terms of accuracy of geomulticast packet delivery,

scalability, and control overhead, as a function of mobility, geomulticast zone size,

geolocation update time interval, number of geomulticast memberships, and therefore

indicate that the proposed architectures can be used to support geomulticast services

with high message delivery accuracy in mobile ad-hoc networks.
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Figure 5.10 Accuracy of geomulticast packet delivery as a function of mobile speed.

Figure 5.11 Accuracy of geomulticast packet delivery as a function of packet arrival
rate.
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Figure 5.13 Accuracy of geomulticast packet delivery as a function of geomulticast
membership.
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Figure 5.14 Accuracy of geomulticast packet delivery as a function of geomulticast
update rate.

Figure 5.15 Average number of total control signal/node/packet transmission as a
function of mobility speed.



CHAPTER 6

CONCLUSIONS

The emerging group communication wireless applications, such as multipoint data

dissemination and multiparty conferencing tools have made the design and devel-

opment of efficient multicast techniques in mobile ad-hoc networking environments

a necessity and not just a desire. In this dissertation, first the activities and recent

advances are summarized in this work-in-progress area by identifying the main issues

and challenges that multicast protocols are facing, and by providing a brief overview

of the main current strategies in mobile ad-hoc wireless networks. A first effort in

the literature to classify the existing multicast protocols is also presented, and to

provide a qualitative comparison of their characteristics according to several distinct

features and performance parameters.

Next, a mobility-based clustering(MBC) approach that can be applied in

wireless mobile ad-hoc networks is proposed in order to facilitate the implemen-

tation of efficient mobility management solutions and multicasting strategies. The

proposed cluster architecture consists of variable-size clusters that may change

adaptively according to nodes' mobility. The proposed MBC algorithm uses combi-

nation of both physical and logical partitions of the network (i.e. geographic

proximity and functional relation between nodes, such as mobility pattern etc.), as

well as the concept of relative mobility that characterizes the degree of mobility of a

node with respect to its peers. The performance evaluation of the algorithm demon-

strated that the proposed strategy improves the stability of the clustered topology,

by reducing significantly the number of clusterhead changes under different mobility

scenarios. The proposed cluster architecture provides for a very robust infras-
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tructure, which is not easily disrupted by mobility and can support stable paths

(reduction of routing overhead) and cost effective mobility management solutions.

An entropy-based modeling framework for supporting route stability is

presented in mobile ad-hoc wireless networks. The basic motivations of the proposed

modeling approach stem from the commonality observed in the location uncertainty

in mobile ad-hoc wireless networks and the concept of entropy. The corresponding

results have demonstrated that the proposed modeling can be used as the ideal vehicle

by various routing protocols for evaluation, selection and assignment of priorities to

various routes according to route stability, in order to enhance the offered connec-

tivity and QoS. Furthermore, the proposed approach has been extended into a

clustered self-organizing mobile ad-hoc wireless network for supporting QoS and

stability for multicast services.

Based on the underlying structure, MBC, a Mobility-based Hybrid Multicast

Routing protocol(MHMR) suitable for mobile ad-hoc networks is proposed. The

main features that MHMR introduces can be summarized as: a) mobility based

clustering and group based hierarchical structure, in order to effectively support the

stability and scalability, b) group based (limited) mesh structure and forwarding

tree concepts, in order to support the robustness of the mesh topologies which

provides "limited" redundancy and the efficiency of tree forwarding simultaneously,

and c) combination of proactive and reactive concepts which provide the low route

acquisition delay of proactive techniques and the low overhead of reactive methods.

The performance evaluation of the proposed protocol demonstrates the proposed

multicast protocol's efficiency in terms of packet delivery ratio, scalability, control

overhead, end-to-end delay, as a function of mobility and multicast group size, and
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therefore, indicate that MHMR provides a very efficient multicast protocol that is

suitable for application in large scale mobile ad hoc networks.

Finally, since geomulticast is a specialized location-dependent multicasting

technique where messages are multicast to some specific user groups within a

specific zone, the geomulticast problem is studied by presenting a range of possible

geomulticast architectures for mobile ad-hoc wireless networks. Specifically, geomul-

ticast zone representation, geomulticast zone formulation, network architecture,

and geomulticast routing strategy are described for supporting geomulticast. An

analytical framework and model are also provided that can be used to evaluate the

performance of the design alternatives, algorithms and implementations used for

geomulticast services in mobile ad-hoc wireless networks.
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